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Abstract. We study the problem ⊕HomsToH of counting, modulo 2,
the homomorphisms from an input graph to a fixed undirected graph H.
A characteristic feature of modular counting is that cancellations make
wider classes of instances tractable than is the case for exact (non-
modular) counting, so subtle dichotomy theorems can arise. We show the
following dichotomy: for any H that contains no 4-cycles, ⊕HomsToH
is either in polynomial time or is ⊕P-complete. This partially confirms a
conjecture of Faben and Jerrum that was previously only known to hold
for trees and for a restricted class of tree-width-2 graphs called cactus
graphs. We confirm the conjecture for a rich class of graphs including
graphs of unbounded tree-width. In particular, we focus on square-free
graphs, which are graphs without 4-cycles. These graphs arise frequently
in combinatorics, for example in connection with the strong perfect graph
theorem and in certain graph algorithms. Previous dichotomy theorems
required the graph to be tree-like so that tree-like decompositions could
be exploited in the proof. We prove the conjecture for a much richer class
of graphs by adopting a much more general approach.

1 Introduction

A homomorphism from a graph G to a graph H is a function from V (G) to V (H)
that preserves edges, in the sense of mapping every edge of G to an edge of H;
non-edges of G may be mapped to edges or non-edges of H. Many structures
arising in graph theory can be represented naturally as homomorphisms. For
example, the proper q-colourings of a graph G correspond to the homomor-
phisms from G to a q-clique. For this reason, homomorphisms from G to a
graph H are often called “H-colourings” of G. Independent sets of G correspond
to the homomorphisms from G to the connected graph with two vertices and
one self-loop (vertices of G which are mapped to the self-loop are out of the
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H1: H2:

∗

Fig. 1. Theorem 1.2 shows that ⊕HomsToH1 is ⊕P-complete, whereas ⊕HomsToH2

is in P. The role of the starred vertex is explained later in this section.

corresponding independent set; vertices which are mapped to the other vertex
are in it). Homomorphism problems can also be seen as constraint satisfaction
problems (CSPs) in which the constraint language consists of a single symmetric
binary relation. Partition functions in statistical physics such as the Ising, Potts
and hard-core models arise naturally as weighted sums of homomorphisms [2,8].

In this paper, we study the complexity of counting homomorphisms modulo 2.
For graphs G and H, Hom(G → H) denotes the set of homomorphisms from G
to H. For each fixed H, we study the computational problem ⊕HomsToH,
which is the problem of computing |Hom(G → H)| mod 2, for an input graph G.

The structure of H strongly influences the complexity of ⊕HomsToH. For
example, consider the graphs H1 and H2 in Figure 1. Our result (Theorem 1.2)
shows that ⊕HomsToH1 is ⊕P-complete, whereas ⊕HomsToH2 is in P.

The aim of research in this area is to understand for which graphs H the
problem ⊕HomsToH is in P, for which graphs H the problem is ⊕P-complete,
and to prove that, for all graphs H, one or the other is true. Note that it isn’t
obvious, a priori, that there are no graphs H for which ⊕HomsToH has inter-
mediate complexity – proving that there are no such graphs H is the main work
of a so-called dichotomy theorem.

This line of work was introduced by Faben and Jerrum [6]. They made the
following important conjecture (which requires a few definitions to state). An
involution of a graph is an automorphism of order 2, i.e., an automorphism ρ
that is not the identity but for which ρ2 is the identity. Given a graph H and an
involution ρ, Hρ denotes the subgraph of H induced by the fixed points of ρ. We
write H ⇒ H ′ if there is an involution ρ of H such that Hρ = H ′ and we write
H ⇒∗ H ′ if either H is isomorphic to H ′ (written H ∼= H ′) or, for some positive
integer k, there are graphs H1, . . . , Hk such that H ∼= H1, H1 ⇒ · · · ⇒ Hk, and
Hk

∼= H ′. Faben and Jerrum showed [6, Theorem 3.7] that for every graph H
there is (up to isomorphism) exactly one involution-free graph H∗ such that
H ⇒∗ H∗. This graph H∗ is called the involution-free reduction of H.

Conjecture 1.1. (Faben and Jerrum [6]) Let H be a graph. If its involution-free
reduction H∗ has at most one vertex, then ⊕HomsToH is in P; otherwise,
⊕HomsToH is ⊕P-complete.
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Note that our claim in Figure 1 is consistent with Conjecture 1.1. H1 is
involution-free, so it is its own involution-free reduction, but the involution-free
reduction of H2 is the single vertex marked ∗ in the figure.

Faben and Jerrum [6, Theorem 3.8] proved Conjecture 1.1 for the case in
which H is a tree. Subsequently, the present authors [7, Theorem 1.6] proved
the conjecture for a well-studied class of tree-width-2 graphs, namely cactus
graphs, which are graphs in which each edge belongs to at most one cycle.

The main result of this paper is to prove the conjecture for a much richer
class of graphs. In particular, we prove the conjecture for every graph H whose
involution-free reduction has no 4-cycle. Graphs without 4-cycles are called
“square-free” graphs. These graphs arise frequently in combinatorics, for exam-
ple in connection with the strong perfect graph theorem [4] and certain graph
algorithms [1]. Our main theorem is the following.

Theorem 1.2. Let H be a graph whose involution-free reduction H∗ is square-
free. ⊕HomsToH is in P if H∗ has at most one vertex; otherwise, ⊕HomsToH
is ⊕P-complete.

If H is square-free, then so is every induced subgraph, including its involution-
free reduction H∗. Thus, we have the following corollary.

Corollary 1.3. Let H be a square-free graph. If its involution-free reduction H∗

has at most one vertex, then ⊕HomsToH is in P; otherwise, ⊕HomsToH is
⊕P-complete.

In Section 1.3 we will discuss the reasons that we require H∗ to be square-free
in the proof of Theorem 1.2. First, in Section 1.1, we will describe the background
to counting modulo 2. In Section 1.2, we will explain why Conjecture 1.1 is so
much more difficult to prove for graphs with unbounded tree-width. Very briefly,
in order to prove that ⊕HomsToH is ⊕P-hard without having a bound on the
tree-width of H, it is necessary to take a much more abstract approach. Since it
is not possible to decompose H using a tree-like decomposition as we did in [7,
Theorem 1.6], we have instead come up with an abstract characterisation of
graph-theoretic structures in H which lead to ⊕P-hardness. As we shall see, the
proof that such structures always exist in square-free graphs involves interesting
non-constructive elements, leading to a more abstract, and less technical (graph-
theoretic) proof than [7], while applying to a substantially richer set of graphs H,
including graphs with unbounded tree width.

1.1 Counting Modulo 2

Although counting modulo 2 produces a one-bit answer, the complexity of such
problems has a rather different flavour from the complexity of decision problems.
The complexity class ⊕P was first studied by Papadimitriou and Zachos [13]
and by Goldschlager and Parberry [10]. ⊕P consists of all problems of the form
“compute f(x) mod 2” where computing f(x) is a problem in #P. Toda [15]
has shown that there is a randomised polynomial-time reduction from every
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problem in the polynomial hierarchy to some problem in ⊕P. As such, ⊕P is a
large complexity class and ⊕P-completeness seems to represent a high degree of
intractability.

The unique flavour of modular counting is exhibited by Valiant’s famous
restricted version of 3-SAT [16] for which counting solutions is #P-complete [17],
counting solutions modulo 7 is in polynomial-time but counting solutions mod-
ulo 2 is ⊕P-complete [16]. The seemingly mysterious number 7 was subsequently
explained by Cai and Lu [3], who showed that the k-SAT version of Valiant’s
problem is tractable modulo any prime factor of 2k − 1.

Counting modulo 2 closely resembles ordinary, non-modular counting, but is
still very different. Clearly, if a counting problem can be solved in polynomial
time, the corresponding decision and parity problems are also tractable, but the
converse does not necessarily hold. A characteristic feature of modular counting
is cancellations, which can make the modular versions of hard counting problems
tractable. For example, consider not-all-equal SAT, the problem of assigning
values to Boolean variables such that each of a given set of clauses contains both
true and false literals. The number of solutions is always even, since solutions
can be paired up by negating every variable in one solution to obtain a second
solution. This makes counting modulo 2 trivial, while determining the exact
number of solutions is #P-complete [9] and even deciding whether a solution
exists is NP-complete [14].

We use cancellations extensively in this paper. For example, if we wish to
compute the size of a set S modulo 2 then, for any even-cardinality subset X ⊆ S,
we have |S| ≡ |S \ X| mod 2. This means that we can ignore the elements of X.
It is also helpful to partition the set S into disjoint subsets S1, . . . , S� exploiting
the fact that |S| is congruent modulo 2 to the number of odd-cardinality Si. We
use this idea frequently.

1.2 Going Beyond Bounded Tree-Width

Trees. All known hardness results for counting homomorphisms modulo 2 start
with the following basic “pinning” approach. Let p be a function from V (G)
to 2V (H). A homomorphism f ∈ Hom(G → H) respects the pinning function p
if, for every v ∈ V (G), f(v) is in the set p(v). Let PinHom(G,H, p) be the
set of homomorphisms from G to H that respect the pinning function p and
let ⊕PinnedHomsToH be the problem of counting, modulo 2, the number of
homomorphisms in PinHom(G,H, p), given an input graph G and a pinning
function p.

Faben and Jerrum [6, Corollary 4.18] give a polynomial-time Turing reduction
from the problem ⊕PinnedHomsToH to the problem ⊕HomsToH for the
special case in which the pinning function pins only two vertices of G, and these
are both pinned to entire orbits of the automorphism group of H. The reduction
relies on a result of Lovász [12].

In order to use the reduction, it is necessary to show that the special
case of the problem ⊕PinnedHomsToH is itself ⊕P-hard. Faben and Jerrum
restrict their attention to the case in which H is a tree, and this is helpful.
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Every involution-free tree is asymmetric (so the orbit of every vertex is triv-
ial), so the pinning function p is actually able to pin two vertices of G to any
two particular vertices of H. The reduction that they used to prove hardness
of ⊕PinnedHomsToH is from ⊕IS, the problem of counting independent sets
modulo 2, which was shown to be ⊕P-complete by Valiant [16].

We first give an informal description of a general reduction from ⊕IS to the
problem ⊕PinnedHomsToH. (The general description is actually based on our
current approach in this paper, but we can also present past approaches in this
context.) The vertices and edges of an input G of ⊕IS are replaced by gadgets
to give a graph J . In J , the gadget corresponding to the vertex v of G has a
vertex yv. We also choose an appropriate vertex i in H. Any homomorphism σ
from J to the target graph H defines a set I(σ) = {v ∈ V (G) | σ(yv) = i}
(mnemonic: “i” means “in” because σ(yv) is i exactly when v is in I(σ)). The
configuration of the gadgets ensures that a set I ⊆ V (G) has an odd number
of homomorphisms σ with I(σ) = I if and only if I is an independent set of G.
Next, the homomorphisms σ ∈ Hom(J → H) can be partitioned according to the
value of I(σ). By the partitioning argument mentioned at the end of Section 1.1,
the number of independent sets in G is equivalent to |Hom(J → H)|, modulo 2.

The gadgets are chosen according to the structure and properties of H. Since
Faben and Jerrum were working with trees, they were able to use gadgets with
very simple structure: their gadgets are essentially paths and they exploit the
fact that any non-trivial involution-free tree has at least two even-degree vertices
and, of course, these have a unique path between them (which turns out to be
useful).

Cactus Graphs. The situation for cactus graphs is much more complicated.
Non-trivial involution-free cactus graphs still contain even-degree vertices but
the presence of cycles means that paths, even shortest paths, are no longer
guaranteed to be unique. Our solution in [7] was to use more complicated gadgets.
They are still (loosely) based on paths, since they are defined in terms of numbers
of walks between vertices of H. However, rather than requiring appropriate even-
degree vertices (which might not exist), we used a second, and more complicated,
gadget to “select” an even-cardinality subset of a vertex’s neighbours. To find
such gadgets in H, we used tree-like decompositions. Given a decomposition
that breaks H into independent fragments, we inductively found gadgets (or,
sometimes, partial gadgets) in the fragments, carefully putting them together
across the join of the decomposition. All of this led to a very technical, very
graph-theoretic solution, and also to a solution that does not generalise to graphs
without tree-like decompositions.

The proof is complicated by the fact that there are involution-free graphs
(even involution-free cactus graphs!) that have non-trivial automorphisms, unlike
the situation for trees. Thus, the fact that the pinning function pins vertices
to entire orbits (rather than to particular vertices) causes complications. The
solution in [7, Section 8] relies on special properties of cactus graphs, and it is
not clear how it could be generalised.
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Unbounded Tree-Width. Since they are based around a tree-like decompo-
sition, the techniques of [7] are not suitable for graphs with unbounded tree-
width. To prove Conjecture 1.1 for a richer class of graphs, we adopt a much
more abstract approach. Since we do not have tree-like decompositions, we
instead mostly use structural properties of the whole graph to find gadgets.
The structural properties do not always require technical detail – as we will
see below, re-examining a result of Lovász [12] even allows us to demonstrate
non-constructively the existence of some of the gadgets that we use.

In order to support our more general approach, we first have to generalise
the pinning problem ⊕PinnedHomsToH. We use the following important
definitions, which will be used later. For any graph H, a partially H-labelled
graph J = (G, τ) consists of an underlying graph G and a pinning function τ ,
which in this paper is a partial function from V (G) to V (H). Thus, every vertex
v in the domain of τ is pinned to a particular vertex of H and not to a subset such
as an orbit. A homomorphism from a partially labelled graph J = (G, τ) to H
is a homomorphism σ : G → H such that, for all vertices v ∈ dom(τ), σ(v) =
τ(v). The intermediate problem that we study then is ⊕PartLabHomsToH,
the problem of computing |Hom(J → H)| mod 2, given a partially H-labelled
graph J . In Section 3, we generalise the application of Lovász’s theorem to show
(Theorem 3.1) that ⊕PartLabHomsToH ≤ ⊕HomsToH.

Armed with a stronger pinning technique, we then abstract away most of the
complications that arose for graphs with small tree-width by instead using more
general gadgets, defined in Section 4. Because they are not based on paths, they
do not rely on uniqueness of any path in H. Instead, the gadgets have three main
parts. Our new reduction from ⊕IS to ⊕HomsToH can be seen informally as
assigning colours to both the vertices and the edges of G, where each “colour” is
a vertex of H. One part of the gadget controls which colours can be assigned to
each vertex, one controls which colours can be assigned to each edge and a third
part determines how many homomorphisms there are from G to H, given the
choice of colours for the vertices and edges. In addition to all of this, we identify
two special vertices of H, one of which is the vertex i mentioned above.

The much more general nature of our gadgets compared to those used pre-
viously makes them much easier to find and, in some cases, allows us to find
the parts of them non-constructively. We no longer need to find unique shortest
paths in H or, indeed, any paths at all. In fact, all the gadgets that we construct
in this paper use a “caterpillar gadget” (Definition 4.3) which allows us to use
any specified path in the graph H instead of relying on a unique shortest path.
Rather than finding hardness gadgets in components in some decomposition
of H, we mostly find gadgets “in situ”.

When a graph has two even-degree vertices, we can directly use those vertices
and a caterpillar gadget to produce a hardness gadget (see Lemma 5.3). This
already provides a self-contained proof of Faben and Jerrum’s dichotomy for
trees. Next, for graphs with only one even-degree vertex, we show (Corollary 5.5)
that deleting an appropriate set of vertices leaves a component with two even-
degree vertices and show (Lemma 5.7) how to simulate that vertex deletion
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with gadgets. This leaves only graphs in which every vertex has odd degree. In
such a graph, we are able to use any shortest odd-length cycle to construct a
gadget (Lemma 5.13). If there are no odd cycles, the graph is bipartite. In this
interesting case (Lemma 5.15) we use our version of Lovász’s result to find a
gadget non-constructively.

1.3 Squares and Related Work

It is natural to ask why the involution-free reduction H∗ in Theorem 1.2 is required
to be square-free. We do not believe that the restriction to square-free graphs
is fundamental, since our results on pinning apply to all involution-free graphs
(Section 3) and neither our definition of hardness gadgets (Definition 4.1) nor our
proof that the existence of a hardness gadget for H implies that ⊕HomsToH is
⊕P-complete (Theorem 4.2) requires H to be square-free. However, all the actual
hardness gadgets that we find for graphs do rely on the absence of 4-cycles, as
discussed in the full version, and removing this restriction seems technically chal-
lenging. We note that dealing with 4-cycles also caused significant difficulties in
cactus graphs [7].

We have already mentioned earlier work on counting graph homomorphisms
modulo 2. The problem of counting graph homomorphisms (exactly, rather than
modulo a fixed constant) was previously studied by Dyer and Greenhill [5]. They
showed the problem of counting homomorphisms to a fixed graph H is solvable
in polynomial time if every connected component of H is a complete graph with
a self-loop on every vertex or a complete bipartite graph with no self-loops,
and is #P-complete, otherwise. Their work builds on an earlier dichotomy by
Hell and Nešetřil [11] for the complexity of the graph homomorphism decision
problem (the problem of distinguishing between the case where there are no
homomorphisms and the case where there is at least one).

Note that much of the notation that we use below has been defined in the
introduction. In addition, we write [n] = {1, . . . , n} and, for a set S and an
element x, we often write S − x for S \ {x}.

3 Partially Labelled Graphs and Pinning

It is often convenient to regard a graph as having some distinguished vertices
x1, . . . , xr and we denote such a graph by (G, x1, . . . , xr). The distinguished
vertices need not be distinct. A homomorphism from a graph (G, x1, . . . , xr)
to (H, y1, . . . , yr) is a homomorphism σ from G to H with the property that
σ(xi) = yi for each i ∈ [r]. Isomorphisms of these graphs are defined similarly.
In the full version, we generalise a result of Lovász [12] to prove the following.

Lemma 3.6. Let (H, ȳ) and (H ′, ȳ′) be involution-free graphs, each with r dis-
tinguished vertices. (H, ȳ) ∼= (H ′, ȳ′) if and only if, for all (not necessarily con-
nected) graphs (G, x̄) with r distinguished vertices, |Hom((G, x̄) → (H, ȳ))| ≡
|Hom((G, x̄) → (H ′, ȳ′))| (mod 2).
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Recall that ⊕PartLabHomsToH is the problem of computing |Hom(J →
H)| mod 2, given a partially H-labelled graph J . Using Lemma 3.6, and the
implementation technique of Faben and Jerrum [6], we prove the following.

Theorem 3.1. ⊕PartLabHomsToH ≤ ⊕HomsToH for any involution-free
graph H.

The difference between Lemma 3.6 and similar previous lemmas is the inclu-
sion of the distinguished vertices. This is necessary both for our more general
pinning technique (Theorem 3.1) and because we will use Lemma 3.6 to non-
constructively find hardness gadgets in Section 4.

4 Hardness Gadgets

In this section, we define the gadgets that we will use to prove ⊕P-completeness
of ⊕HomsToH problems, by reduction from the parity independent set problem
⊕IS, i.e., the problem of computing the number of independent sets in an input
graph, modulo 2. ⊕IS was shown to be ⊕P-complete by Valiant [16].

The gadgets that we use are considerably more general than the ones we
defined for cactus graphs in [7]. This allows us to quickly prove hardness for
large classes of square-free graphs and even to find gadgets non-constructively.

In the discussion that follows, we will choose a set Ωy ⊆ V (H) and a vertex
i ∈ Ωy. Given a graph G whose independent sets we wish to count modulo 2,
we will construct a partially H-labelled graph J = (G(J), τ(J)) and consider
homomorphisms from J to H. G(J) will contain a copy of V (G) and we will be
interested in homomorphisms that map every vertex in this copy to Ωy. Vertices
mapped to i will be in the independent set under consideration; vertices mapped
to Ωy − i will not be in the independent set.

Given a partially labelled graph J = (G(J), τ(J)) and vertices x1, . . . , xr of
G(J) that are not in dom(τ(J)) and given vertices y1, . . . , yr of H, a homomor-
phism from (J, x1, . . . , xr) to (H, y1, . . . , yr) is a homomorphism from J to H
which maps each xi to yi (for i ∈ {1, . . . , r}).

Definition 4.1. A hardness gadget (i, s, (J1, y), (J2, z), (J3, y, z)) for a graph H
consists of vertices i and s of H together with three connected, partially H-labelled
graphs with distinguished vertices that satisfy the following properties. Let

Ωy = {a ∈ V (H) | |Hom((J1, y) → (H, a))| is odd}
Ωz = {b ∈ V (H) | |Hom((J2, z) → (H, b))| is odd}

Σa,b = Hom((J3, y, z) → (H, a, b)) .

The properties that we require are that, for each o ∈ Ωy − i and each x ∈ Ωz − s,
(1) |Ωy| is even and i ∈ Ωy, (2) |Ωz| is even and s ∈ Ωz, (3) |Σo,x| is even, and
(4) |Σo,s|, |Σi,x| and |Σi,s| are odd.

The following theorem shows that the presence of a hardness gadget implies
that ⊕HomsToH is ⊕P-complete.
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Fig. 2. The construction of the partially labelled graphs K and J from an example
graph G, as in the proof of Theorem 4.2

Theorem 4.2. ⊕HomsToH is ⊕P-complete for any involution-free graph H
that has a hardness gadget.

The proof of Theorem 4.2 consists of a reduction from the ⊕P-complete prob-
lem ⊕IS to ⊕PartLabHomsToH together with Theorem 3.1. The reduction
from ⊕IS to ⊕PartLabHomsToH is illustrated in Figure 2.

Given an input graph G to ⊕IS, we first construct the partially H-labelled
graph K from G by replacing every edge of G with two disjoint copies of J3,
as shown in the figure. To construct the partially H-labelled graph J , we then
take K and add a disjoint copy of J1 for every vertex v ∈ G and a disjoint copy
of J2 for every edge e ∈ G as shown in the figure. In the full version, we calculate
the number of homomorphisms from J to H and show that |Hom(J → H)| is
equivalent modulo 2 to the number of independent sets in G. Intuitively, the
role of Ju

1 is to cancel all homomorphisms, apart from those in which the vertex
yu is mapped to a vertex in Ωy. Similarly, Je

2 cancels all homomorphisms, apart
from those in which the vertex ze is mapped to Ωz. Then the four properties
in the definition of hardness gadget and the connections using J3 cancel all
homomorphisms apart from those in which the set of vertices yu that are mapped
to the special vertex “i” form an independent set of G.

In the paper, we use a particular gadget called a “caterpillar gadget” as the
partially H-labelled graph J3.

Definition 4.3. Given a path P = v0 . . . vk in H of length at least 1, define
the caterpillar gadget JP = (G, τ) with distinguished vertices y and z as fol-
lows. V (G) = {u1, . . . , uk−1, w1, . . . , wk−1, y, z} and G is the path yu1 . . . uk−1z
together with edges (uj , wj) for 1 ≤ j ≤ k−1. τ = {w1 �→ v1, . . . , wk−1 �→ vk−1}.
(See Figure 3).
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y u1 u2 uk−2 uk−1 z

v1

w1

v2

w2

vk−2

wk−2

vk−1

wk−1

Fig. 3. The caterpillar gadget corresponding to a path v0 . . . vk. The vertices
w1, . . . , wk−1 in the gadget are pinned to vertices v1, . . . , vk−1 in H, respectively. A
label next to a vertex indicates its identity; a label inside a white circle indicates what
that vertex is pinned to.

The following lemma explains why we use caterpillar gadgets as the J3 gad-
gets that appear in hardness gadgets. The point is that the properties guaranteed
here coincide with the ones required in the definition of hardness gadgets (Defi-
nition 4.2). We write ΓH(v) for the neighbourhood of a vertex v in a graph H.

Lemma 4.5. Let H be a square-free graph. Let k > 0 and let P = v0 . . . vk be
a path in H with degH(vj) odd for all j ∈ {1, . . . , k − 1}. Let Ωy ⊆ ΓH(v0) and
Ωz ⊆ ΓH(vk), with i = v1 ∈ Ωy and s = vk−1 ∈ Ωz. For each o ∈ Ωy−i and each
x ∈ Ωz − s the following properties hold. (1) |Hom((JP , y, z) → (H, o, x))| = 0,
(2) |Hom((JP , y, z) → (H, o, s))| = 1, (3) |Hom((JP , y, z) → (H, i, x))| = 1, and
(4) |Hom((JP , y, z) → (H, i, s))| is odd.

The proof of Lemma 4.5 relies on the fact that H is square-free. It can
be found in the full version. The point is that, even if the proof is a little bit
technical — it is sufficiently general that it applies to every square-free graph H.
As long as H is square-free, any caterpillar gadget has the desired properties, so
J3 can always be taken to be a caterpillar, without requiring a detailed structural
analysis of H.

5 Finding Hardness Gadgets

In this section we show how to identify hardness gadgets in different graphs. If
H has two or more even-degree vertices, we can directly use them to construct a
hardness gadget. In this case, the partially H-labelled graphs J1 and J2 will just
be edges. In each of these, exactly one vertex is pinned, and it is pinned to an
even-degree vertex of H. This is captured in the following lemma, which already
provides a self-contained proof of Faben and Jerrum’s dichotomy for trees.

Lemma 5.3. Let H be a connected, square-free graph with at least two even-
degree vertices. Then H has a hardness gadget.

If H has exactly one even-degree vertex, we first show that deleting an appro-
priate set of vertices leaves a component with two even-degree vertices.
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Corollary 5.5. Let H be an involution-free graph that has exactly one vertex v
of positive, even degree. For some r, the graph formed from H by deleting the
ball at distance r around v has an involution-free component H∗ that does not
contain v but does contain at least two even-degree vertices.

Corollary 5.5 allows us to construct a hardness gadget for H by attaching
a path to the gadget already constructed in Lemma 5.3. We prove in the full
version that the additional path essentially simulates the vertex deletion from
Corollary 5.5. After calculations we are able to prove the following.

Lemma 5.7. Any involution-free, square-free graph H that has exactly one ver-
tex v of positive, even degree has a hardness gadget.

This leaves only graphs H in which every vertex has odd degree. If such a
graph has an odd-length cycle then we can use it to construct an appropriate
hardness gadget. In the full version, we prove the following lemma.

Lemma 5.13. Let H be a square-free graph in which every vertex has odd
degree. If H contains an odd cycle, then it has a hardness gadget.

The most interesting case, and the only one left, is the case in which H is
a bipartite graph in which every vertex has odd degree. We use the following
definition.

Definition 5.14. An even gadget for a bipartite graph H is a connected bipar-
tite graph G with a distinguished edge (w, x) such that |Hom((G,w, x) →
(H, a, b))| is even, for some edge (a, b) in H.

Using our extended version of Lovász’s result (Lemma 3.6) we are able to
prove the following. The key point is that every bipartite (G,w, x) has exactly one
homomorphism to the single edge (a, b). Since H is not a single edge, Lemma 3.6
says there is a (G,w, x) with an even number of homomorphisms to (H, a, b).
This is not necessarily an even gadget but it allows us to construct one.

Lemma 5.15. Every connected, bipartite graph except K2 has an even gadget.

An even gadget turns out to be useful for the following reason. If G and H
are bipartite, then there is always at least one homomorphism from (G,w, x)
to (H, a, b), since the whole of G can be mapped to the edge (a, b). Thus, the
definition of even gadget implies that |Hom((G,w, x) → (H, a, b))| is even and
positive. Using this fact, and the additional fact that H is square-free, we are
able to apply some additional pinning to the even gadget that is guaranteed to
exist, in order to obtain a hardness gadget, so we obtain the following.

Lemma 5.16. Let H be a connected, bipartite, square-free graph in which every
vertex has odd degree. H has a hardness gadget.
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6 Main Theorem

Theorem 1.2 follows rather directly from Lemma 5.3, Lemma 5.7, Lemma 5.13
and Lemma 5.16. A technical issue arises concerning the connectivity of the
involution-free reduction. This is dealt with in the full version.
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