
Counting list matrix partitions of graphs

Andreas Göbel

University of Oxford
andreas.goebel@cs.ox.ac.uk

David Richerby

University of Oxford
david.richerby@cs.ox.ac.uk

Leslie Ann Goldberg

University of Oxford
leslie.goldberg@cs.ox.ac.uk

Colin McQuillan

University of Liverpool
Colin.McQuillan@liverpool.ac.uk

Tomoyuki Yamakami

University of Fukui
tomoyukiyamakami@gmail.com

Abstract—Given a symmetric D ×D matrix M over
{0, 1, ∗}, a list M -partition of a graph G is a partition
of the vertices of G into D parts which are associated
with the rows of M . The part of each vertex is chosen
from a given list in such a way that no edge of G is
mapped to a 0 in M and no non-edge of G is mapped
to a 1 in M . Many important graph-theoretic structures
can be represented as list M -partitions including graph
colourings, split graphs and homogeneous sets, which
arise in the proofs of the weak and strong perfect graph
conjectures. Thus, there has been quite a bit of work
on determining for which matrices M computations
involving list M -partitions are tractable. This paper
focuses on the problem of counting list M -partitions,
given a graph G and given lists for each vertex of G. We
give an algorithm that solves this problem in polynomial
time for every (fixed) matrix M for which the problem is
tractable. The algorithm relies on data structures such
as sparse-dense partitions and subcube decompositions
to reduce each problem instance to a sequence of
problem instances in which the lists have a certain
useful structure that restricts access to portions of M
in which the interactions of 0s and 1s is controlled.
We show how to solve the resulting restricted instances
by converting them into particular counting constraint
satisfaction problems (#CSPs) which we show how to
solve using a constraint satisfaction technique known as
“arc-consistency”. For every matrix M for which our
algorithm fails, we show that the problem of counting
list M -partitions is #P-complete. Furthermore, we give
an explicit characterisation of the dichotomy theorem
— counting list M -partitions is tractable (in FP) if
and only if the matrix M has a structure called a
derectangularising sequence. Finally, we show that the
meta-problem of determining whether a given matrix
has a derectangularising sequence is NP-complete.

I. INTRODUCTION

A matrix partition of an undirected graph is a parti-

tion of its vertices according to a matrix which spec-

The research leading to these results has received funding
from the MEXT Grants-in-Aid for Scientific Research and the
EPSRC and the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) ERC
grant agreement no. 334828. The paper reflects only the authors’
views and not the views of the ERC or the European Commission.
The European Union is not liable for any use that may be made of
the information contained therein.

The full version of this paper is available as [16].

ifies adjacency and non-adjacency conditions on the

vertices, depending on the parts to which they are as-

signed. For any symmetric matrix M ∈ {0, 1, ∗}D×D

indexed by a finite set D, an M -partition of an

undirected graph G = (V,E) is a function σ : V → D
such that, for every edge (u, v) ∈ E, Mσ(u),σ(v) �= 0.

Also, for every pair (u, v) of distinct vertices that is

not in E, Mσ(u),σ(v) �= 1. Thus, Mi,j = 0 means

that no edges are allowed between vertices in parts

i and j, Mi,j = 1 means that there must be an

edge between every pair of distinct vertices in the

two parts and Mi,j = ∗ means that any set of

edges is allowed between the parts. For entries Mi,i

on the diagonal of M , the conditions only apply to

distinct vertices in part i. Thus, Mi,i = 1 requires

that the vertices in part i form a clique in G and

Mi,i = 0 requires that they form an independent set.

For example, if D = {i, c}, Mi,i = 0, Mc,c = 1
and Mc,i = Mi,c = ∗, i.e., M = (0 ∗∗ 1), then an

M -partition of a graph is a partition of its vertices

into an independent set (whose vertices are mapped

to i) and a clique (whose vertices are mapped to c).
The independent set and the clique may have arbitrary

edges between them. A graph that has such an M -

partition is known as a split graph [17].

As Feder, Hell, Klein and Motwani describe [14],

many important graph-theoretic structures can be

represented as M -partitions, including graph colour-

ings, split graphs, (a, b)-graphs [2], clique-cross par-

titions [9], and their generalisations. M -partitions

also arise as “type partitions” in extremal graph

theory [1]. In the special case where M is a {0, ∗}-
matrix (that is, it has no 1 entries), M -partitions

of G correspond to homomorphisms from G to the

(potentially looped) graph H whose adjacency matrix

is obtained from M by turning every ∗ into a 1. Thus,

proper |D|-colourings of G are exactly M -partitions

for the matrix M which has 0s on the diagonal and

∗s elsewhere. To represent more complicated graph-

theoretic structures, such as homogeneous sets and

their generalisations, which arise in the proofs of the

weak and strong perfect graph conjectures [5], [20], it

2014 IEEE 29th Conference on Computational Complexity

1093-0159/14 $31.00 © 2014 IEEE

DOI 10.1109/CCC.2014.14

56

is necessary to generalise M -partitions by introducing

lists. Details of these applications are given by Feder

et al. [14], who define the notion of a list M -partition.

In particular, constraints that certain parts must have

at least some constant number of vertices can be

implemented using lists.

A list M -partition is an M -partition σ that is also

required to satisfy constraints on the values of each

σ(v). Let P(D) denote the powerset of D. We say

that σ respects a function L : V (G) → P(D) if

σ(v) ∈ L(v) for all v ∈ V (G). Thus, for each

vertex v, L(v) serves as a list of allowable parts

for v and a list M -partition of G is an M -partition

that respects the given list function. We allow empty

lists for technical convenience, although there are no

M -partitions that respect any list function L where

L(v) = ∅ for some vertex v. Feder et al. [14] study the

computational complexity of the following decision

problem, which is parameterised by a symmetric

matrix M ∈ {0, 1, ∗}D×D.

Name. LIST-M -PARTITIONS.

Instance. A pair (G,L) in which G is a graph and L
is a function V (G)→ P(D).
Output. “Yes”, if G has an M -partition that respects

L; “no”, otherwise.

Note that M is a parameter of the problem rather

than an input of the problem. Thus, its size is a

constant which does not vary with the input.

A series of papers [10], [12], [13] described in [14]

presents a dichotomy for the special case of homo-

morphism problems, which are LIST-M -PARTITIONS

problems in which M is a {0, ∗}-matrix. In par-

ticular, Feder, Hell and Huang [13] show that, for

every {0, ∗}-matrix M (and symmetrically, for every

{1, ∗}-matrix M), the problem LIST-M -PARTITIONS

is either polynomial-time solvable or NP-complete. It

is important to note that both of these special cases of

LIST-M -PARTITIONS are constraint satisfaction prob-

lems (CSPs) and a famous conjecture of Feder and

Vardi [15] is that a P versus NP-complete dichotomy

also exists for every CSP. Although general LIST-M -

PARTITIONS problems can also be coded as CSPs with

restrictions on the input, it is not known how to code

them without such restrictions. Since the Feder–Vardi

conjecture applies only to CSPs with unrestricted

inputs, even if proved, it would not necessarily apply

to LIST-M -PARTITIONS.

Given the many applications of LIST-M -

PARTITIONS, it is important to know whether there

is a dichotomy for this problem. This is part of

a major ongoing research effort which has the

goal of understanding the boundaries of tractability

by identifying classes of problems, as wide as

possible, where dichotomy theorems arise and

where the precise boundary between tractability and

intractability can be specified.

Significant progress has been made on identi-

fying dichotomies for LIST-M -PARTITIONS. Feder

et al. [14, Theorem 6.1] give a dichotomy for the spe-

cial case in which M is at most 3×3, by showing that

LIST-M -PARTITIONS is polynomial-time solvable or

NP-complete for each such matrix. Later, Feder and

Hell studied the LIST-M -PARTITIONS problem under

the name CSP∗1,2(H) and showed [11, Corollary 3.4]

that, for every M , LIST-M -PARTITIONS is either NP-

complete, or is solvable in quasi-polynomial time. In

the latter case, they showed that LIST-M -PARTITIONS

is solvable in nO(logn) time, given an n-vertex graph.

Feder and Hell refer to this result as a “quasi-

dichotomy”.

Although the Feder–Vardi conjecture remains open,

a dichotomy is now known for counting CSPs. In par-

ticular, Bulatov [3] (see also [8]) has shown that, for

every constraint language Γ, the counting constraint

satisfaction problem #CSP(Γ) is either polynomial-

time solvable, or #P-complete. It is natural to ask

whether a similar situation arises for counting list M -

partition problems. We study the following compu-

tational problem, which is parameterised by a finite

symmetric matrix M ∈ {0, 1, ∗}D×D.

Name. #LIST-M -PARTITIONS.

Instance. A pair (G,L) in which G is a graph and L
is a function V (G)→ P(D).
Output. The number of M -partitions of G that respect

L.

Hell, Hermann and Nevisi [18] have considered the

related problem #M -PARTITIONS without lists, which

can be seen as #LIST-M -PARTITIONS restricted to the

case that L(v) = D for every vertex v. This problem

is defined as follows.

Name. #M -PARTITIONS.

Instance. A graph G.

Output. The number of M -partitions of G.

In the problems LIST-M -PARTITIONS, #LIST-M -

PARTITIONS and #M -PARTITIONS, the matrix M is

fixed and its size does not vary with the input.

Hell et al. gave a dichotomy for small matrices M
(of size at most 3 × 3). In particular, the paper [18,

Theorem 10], together with the graph-homomorphism

dichotomy of Dyer and Greenhill [7] shows that, for

every such M , #M -PARTITIONS is either polynomial-

time solvable or #P-complete. An interesting feature

of counting M -partitions, identified by Hell et al. is

that, unlike the situation for homomorphism-counting

problems, there are tractable M -partition problems

with non-trivial counting algorithms. Indeed the main

contribution of this paper, as described below, is

the development of an algorithm which solves every

tractable case of the problem #LIST-M -PARTITIONS,

57

together with a proof that all other cases are #P-

complete. Thus, we obtain the following theorem.

Theorem 1. For any symmetric matrix M ∈
{0, 1, ∗}D×D, #LIST-M -PARTITIONS is either in FP
or #P-complete.

Since there is no known coding of list M -partition

problems as CSPs without input restrictions, Theo-

rem 1 does not seem to be implied by the dichotomy

for #CSP. To develop our algorithms and prove the

theorem, we investigate the complexity of the more

general counting problem #L-M -PARTITIONS, which

has two parameters — a matrix M ∈ {0, 1, ∗}D×D

and a (not necessarily proper) subset L of P(D). In

this problem, we only allow sets in L to be used as

lists.

Name. #L-M -PARTITIONS.

Instance. A pair (G,L) where G is a graph and L is

a function V (G)→ L.

Output. The number of M -partitions of G that respect

L.

Note that M and L are fixed parameters of #L-M -

PARTITIONS — they are not part of the input instance.

The problem #LIST-M -PARTITIONS is just the special

case of #L-M -PARTITIONS where L = P(D).
We say that a set L ⊆ P(D) is subset-closed if

A ∈ L implies that every subset of A is in L. This

closure property is referred to as the “inclusive” case

in [11].

Definition 2. Given a set L ⊆ P(D), we write S(L)
for its subset-closure, which is the set S(L) = {X |
for some Y ∈ L, X ⊆ Y }.

We prove the following theorem, which immedi-

ately implies Theorem 1.

Theorem 3. Let M be a symmetric matrix in
{0, 1, ∗}D×D and let L ⊆ P(D) be subset-closed.
The problem #L-M -PARTITIONS is either in FP or
#P-complete.

Note that this does not imply a dichotomy for the

M -partitions problem without lists. The problem with

no lists corresponds to the case where every vertex of

the input graph G is assigned the list D, allowing

the vertex to be potentially placed in any part. Thus,

the problem without lists is equivalent to the problem

#L-M -PARTITIONS with L = {D}, but Theorem 3

applies only to the case where L is subset-closed.

A. Polynomial-time algorithms and an explicit di-
chotomy

We now introduce the concepts needed to give an

explicit criterion for the dichotomy in Theorem 3

and to provide polynomial-time algorithms for all

tractable cases. We use standard definitions of rela-

tions and their arities, compositions and inverses.

Definition 4. For any symmetric M ∈ {0, 1, ∗}D×D

and any sets X,Y ∈ P(D), define the binary relation

HM
X,Y = {(i, j) ∈ X × Y |Mi,j = ∗}.
The intractability condition for the problem #L-

M -PARTITIONS begins with the following notion of

rectangularity, which was introduced by Bulatov and

Dalmau [4].

Definition 5. A relation R ⊆ D ×D′ is rectangular
if, for all i, j ∈ D, and i′, j′ ∈ D′, the fact that (i, i′),
(i, j′) and (j, i′) are in R implies that (j, j′) is in R.

Our dichotomy criterion will be based on what we

call L-M -derectangularising sequences. In order to

define these, we introduce the notions of pure matrices

and M -purifying sets. Pure matrices are significant

because matrix partition problems associated with

pure matrices correspond to graph homomorphism

problems.

Definition 6. Given index sets X and Y , a matrix

M ∈ {0, 1, ∗}X×Y is pure if it has no 0s or has no

1s.

Definition 7. For any M ∈ {0, 1, ∗}D×D, a set L ⊆
P(D) is M -purifying if, for all X,Y ∈ L, the X-by-

Y submatrix M |X×Y is pure.

For example, consider the matrix M =
(

1 ∗ 0∗ 1 ∗
0 ∗ 1

)

with rows and columns indexed by {0, 1, 2} in the

obvious way. The matrix M is not pure, but the

set L = {{0, 1}, {2}} is M -purifying and so is the

closure S(L).
Definition 8. An L-M -derectangularising sequence
for M of length k is a sequence D1, . . . , Dk with each

Di ∈ L such that: {D1, . . . , Dk} is M -purifying and

the relation HM
D1,D2

◦HM
D2,D3

◦ · · · ◦HM
Dk−1,Dk

is not

rectangular, where ◦ denotes composition of relations.

We can now state our explicit dichotomy theorem,

which implies Theorem 3 and, hence, Theorem 1.

Theorem 9. Let M be a symmetric matrix in
{0, 1, ∗}D×D and let L ⊆ P(D) be subset-closed. If
there is an L-M -derectangularising sequence then the
problem #L-M -PARTITIONS is #P-complete. Other-
wise, it is in FP.

Sections III, IV and V develop a polynomial-

time algorithm which solves the problem #L-

M -PARTITIONS whenever there is no L-M -

derectangularising sequence. The algorithm involves

several steps. First, consider the case in which

L is subset-closed and M -purifying. In this

case, Proposition 15 presents a polynomial-time

transformation from an instance of the problem #L-

M -PARTITIONS to an instance of a related counting

CSP. Algorithm 3 exploits special properties of the

58

constructed CSP instance to solve it in polynomial

time using a CSP technique called arc-consistency.

(This is proved in Lemma 18.) This provides a

solution to the original #L-M -PARTITIONS problem

for the M -purifying case. The case in which L is

not M -purifying is tackled in Section V. We first

give algorithms for constructing the relevant data

structures: a special case of sparse-dense partitions

and also subcube decompositions. Algorithm 9

uses these data structures (via Algorithms 4 and

8) to reduce the #L-M -PARTITIONS problem to a

sequence of problems #Li-M -PARTITIONS where

Li is M -purifying. Finally, the polynomial-time

algorithm is presented in Algorithms 10 and 11. For

every subset-closed L and every M where there is no

L-M -derectangularising sequence, Algorithm 10 or

Algorithm 11 defines a polynomial-time function #L-

M -PARTITIONS for solving the #L-M -PARTITIONS

problem, given an input (G,L). The function

#L-M -PARTITIONS is not recursive. However, its

definition is recursive in the sense that the function

#L-M -PARTITIONS defined in Algorithm 11 calls a

function #Li-M -PARTITIONS where Li is a subset

of P(D) whose cardinality is smaller than L. The

function #Li-M -PARTITIONS is, in turn, defined

either in Algorithm 10 or 11. The proof of Theorem 9

shows that, when Algorithms 10 and 11 fail to solve

the problem #L-M -PARTITIONS, the problem is

#P-complete.

All proofs are included in the full version of this pa-

per, which appears in preliminary form as [16]. Some

algorithms are described informally in this extended

abstract, but they are described more formally (as

pseudocode) in the full version. To assist the reader,

we have used the numbering from the full version

in the extended abstract (so there are gaps in the

numbering sequence here).

In Section 7 of the full paper [16], we show how

to use lists to implement simple cardinality con-

straints. More formally, we show that, for any D×D
matrix M , the following problem is polynomial-

time Turing reducible to #LIST-M -PARTITIONS: for a

fixed function C : D → Z≥0, how many M -partitions

of the input graph G map at least C(d) vertices to

part d for all d ∈ D? As a corollary, we show that

there is a polynomial-time algorithm for counting the

“homogeneous pairs” (defined in [6]) in any graph.

B. Complexity of the dichotomy criterion

Theorem 9 gives a precise criterion under which

the problem #L-M -PARTITIONS is in FP or #P-

complete, where L and M are considered to be fixed

parameters. In the full version [16], we address the

computational problem of determining which is the

case, now treating L and M as inputs to this “meta-

problem”. Dyer and Richerby [8] studied the corre-

sponding problem for the #CSP dichotomy, showing

that determining whether a constraint language Γ sat-

isfies the criterion for their #CSP(Γ) dichotomy is in

NP. We are interested in the following computational

problem, which we show to be NP-complete.

Name. EXISTSDERECTSEQ.

Instance. An index set D, a symmetric matrix M in

{0, 1, ∗}D×D (represented as an array) and a set L ⊆
P(D) (represented as a list of lists).

Output. “Yes”, if there is an S(L)-M -

derectangularising sequence; “no”, otherwise.

Theorem 10. EXISTSDERECTSEQ is NP-complete
under polynomial-time many-one reductions.

Note that, in the definition of the problem EXISTS-

DERECTSEQ, the input L is not necessarily subset-

closed. This allows a concise representation of some

inputs: for example, P(D) has exponential size but it

can be represented as S({D}), so the corresponding

input is just L = {D}. In fact, our proof of Theo-

rem 10 uses a set of lists L where |X| ≤ 3 for all

X ∈ L. Since there are at most |D|3+1 such sets, our

NP-completeness proof would still hold if we insisted

that the input to EXISTSDERECTSEQ must be subset-

closed. Let us now return to the original problem

#LIST-M -PARTITIONS, which is the special case of

the problem #L-M -PARTITIONS where L = P(D).
This leads us to be interested in the following com-

putational problem.

Name. MATRIXHASDERECTSEQ.

Instance. An index set D and a symmetric matrix M
in {0, 1, ∗}D×D (represented as an array).

Output. “Yes”, if there is a P(D)-M -

derectangularising sequence; “no”, otherwise.

Theorem 10 does not fully quantify the complexity

of MATRIXHASDERECTSEQ because its proof relies

on a specific choice of L which, as we have noted,

is not P(D). Nevertheless, the proof of Theorem 10

has the following corollary.

Corollary 11. MATRIXHASDERECTSEQ is in NP.

II. MORE DETAILS

The remainder of this extended abstract gives more

details about our results, which are established in the

full paper [16].

III. LIST M -PARTITION PROBLEMS AND

COUNTING CSPS

Toward the development of our algorithms and the

proof of our dichotomy, we study a special case

of the problem #L-M -PARTITIONS, in which L is

M -purifying and subset-closed. For such L and M ,

we show that the problem #L-M -PARTITIONS is

polynomial-time Turing-equivalent to a counting con-

straint satisfaction problem (#CSP). A constraint

59

language is a finite set Γ of named relations over some

set D. For such a language, we define the counting

problem #CSP(Γ) as follows.

Name. #CSP(Γ).
Instance. A set V of variables and a set C of

constraints of the form 〈(v1, . . . , vk), R〉, where

(v1, . . . , vk) ∈ V k and R is an arity-k relation in

Γ.

Output. The number of assignments σ : V → D such

that

(σ(v1), . . . , σ(vk)) ∈ R for all 〈(v1, . . . , vk), R〉 ∈ C .
(1)

The tuple of variables v1, . . . , vk in a constraint is

referred to as the constraint’s scope. The assignments

σ : V → D for which (1) holds are called the

satisfying assignments of the instance (V,C). Note

that a unary constraint 〈v,R〉 has the same effect as

a list: it directly restricts the possible values of the

variable v.

Definition 12. For a subset-closed, M -purifying set

L, define the constraint language Γ′L,M = {HM
X,Y |

X,Y ∈ L} and let ΓL,M = Γ′L,M ∪ P(D), where

P(D) represents the set of all unary relations on D.

In the full version of the paper [16], we prove the

following proposition.

Proposition 15. For any symmetric
M ∈ {0, 1, ∗}D×D and any subset-closed, M -
purifying set L, the problem #L-M -PARTITIONS is
polynomial-time Turing-equivalent to #CSP(ΓL,M).

The reduction from #L-M -PARTITIONS to

#CSP(ΓL,M) starts with an instance (G,L) of #L-

M -PARTITIONS and constructs an instance (V,C)
of #CSP(ΓL,M) with V = V (G). The constraint

set C contains a unary constraint for each variable

(capturing the role of the list function L). For every

edge (u, v) such that M |L(u)×L(v) has a 0 entry, there

is a binary constraint 〈(u, v), HM
L(u),L(v)〉. Similarly,

there is such a constraint for every non-edge

(u, v) such that M |L(u)×L(v) has a 1 entry. These

constraints ensure a bijection between satisfying

assignments of (V,C) and M -partitions of G that

respect L. The construction in the other direction is

essentially the reverse of this construction, except

that first we must simplify the CSP instance, ensuring

that there is exactly one unary constraint for each

variable, that there are no binary constraints of the

form 〈(v, v), R〉 (where the variable v is repeated),

and that every pair of distinct variables appears in at

most one constraint. Such an instance will be called

a simple instance below.

IV. AN ARC-CONSISTENCY BASED ALGORITHM

FOR #CSP(ΓL,M)

Arc-consistency is a standard solution technique for

constraint satisfaction problems [19]. It is, essentially,

a local search method which initially assumes that

each variable v may take any value in the domain

and iteratively reduces Dv , the range of values that

can be assigned to v, based on the constraints applied

to it and on the values that can be taken by other

variables in the scopes of those constraints. The

detailed definition of the vector (Dv)v∈V of arc-

consistent domains is given in the full version [16],

along with a (standard) polynomial-time algorithm

for computing it. The important point is that every

satisfying assignment σ must have σ(v) ∈ Dv for

each variable v.

Since the #CSP(ΓL,M) instances that we deal with

are simple (as defined above), the arc-consistent do-

mains can yield further simplification of the constraint

structure, which we refer to as factoring. The factor-

ing applies when the arc-consistent domains restrict

a binary relation to a Cartesian product. In this case,

the binary relation can be replaced with corresponding

unary relations. A polynomial-time algorithm is given

in the full version [16] which factors a simple instance

with respect to a vector (Dv)v∈V of arc-consistent

domains, producing a set F of factored constraints.

The instance (V, F) is simple and it has the same

satisfying assignments as (V,C).

The constraint graph of a CSP instance (V,C) is

the undirected graph with vertex set V that contains

an edge between every pair of distinct variables that

appear together in the scope of some constraint. This

is used in the following algorithm.

Algorithm 3. This algorithm uses arc-consistency to

count satisfying assignments to simple instances of

#CSP(ΓL,M). The input is a simple instance (V,C)
of #CSP(ΓL,M).

function AC(V,C)

Compute the vector of arc-consistent domains

(Dv)v∈V
Construct the set F of factored constraints

if Dv = ∅ for some v ∈ V then
return 0

Compute the constraint graph H of (V, F)
Let the components of H be H1, . . . , Hκ with

Vi = V (Hi)
for i ∈ {1, . . . , κ} do

Let Fi be the set of constraints in F
involving variables in Vi

if |Dw| = 1 for some w ∈ Vi then
// w is an isolated vertex in H . This

// component has (exactly) 1 satisfying

// assignment.

Zi ← 1

60

else
Choose wi ∈ Vi

Let θi be the unary constraint involving

wi in Fi

for d ∈ Dwi
do

F ′i,d ← (Fi ∪ {〈wi, {d}〉}) \ {θi}
// Variable wi is ‘pinned’ to value d.

Zi ←
∑

d∈Dwi
AC(Vi, F

′
i,d)

// The number of satisfying assignments

// factorises as
∏

i Zi because there are

// no constraints between variables in

// different components.

return
∏κ

i=1 Zi

In the full version [16], we prove that Algorithm 3

terminates with the correct output — this follows from

properties of the factoring algorithm which are hinted

at in the comments of the algorithm. For general

inputs, the algorithm may take exponential time to

run, but we prove the following lemma which shows

that the running time is polynomial for the inputs that

interest us.

Lemma 18. Suppose that L is subset-closed and
M -purifying. If there is no L-M -derectangularising
sequence, then Algorithm 3 runs in polynomial time.

The key to bounding the running time is show-

ing that the recursion depth of the algorithm is at

most |D|. To do this, we show that the sizes of

the domains of all variables decrease with each re-

cursive call. The proof is based on an analysis of

the constraints in a component Hi of the constraint

graph, using the facts that L is subset-closed and M -

purifying and that there is no L-M -derectangularising

sequence.

V. POLYNOMIAL-TIME ALGORITHMS AND THE

DICHOTOMY THEOREM

Bulatov [3] showed that every problem of the

form #CSP(Γ) is either in FP or #P-complete.

Together with Proposition 15, his result immediately

shows that a similar dichotomy exists for the special

case of the problem #L-M -PARTITIONS in which

L is M -purifying and is closed under subsets. Our

algorithmic work in Section IV can be combined with

Dyer and Richerby’s explicit dichotomy for #CSP to

obtain an explicit dichotomy for this special case of

#L-M -PARTITIONS. In particular, Lemma 18 gives

a polynomial-time algorithm for the case in which

there is no L-M -derectangularising sequence. When

there is such a sequence, ΓL,M is not “strongly

rectangular” in the sense of Dyer and Richerby [8].

It follows immediately that #CSP(ΓL,M) is #P-

complete [8, Lemma 24] so #L-M -PARTITIONS is

also #P-complete by Proposition 15. In fact, the di-

chotomy for this special case does not require the full

generality of Dyer and Richerby’s dichotomy. If there

is an L-M -derectangularising sequence then it follows

immediately from work of Bulatov and Dalmau [4,

Theorem 2 and Corollary 3] that #CSP(ΓL,M) is

#P-complete.

In this section we will move beyond the case in

which L is M -purifying to provide a full dichotomy

for the problem #L-M -PARTITIONS. We will use two

data structures based on graph partitions. The first

is a special case of a sparse-dense partition [14].

The second is a representation of the set of splits of

a bipartite graph. Similar data structures were used

by Hell et al. [18] in their dichotomy for the #M -

PARTITIONS problem for matrices of size at most 3-

by-3.

Definition 19. A bipartite–cobipartite partition of a

graph G is a partition (B,C) of V (G) such that B
induces a bipartite graph and C induces the comple-

ment of a bipartite graph.

Lemma 20. [14, Theorem 3.1; see also the remarks
on (a, b)-graphs.] There is a polynomial-time algo-
rithm for finding all bipartite–cobipartite partitions
of a graph G.

The second data structure is based on sub-

hypercubes. For any finite set U, a subcube of {0, 1}U
is a subset of {0, 1}U that is a Cartesian product of

the form
∏

u∈U Su where Su ∈ {{0}, {1}, {0, 1}}
for each u ∈ U. We can also associate a subcube∏

u∈U Su with the set of assignments σ : U → {0, 1}
such that σ(u) ∈ Su for all u ∈ U. Subcubes can be

represented efficiently by listing the projections Su.

Definition 21. Let G = (U,U ′, E) be a bipartite

graph, where U and U ′ are disjoint vertex sets, and

E ⊆ U × U ′. A subcube decomposition of G is

a list U1, . . . , Uk of subcubes of {0, 1}U and a list

U ′1, . . . , U
′
k of subcubes of {0, 1}U ′ such that the

following hold. The union (U1×U ′1)∪· · ·∪(Uk×U ′k)
is the set of assignments σ : U ∪ U ′ → {0, 1} such

that no edge (u, u′) ∈ E has σ(u) = σ(u′) = 0 and

no pair (u, u′) ∈ (U×U ′)\E has σ(u) = σ(u′) = 1.

Also, for distinct i, j ∈ [k], Ui × U ′i and Uj × U ′j
are disjoint and for each i ∈ [k], either |Ui| = 1 or

|U ′i | = 1 (or both).

In the full version [16], we prove the following

lemma.

Lemma 22. A subcube decomposition of a bipartite
graph G = (U,U ′, E) can be computed in polynomial
time, with the subcubes represented by their projec-
tions.

Our algorithm for counting list M -partitions uses

the data structures to reduce problems where L is

not M -purifying to problems where it is (which we

61

already know how to solve from Sections III and IV).

The algorithm is defined recursively on the set L of

allowed lists. The algorithm for parameters L and

M calls the algorithm for Li and M where Li is

a subset of L. The base case arises when Li is M -

purifying. We will use the following computational

problem to reduce #L-M -PARTITIONS to a collection

of problems #Li-M -PARTITIONS that are, in a sense,

disjoint.

Name. #L-M -PURIFY.

Instance. A graph G and a function L : V (G)→ L.

Output. Functions L1, . . . , Lt : V (G)→ L such that

• for each i ∈ [t], the set {Li(v) | v ∈ V (G)} is

M -purifying, and

• each M -partition of G that respects L respects

exactly one of L1, . . . , Lt.

We will give an algorithm for solving the problem

#L-M -PURIFY in polynomial time when there is no

L-M -derectangularising sequence of length exactly 2.

The following computational problem will be central

to the inductive step.

Name. #L-M -PURIFY-STEP.

Instance. A graph G and a function L : V (G)→ L.

Output. Functions L1, . . . , Lk : V (G) → L such

that every M -partition of G that respects L respects

exactly one of L1, . . . , Lk, and for each i ∈ [k], there

is a W ∈ L which is inclusion-maximal in L and

which does not occur in the image of Li.

Note that we can trivially produce a solution to the

problem #L-M -PURIFY-STEP by letting L1, . . . , Lk

be an enumeration of all possible functions V (G)→
{{d} | d ∈ ⋃

v∈V (G) L(v)}. Such a function Li

corresponds to an assignment of vertices to parts, so

there is either exactly one Li-respecting M -partition

or none, which means that every L-respecting M -

partition is Li-respecting for exactly one i. However,

this solution is exponentially large in |V (G)| and we

are interested in solutions that can be produced in

polynomial time. If an algorithm for problem #L-M -

PURIFY-STEP is given an input with L(v) = ∅ for

some vertex v, then the algorithm is entitled to output

an empty list, since no M -partition respects L.

Our algorithm for the problem #L-M -PURIFY-

STEP is function #L-M -PURIFY-STEP which is spec-

ified in Algorithm 4 at the end of this extended

abstract. We show the following.

Lemma 24. Let M be a symmetric matrix in
{0, 1, ∗}D×D and let L ⊆ P(D) be subset-closed.
If L is not M -purifying and there is no length-2 L-
M -derectangularising sequence, then Algorithm 4 is
a polynomial-time algorithm for the problem #L-M -

PURIFY-STEP.

The proof of Lemma 24 considers each of the

cases that arise in the execution of the algorithm

— refer to Algorithm 4 at the end of this extended

abstract. We give the flavour of the argument here.

In Case 1, column d of M |X×Y contains both a zero

and a one. Equivalently, row d of M |Y×X does. The

algorithm groups the set of M -partitions of G that

respect L, based on the first vertex that is placed in

part d. For i ∈ [n], Li requires that vi is placed

in part d and v1, . . . , vi−1 are not in part d; Ln+1

requires that part d is empty. Thus, no M -partition

can respect more than one of the Li. Now consider an

L-respecting M -partition σ : V (G)→ D and suppose

that i is minimal such that σ(vi) = d. We claim that

σ respects Li. We have σ(vi) = d, as required. For

j �= i, we must have σ(vj) ∈ L(vj) since σ respects L
and we must have Md,σ(vj) �= 1 if (vi, vj) /∈ E(G)
and Md,σ(vj) �= 0 if (vi, vj) ∈ E(G), since σ is an

M -partition. In addition, by construction, σ(vj) �= d
if j < i. Therefore, σ respects Li. A similar argument

shows that σ respects Ln+1 if σ(v) �= d for all

v ∈ V (G). Hence, any M -partition that respects L
respects exactly one of the Li. Finally, we show that,

for each i ∈ [n + 1], there is a set W which is

inclusion-maximal in L and is not in the image of

Li. For i ∈ [n], we cannot have both a and b in

Li(vj) for any vj , so X is not in the image of Li.

Y contains d, so Y is not in the image of Ln+1.

The full version [16] contains arguments for the

other two cases. To deal with these cases, we prove

structural properties of the matrix M . In Case 2,

we find that M |X0×X0 contains no 1s and MX1×X1

contains no 0s. Also, MX0×X1 and MX1×X0 contain

only ∗s. M |X×X has no ∗ on its diagonal and it has

no sequence d1, . . . , d� ∈ X0 of odd length such that

Md1,d2
= Md2,d3

= · · · = Md�−1,d�
= Md�,d1

= ∗.
This implies that, for any M |X×X -partition of G[VX],
the graph induced by vertices assigned to X0 has no

odd cycles, and is therefore bipartite. Similarly, the

vertices assigned to X1 induce the complement of a

bipartite graph. This ensures that the output, which is

constructed using the list (B1, C1), . . . , (Bk, Ck) of

all bipartite–cobipartite partitions of G[VX], is correct.

In Case 3 (described in detail in the full version [16])

it is always true that there are distinct X,Y ∈ L
such that M |X×Y is not pure. The algorithm uses a

subcube decomposition of a certain subgraph of G to

produce the desired list functions. The proof that the

algorithm is correct is given in the full version [16].

Algorithms 8 and 9. Algorithm 8 is a trivial algo-

rithm for the problem #L-M -PURIFY for the case in

which L is M -purifying. It defines a function #L-

M -PURIFY which takes input (G,L) and returns L.

Algorithm 9 is an algorithm for the same problem

when L is not M -purifying (but it is still subset-

closed). The algorithm defines a function as follows.

62

function #L-M -PURIFY(G,L)

// ∅ ∈ L since L is subset-closed. Since L is

// not M -purifying, L �= {∅}, hence |L| > 1.

Let B be the empty sequence of list functions

L1, . . . , Lk ← #L-M -PURIFY-STEP(G,L)
for i ∈ [k] do
Li ← P(

⋃
v∈V (G) Li(v))

L′1, . . . , L
′
j ← #Li-M -PURIFY(G,Li)

Add L′1, . . . , L
′
j to B

return B

For any fixed L and M the function #L-M -PURIFY is

defined either in Algorithm 8 or in Algorithm 9. The

function is not recursive, but its definition is recursive

in the sense that the function #L-M -PURIFY defined

in Algorithm 9 makes a call to a function #Li-M -

PURIFY for some Li which is smaller than L. The

function #Li-M -PURIFY is in turn defined in Algo-

rithm 8 or 9. The correctness of the algorithm follows

from the definition of the problem. The following

lemma, proved in the full version [16], bounds the

running time.

Lemma 25. Let M ∈ {0, 1, ∗}D×D be a symmetric
matrix and let L ⊆ P(D) be subset-closed. If there is
no length-2 L-M -derectangularising sequence, then
function #L-M -PURIFY is a polynomial-time algo-
rithm for the problem #L-M -PURIFY.

Finally, we present our algorithm for the problem

#L-M -PARTITIONS.

Algorithms 10 and 11. Algorithm 10 defines a func-

tion #L-M -PARTITIONS which solves the problem

#L-M -PARTITIONS when L is subset-closed and M -

purifying and there is no L-M -derectangularising

sequence. It uses the polynomial-time transforma-

tion from #L-M -PARTITIONS to #CSP(ΓL,M) from

Proposition 15 and the function AC from Algo-

rithm 3. Algorithm 11 defines a function #L-M -

PARTITIONS for the same problem when L is not M -

purifying but it is subset-closed and there is no L-M -

derectangularising sequence. It is defined as follows.

The definition is recursive, even though the function

#L-M -PARTITIONS is not recursive.

function #L-M -PARTITIONS(G,L)

L1, . . . , Lt ← #L-M -PURIFY(G,L)
Z ← 0
for i ∈ [t] do
Li ←

⋃
v∈V (G) P(Li(v))

Z ← Z+ #Li-M -PARTITIONS(G,Li)
return Z

In the full version [16], we prove the following

lemma.

Lemma 26. Let M ∈ {0, 1, ∗}D×D be a symmetric
matrix and let L ⊆ P(D) be subset-closed. If there
is no L-M -derectangularising sequence, then func-
tion #L-M -PARTITIONS as defined in Algorithms 10

and 11 is a polynomial-time algorithm for the problem
#L-M -PARTITIONS.

Theorem 9 now follows from Lemma 26 (the

positive case), from Proposition 15 (the connection to

#CSP(ΓL,M)) and from [4, Theorem 2 and Corol-

lary 3] (#P-hardness for certain #CSP problems,

see also [8, Lemma 24]). The details are in the full

version [16].

63

Algorithm 4. A polynomial-time algorithm for the problem #L-M -PURIFY-STEP when L ⊆ P(D) is subset-

closed, L is not M -purifying and there is no length-2 L-M -derectangularising sequence. The input is a pair

(G,L) with V (G) = {v1, . . . , vn}.
function #L-M -PURIFY-STEP(G,L)

if there is a vi ∈ V (G) with L(vi) = ∅ then
/* No M -partition of G respects L */

return the empty sequence

else if there are X,Y ∈ L, a, b ∈ X , and d ∈ Y such that Ma,d = 0 and Mb,d = 1 then
/* Case 1 */

Choose such X , Y , a, b and d so that X and Y are inclusion-maximal in L
for i ∈ [n] do

Li(vi)← {d}
for j < i do

if (vi, vj) ∈ E(G) then
Li(vj)← {d′ ∈ L(vj) | d′ �= d and Md,d′ �= 0}

else
Li(vj)← {d′ ∈ L(vj) | d′ �= d and Md,d′ �= 1}

for j > i do
if (vi, vj) ∈ E(G) then

Li(vj)← {d′ ∈ L(vj) |Md,d′ �= 0}
else

Li(vj)← {d′ ∈ L(vj) |Md,d′ �= 1}
Ln+1(vi)← L(vi) \ {d}

return L1, . . . , Ln+1

else if there is an X ∈ L such that M |X×X is not pure then
/* Case 2 */

Choose such an X that is inclusion-maximal in L
Let X0 ⊆ X be the set of rows of M |X×X that contain a 0
X1 ← X \X0

VX ← {vj ∈ V (G) | L(vj) = X}
if VX = ∅ then return L
else

Use the algorithm promised in Lemma 20 to compute the list (B1, C1), . . . , (Bk, Ck)
of all bipartite–cobipartite partitions of G[VX]

for i ∈ [k], j ∈ [n] do
if vj /∈ VX then

Li(vj)← L(vj)
else if vj ∈ Bi then

Li(vj)← X0

else /* vj ∈ Ci*/

Li(vj)← X1
return L1, . . . , Lk

else
// We omit the description of Case 3 in the extended abstract. In this case, there is a pair

// X,Y ∈ L such that M |X×Y is not pure. Each Li is derived from a pair (Ui, U
′
i) in a

// subcube decomposition of a subgraph of G. The singleton projections in Ui and U ′i
// restrict the lists of vertices vj with L(vj) ∈ {X,Y }.

64

REFERENCES

[1] B. Bollobás and A. Thomason. The structure of
hereditary properties and colourings of random graphs.
Combinatorica, 20:173–202, 2000.

[2] A. Brandstädt. Partitions of graphs into one or two
independent stable sets and cliques. Discrete Math.,
152:47–54, 1996.

[3] A. Bulatov. The complexity of the counting constraint
satisfaction problem. In Proc. 35th International Col-
loquium on Automata, Languages and Programming
(ICALP 2008), volume 5125 of LNCS, pages 646–661.
Springer, 2008.

[4] A. Bulatov and V. Dalmau. Towards a dichotomy the-
orem for the counting constraint satisfaction problem.
Inform. Comput., 205(5):651–678, 2007.

[5] M. Chudnovsky, N. Robertson, P. Seymour, and
R. Thomas. The strong perfect graph theorem. Ann.
Math. (2), 164(1):51–229, 2006.

[6] V. Chvátal and N. Sbihi. Bull-free Berge graphs are
perfect. Graph. Combinator., 3:127–139, 1987.

[7] M. Dyer and C. Greenhill. The complexity of counting
graph homomorphisms. Random Struct. Algorithms,
17(3–4):260–289, 2000.

[8] M. Dyer and D. Richerby. An effective dichotomy for
the counting constraint satisfaction problem. SIAM J.
Comput, 42(3):1245–1274, 2013.

[9] H. Everett, S. Klein, and B. Reed. An optimal algo-
rithm for finding clique-cross partitions. In Proc. 29th
Southeastern International Conference on Combina-
torics, Graph Theory and Computing, volume 135,
pages 171–177, 1998.

[10] T. Feder and P. Hell. List homomorphisms to reflexive
graphs. J. Combin. Theory Ser. B, 72(2):236–250,
1998.

[11] T. Feder and P. Hell. Full constraint satisfaction
problems. SIAM J. Comput., 36(1):230–246, 2006.

[12] T. Feder, P. Hell, and J. Huang. List homomorphisms
and circular arc graphs. Combinatorica, 19(4):487–
505, 1999.

[13] T. Feder, P. Hell, and J. Huang. Bi-arc graphs and the
complexity of list homomorphisms. J. Graph Theory,
42(1):61–80, 2003.

[14] T. Feder, P. Hell, S. Klein, and R. Motwani. List
partitions. SIAM J. Discrete Math., 16(3):449–478,
2003.

[15] T. Feder and M. Vardi. The computational structure
of monotone monadic SNP and constraint satisfaction:
a study through Datalog and group theory. SIAM J.
Comput., 28(1):57–104, 1999.

[16] Andreas Göbel, Leslie Ann Goldberg, Colin Mc-
Quillan, David Richerby, and Tomoyuki Yamakami.
Counting list matrix partitions of graphs. CoRR,
abs/1306.5176, 2013.

[17] M. Golumbic. Algorithmic Graph Theory and Perfect
Graphs. Annals of Discrete Mathematics. Elsevier
Science, second edition, 2004.

[18] P. Hell, M. Hermann, and M. Nevisi. Counting par-
titions of graphs. In Proc. 23rd International Sympo-
sium on Algorithms and Computation (ISAAC 2012),
volume 7676 of LNCS, pages 227–236. Springer,
2012.

[19] C. Lecoutre. Constraint Networks: Techniques and
Algorithms. Wiley–IEEE Press, 2009.

[20] L. Lovász. Normal hypergraphs and the perfect graph
conjecture. Discrete Math., 2(3):253–267, 1972.

65

