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Abstract
The Moran process, as studied by Lieberman, Hauert and Nowak, is a randomised algorithm
modelling the spread of genetic mutations in populations. The algorithm runs on an underlying
graph where individuals correspond to vertices. Initially, one vertex (chosen uniformly at random)
possesses a mutation, with fitness r > 1. All other individuals have fitness 1. During each step
of the algorithm, an individual is chosen with probability proportional to its fitness, and its state
(mutant or non-mutant) is passed on to an out-neighbour which is chosen uniformly at random.
If the underlying graph is strongly connected then the algorithm will eventually reach fixation, in
which all individuals are mutants, or extinction, in which no individuals are mutants. An infinite
family of directed graphs is said to be strongly amplifying if, for every r > 1, the extinction prob-
ability tends to 0 as the number of vertices increases. Strong amplification is a rather surprising
property – it means that in such graphs, the fixation probability of a uniformly-placed initial
mutant tends to 1 even though the initial mutant only has a fixed selective advantage of r > 1
(independently of n). The name “strongly amplifying” comes from the fact that this selective
advantage is “amplified”. Strong amplifiers have received quite a bit of attention, and Lieberman
et al. proposed two potentially strongly-amplifying families – superstars and metafunnels. Heur-
istic arguments have been published, arguing that there are infinite families of superstars that are
strongly amplifying. The same has been claimed for metafunnels. We give the first rigorous proof
that there is an infinite family of directed graphs that is strongly amplifying. We call the graphs
in the family “megastars”. When the algorithm is run on an n-vertex graph in this family, starting
with a uniformly-chosen mutant, the extinction probability is roughly n−1/2 (up to logarithmic
factors). We prove that all infinite families of superstars and metafunnels have larger extinction
probabilities (as a function of n). Finally, we prove that our analysis of megastars is fairly tight –
there is no infinite family of megastars such that the Moran algorithm gives a smaller extinction
probability (up to logarithmic factors). Also, we provide a counter-example which clarifies the
literature concerning the isothermal theorem of Lieberman et al. A full version [11] containing
detailed proofs is available at http://arxiv.org/abs/1512.05632. Theorem-numbering here
matches the full version.
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1 Introduction

This paper is about a randomised algorithm called the Moran process. This algorithm
was introduced in biology [20, 16] to model the spread of genetic mutations in populations.
Similar algorithms have been used to model the spread of epidemic diseases, the behaviour
of voters, the spread of ideas in social networks, strategic interaction in evolutionary game
theory, the emergence of monopolies, and cascading failures in power grids and transport
networks [2, 3, 12, 15, 17].

There has been past work about analysing the expected convergence time of the al-
gorithm [7, 8]. In fact, the fast-convergence result of [7] implies that when the algorithm
is run on an undirected graph, and the “fitness” of the initial mutation is some constant
r > 1, there is an FPRAS for the “fixation probability”, which is the probability that a
randomly-introduced initial mutation spreads throughout the whole graph.

This paper answers an even more basic question, originally raised in [16], about the
long-term behaviour of the algorithm when it is run on directed graphs. In particular, the
question is whether there even exists an infinite family of (directed) graphs such that, when
the algorithm is run on an n-vertex graph in this family, the fixation probability is 1− o(1),
as a function of n. A heuristic argument that this is the case was given in [16], but a
counter-example to the argument (and to the hypothesized bound on the fixation probability)
was given in [6]. A further heuristic argument (with a revised bound) was given in [14]. Here
we give the first rigorous proof that there is indeed a family of “amplifiers” with fixation
probability 1− o(1). Before describing this, and the other results of this paper, we describe
the model.

The Moran algorithm has a parameter r which is the fitness of “mutants”. All non-mutants
have fitness 1. The algorithm runs on a directed graph. In the initial state, one vertex is
chosen uniformly at random to become a mutant. After this, the algorithm runs in discrete
steps as follows. At each step, a vertex is selected at random, with probability proportional to
its fitness. Suppose that this is vertex v. Next, an out-neighbour w of v is selected uniformly
at random. Finally, the state of vertex v (mutant or non-mutant) is copied to vertex w.

If the graph is finite and strongly connected then with probability 1, the process will
either reach the state where there are only mutants (known as fixation) or it will reach
the state where there are only non-mutants (extinction). In this paper, we are interested
in the probability that fixation is reached, as a function of the mutant fitness r, given the
topology of the underlying graph. If r < 1 then the single initial mutant has lower fitness
than the non-mutants that occupy every other vertex in the initial configuration, so the
mutation is overwhelmingly likely to go extinct. If r = 1, an easy symmetry argument
shows that the fixation probability is 1

n in any strongly connected graph on n vertices [7,
Lemma 1].1 Because of this, we restrict attention to the case r > 1. Perhaps surprisingly, a
single advantageous mutant can have a very high probability of reaching fixation, despite
being heavily outnumbered in the initial configuration.

A directed graph is said to be regular if there is some positive integer d so that the
in-degree and out-degree of every vertex is d. In a strongly connected regular graph on
n vertices, the fixation probability of a mutant with fitness r > 1 when the Moran algorithm
is run is given by

ρreg(r, n) = (1− 1
r )/(1− 1

rn ), (1)

1 The result is stated in [7] for undirected graphs but the proof goes through unaltered for strongly
connected directed graphs.
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so the extinction probability of such a mutant is given by

ζreg(r, n) = ( 1
r −

1
rn )/(1− 1

rn ). (2)

Thus, in the limit, as n tends to ∞, the extinction probability tends to 1/r. To see why (1)
and (2) hold, note that, for every configuration of mutants, the number of edges from mutants
to non-mutants is the same as the number of edges from non-mutants to mutants. Suppose
that the sum of the individuals’ fitnesses is W and consider an edge (u, v). If u is a mutant
in the current state, it is selected to reproduce with probability r/W , and, if this happens,
the offspring is placed at v with probability 1/d. Similarly, if u is not a mutant, reproduction
happens along (u, v) with probability 1/(dW ). So, in any state, the number of mutants is
r times as likely to increase at the next step of the process as it is to decrease. If we observe
the number of mutants every time it changes, the resulting stochastic process is a random
walk on the integers, that starts at 1, absorbs at 0 and n, increases with probability r

r+1
and decreases with probability 1

r+1 . It is well known that this walk absorbs at n with
probability (1) and at 0 with probability (2). In particular, the undirected n-vertex complete
graph is regular. Thus, by (2), its extinction probability tends to 1/r.

When the Moran process is run on non-regular graphs the extinction probability may
be quite a bit lower than 1/r. Consider the undirected (n+ 1)-vertex “star” graph, which
consists of single centre vertex that is connected by edges to each of n leaves. In the limit as
n→∞, the n-leaf star has extinction probability 1

r2 [16, 5]. Informally, the reason that the
extinction probability is so small is that the initial mutant is likely to be placed in a leaf,
and, at each step, a mutation at a leaf is relatively unlikely to be overwritten.

Lieberman et al. [16] refer to graphs which have smaller extinction probability than (2)
(and therefore have larger fixation probability than (1)) as amplifiers. The terminology comes
from the fact that the selective advantage of the mutant is being “amplified” in such graphs.

The purpose of this paper is to explore the long-term behaviour of the Moran process
by quantifying how good amplifiers can be. For this, it helps to have some more formal
definitions.

I Definition 1. Consider a function ζ(r, n) : R>1 × Z≥1 → R≥0. An infinite family Υ of
directed graphs is said to be up-to-ζ fixating if, for every r > 1, there is an n0 (depending
on r) so that, for every graph G ∈ Υ with n ≥ n0 vertices, the following is true: When the
Moran process is run on G, starting from a uniformly-random initial mutant, the extinction
probability is at most ζ(r, n).

Equation (2) demonstrates that the infinite family of strongly-connected regular graphs
is up-to-ζreg fixating and since ζreg ≤ 1/r, this family is also up-to-1/r fixating. Informally,
an infinite family of graphs is said to be amplifying if it is up-to-ζ fixating for a function
ζ(r, n) which is “smaller” than ζreg(r, n). Here is the formal definition.

I Definition 2. An infinite family of directed graphs is amplifying if it is up-to-ζ fixating
for a function ζ(r, n) which, for every r > 1, satisfies limn→∞ ζ(r, n) < 1/r.

The infinite family of graphs containing all undirected stars (which can be viewed as
directed graphs with edges in both directions) is up-to-ζ(r, n) fixating for a function ζ(r, n)
satisfying limn→∞ ζ(r, n) = 1/r2, so this family of graphs is amplifying.

Lieberman et al. [16] were interested in infinite families of digraphs for which the extinction
probability tends to 0, prompting the following definition.

I Definition 3. An infinite family of directed graphs is strongly amplifying if it is up-to-ζ
fixating for a function ζ(r, n) which, for every r > 1, satisfies limn→∞ ζ(r, n) = 0.

ICALP 2016
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Figure 1 The metafunnel G3,4,2. All edges are directed downwards in the diagram and the
centre vertex v∗ is shown twice, once at the top and once at the bottom of the diagram. There
are ` = 4 copies of the basic unit, each of which consists of k = 3 levels V1,j , V2,j and V3,j , with
|Vi,j | = mi = 2i.

Note that the infinite family of undirected stars is not strongly amplifying since the
extinction probability of stars tends to 1/r2 rather than to 0.

Prior to this paper, there was no (rigorous) proof that a strongly amplifying family
of digraphs exists (though there were heuristic arguments, as we explain later). Proving
rigorously that there is an infinite family of directed graphs that is strongly amplifying for
the Moran algorithm is one of our main contributions.

Lieberman et al. [16] produced good intuition about strong amplification and defined
two infinite families of graphs – superstars and metafunnels – from which it turns out that
strongly amplifying families can be constructed. It is extremely difficult to analyse the Moran
process on these families, due mostly to the complexity of the graphs, and the difficulty of
dealing with issues of dependence and concentration. Thus, all previous arguments have
been heuristic. For completeness, we discuss these heuristic arguments in Section 6.

In this paper, we define a new family of digraphs called megastars. The definition of
megastars is heavily influenced by the superstars of Lieberman et al. Our main theorem is
the following.

I Theorem 4. There exists an infinite family of megastars that is strongly amplifying.

Megastars are not easier to analyse than superstars or metafunnels. The reason for our
focus on this class of graphs is that it turns out to be provably better amplifying than any of
the previously-proposed families. We will present several theorems along these lines. Before
doing so, we define the classes of graphs.

2 Metafunnels, superstars and megastars

2.1 Metafunnels

We start by defining the metafunnels of [16]. Let k, ` and m be positive integers. The
(k, `,m)-metafunnel is the directed graph Gk,`,m defined as follows. (See Figure 1.)

The vertex set V (Gk,`,m) is the union of k+ 1 disjoint sets V0, . . . , Vk. The set V0 contains
the single vertex v∗ which is called the centre vertex. For i ∈ [k], Vi is the union of ` disjoint
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Figure 2 The superstar S4,3,5, with ` = 3 reservoirs R1, R2 and R3, each of size m = 5, connected
by a path with k = 4 vertices to v∗. The centre vertex v∗ is shown twice, at both the top and
bottom of the diagram.

sets Vi,1, . . . , Vi,`, each of which has size mi. The edge set of Gk,`,m is

(V0 × Vk) ∪ (V1 × V0) ∪
⋃

i∈[k−1]

⋃
j∈[`]

(Vi+1,j × Vi,j) .

Lieberman et al. refer to metafunnels with ` = 1 as “funnels”.

2.2 Superstars
We next define the superstars of [16]. Let k, ` and m be positive integers. The (k, `,m)-
superstar is the directed graph Sk,`,m defined as follows. (See Figure 2.) The vertex set
V (Sk,`,m) of Sk,`,m is the disjoint union of ` size-m sets R1, . . . , R` (called reservoirs) together
with k` vertices v1,1, v1,2, . . . , v`,k and a single centre vertex v∗. The edge set of Sk,`,m is
given by

E(Sk,`,m) =
⋃̀
i=1

(
({v∗}×Ri)∪ (Ri×{vi,1})∪{(vi,j , vi,j+1) | j ∈ [k− 1]}∪ {(vi,k, v∗)}}

)
.

2.3 Megastars
Finally, we define the new class of megastars, which turn out to be provably-better amplifiers
than either metafunnels or superstars. The intuition behind the design of this class of graphs
is that the path vi,1vi,2 . . . vi,k linking the i’th reservoir Ri of a superstar to the centre
vertex v∗ is good for amplifying but that a clique is even better.

Let k, ` and m be positive integers. The (k, `,m)-megastar is the directed graphMk,`,m

defined as follows. (See Figure 3.) The vertex set V (Mk,`,m) ofMk,`,m is the disjoint union
of ` sets R1, . . . , R` of size m, called reservoirs, ` sets K1, . . . ,K` of size k, called cliques, `
“feeder vertices” a1, . . . , a` and a single centre vertex v∗. The edge set ofMk,`,m consists of
the following edges:

an edge from v∗ to every vertex in R1 ∪ · · · ∪R`,
for each i ∈ [`], an edge from each vertex in Ri to ai,

ICALP 2016
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v∗

v∗

a1

R1

K1

a2

R2

K2

Figure 3 The megastar M3,2,4, with ` = 2 reservoirs R1 and R2, each of size m = 4. Each
reservoir Ri is attached, via the feeder vertex ai to a clique of size k = 3. The centre vertex v∗ is
shown twice, once at the top and once at the bottom of the diagram. The edges within the cliques
K1 and K2 are bidirectional.

for each i ∈ [`], an edge from ai to each vertex in Ki,
for each i ∈ [`], edges in both directions between every pair of distinct vertices in Ki,
an edge from every vertex in K1 ∪ · · · ∪K` to v∗.

3 Our results

Our main result is that there is an infinite family of megastars that is strongly amplifying, so
we start by defining this family. Although megastars are parameterised by three parameters,
k, ` and m, the megastars in the family that we consider have a single parameter `, so we
define k and m to be functions of `.

I Definition 5. Let m(`) = ` and k(`) = d(log `)23e. Let ΥM = {Mk(`),`,m(`) | ` ∈ Z, ` ≥ 2}.

Our main result can then be stated as follows.

I Theorem 6. Let ζM(r, n) = (logn)23n−1/2. The family ΥM is up-to-ζM fixating.

I Corollary 7. The family ΥM is strongly amplifying.

The proof of Theorem 6 requires a complicated analysis, accounting for dependencies and
concentration. The theorem, as stated here, follows directly from Theorem 75 of the full
version.

The reason that we studied megastars rather than the previously-introduced superstars
and metafunnels is that megastars turn out to be provably better amplifying than any of the
previously-proposed families. To demonstrate this, we prove the following theorem about
superstars.

I Theorem 8. Suppose that ζ(r, n) is any function such that, for any r > 1, we have
limn→∞ ζ(r, n)(n logn)1/3 = 0. Then there is no infinite family of superstars that is up-to-ζ
fixating.

The function ζM(r, n) from Theorem 6 certainly satisfies limn→∞ ζM(r, n)(n logn)1/3 = 0,
so Theorem 8 shows that there is no infinite family of superstars that is up-to-ζM fixating.
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More mundanely, it shows, for example, that if ζ(r, n) = n−1/3(logn)−1, then no infinite
family of superstars is up-to-ζ fixating. Theorem 8 is a direct consequence of Theorem 29 of
the full version.

Taken together, Theorems 6 and 8 show that superstars are worse amplifiers than
megastars. We next show that metafunnels are substantially worse. We start with the
following simple-to-state theorem.

I Theorem 9. Fix any δ > 0 and let ζ(r, n) = n−δ. Then there is no infinite family of
metafunnels that is up-to-ζ fixating.

In fact, Theorem 9 can be strengthened by an exponential amount.

I Theorem 10. Fix any ε < 1/2 and let ζ(r, n) = n−1/(logn)ε . Then there is no infinite
family of metafunnels that is up-to-ζ fixating.

Theorems 9 and 10 are a direct consequence of Theorem 47 in the full version. In fact,
Theorem 47 provides even tighter bounds, as we will see in Section 5, though these are more
difficult to state.

The theorems that we have already described (Theorem 6, Theorem 8 and Theorem 10) are
the main contributions of the paper. Together, they show that there is a family of megastars
that is strongly amplifying, and that there are no families of superstars or metafunnels
that amplify as well. For completeness, we present a theorem showing that the analysis of
Theorem 6 is fairly tight, in the sense that there are no infinite families of megastars that
amplify substantially better than ΥM – in particular, our bound on extinction probability
can only be improved by factors of log(n). It cannot be improved more substantially.

I Theorem 11. Let ζ(r, n) = n−1/2/(52r2). There is no infinite family of megastars that is
up-to-ζ fixating.

Theorem 11 follows from Theorem 119 in the full version, which is straightforward. We
conclude the paper with a digression which perhaps clarifies the literature. It is stated, and
seems to be commonly believed, that an evolutionary graph (a weighted version of the Moran
process – see Section 8 of the full version for details) is “isothermal” if and only if the fixation
probability of a mutant placed uniformly at random is ρreg(r, n). This belief seems to have
come from an informal statement of the “isothermal theorem” in the main body of [16] (the
formal statement in the supplementary material of [16] is correct, however) and it has spread,
for example, as Theorem 1 of [22]. We clear this up by proving the following proposition,
which says that there is a counter-example.

I Proposition 12. There is an evolutionary graph that is not isothermal, but has fixation
probability ρreg(r, n).

4 Proof techniques

As we have seen, it is easy to study the Moran process on a d-regular graph by considering
the transition matrix of the corresponding Markov chain (which looks like a one-dimensional
random walk). Highly symmetric graphs such as undirected stars can also be handled in a
straightforward matter, by directly analysing the transition matrix. Superstars, metafunnels
and megastars are more complicated, and the number of mutant-configurations is exponential,
so instead we resort to dividing the process into phases, as is typical in the study of randomised
algorithms and stochastic processes.

ICALP 2016
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An essential and common trick in the area of stochastic processes (for example, in work on
the voter model) is moving to continuous time. Instead of directly studying the discrete-time
Moran process, one could consider the following natural continuous-time model which was
studied in [8]: Given a set of mutants at time t, each vertex waits an amount of time
before reproducing. For each vertex, the period of time before the next reproduction is
chosen according to the exponential distribution with parameter equal to the vertex’s fitness,
independently of the other vertices. If the first vertex to reproduce is v at time t+ τ then,
as in the standard, discrete-time version of the process, one of its out-neighbours w is chosen
uniformly at random, the individual at w is replaced by a copy of the one at v, and the
time at which w will next reproduce is exponentially distributed with parameter given by its
new fitness. The discrete-time process is recovered by taking the sequence of configurations
each time a vertex reproduces. Thus, the fixation probability of the discrete-time process is
exactly the same as the fixation probability of the continuous-time process. So moving to
the continuous-time model causes no harm. As [8] explains, analysis can be easier in the
continuous-time model because certain natural stochastic domination techniques apply in
the continuous-time setting but not in the discrete-time setting.

It turns out that moving to the model of [8] does not suffice for our purposes. A major
problem in our proofs is dealing with dependencies. In order to make this feasible, we instead
study a continuous-time model (see “the clock process” in Section 3.1 of the full version)
in which every edge of the underlying graph G is equipped with two Poisson processes, one
of which is called a mutant clock and the other of which is called a non-mutant clock. The
clock process is a stochastic process in which all of these clocks run independently. The
continuous-time Moran process as defined in [8] can be recovered as a function of the times
at which these clocks trigger.

Having all of these clocks available still does not give us the flexibility that we need. We
say that a vertex u “spawns a mutant” in the Moran process if, at some point in time, u
is a mutant, and it is selected for reproduction. We wish to be able to discuss events such
as the event that the vertex u does not spawn a mutant until it has already been a mutant
for some particular amount of time. In order to express such events in a clean way, making
all conditioning explicit, we define additional stochastic processes called “star-clocks” (see
Section 3.3 of the full version). All of the star-clocks run independently in the star-clock
process.

In Section 3.4 of the full version we provide a coupling of the star-clock process with the
Moran process. The coupling is valid in the sense that the two projections are correct – the
projection onto the Moran process runs according to the correct distribution and so does
the projection onto the star-clock process. The point of the coupling is that the different
star-clocks can be viewed as having their own “local” times. In particular, there is a star-clock
M∗(u,v) which controls reproductions from vertex u onto vertex v during the time that u is a
mutant. Similarly, there is a star-clock N∗(u,v) which controls reproductions from vertex u
onto vertex v during the time that u is a non-mutant. The coupling enables us to focus on
relevant parts of the stochastic process, making all conditioning explicit.

The processes that we have described so far are all that we need to derive our upper
bound on the fixation probability of superstars (Section 4 of the full version). This is the
easiest of our main results.

Analysing the Moran process on metafunnels is more difficult. By design, the initial
mutant x0 is likely to be placed in the “top of a funnel” (in the set Vk). In the analysis, it is
useful to be able to create independence by considering a “strain” of mutants which contains
all of the descendants of a particular mutant spawned by x0. Like the Moran process itself,
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a strain can be viewed as a stochastic process depending on the triggering of the clocks. In
order to facilitate the proof, we define a general notion of “mutant process” (Section 3.2 of
the full version) – so the Moran process is one example of a mutant process, and a strain
is another. The analysis of the Moran process on metafunnels involves both of these and
also a third mutant process which is essentially the bottom level of a strain (called its head).
Strains and heads-of-strains share some common properties, and they are analysed together
as “colonies” in Section 5.4.1 of the full version. The analysis of the metafunnel is the
technically most difficult of our results so we discuss it further in the next section.

Fortunately, the analysis of the megastar in Section 6 of the full version does not require
three different types of mutant processes – it only requires one. The process that is considered
is not the Moran process itself. Instead, it is a modification of the Moran process called
the megastar process. The megastar process is similar to the Moran process except that
the feeder vertices are forced to be non-mutants, except when their corresponding cliques
are completely full or completely empty. It is easy to show (see the proof of Theorem 75 of
the full version) that the fixation probability of the Moran process is at least as high as the
fixation probability of the megastar process. However, the megastar process is somewhat
easier to analyse because the cliques evolve somewhat independently. The proof of the key
lemma (Lemma 77 of the full version) is fairly long but it is not conceptually difficult. The
point is to prove that, with high probability, the cliques fill up and cause fixation.

5 Sketch of the analysis of metafunnels

The proofs of this paper are fairly technical, so the full version is 98 pages. In order to give
a flavour, we give a brief sketch of the proof of Theorem 10 which is our most difficult result.
We use n = 1 + `

∑k
i=1 m

i to denote the number of vertices of a (k, `,m)-metafunnel. We use
Xt to denote the set of mutants at time t and x0 to denote the initial mutant so X0 = {x0}.
We prove the following theorem, which is slightly stronger than Theorem 10, and implies it.

I Theorem 47. Let r > 1. Then there is a constant cr > 0, depending on r, such that
the following holds for all k, `,m ∈ Z≥1 such that the (k, `,m)-metafunnel Gk,`,m has n ≥ 3
vertices. Suppose that the initial state X0 of the Moran process with fitness r is chosen
uniformly at random from all singleton subsets of V (Gk,`,m). The probability that the Moran
process goes extinct is at least e−

√
log r·logn(logn)−cr .

Here is the sketch of the proof of Theorem 47. If k = 1 then Gk,`,m is a star and has
extinction probability roughly 1/r2 so Theorem 47 follows easily. So for most of the proof
(and the rest of this sketch) we assume k ≥ 2. To prove the theorem, we divide the parameter
space into two regimes.

In the (straightforward) first regime, m ≤ r
√

logr n. Since m is small, Vk is not too large
compared to V0 ∪ · · · ∪ Vk−1. Thus, it is fairly likely that x0 is born outside Vk, and becomes
a non-mutant (“dies”) before it can spawn a single mutant.

Most of the proof focusses on the second regime, wherem ≥ r
√

logr n which, since n ≥ `mk,
implies k ≤

√
logr n. In this regime it is likely that a uniformly-chosen initial mutant x0 is

born in Vk (Lemma 49) so we assume that this is the case in most of the proof (and the rest
of this sketch). The key lemma is Lemma 74 which shows that, in this case, it is (sufficiently)
likely that x0 dies before v∗ spawns a mutant.

In more detail, we define a stopping time Tpa which is the first time t that one of the
following occurs.

ICALP 2016
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(A1) Xt = ∅, or
(A2) |Xt| exceeds a given threshold m∗ which is a polynomial in logn, or
(A3) By time t, v∗ has already become a mutant more than b∗ times, where b∗ is about half

as large as its number `m of in-neighbours, or
(A4) t exceeds some threshold tmax which is (very) exponentially large in n.
The subscript “pa” is for “pseudo-absorption time” because (A1) implies that the Moran
process absorbs by going extinct and (A2) is a prerequisite for absorbing by fixating. The
proof of Lemma 74 shows that, with sufficiently high probability, (A2)–(A4) do not hold,
and so the Moran process X must go extinct by time Tpa.

Conditioning makes it difficult to prove that (A2)–(A4) fail. To alleviate this, we divide
the mutants into groups called “strains” which are easier to analyse. In particular, a strain
contains all of the descendants of a particular mutant spawned by x0. Informally, Si is “born”
at the i’th time at which x0 spawns a mutant. It “dies” when all of the descendants of this
spawn have died. It is “dangerous” if one (or more) of these descendants spawns a mutant
onto v∗ before Tpa.

Lemma 53 defines eight events P1–P8. These are defined in such a way that we can show
(in the proof of Lemma 74) that if P1–P8 simultaneously occur, then (A2)–(A4) do not hold.
The definitions are engineered in such a way that we can also show that it is fairly likely
that they do hold simultaneously – this takes up most of the proof. Informally, the events
are defined as follows.
P1: No star-clock M∗(v∗,v) triggers in the time interval [0, 1].
P2: For some threshold tx0 < n, the star-clock N∗(v∗,x0) triggers in [0, tx0 − 2].
P3: v∗ is a mutant for at most one unit of time up to time Tpa.
P4: The Moran process absorbs (either fixates or goes extinct) by time tmax/2.
P5: Break [0, tx0 ] into intervals of length (logn)2. During each interval, x0 spawns at most

2r(logn)2 mutants.
P6: Define s to be around 3rtx0 . Each of the strains S1, . . . , Ss spawns at most logn

mutants before Tpa.
P7: Each of the strains S1, . . . , Ss dies within (logn)2 steps.
P8: At most b∗/ logn of S1, . . . , Ss are dangerous.

The rough sketch of Lemma 74 is as follows. P1 and P3 guarantee that v∗ does not spawn a
mutant until after Tpa. This together with P2 and P3 guarantees that the only mutants in
the process before time Tpa are part of strains that are born before tx0 . By P5, there are at
most s such strains. By P6, each of these strains only has about logn mutants. Together
with P7, this implies that (A2) does not hold at t = Tpa. P8 and P6 imply that (A3) does
not hold at t = Tpa. Finally, P4 implies that (A4) does not hold at t = Tpa.

The bulk of the proof involves showing (Lemma 53) that P1–P8 are sufficiently likely to
simultaneously occur. Of these, P3–P7 are all so likely to occur that the probability that they
do not occur can be subtracted off using a union bound (so conditioning on the other Pi’s is
not an issue). The majority of the failure probability comes from the probability that P2 does
not occur. This is handled in the straightforward Lemma 54 which gives a lower bound on
the probability that P1 and P2 both occur. The remaining event, P8, is sufficiently unlikely
to occur that careful conditioning is required. This is (eventually) handled in Lemma 73,
which shows that it is fairly likely to occur, conditioned on the fact that both P1 and P2
occur.

In order to get a good estimate on the probability that a strain is dangerous (in P8), we
need to consider the number of mutants spawned from the “layer” of the strain closest to the
centre vertex v∗. In order to do this, we define a new mutant process called the “head” of a
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strain. Strains and heads of strains share some common properties, and they are analysed
together as “colonies”. Informally a “colony” is a mutant process Z whose mutants are in
V1 ∪ · · · ∪ Vk−1 (and not in V0 or Vk). Once a colony becomes empty, it stays empty. Since a
colony is a mutant process but not necessarily a Moran process, vertices may enter and/or
leave whenever a clock triggers but we say that the colony is hit when a vertex leaves a
colony specifically because a non-mutant is spawned onto it in the underlying Moran process.
We define the “spawning chain” Y Z of a colony and show that it increases whenever the
colony spawns a mutant and that it only decreases when the colony is hit. By analysing the
jump chain of a spawning chain we are able to obtain the desired bounds on the probability
that P6, P7 and P8 fail to occur.

6 Comparison with previous work

The Moran process is similar to a discrete version of directed percolation known as the
contact process. There is a vast literature (e.g., [17, 10, 21, 9]) on the contact process and
other related infection processes such as the voter model and susceptible-infected-susceptible
(SIS) epidemic models. Often, the questions that are studied in these models are different
from the question that we study here. For example, in voter systems [9] the two states
(mutant/non-mutant) are often symmetric (similar to our r = 1 case) and the models are
often studied on infinite graphs where the question is whether the process absorbs or not
(both kinds of absorption, fixation and extinction, are therefore called “fixation” in some of
this work). The particular details of the Moran process are very important for us because
the details of the algorithm determine the long-term behaviour. For example, unlike the
Moran process, in the contact process [4], the rate at which a node becomes a non-mutant is
typically taken to be 1, whereas the rate at which a node becomes a mutant is proportional to
the number of mutant neighbours. In the discrete-time versions of many commonly-studied
models, a node is chosen randomly at each step for replacement, rather than (as in the
Moran process) for reproduction. In any case, the important point for us is that the details
of the algorithm are important – results do not carry over from one algorithm to the other.
Therefore, we concentrate in this section on previous work about calculating the fixation
probability of the Moran process itself.

Lieberman et al. [16] studied the fixation probability of the Moran process and introduced
superstars and metafunnels. Intuitively, a superstar is a good amplifier because (as long as
m is sufficiently large) the initial mutation is likely to be placed in a reservoir and (as long as
` is sufficiently large) this is unlikely to be killed quickly by the centre vertex. Moreover, the
paths of a superstar are good for amplifying the selective advantage of mutants because, after
the infection spreads from a reservoir vertex to the beginning of a path, it is likely to “pick
up momentum” as it travels down the path, arriving at the centre vertex as a chain of Θ(k)
mutants (which, taken together, are more likely to cause the centre to spread the infection
than a single mutant arriving at the centre would be). As we have seen (Theorems 6 and 8)
megastars are provably better for amplification than superstars. The reason for this is that a
clique is substantially better than a path at doing this “amplification”. Nevertheless, the
amplifying properties of superstars strongly influenced our decision to study megastars.

Lieberman et al. [16, Equation (2)] claimed2 that for sufficiently large n, the fixation
probability of a superstar with parameter k tends to 1− r−(k+2), and that “similar results

2 The reader who consults [16] might wonder why “k” as written in Equation (2) of [16] has become k + 2
here. The reason is just that we use a slightly different parameterisation from that of [16]. To allow
appropriate comparison, we describe all previous work using our parameterisation.
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hold for the funnel and metafunnel”. They provided a heuristic sketch-proof for the superstar,
but not for the funnel or metafunnel. Hauert [13, Equation (5)] claims specifically that
the fixation probability of funnels tends to 1 − r−(k+1). As far as we know, no heuristic
arguments have been given for funnels or metafunnels.

In any event, Díaz, Goldberg, Mertzios, Richerby, Serna and Spirakis [6] showed that
the 1− r−(k+2) claim for superstars is incorrect for the case k = 3. In particular, for this
case they showed that the fixation probability is at most 1− r+1

2r5+r+1 , which is less than the
originally claimed value of 1− r−5 for all r ≥ 1.42.

Subsequently, Jamieson-Lane and Hauert [14, Equation (5)] made a more detailed but still
heuristic3 analysis of the fixation probability of superstars. They claim that for superstars
with parameter k and with ` = m, the fixation probability ρk has the following bounds for
fixed r > 1,

1− 1/(r4(k − 1)(1− 1
r )2)− o(1) ≤ ρk ≤ 1− 1/(r4(k − 1)) + o(1), (3)

where the o(1) terms tend to 0 as ` → ∞. They claim that their bounds are a good
approximation as long as k � ` = m ∼

√
n. It is not clear exactly what “�” means in

this context. Certainly there are parameter regimes where k = o(`) and ` = m ∼
√
n

but nevertheless the extinction probability is much larger than the proposed upper bound
1/(r4(k − 1)(1− 1/r)2) from (3). For example, suppose that ` = m = k3/2. In this case
(see Lemma 30 of the full version), the extinction probability is at least k/(2r(m+ k)) =
1/(2r(k1/2 + 1)) which is larger than 1/(r4(k − 1)(1− 1/r)2) for all sufficiently large k.
Nevertheless, the bounds proposed by Jamieson-Lane and Hauert (3) seem to be close to the
truth when k is very small compared to ` and m.

Our Corollary 34 of the full version identifies a wide class of parameters for which the
extinction probability is provably at least 1/(1470r4k). This is weaker than the suggested
bound of Jamieson-Lane and Hauert by a factor of 1470. This constant factor is explained
by the fact that our rigorous proof needs to show concentration of all random variables. We
use lots of Chernoff bounds and other bounds on probabilities. In writing the proof, we
optimised readability rather than optimising our constants, so our constants can presumably
be improved.

There is recent work on other related aspects of the Moran process. For example, [18, 19]
give fixation probability bounds on connected undirected graphs. [1] studies amplification
with respect to adversarial or “temperature-based” placement of the initial mutation, in
which the “temperature” of a vertex is proportional to the sum of all incoming edge weights.
Also, [19] considers the extent to which the number of “good starts” for fixation can be
bounded.
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