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Abstract. We investigate the complexity of hard counting problems
that belong to the class #P but have easy decision version; several well-
known problems such as #Perfect Matchings, #DNFSat share this
property. We focus on classes of such problems which emerged through
two disparate approaches: one taken by Hemaspaandra et al. [1] who
defined classes of functions that count the size of intervals of ordered
strings, and one followed by Kiayias et al. [2] who defined the class TotP,
consisting of functions that count the total number of paths of NP com-
putations. We provide inclusion and separation relations between TotP
and interval size counting classes, by means of new classes that we define
in this work. Our results imply that many known #P-complete prob-
lems with easy decision are contained in the classes defined in [1]—but
are unlikely to be complete for these classes under certain types of re-
ductions. We also define a new class of interval size functions which
strictly contains FP and is strictly contained in TotP under reasonable
complexity-theoretic assumptions. We show that this new class contains
some hard counting problems.

1 Introduction

Valiant’s pioneering work on counting problems associated with NP computa-
tions [3] revealed the existence of functions that are quite hard to compute ex-
actly (#P-complete), despite the fact that deciding whether the function value is
nonzero is easy (in P). This category contains the problem of evaluating the per-
manent of a 0-1 matrix (Permanent), which is equivalent to counting perfect
matchings in bipartite graphs (#PM), the problem of counting satisfying assign-
ments to monotone Boolean formulae in 2-CNF form (#Mon2Sat), and many
more [4]. A common feature of all these problems is that their #P-completeness
property is based on the Cook (poly-time Turing) reduction which blurs struc-
tural differences between complexity classes; for example, Permanent is also
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complete in the Cook sense for the whole counting version of the Polynomial
Hierarchy [5,6], but also for subclasses of #P [7]. Hence, #P is not considered
to be the most appropriate class to describe the complexity of these problems.

During the last twenty years there has been constant interest for identify-
ing subclasses of #P that contain hard counting problems with easy decision
version [1,2,8,9,10,11,12] and may therefore be more adequate to describe their
complexity. In this paper we investigate the relation among subclasses of #P
defined and studied through two independent lines of research: (a) classes IF≺

p

and IF≺
t [1] that consist of functions that count the size of intervals of strings

under poly-time decidable partial or total (resp.) orders equipped with efficient
adjacency checks, and (b) the class TotP [2] that consists of functions that count
the total number of paths of NPTMs, and the class #PE [11] that contains all
functions of #P for which telling whether the function value is nonzero is easy
(in P). Since it is clear from properties of IF≺

p shown in [1] that IF≺
p = #PE we

turn our focus to the relation between IF≺
t and TotP, which are subclasses of

IF≺
p . To this end we define new interval size function classes by replacing efficient

adjacency checks with other suitable feasibility constraints. Our results can be
summarized as follows (see also Figure 1):

– TotP is equal to IFLN
t , that is, to the class of interval size functions defined on

total p-orders with efficiently computable lexicographically nearest function.
– IFLN

t , hence also TotP, is contained in IF≺
t . The inclusion is strict unless

P = UP ∩ coUP. This, among others, implies that several problems that lie
in TotP are unlikely to be IF≺

t -complete via reductions under which TotP is
closed downwards (for example, under Karp reductions); in particular, the
class of problems that reduce to #MonSat by such reductions is strictly
contained in IF≺

t unless P = UP ∩ coUP. This partially answers an open
question posed in [1].

– One of our new classes, namely IFrmed
t , lies between FP and IFLN

t = TotP.
We show that IFrmed

t contains hard counting problems: we define #SAT+2n ,
which is #P-complete under Cook reductions, and prove that it lies in IFrmed

t .
We also show that any #P function can be obtained by subtracting a function
in FP from a function in IFrmed

t . Therefore IFrmed
t is Cook-interreducible with

TotP, IF≺
t , IF≺

p = #PE, and #P but not Karp-interreducible with any of
these classes under reasonable assumptions.

2 Definitions–Preliminaries

In the following we assume a fixed alphabet Σ, conventionally Σ = {0, 1}. The
symbol Σ� denotes the set of all finite strings over the alphabet Σ. The length
of a string x ∈ Σ� is denoted by |x|. If S is a set, ‖S‖ denotes the cardinality
of S.

A binary relation over Σ� is a partial order if it is reflexive, antisymmetric,
and transitive. A partial order A is a total order if for any x, y ∈ Σ�, it holds
that (x, y) ∈ A or (y, x) ∈ A. An order A is called a p-order if there exists a
bounding polynomial p such that for all (x, y) ∈ A it holds that |x| ≤ p(|y|).
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Fig. 1. Inclusions among interval size function classes. Next to each arrow appear the
assumptions under which the inclusions are proper; it is open whether TotP = IFsucc

t

implies an unlikely collapse.

Definition 1 (Notation for orders, cf. [1]). For any order A we will use the
following notation:

1. x ≤A y is equivalent to (x, y) ∈ A,
2. x <A y is equivalent to (x ≤A y ∧ x �≡ y),
3. x ≺A y is equivalent to (x <A y ∧ ¬∃z ∈ Σ�(x <A z <A y)) (we say that x

is the predecessor of y, or y is the successor of x),
4. A≺

def= {(x, y) : x ≺A y}, and
5. (x, y)A

def= {z ∈ Σ� : x <A z <A y} ((x, y)A will be called an interval, even
if A is a partial order). We will also use [x, y]A, [x, y)A, and (x, y]A for the
closed, right-open, and left-open intervals respectively.

We will use lex to denote the standard lexicographic order of the strings in Σ�.

Remark 1. For any p-order A with bounding polynomial p and any y ∈ Σ�,
‖{x : x ≤A y}‖ ≤ 2p(|y|)+1 − 1. As a corollary, every p-order has a minimal
element.

Definition 2 (Notation for total orders). For any total order A we will use
the following notation:

1. succA : Σ� → Σ� is the successor function for A,
2. predA : Σ� → Σ� is the predecessor function for A (if A contains a bottom

element, predA is undefined for that element),
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3. medA : Σ� × Σ� → Σ� is the median function for A, defined recursively as
follows:
– if y <A x then medA(x, y) is undefined,
– otherwise if x = y or x ≺A y then medA(x, y) = y,
– otherwise medA(x, y) = medA(succA(x), predA(y)).

4. LNA : Σ� × Σ� × Σ� → Σ� is the lexicographically nearest function for A:
LNA(x, y, z) is the string w ∈ [x, y]A such that w is as close to z as possible
in the lexicographic order (breaking ties arbitrarily).

5. rmedc
A : Σ� ×Σ� → Σ�, c ∈

(
0, 1

2

]
, is some relaxed median function for A,

that satisfies the following properties:
– if y <A x then rmedc

A(x, y) is undefined,
– otherwise if x = y or x ≺A y then rmedc

A(x, y) = y,
– otherwise rmedc

A(x, y) is a string z ∈ (x, y)A such that ‖[x, z)A‖ ≥
c · ‖[x, y]A‖� and ‖[z, y]A‖ ≥ �c · ‖[x, y]A‖�.

Remark 2. For a total order A, we will say that rmedA ∈ FP if there is some
c ∈

(
0, 1

2

]
such that some relaxed median function rmedc

A ∈ FP. Observe that

medA is a function that satisfies the properties of rmed
1
2
A, therefore if medA ∈ FP

then also rmedA ∈ FP.

We say that an order A is P-decidable if A ∈ P, and we say that it has ef-
ficient adjacency checks if A≺ ∈ P. We also say that a function f ∈ FP is
FP-computable.

We say that a function f : Σ� → IN is an interval size function defined on an
order A if there exist boundary functions b, t : Σ� → Σ� such that for all x ∈
Σ�, f(x) = ‖(b(x), t(x))A‖. In the following, we will primarily be concerned
with interval size functions defined on P-decidable p-orders via polynomial-time
computable boundary functions.

Definition 3 (Hemaspaandra et al. [1])
IF≺

p (IF≺
t ) is the class of interval size functions defined on P-decidable partial

(total) p-orders with efficient adjacency checks via polynomial-time computable
boundary functions.

Remark 3. Note that in [1], IF≺
p and IF≺

t were called IFp and IFt, respectively.
We will use superscript in order to distinguish these classes from other classes
that we will define below.

Furthermore, we will be interested in interval size functions defined on P-decidable
p-orders with various other feasibility constraints, apart from A≺ ∈ P. We define
the following classes:

Definition 4. IFsucc
t (resp. IFpred

t , IFLN
t , IFrmed

t , IFmed
t ) is the class of interval

size functions each of which is defined on some P-decidable total p-order A via
polynomial-time computable boundary functions, where in addition succA ∈ FP
(resp. predA, LNA, rmedA, medA ∈ FP).
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The computational model we are going to use is the Non-deterministic Polyno-
mial-time Turing Machine (NPTM). For an NPTM M we denote with M(x)
the computation of M on input x. We say that M is in normal form if we
can represent the computation M(x) with a full, complete binary tree of depth
exactly p(|x|), where p is the polynomial that bounds the running time of M .

Valiant in [4] defines as #P the class of all total functions f for which there
exists an NPTM M such that for all x, f(x) is the number of accepting paths
of M(x).

In [11] the class #PE is defined as the class of #P functions with their under-
lying language in P, where for a function f , its underlying language is defined to
be the language Lf = {x | f(x) > 0}. In [2] the class TotP is defined as the class
that contains the functions f for which there exists an NPTM M such that for
all x, f(x) is the number of the computation paths of the computation of M(x)
minus one. The functions of TotP are usually denoted with totM (x), where M is
the associated NPTM, and x the input. In [12] TotP is proven to be exactly the
closure under Karp (parsimonious) reduction of the set of self-reducible functions
of #PE. The results can be summarized by the following chain of inclusions:

FP ⊆ TotP ⊆ #PE ⊆ #P ,

where all the inclusions are proper unless P = NP.
In [1] it is (implicitly) proven that #PE = IF≺

p , and furthermore that:

FP ⊆ IF≺
t ⊆ IF≺

p ⊆ #P .

Again the inclusions are proper unless unlikely complexity class collapses occur.

Definition 5. Polynomial-time reductions between functions:

– Cook (poly-time Turing): f ≤p
T g : f ∈ FPg.

– Karp (parsimonious): f ≤p
m g : ∃h ∈ FP,∀x f(x) = g(h(x)).

Proposition 1. Every interval size function class F that contains functions
defined via polynomial-time boundary functions is downward closed under Karp
reductions.

Proof. Consider f ∈ F via an arbitrary order A and boundary functions b, t ∈
FP. That is, for every x, f(x) = ‖(b(x), t(x))A‖. Assume also that g ≤p

m f , that
is ∃h ∈ FP such that ∀x, g(x) = f(h(x)). This implies that g(x) = f(h(x)) =
‖(b(h(x)), t(h(x)))A‖, therefore g ∈ F via the same order A and boundary func-
tions b′ = b ◦ h ∈ FP and t′ = t ◦ h ∈ FP. ��

3 The status quo between TotP and IF≺
t

As we have seen in the previous section, both TotP and IF≺
t are contained in

#PE = IF≺
p . In this section we will investigate the relationship between these

two classes. Namely we will show that TotP ⊆ IF≺
t , and that the inclusion is

proper unless P = UP ∩ coUP.
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Theorem 1. TotP ⊆ IFsucc
t ⊆ IF≺

t .

Proof (sketch). Intuitively, given a path encoding of a TotP computation tree,
it is easy to find the next one. The idea is to map computation path encod-
ings to appropriately ordered strings. The detailed proof will appear in the full
version. ��

We now proceed to show that IFsucc
t , and therefore also TotP, is strictly contained

in IF≺
t , under the assumption that P �= UP ∩ coUP. We need a new definition

and a couple of lemmata.

Definition 6. For any constant k ≥ 0, we define the operator C>k . If F is any
function class, then C>k · F defines the following class of languages:

C>k · F = {L | ∃f ∈ F ∀x (x ∈ L ⇐⇒ f(x) > k)} .

Remark 4. Observe that C>0 · coincides with the ∃· operator used by Hemas-
paandra et al. in [1], which in turn coincides with the Sig· operator defined
by Hempel and Wechsung in [13].

Lemma 1. UP ∩ coUP ⊆ C>1 · IF≺
t .

Proof. Let L ∈ UP ∩ coUP, so there is an NPTM M that decides L with the
property that, for any input x, M has exactly one decisive path (either accepting
or rejecting) and all the other paths output “?”. We assume that M is normalized
so that its computation for any input x is a full complete binary tree in which
all computation paths have length exactly p(|x|), where p is the polynomial that
bounds the running time of M .

We construct an order A that coincides with the lexicographic order of Σ�,
except that for every x ∈ Σ� the interval between x0p(|x|)+2 and x1p(|x|)+2

(inclusive) is ordered in the following way:

– First comes x0p(|x|)+2,
– if x �∈ L next comes x01z, where z encodes the unique rejecting path of

M on input x, while if x ∈ L next come x01z and x10z, where z encodes
the unique accepting path of M on input x,

– next comes x110p(|x|),
– and last come the rest of the strings of the form xw, where |w| = p(|x|) + 2,

in the lexicographic order.

It is easy to see that A is a p-order with efficient adjacency checks. We define
the boundary functions b, t ∈ FP: for any x ∈ Σ�, b(x) = x0p(|x|)+2 and t(x) =
x110p(|x|). It holds that, for any x ∈ Σ�, ‖(b(x), t(x))A‖ > 1 if and only if x ∈ L.
Therefore, L ∈ C>1 · IF≺

t . ��

Lemma 2. C>1 · IFsucc
t = P.

Proof. For any f ∈ IFsucc
t , we can decide in polynomial time whether for a

given x, f(x) > 1 or not. Just compute succA(b(x)) and succA(succA(b(x))),
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where A is the underlying total p-order with succA ∈ FP and b, t ∈ FP the
boundary functions for f . If any of the computed strings is equal to t(x) then
reject, else accept. Therefore, C>1 · IFsucc

t ⊆ P. For the other direction, note that
P = C>1 · FP ⊆ C>1 · IFsucc

t . ��

Theorem 2. If IF≺
t = IFsucc

t , then P = UP ∩ coUP.

Proof. Assuming that IF≺
t = IFsucc

t , from Lemma 1 and Lemma 2 we get that
UP ∩ coUP ⊆ C>1 · IF≺

t = C>1 · IFsucc
t = P. ��

4 TotP as an Interval Size Function Class

In this section we prove that TotP coincides with the class of interval size func-
tions defined on orders with polynomial-time computable lexicographically near-
est functions. To this end, we will employ two variations of the LN function and
show a useful property of them.

Definition 7. For a p-order A we define the following partial functions:

1. LN+
A(u, v, x) is the lexicographically smallest y ∈ [u, v]A such that x ≤lex y.

2. LN−
A(u, v, x) is the lexicographically largest y ∈ [u, v]A such that x ≥lex y.

Lemma 3. For a total p-order A, if LNA ∈ FP then also LN+
A ∈ FP and

LN−
A ∈ FP.

Proof. We will prove the claim for LN+
A only; the proof for LN−

A is symmetric.
Let p be the bounding polynomial of A. We will compute LN+

A(u, v, x). Let
y = LNA(u, v, x). If x ≤lex y, then LN+

A(u, v, x) = y. For the rest of the proof,
assume that y <lex x and let δ = ‖[y, x)lex‖.

We compute a sequence of strings x = x0 <lex x1 <lex . . . <lex xk where for
all i, ‖[y, xi)lex‖ = 2i · δ, and k is the smallest index such that LNA(u, v, xk) �=
y. It is clear that for all i, [u, v]A ∩ (y, xi)lex = ∅, therefore LN+

A(u, v, x) =
LN+

A(u, v, xk) = LNA(u, v, xk). If, during this process, we reach some xj such
that |xj | > p(|v|), then for all w ≥lex xj we have |w| ≥ |xj | > p(|v|), which
implies that w >A v. So we can safely conclude that [u, v]A contains no string
lexicographically larger than x and halt the computation leaving LN+

A(u, v, x)
undefined. Note that the size of [y, xi)lex is doubled after each iteration, therefore
the length of xi will exceed p(|v|) after at most O(p(|v|)) iterations. ��

Theorem 3. TotP = IFLN
t .

Proof. We first prove that TotP ⊆ IFLN
t . The intuition behind it is that given

a TotP computation M(x) and a string z, we can efficiently find a computation
path, the encoding of which is lexicographically closest to z.

Let f be a TotP function, i.e. there exists an NPTM M such that on all
x ∈ Σ�, f(x) = totM (x). We assume that all paths of M(x) are of length
exactly p(|x|).
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We define a total order A on Σ� as follows: A coincides with the lexico-
graphic order except that, for every x ∈ Σ�, the interval between x00p(|x|)+1

and x10p(|x|)+1 (inclusive) is ordered in the following way: first comes x00p(|x|)0,
next come the elements of {x0y0 | |y| = p(|x|) ∧ y encodes a path of M(x)},
in lexicographic order, next comes x10p(|x|)0, and last come the elements of
{x0y0 : |y| = p(|x|)∧ y does not encode a path of M(x)}∪ {x0y1 : |y| = p(|x|)},
in lexicographic order.

We will show that LNA(u, v, z) can be computed in polynomial time. If z ∈
[u, v]A then LNA(u, v, z) = z. If z /∈ [u, v]A we distinguish among three cases:

Case 1. Let u = x0yu0 and let v = x0yv0, where both yu, yv encode paths
in M(x), and let z = x0y0, for some y, |y| = p(|x|), where y does not encode
a path in M(x). Let also yu <lex y <lex yv (if not, the output is u or v).
We simulate M(x) following the non-deterministic choices according to the bits
of y, until we encounter a choice that is not available. Assume without loss of
generality that this choice is ‘1’. Then we follow the available choice, ‘0’, and
we continue the simulation by choosing ‘1’ whenever this is available. This way
we obtain the “rightmost” computation path of M(x) which is lexicographically
smaller than y, call it y′. Then by following a standard procedure we obtain
the “leftmost” path of M(x) which is lexicographically larger than y, call it y′′.
Return the lexicographically closest to y between y′ and y′′.

Case 2. Let u = x0yuau and v = x0yvav, where yu (yv) encodes a path in M(x)
and au = 1 (av = 1), or yu (yv) is of length p(|x|) and au ∈ Σ (av ∈ Σ). And,
furthermore let z = z0y0, where y encodes a computation path of M(x), and
yu <lex y <lex yv (if not, the output is u or v). Return x0y1.

Case 3. The remaining cases are either trivial or can be dealt with by combining
techniques used for the above two cases. Details are left for the full version.

We now give a sketch of the proof for the inclusion IFLN
t ⊆ TotP. Let f be

an IFLN
t function, via a total p-order A ∈ P with bounding polynomial p and

boundary functions b, t ∈ FP. By definition, LNA ∈ FP, therefore by Lemma 3
we have that LN+

A ∈ FP and LN−
A ∈ FP.

We outline the operation of an NPTM N that, on input x, performs a compu-
tation with exactly ‖(b(x), t(x))A‖+1 computation paths. It first computes b(x)
and t(x) and halts if b(x) ≺A t(x), otherwise it branches into two paths: one of
them is a dummy path that halts immediately, and the other one runs a recur-
sive procedure that accepts as input two strings u, v which satisfy the conditions
u <lex v and u, v ∈ [b(x), t(x)]A. This procedure first computes z = medlex(u, v),
z+ = LN+

A(b(x), t(x), z), and z− = LN−
A(b(x), t(x), z). It then branches into ei-

ther one or two paths that halt immediately, depending on whether z− = z+ or
not. Furthermore, it branches into two recursive calls of this procedure with in-
puts (u, z−) and (z+, v), respectively. The effect of this procedure, when initially
called with inputs u = LNA(b(x), t(x), ε) and v = LNA(b(x), t(x), 0p(|t(x)|)+1)
(that is, the lexicographically smallest and largest string in [b(x), t(x)]A, re-
spectively) is to output exactly ‖(b(x), t(x))A‖ computation paths. We omit the
details of how to avoid branching into a recursive call that would have to count
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the strings of an empty interval, but it should be clear that it is possible to check
if the upcoming procedure call will have to count zero strings or more before the
machine actually branches into it. ��
The above result, combined with the fact that TotP contains all problems in #PE
which possess a natural self-reducibility property [12], implies that a number of
known problems are contained in IFLN

t . Actually, Theorem 3 from [12] can be
restated as follows:

Corollary 1. The problems #DNFSat, #MonSat, NonNegative Perma-
nent, #Perfect Matchings, Ranking are IFLN

t -complete under Cook-1 re-
ductions.

Remark 5. Note that in [12] it was shown that #Mon2Sat is in TotP but the
proof can be easily adapted to show that #MonSat is in TotP as well. In fact, by
slightly extending a property shown in [1], namely that it is easy to find the least
satisfying assignment that is lexicographically greater than a given assignment,
it is possible to show directly that #MonSat is in IFLN

t .

5 Inside TotP

In this section we give a characterization of FP as an interval size function class,
and show that IFrmed

t is a class that contains FP and is contained in TotP.

Theorem 4. FP = IFmed
t ⊆ IFrmed

t ⊆ TotP. The first inclusion is proper unless
#P = FP and the second inclusion is proper unless P = NP.

Proof. The detailed proof is left for the full version. We only sketch some key
ideas. For showing that FP = IFrmed

t implies #P = FP, we consider any function
f ∈ #P and derive a function g(x) = f(x) + 2p(|x|), where p is a polynomial
bounding the computation length of the NPTM that corresponds to f . We next
show that g ∈ IFrmed

t ; it then suffices to notice that if g ∈ FP, then so does f .
For the proof of the assumptions under wich the second inclusion is proper, we
introduce the exponential gap operator, Ceg·, defined as follows: if F is a function
class, then Ceg · F contains exactly the languages L for which there exist some
f ∈ F , q ∈ poly, and q′ ∈ ω(1) such that for all x: if x �∈ L then f(x) ≤ 2q(|x|),
while if x ∈ L then f(x) ≥ 2q(|x|)·q′(|x|). We then prove that NP ⊆ Ceg ·TotP and
Ceg · IFrmed

t ⊆ P. ��
Let us now define a problem that lies in IFrmed

t :

#SAT+2n : given a Boolean formula ϕ with n variables, count the number of
satisfying assignments of the formula ϕ ∨ xn+1, where xn+1 is a fresh variable
not appearing in ϕ.

Proposition 2. #SAT+2n is IFrmed
t -complete under Cook-1 reductions.

Proof. Membership can be shown by similar techniques to those used for proving
the first part of Theorem 4 (omitted due to lack of space). For completeness it
suffices to observe that #SAT can be immediately reduced to #SAT+2n by
subtracting 2n. ��
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From the argument used in the above proof, the following is immediate (for
function classes F , G, let F -G = {f − g | f ∈ F , g ∈ G}):

Corollary 2. #P ⊆ IFrmed
t -FP.

Acknowledgements. We would like to thank Taso Viglas and Stathis Zachos for
stimulating discussions, and the anonymous referees for their useful comments
and suggestions.

References

1. Hemaspaandra, L.A., Homan, C.M., Kosub, S., Wagner, K.W.: The complexity of
computing the size of an interval. SIAM J. Comput. 36(5), 1264–1300 (2007)

2. Kiayias, A., Pagourtzis, A., Sharma, K., Zachos, S.: The complexity of determin-
ing the order of solutions. In: Proceedings of the First Southern Symposium on
Computing, Hattiesburg, Mississippi, December 4-5 (1998); Extended and revised
version: Acceptor-definable complexity classes. LNCS 2563, pp. 453–463. Springer,
Heidelberg (2003)

3. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8,
189–201 (1979)

4. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8(3), 410–421 (1979)

5. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5),
865–877 (1991)

6. Toda, S., Watanabe, O.: Polynomial time 1-Turing reductions from #PH to #P.
Theor. Comput. Sci. 100(1), 205–221 (1992)

7. Kiayias, A., Pagourtzis, A., Zachos, S.: Cook reductions blur structural differences
between functional complexity classes. In: Panhellenic Logic Symposium, pp. 132–
137 (1999)

8. Dyer, M.E., Goldberg, L.A., Greenhill, C.S., Jerrum, M.: The relative complexity
of approximate counting problems. Algorithmica 38(3), 471–500 (2003)
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