
COUNTING LIST MATRIX PARTITIONS OF GRAPHS∗

ANDREAS GÖBEL† , LESLIE ANN GOLDBERG† , COLIN MCQUILLAN‡ ,

DAVID RICHERBY† , AND TOMOYUKI YAMAKAMI§

Abstract. Given a symmetric D ×D matrix M over {0, 1, ∗}, a list M -partition of a graph G

is a partition of the vertices of G into D parts which are associated with the rows of M . The part of
each vertex is chosen from a given list in such a way that no edge of G is mapped to a 0 in M and no
non-edge of G is mapped to a 1 in M . Many important graph-theoretic structures can be represented
as list M -partitions including graph colourings, split graphs and homogeneous sets and pairs, which
arise in the proofs of the weak and strong perfect graph conjectures. Thus, there has been quite a bit
of work on determining for which matrices M computations involving list M -partitions are tractable.
This paper focuses on the problem of counting list M -partitions, given a graph G and given a list for
each vertex of G. We identify a certain set of “tractable” matrices M . We give an algorithm that
counts list M -partitions in polynomial time for every (fixed) matrix M in this set. The algorithm
relies on data structures such as sparse-dense partitions and subcube decompositions to reduce each
problem instance to a sequence of problem instances in which the lists have a certain useful structure
that restricts access to portions of M in which the interactions of 0s and 1s is controlled. We
show how to solve the resulting restricted instances by converting them into particular counting
constraint satisfaction problems (#CSPs) which we show how to solve using a constraint satisfaction
technique known as “arc-consistency”. For every matrix M for which our algorithm fails, we show
that the problem of counting list M -partitions is #P-complete. Furthermore, we give an explicit
characterisation of the dichotomy theorem — counting list M -partitions is tractable (in FP) if the
matrix M has a structure called a derectangularising sequence. If M has no derectangularising
sequence, we show that counting list M -partitions is #P-hard. We show that the meta-problem of
determining whether a given matrix has a derectangularising sequence is NP-complete. Finally, we
show that list M -partitions can be used to encode cardinality restrictions in M -partitions problems
and we use this to give a polynomial-time algorithm for counting homogeneous pairs in graphs.

Key words. Counting problems, complexity dichotomy, #P-completeness, graph algorithms,
matrix partitions of graphs.

AMS subject classifications. 68Q25, 68Q17, 05C15.

1. Introduction. A matrix partition of an undirected graph is a partition of its
vertices according to a matrix which specifies adjacency and non-adjacency conditions
on the vertices, depending on the parts to which they are assigned. For finite sets D
and D′, the set {0, 1, ∗}D×D′

is the set of matrices with rows indexed by D and
columns indexed by D′ where each Mi,j ∈ {0, 1, ∗}. For any symmetric matrix M ∈
{0, 1, ∗}D×D, an M -partition of an undirected graph G = (V,E) is a function σ : V →
D such that, for distinct vertices u and v,

(i) Mσ(u),σ(v) 6= 0 if (u, v) ∈ E and
(ii) Mσ(u),σ(v) 6= 1 if (u, v) 6∈ E.

∗A preliminary version of this paper appeared in the proceedings of CCC 2014. The research
leading to these results has received funding from the MEXT Grants-in-Aid for Scientific Research
and the EPSRC and the European Research Council under the European Union’s Seventh Framework
Programme (FP7/2007–2013) ERC grant agreement no. 334828. The paper reflects only the authors’
views and not the views of the ERC or the European Commission. The European Union is not liable
for any use that may be made of the information contained therein.

†Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford,
OX1 3QD, United Kingdom.

‡Department of Computer Science, Ashton Building, University of Liverpool, Liverpool, L69 3BX,
United Kingdom.

§ Department of Information Science, University of Fukui, 3-9-1 Bunkyo, Fukui City, Fukui 910-
8507, Japan.

1

2 A. Göbel, L. A. Goldberg, C. McQuillan, D. Richerby and T. Yamakami

Thus, Mi,j = 0 means that no edges are allowed between vertices in parts i and j,
Mi,j = 1 means that there must be an edge between every pair of vertices in the two
parts and Mi,j = ∗ means that any set of edges is allowed between the parts. For
entries Mi,i on the diagonal of M , the conditions only apply to distinct vertices in
part i. Thus, Mi,i = 1 requires that the vertices in part i form a clique in G and
Mi,i = 0 requires that they form an independent set.

For example, if D = {i, c}, Mi,i = 0, Mc,c = 1 and Mc,i = Mi,c = ∗, i.e.,
M = (0 ∗

∗ 1), then an M -partition of a graph is a partition of its vertices into an
independent set (whose vertices are mapped to i) and a clique (whose vertices are
mapped to c). The independent set and the clique may have arbitrary edges between
them. A graph that has such an M -partition is known as a split graph [17].

As Feder, Hell, Klein and Motwani describe [15], many important graph-theoretic
structures can be represented asM -partitions, including graph colourings, split graphs,
(a, b)-graphs [2], clique-cross partitions [10], and their generalisations. M -partitions
also arise as “type partitions” in extremal graph theory [1]. In the special case where
M is a {0, ∗}-matrix (that is, it has no 1 entries), M -partitions of G correspond to
homomorphisms from G to the (potentially looped) graph H whose adjacency matrix
is obtained from M by turning every ∗ into a 1. Thus, proper |D|-colourings of G are
exactly M -partitions for the matrix M which has 0s on the diagonal and ∗s elsewhere.

To represent more complicated graph-theoretic structures, such as homogeneous
sets and their generalisations, which arise in the proofs of the weak and strong perfect
graph conjectures [5, 20], it is necessary to generalise M -partitions by introducing
lists. Details of these applications are given by Feder et al. [15], who define the notion
of a list M -partition.

A list M -partition is an M -partition σ that is also required to satisfy constraints
on the values of each σ(v). Let P(D) denote the powerset of D. We say that σ
respects a function L : V (G) → P(D) if σ(v) ∈ L(v) for all v ∈ V (G). Thus, for
each vertex v, L(v) serves as a list of allowable parts for v and a list M -partition
of G is an M -partition that respects the given list function. We allow empty lists
for technical convenience, although there are no M -partitions that respect any list
function L where L(v) = ∅ for some vertex v.

Feder et al. [15] study the computational complexity of the following decision
problem, which is parameterised by a symmetric matrix M ∈ {0, 1, ∗}D×D.

Name. List-M-partitions.
Instance. A pair (G,L) in which G is a graph and L is a function V (G)→ P(D).
Output. “Yes”, if G has an M -partition that respects L; “no”, otherwise.

Note that M is a parameter of the problem rather than an input of the problem.
Thus, its size is a constant which does not vary with the input.

A series of papers [11,13,14] described in [15] presents a complete dichotomy for
the special case of homomorphism problems, which are List-M-partitions problems
in which M is a {0, ∗}-matrix. In particular, Feder, Hell and Huang [14] show that, for
every {0, ∗}-matrix M (and symmetrically, for every {1, ∗}-matrix M), the problem
List-M-partitions is either polynomial-time solvable or NP-complete.

It is important to note that both of these special cases of List-M-partitions

are constraint satisfaction problems (CSPs) and a famous conjecture of Feder and
Vardi [16] is that a P versus NP-complete dichotomy also exists for every CSP. Al-
though general List-M-partitions problems can also be coded as CSPs with re-

Counting List Matrix Partitions of Graphs 3

strictions on the input,1 it is not known how to code them without such restrictions.
Since the Feder–Vardi conjecture applies only to CSPs with unrestricted inputs, even
if proved, it would not necessarily apply to List-M-partitions.

Given the many applications of List-M-partitions, it is important to know
whether there is a dichotomy for this problem. This is part of a major ongoing
research effort which has the goal of understanding the boundaries of tractability
by identifying classes of problems, as wide as possible, where dichotomy theorems
arise and where the precise boundary between tractability and intractability can be
specified.

Significant progress has been made on identifying dichotomies for the List-M-

partitions problem. Feder et al. [15, Theorem 6.1] give a complete dichotomy for
the special case in which M is at most 3× 3, by showing that List-M-partitions is
polynomial-time solvable or NP-complete for each such matrix. Later, Feder and Hell
studied the List-M-partitions problem under the name CSP∗

1,2(H) and showed [12,
Corollary 3.4] that, for every M , List-M-partitions is either NP-complete, or is
solvable in quasi-polynomial time. In the latter case, they showed that List-M-

partitions is solvable in nO(logn) time, given an n-vertex graph. Feder and Hell
refer to this result as a “quasi-dichotomy”.

Although the Feder–Vardi conjecture remains open, a complete dichotomy is now
known for counting CSPs. In particular, Bulatov [3] (see also [8]) has shown that, for
every constraint language Γ, the counting constraint satisfaction problem #CSP(Γ)
is either polynomial-time solvable, or #P-complete. It is natural to ask whether a
similar situation arises for counting list M -partition problems. We study the following
computational problem, which is parameterised by a finite symmetric matrix M ∈
{0, 1, ∗}D×D.
Name. #List-M-partitions.
Instance. A pair (G,L) in which G is a graph and L is a function V (G)→ P(D).
Output. The number of M -partitions of G that respect L.

Hell, Hermann and Nevisi [18] have considered the related #M-partitions prob-
lem without lists, which can be seen as #List-M-partitions restricted to the case
that L(v) = D for every vertex v. This problem is defined as follows.
Name. #M-partitions.
Instance. A graph G.
Output. The number of M -partitions of G.

In each of the problems List-M-partitions, #List-M-partitions and #M-

partitions, the matrix M is fixed and its size does not vary with the input.
Hell et al. gave a dichotomy for small matrices M (of size at most 3×3). In partic-

ular, [18, Theorem 10] together with the graph-homomorphism dichotomy of Dyer and
Greenhill [7] shows that, for every suchM , #M-partitions is either polynomial-time

1 For the reader who is familiar with CSPs, it might be useful to see how a List-M-partitions

problem can be coded as a CSP with restrictions on the input. Given a symmetric M ∈ {0, 1, ∗}D×D,
let M0 be the relation on D×D containing all pairs (i, j) ∈ D×D for which Mi,j 6= 1. Let M1 be the
relation on D×D containing all pairs (i, j) ∈ D×D for which Mi,j 6= 0. Then a List-M-partitions

problem with input G,L can be encoded as a CSP whose constraint language includes the binary
relations M0 and M1 and also the unary relations corresponding to the sets in the image of L. Each
vertex v of G is a variable in the CSP instance with the unary constraint L(v). If (u, v) is an edge
of G then it is constrained by M1. If it is a non-edge of G, it is constrained by M0. Note that the
CSP instance satisfies the restriction that every pair of distinct variables has exactly one constraint,
which is either M0 or M1. In a general CSP instance, a pair of variables could be constrained by
M0 and M1 or one of them, or neither. It is not clear how to code such a general CSP instance as a
list partitions problem.

4 A. Göbel, L. A. Goldberg, C. McQuillan, D. Richerby and T. Yamakami

solvable or #P-complete. An interesting feature of counting M -partitions, identified
by Hell et al. is that, unlike the situation for homomorphism-counting problems,
there are tractable M -partition problems with non-trivial counting algorithms. In-
deed the main contribution of the present paper, as described below, is to identify
a set of “tractable” matrices M and to give a non-trivial algorithm which solves
#List-M-partitions for every such M . We combine this with a proof that #List-

M-partitions is #P-complete for every other M .

1.1. Dichotomy theorems for counting list M-partitions. Our main theo-
rem is a general dichotomy for the counting list M -partition problem, for symmetric
matrices M of all sizes. As noted above, since there is no known coding of list M -
partition problems as CSPs without input restrictions, our theorem is not known to
be implied by the dichotomy for #CSP.

Recall that FP is the class of functions computed by polynomial-time determin-
istic Turing machines. #P is the class of functions f for which there is a nondeter-
ministic polynomial-time Turing machine that has exactly f(X) accepting paths for
every input X; this class can be thought of as the natural analogue of NP for counting
problems. Our main theorem is the following.

Theorem 1. For any symmetric matrix M ∈ {0, 1, ∗}D×D, the problem #List-

M-partitions is either in FP or #P-complete.

To prove Theorem 1, we investigate the complexity of the more general counting
problem#L-M-partitions, which has two parameters — a matrixM ∈ {0, 1, ∗}D×D

and a (not necessarily proper) subset L of P(D). In this problem, we only allow sets
in L to be used as lists.

Name. #L-M-partitions.
Instance. A pair (G,L) where G is a graph and L is a function V (G)→ L.
Output. The number of M -partitions of G that respect L.

Note that M and L are fixed parameters of #L-M-partitions — they are not
part of the input instance. The problem #List-M-partitions is just the special
case of #L-M-partitions where L = P(D).

We say that a set L ⊆ P(D) is subset-closed if A ∈ L implies that every subset
of A is in L. This closure property is referred to as the “inclusive” case in [12].

Definition 2. Given a set L ⊆ P(D), we write S(L) for its subset-closure, which
is the set S(L) = {X | for some Y ∈ L, X ⊆ Y }.

We prove the following theorem, which immediately implies Theorem 1.

Theorem 3. Let M be a symmetric matrix in {0, 1, ∗}D×D and let L ⊆ P(D) be
subset-closed. The problem #L-M-partitions is either in FP or #P-complete.

Note that this does not imply a dichotomy for the counting M -partitions problem
without lists. The problem with no lists corresponds to the case where every vertex
of the input graph G is assigned the list D, allowing the vertex to be potentially
placed in any part. Thus, the problem without lists is equivalent to the problem
#L-M-partitions with L = {D}, but Theorem 3 applies only to the case where L is
subset-closed.

1.2. Polynomial-time algorithms and an explicit dichotomy. We now in-
troduce the concepts needed to give an explicit criterion for the dichotomy in The-
orem 3 and to provide polynomial-time algorithms for all tractable cases. We use

Counting List Matrix Partitions of Graphs 5

standard definitions of relations and their arities, compositions and inverses.
Definition 4. For any symmetric M ∈ {0, 1, ∗}D×D and any sets X,Y ∈ P(D),

define the binary relation

HM
X,Y = {(i, j) ∈ X × Y |Mi,j = ∗} .

The intractability condition for the problem #L-M-partitions begins with the
following notion of rectangularity, which was introduced by Bulatov and Dalmau [4].

Definition 5. A relation R ⊆ D × D′ is rectangular if, for all i, j ∈ D, and
i′, j′ ∈ D′,

(i, i′), (i, j′), (j, i′) ∈ R =⇒ (j, j′) ∈ R .

Note that the intersection of two rectangular relations is itself rectangular. How-
ever, the composition of two rectangular relations is not necessarily rectangular: for
example, {(1, 1), (1, 2), (3, 3)} ◦ {(1, 1), (2, 3), (3, 1)} = {(1, 1), (1, 3), (3, 1)}.

Our dichotomy criterion will be based on what we call L-M -derectangularising
sequences. In order to define these, we introduce the notions of pure matrices and
M -purifying sets.

Definition 6. Given index sets X and Y , a matrix M ∈ {0, 1, ∗}X×Y is pure if
it has no 0s or has no 1s.

Pure matrices correspond to ordinary graph homomorphism problems. As we
noted above, M -partitions of G correspond to homomorphisms of G when G is a
{0, ∗}-matrix. The same is true (by complementation) when G is a {1, ∗}-matrix.

Definition 7. For any M ∈ {0, 1, ∗}D×D, a set L ⊆ P(D) is M -purifying if,
for all X,Y ∈ L, the X-by-Y submatrix M |X×Y is pure.

For example, consider the matrix

M =





1 ∗ 0
∗ 1 ∗
0 ∗ 1



 ,

with rows and columns indexed by {0, 1, 2} in the obvious way. The matrix M is not
pure but for L = {{0, 1}, {2}}, the set L is M -purifying and so is the closure S(L).

Definition 8. An L-M -derectangularising sequence of length k is a sequence
D1, . . . , Dk with each Di ∈ L such that:

(i) {D1, . . . , Dk} is M -purifying and
(ii) the relation HM

D1,D2
◦HM

D2,D3
◦ · · · ◦HM

Dk−1,Dk
is not rectangular.

If there is an i ∈ {1, . . . , k} such that Di is the empty set then the relation H =
HM

D1,D2
◦HM

D2,D3
◦ · · · ◦HM

Dk−1,Dk
is the empty relation, which is trivially rectangular.

If there is an i such that |Di| = 1 then H is a Cartesian product, and is therefore
rectangular. It follows that |Di| ≥ 2 for each i in a derectangularising sequence.

We can now state our explicit dichotomy theorem, which implies Theorem 3 and,
hence, Theorem 1.

Theorem 9. Let M be a symmetric matrix in {0, 1, ∗}D×D and let L ⊆ P(D)
be subset-closed. If there is an L-M -derectangularising sequence, then the problem
#L-M-partitions is #P-complete. Otherwise, it is in FP.

Sections 3, 4 and 5 develop a polynomial-time algorithm which solves the prob-
lem #L-M-partitions whenever there is no L-M -derectangularising sequence. The
algorithm involves several steps.

6 A. Göbel, L. A. Goldberg, C. McQuillan, D. Richerby and T. Yamakami

First, consider the case in which L is subset-closed and M -purifying. In this case,
Proposition 15 presents a polynomial-time transformation from an instance of the
problem #L-M-partitions to an instance of a related counting CSP. Algorithm 3
exploits special properties of the constructed CSP instance so that it can be solved
in polynomial time using a CSP technique called arc-consistency. (This is proved in
Lemma 18.) This provides a solution to the original #L-M-partitions problem for
the M -purifying case.

The case in which L is not M -purifying is tackled in Section 5. Section 5.1 gives
algorithms for constructing the relevant data structures, which include a special case of
sparse-dense partitions and also subcube decompositions. Algorithm 9 uses these data
structures (via Algorithms 4, 5, 6, 7 and 8) to reduce the #L-M-partitions problem
to a sequence of problems #Li-M-partitions where Li is M -purifying. Finally,
the polynomial-time algorithm is presented in Algorithms 10 and 11. For every L
and M where there is no L-M -derectangularising sequence, either Algorithm 10 or
Algorithm 11 defines a polynomial-time function #L-M-partitions for solving the
#L-M-partitions problem, given an input (G,L). The function#L-M-partitions

is not recursive. However, its definition is recursive in the sense that the function #L-
M-partitions defined in Algorithm 11 calls a function #Li-M-partitions where
Li is a subset of P(D) whose cardinality is smaller than L. The function #Li-M-

partitions is, in turn, defined either in Algorithm 10 or in 11.
The proof of Theorem 9 shows that, when Algorithms 10 and 11 fail to solve the

problem #L-M-partitions, the problem is #P-complete.

1.3. Complexity of the dichotomy criterion. Theorem 9 gives a precise cri-
terion under which the problem #L-M-partitions is in FP or #P-complete, where
L and M are considered to be fixed parameters. In Section 6, we address the compu-
tational problem of determining which is the case, now treating L and M as inputs
to this “meta-problem”. Dyer and Richerby [8] studied the corresponding problem
for the #CSP dichotomy, showing that determining whether a constraint language Γ
satisfies the criterion for their #CSP(Γ) dichotomy is reducible to the graph auto-
morphism problem, which is in NP. We are interested in the following computational
problem, which we show to be NP-complete.
Name. ExistsDerectSeq.
Instance. An index set D, a symmetric matrix M in {0, 1, ∗}D×D (represented as

an array) and a set L ⊆ P(D) (represented as a list of lists).
Output. “Yes”, if there is an S(L)-M -derectangularising sequence; “no”, otherwise.

Theorem 10. ExistsDerectSeq is NP-complete under polynomial-time many-
one reductions.

Note that, in the definition of the problem ExistsDerectSeq, the input L is not
necessarily subset-closed. Subset-closedness allows a concise representation of some
inputs: for example, P(D) has exponential size but it can be represented as S({D}),
so the corresponding input is just L = {D}. In fact, our proof of Theorem 10 uses
a set of lists L where |X| ≤ 3 for all X ∈ L. Since there are at most |D|3 + 1 such
sets, our NP-completeness proof would still hold if we insisted that the input L to
ExistsDerectSeq must be subset-closed.

Let us return to the original problem #List-M-partitions, which is the spe-
cial case of the problem #L-M-partitions where L = P(D). This leads us to be
interested in the following computational problem.
Name. MatrixHasDerectSeq.
Instance. An index set D and a symmetric matrix M in {0, 1, ∗}D×D (represented

Counting List Matrix Partitions of Graphs 7

as an array).
Output. “Yes”, if there is a P(D)-M -derectangularising sequence; “no”, otherwise.

Theorem 10 does not quantify the complexity of MatrixHasDerectSeq be-
cause its proof relies on a specific choice of L which, as we have noted, is not P(D).
Nevertheless, the proof of Theorem 10 has the following corollary.

Corollary 11. MatrixHasDerectSeq is in NP.

1.4. Cardinality constraints. Many combinatorial structures can be repre-
sented as M -partitions with the addition of cardinality constraints on the parts. For
example, it might be required that certain parts be non-empty or, more generally,
that they contain at least k vertices for some fixed k.

Feder et al. [15] showed that the problem of determining whether such a structure
exists in a given graph can be reduced to a List-M-partitions problem in which
the cardinality constraints are expressed using lists. In Section 7, we extend this to
counting. We show that any #M-partitions problem with additional cardinality
constraints of the form, “part d must contain at least kd vertices” is polynomial-time
Turing reducible to #List-M-partitions. As a corollary, we show that the “ho-
mogeneous pairs” introduced by Chvátal and Sbihi [6] can be counted in polynomial
time. Homogeneous pairs can be expressed as an M -partitions problem for a certain
6× 6 matrix, with cardinality constraints on the parts.

2. Preliminaries. For a positive integer k, we write [k] for the set {1, . . . , k}. If
S is a set of sets then we use

⋂

S to denote the intersection of all sets in S. The vertex
set of a graph G is denoted V (G) and its edge set is E(G). We write {0, 1, ∗}D for
the set of all functions σ : D → {0, 1, ∗} and {0, 1, ∗}D×D′

for the set of all matrices
M = (Mi,j)i∈D,j∈D′ , where each Mi,j ∈ {0, 1, ∗}.

We always use the term “M -partition” when talking about a partition of the ver-
tices of a graph according to a {0, 1, ∗}-matrix M . When we use the term “partition”
without referring to a matrix, we mean it in the conventional sense of partitioning a
set X into disjoint subsets X1, . . . , Xk with X1 ∪ · · · ∪Xk = X.

We view computational counting problems as functions mapping strings over in-
put alphabets to natural numbers. Our model of computation is the standard multi-
tape Turing machine. We say that a counting problem P is polynomial-time Turing-
reducible to another counting problem Q if there is a polynomial-time deterministic
oracle Turing machine M such that, on every instance x of P , M outputs P (x) by
making queries to oracle Q. We say that P is polynomial-time Turing-equivalent
to Q if each is polynomial-time Turing-reducible to the other. For decision problems
(languages), we use the standard many-one reducibility: language A is many-one re-
ducible to language B if there exists a function f that is computable in polynomial
time such that x ∈ A if and only if f(x) ∈ B.

3. Counting list M-partition problems and counting CSPs. Toward the
development of our algorithms and the proof of our dichotomy, we study a special case
of the problem #L-M-partitions, in which L is M -purifying and subset-closed. For
such L and M , we show that the problem #L-M-partitions is polynomial-time
Turing-equivalent to a counting constraint satisfaction problem (#CSP). To give the
equivalence, we introduce the notation needed to specify #CSPs.

A constraint language is a finite set Γ of named relations over some set D. For
such a language, we define the counting problem #CSP(Γ) as follows.

Name. #CSP(Γ).

8 A. Göbel, L. A. Goldberg, C. McQuillan, D. Richerby and T. Yamakami

Instance. A set V of variables and a set C of constraints of the form 〈(v1, . . . , vk), R〉,
where (v1, . . . , vk) ∈ V k and R is an arity-k relation in Γ.

Output. The number of assignments σ : V → D such that

(σ(v1), . . . , σ(vk)) ∈ R for all 〈(v1, . . . , vk), R〉 ∈ C . (1)

The tuple of variables v1, . . . , vk in a constraint is referred to as the constraint’s scope.
The assignments σ : V → D for which (1) holds are called the satisfying assignments
of the instance (V,C). Note that a unary constraint 〈v,R〉 has the same effect as a
list: it directly restricts the possible values of the variable v. As before, we allow the
possibility that ∅ ∈ Γ; any instance that includes a constraint 〈(v1, . . . , vk), ∅〉 has no
satisfying assignments.

Definition 12. Let M be a symmetric matrix in {0, 1, ∗}D×D and let L be a
subset-closed M -purifying set. Define the constraint language

Γ′
L,M = {HM

X,Y | X,Y ∈ L}

and let ΓL,M = Γ′
L,M ∪ P(D), where P(D) represents the set of all unary relations

on D.
The unary constraints in ΓL,M will be useful in our study of the complexity of

the dichotomy criterion, in Section 6. First, we define a convenient restriction on
instances of #CSP(ΓL,M).

Definition 13. An instance of #CSP(ΓL,M) is simple if:
(i) there is exactly one unary constraint 〈v,Xv〉 for each variable v ∈ V,
(ii) there are no binary constraints 〈(v, v), R〉, and
(iii) each pair u, v of distinct variables appears in at most one constraint of the

form 〈(u, v), R〉 or 〈(v, u), R〉.
Lemma 14. For every instance (V,C) of #CSP(ΓL,M), there is a simple instance

(V,C ′) such that an assignment σ : V → D satisfies (V,C) if and only if it satisfies
(V,C ′). Further, such an instance can be computed in polynomial time.

Proof. Observe that the set of binary relations in ΓL,M is closed under inter-
sections: HM

X,Y ∩ HM
X′,Y ′ = HM

X∩X′,Y ∩Y ′ and this relation is in ΓL,M because L is
subset-closed. The binary part of ΓL,M is also closed under relational inverse because
M is symmetric, so

(

HM
X,Y

)−1
= {(b, a) | (a, b) ∈ HM

X,Y } = HM
Y,X ∈ ΓL,M .

Since P(D) ⊆ ΓL,M , the set of unary relations is also closed under intersections.
We construct C ′ as follows, starting with C. Any binary constraint 〈(v, v), R〉 can

be replaced by the unary constraint 〈v, {d | (d, d) ∈ R}〉. All the binary constraints
between distinct variables u and v can be replaced by the single constraint

〈

(u, v),
⋂

{R | 〈(u, v), R〉 ∈ C or 〈(v, u), R−1〉 ∈ C}
〉

.

Let the set of constraints produced so far be C ′′. For each variable v in turn, if there
are no unary constraints applied to v in C ′′, add the constraint 〈v,D〉; otherwise,
replace all the unary constraints involving v in C ′′ with the single constraint

〈

v,
⋂

{R | 〈v,R〉 ∈ C ′′}
〉

.

C ′ is the resulting constraint set. The closure properties established above guarantee
that (V,C ′) is a #CSP(ΓL,M) instance. It is clear that it has the same satisfying
assignments as (V,C) and that it can be produced in polynomial time.

Counting List Matrix Partitions of Graphs 9

Our main result connecting the counting list M -partitions problem with counting
CSPs is the following.

Proposition 15. For any symmetric M ∈ {0, 1, ∗}D×D and any subset-closed,
M -purifying set L, the problem #L-M-partitions is polynomial-time Turing-equiva-
lent to #CSP(ΓL,M).

Because of its length, we split the proof of the proposition into two lemmas.
Lemma 16. For any symmetric matrix M ∈ {0, 1, ∗}D×D and any subset-closed,

M -purifying set L, the problem #CSP(ΓL,M) is polynomial-time Turing-reducible to
#L-M-partitions.

Proof. Consider an input (V,C) to #CSP(ΓL,M), which we may assume to be
simple. Each variable appears in exactly one unary constraint, 〈v,Xv〉 ∈ C. Any
variable v that is not used in a binary constraint can take any value in Xv so just
introduces a multiplicative factor of |Xv| to the output of the counting CSP. Thus,
we will assume without loss of generality that every variable is used in at least one
constraint with a relation from Γ′

L,M and, by simplicity, there are no constraints of
the form 〈(v, v), R〉.

We now define a corresponding instance (G,L) of #L-M-partitions. The ver-
tices of G are the variables V of the #CSP instance. For each variable v ∈ V, set

L(v) = Xv ∩
⋂

{

X | for some u and Y , 〈(v, u), HM
X,Y 〉 ∈ C or 〈(u, v), HM

Y,X〉 ∈ C
}

.

The edges E(G) of our instance are the unordered pairs {u, v} that satisfy one of the
following conditions:

(i) there is a constraint between u and v in C and M |L(u)×L(v) has a 0 entry,
or

(ii) there is no constraint between u and v in C and M |L(u)×L(v) has a 1 entry.
Since every vertex v is used in at least one constraint with a relation HM

X,Y where,
by definition, X and Y are in L, every set L(v) is a subset of some set W ∈ L. L is
subset-closed so L(v) ∈ L for all v ∈ V , as required.

We claim that a function σ : V → D is a satisfying assignment of (V,C) if and
only if it is an M -partition of G that respects L. Note that, since L is M -purifying,
no submatrix M |X×Y (X,Y ∈ L) contains both 0s and 1s.

First, suppose that σ is a satisfying assignment of (V,C). For each variable v,
σ satisfies all the constraints 〈v,Xv〉, 〈(v, u), H

M
X,Y 〉 and 〈(u, v), H

M
Y,X〉 containing v.

Therefore, σ(v) ∈ Xv and σ(v) ∈ X for each binary constraint 〈(v, u), HM
X,Y 〉 or

〈(u, v), HM
Y,X〉, so σ satisfies all the list requirements.

To show that σ is an M -partition of G, consider any pair of distinct vertices
u, v ∈ V . If there is a constraint 〈(u, v), HM

X,Y 〉 ∈ C, then σ satisfies this constraint so
Mσ(u),σ(v) = ∗ and u and v cannot stop σ being an M -partition. Conversely, suppose
there is no constraint between u and v in C. If M |L(u)×L(v) contains a 0, there is no
edge (u, v) ∈ E(G) by construction; otherwise, if M |L(u)×L(v) contains a 1, there is an
edge (u, v) ∈ E(G) by construction; otherwise, Mx,y = ∗ for all x ∈ L(u), y ∈ L(v). In
all three cases, the assignment to u and v is consistent with σ being an M -partition.

Conversely, suppose that σ is not a satisfying assignment of (V,C). If σ does not
satisfy some unary constraint 〈v,X〉 then σ(v) /∈ L(v) so σ does not respect L. If σ
does not satisfy some binary constraint 〈(u, v), HM

X,Y 〉 where u and v are distinct then,

by definition of the relation HM
X,Y , Mσ(u),σ(v) 6= ∗. If Mσ(u),σ(v) = 0, there is an edge

(u, v) ∈ E(G) by construction, which is forbidden in M -partitions; if Mσ(u),σ(v) = 1,
there is no edge (u, v) ∈ E(G) but this edge is required in M -partitions. Hence, σ is

10 A. Göbel, L. A. Goldberg, C. McQuillan, D. Richerby and T. Yamakami

not an M -partition.
Lemma 17. For any symmetric M ∈ {0, 1, ∗}D×D and any subset-closed, M -

purifying set L, the problem #L-M-partitions is polynomial-time Turing-reducible
to #CSP(ΓL,M).

Proof. We now essentially reverse the construction of the previous lemma to give
a reduction from #L-M-partitions to #CSP(ΓL,M). For any instance (G,L) of
#L-M-partitions, we construct a corresponding instance (V,C) of #CSP(ΓL,M)
as follows. The set of variables V is V (G). The set of constraints C consists of a
constraint 〈v, L(v)〉 for each vertex v ∈ V (G) and a constraint 〈(u, v), HM

L(u),L(v)〉 for
every pair of distinct vertices u, v such that:

(i) (u, v) ∈ E(G) and M |L(u)×L(v) has a 0 entry, or
(ii) (u, v) 6∈ E(G) and M |L(u)×L(v) has a 1 entry.

We show that a function σ : V → D is a satisfying assignment of (V,C) if and
only if it is an M -partition of G that respects L. It is clear that σ satisfies the unary
constraints if and only if it respects L.

If σ satisfies (V,C), then consider any pair of distinct vertices u, v ∈ V . If there
is a binary constraint involving u and v, then Mσ(u),σ(v) = Mσ(v),σ(u) = ∗ so the
existence or non-existence of the edge (u, v) of G does not affect whether σ is an
M -partition. If there is no binary constraint involving u and v, then either there is an
edge (u, v) ∈ E(G) and Mσ(u),σ(v) 6= 0 or there is no edge (u, v) and Mσ(u),σ(v) 6= 1.
In all three cases, σ maps u and v consistently with it being an M -partition.

Conversely, if σ does not satisfy (V,C), either it fails to satisfy a unary con-
straint, in which case it does not respect L, or it satisfies all unary constraints (so it
respects L), but it fails to satisfy a binary constraint 〈(u, v), HM

L(u),L(v)〉. In the latter
case, by construction, Mσ(u),σ(v) 6= ∗ so either Mσ(u),σ(v) = 0 but there is an edge
(u, v) ∈ E(G), or Mσ(u),σ(v) = 1 and there is no edge (u, v) ∈ E(G). In either case,
σ is not an M -partition of G.

4. An arc-consistency based algorithm for #CSP(ΓL,M). In the previous
section, we showed that a class of #L-M-partitions problems is equivalent to a
certain class of counting CSPs, where the constraint language consists of binary rela-
tions and all unary relations over the domain D. We now investigate the complexity
of such #CSPs.

Arc-consistency is a standard solution technique for constraint satisfaction prob-
lems [19]. It is, essentially, a local search method which initially assumes that each
variable may take any value in the domain and iteratively reduces the range of values
that can be assigned to each variable, based on the constraints applied to it and the
values that can be taken by other variables in the scopes of those constraints.

For any simple #CSP(ΓL,M) instance (V,C), define the vector of arc-consistent
domains (Dv)v∈V by the procedure in Algorithm 1. At no point in the execution of
the algorithm can any domain Dv increase in size so, for fixed D, the running time of
the algorithm is at most a polynomial in |V |+ |C|.

It is clear that, if (Dv)v∈V is the vector of arc-consistent domains for a simple
#CSP(ΓL,M) instance (V,C), then every satisfying assignment σ for that instance
must have σ(v) ∈ Dv for each variable v. In particular, if some Dv = ∅, then
the instance is unsatisfiable. (Note, though, that the converse does not hold. If
D = {0, 1} and R = {(0, 1), (1, 0)}, the instance with constraints 〈x,D〉, 〈y,D〉,
〈z,D〉, 〈(x, y), R〉, 〈(y, z), R〉 and 〈(z, x), R〉 is unsatisfiable but arc-consistency assigns
Dx = Dy = Dz = {0, 1}.)

The arc-consistent domains computed for a simple instance (V,C) can yield fur-

Counting List Matrix Partitions of Graphs 11

Algorithm 1 The algorithm for computing arc-consistent domains for a simple
#CSP(ΓL,M) instance (V,C) where, for each v ∈ V , 〈v,Xv〉 ∈ C is the unary con-
straint involving v.

for v ∈ V do

Dv ← Xv

repeat

for v ∈ V do

D′
v ← Dv

for 〈(u, v), R〉 ∈ C do

Du ← {d ∈ Du | for some d′ ∈ Dv, (d, d
′) ∈ R}

Dv ← {d ∈ Dv | for some d′ ∈ Du, (d
′, d) ∈ R}

until ∀v ∈ V , Dv = D′
v

return (Dv)v∈V

Algorithm 2 The algorithm for factoring a simple #CSP(ΓL,M) instance (V,C)
with respect to a vector (Dv)v∈V of arc-consistent domains. F is the set of factored
constraints.

F ← C
for 〈(u, v), R〉 ∈ C do

if R ∩ (Du ×Dv) is a Cartesian product D′
u ×D′

v then

Let 〈u,Xu〉 and 〈v,Xv〉 be the unary constraints involving u and v in F .
F ← (F ∪ {〈u,Xu ∩D′

u〉, 〈v,Xu ∩D′
v〉}) \ {〈(u, v), R〉, 〈u,Xu〉, 〈v,Xv〉}

return F

ther simplification of the constraint structure, which we refer to as factoring. The fac-
toring applies when the arc-consistent domains restrict a binary relation to a Cartesian
product. In this case, the binary relation can be replaced with corresponding unary
relations. Algorithm 2 factors a simple instance with respect to a vector (Dv)v∈V of
arc-consistent domains, producing a set F of factored constraints. Recall that there
is at most one constraint in C between distinct variables and there are no binary
constraints 〈(v, v), R〉 because the instance is simple. Note also that, if |Du| ≤ 1 or
|Dv| ≤ 1, then R∩ (Du×Dv) is necessarily a Cartesian product. It is easy to see that
the result of factoring a simple instance is simple, that Algorithm 2 runs in polynomial
time and that the instance (V, F) has the same satisfying assignments as (V,C).

The constraint graph of a CSP instance (V,C) (in any constraint language) is
the undirected graph with vertex set V that contains an edge between every pair of
distinct variables that appear together in the scope of some constraint.

Algorithm 3 uses arc-consistency to count the satisfying assignments of simple
#CSP(ΓL,M) instances. It is straightforward to see that the algorithm terminates,
since each recursive call is either on an instance with strictly fewer variables or on
one in which at least one variable has had its unary constraint reduced to a singleton
and no variable’s unary constraint has increased. For general inputs, the algorithm
may take exponential time to run but, in Lemma 18 we show that the running time
is polynomial for the inputs we are interested in.

We first argue that the algorithm is correct. By Lemma 14, we may assume that
the given instance (V,C) is simple. Every satisfying assignment σ : V → D satisfies
σ(v) ∈ Dv for all v ∈ V so restricting our attention to arc-consistent domains does

12 A. Göbel, L. A. Goldberg, C. McQuillan, D. Richerby and T. Yamakami

Algorithm 3 The arc-consistency based algorithm for counting satisfying assign-
ments to simple instances of #CSP(ΓL,M). The input is a simple instance (V,C) of
#CSP(ΓL,M).

function AC(variable set V, constraint set C)
Use Algorithm 1 to compute the vector of arc-consistent domains (Dv)v∈V

Use Algorithm 2 to construct the set F of factored constraints
if Dv = ∅ for some v ∈ V then

return 0
Compute the constraint graph H of (V, F)
Let H1, . . . , Hκ be the components of H with Vi = V (Hi)
Let Fi be the set of constraints in F involving variables in Vi

for i ∈ [κ] do
if |Dw| = 1 for some w ∈ Vi then

Zi ← 1
else

Choose wi ∈ Vi

Let θi be the unary constraint involving wi in Fi

for d ∈ Dwi
do

F ′
i,d ← (Fi ∪ {〈wi, {d}〉}) \ {θi}

Zi ←
∑

d∈Dwi
AC(Vi, F

′
i,d)

return
∏κ

i=1 Zi

not alter the output. Factoring the constraints also does not change the number of
satisfying assignments: it merely replaces some binary constraints with equivalent
unary ones. The constraints are factored, so any variable v with |Dv| = 1 must,
in fact, be an isolated vertex in the constraint graph because, as noted above, any
binary constraint involving it has been replaced by unary constraints. Therefore, if
a component Hi contains a variable v with |Dv| = 1, that component is the single
vertex v, which is constrained to take a single value, so the number of satisfying
assignments for this component, which we denote Zi, is equal to 1. (So we have now
shown that the if branch in the for loop is correct.) For components that contain more
than one variable, it is clear that we can choose one of those variables, wi, and group
the set of M -partitions σ according to the value of σ(wi). (So we have now shown
that the else branch is correct.) Because there are no constraints between variables
in different components of the constraint graph, the number of satisfying assignments
factorises as

∏κ
i=1 Zi.

For a binary relation R, we write

π1(R) = {a | (a, b) ∈ R for some b}

π2(R) = {b | (a, b) ∈ R for some a} .

For the following proof, we will also need the observation of Dyer and Richerby [8,
Lemma 1] that any rectangular relation R ⊆ π1(R)× π2(R) can be written as (A1 ×
B1)∪· · ·∪(Aλ×Bλ), where the Ai and Bi partition π1(R) and π2(R), respectively. The
subrelations Ai×Bi are referred to as blocks. A rectangular relation R 6= π1(R)×π2(R)
must have at least two blocks.

Lemma 18. Suppose that L is subset-closed and M -purifying. If there is no
L-M -derectangularising sequence, then Algorithm 3 runs in polynomial time.

Counting List Matrix Partitions of Graphs 13

Proof. We will argue that the number of recursive calls made by the function AC
in Algorithm 3 is bounded above by a polynomial in |V |. This suffices, since every
other step of the procedure is obviously polynomial.

Consider a run of the algorithm on instance (V,C) which, by Lemma 14, we may
assume to be simple. Suppose the run makes a recursive call with input (Vi, F

′
i,d). For

each v ∈ Vi, let D′
v denote the arc-consistent domain for v that is computed during

the recursive call. We will show below that D′
v ⊂ Dv for every variable v ∈ Vi. This

implies that the recursion depth is at most |D|. As a crude bound, it follows that

the number of recursive calls is at most (|V | · |D|)|D|
, since each recursive call that is

made is nested below a sequence of at most |D| previous calls, each of which chose
a vertex v ∈ V and “pinned” it to a domain element d ∈ D (i.e., introduced the
constraint 〈v, {d}〉).

Towards showing that the domains of all variables decrease at each recursive call,
suppose that we are computing AC(V,C) and the arc-consistent domains are (Dv)v∈V .
As observed above, for any component Hi of the constraint graph on which a recursive
call is made, we must have |Dv| > 1 for every v ∈ Vi. Fix such a component and, for
each v ∈ Vi, let D

′
v be the arc-consistent domain calculated for v in the recursive call

on Hi. It is clear that D
′
v ⊆ Dv; we will show that D′

v ⊂ Dv.
Consider a path v1 . . . vℓ in Hi, where v1 = wi and vℓ = v. For each j ∈ [ℓ − 1],

there is exactly one binary constraint in Fi involving vj and vj+1. This is either
〈(vj , vj+1), Rj〉 or 〈(vj+1, vj), R

−1
j 〉 and, without loss of generality, we may assume

that it is the former. For j ∈ [ℓ− 1], let R′
j = Rj ∩ (Dvj

×Dvj+1
) = HM

Dvj
,Dvj+1

. The

relation R′
j is pure becauseDvj

and Dvj+1
are in the subset-closed set L and, since L is

M -purifying, so is {Dvj
, Dvj+1

}. These two domains do not form a derectangularising
sequence by the hypothesis of the lemma, soHM

Dvj
,Dvj+1

is rectangular. If some Rj = ∅

then Dvj
= Dvj+1

= ∅ by arc-consistency, contradicting the fact that |Dv| > 1 for all
v ∈ Vi. If some R′

j has just one block, Rj ∩ (Dvj
× Dvj+1

) is a Cartesian product,
contradicting the fact that F is a factored set of constraints. Thus, every R′

j has at
least two blocks.

For j ∈ [ℓ − 1], let Φj = R′
1 ◦ · · · ◦ R

′
j . As above, note that {Dv1

, . . . , Dvj+1
}

is M -purifying and the sequence Dv1
, . . . , Dvj+1

is not derectangularising, so Φj is
rectangular. We will show by induction on j that π1(Φj) = Dv1

, π2(Φj) = Dvj+1
and

Φj has at least two blocks. Therefore, since the recursive call constrains σ(wi) to be
d and d ∈ A for some block A × B ⊂ Φℓ, we have D′

v ⊆ B ⊂ Dv, which is what we
set out to prove.

For the base case of the induction, take j = 1 so Φ1 = R′
1. We showed above that

R′
1 has at least two blocks and that R′

1 = HM
Dv1

,Dv2
. By arc-consistency, π1(R

′
1) = Dv1

and π2(R
′
1) = Dv2

.
For the inductive step, take j ∈ [ℓ − 2]. Suppose that π1(Φj) = Dv1

, π2(Φj) =

Dvj+1
and Φj =

⋃λ
s=1(As × A′

s) has at least two blocks. We have Φj+1 = Φj ◦ R
′
j+1

and R′
j+1 =

⋃µ
t=1(Bt ×B′

t) for some µ ≥ 2.
For every d ∈ Dv1

, there is a d′ ∈ Dvj+1
such that (d, d′) ∈ Φj by the inductive

hypothesis, and a d′′ ∈ Dvj+1
such that (d′, d′′) ∈ Dvj+2

, by arc-consistency. Therefore,
π1(Φj+1) = Dv1

; a similar argument shows that π2(Φj+1) = Dvj+2
.

Suppose, towards a contradiction, that Φj+1 = Dv1
× Dvj+2

. For this to be
the case, we must have A′

s ∩ Bt 6= ∅ for every s ∈ {1, 2} and t ∈ [µ]. Now, let
D∗

vj+1
= Dvj+1

\ (A′
2 ∩B2) and consider the relation

R = {(d1, d3) | for some d2 ∈ D∗
vj+1

, (d1, d2) ∈ Φj and (d2, d3) ∈ R′
j+1 } .

14 A. Göbel, L. A. Goldberg, C. McQuillan, D. Richerby and T. Yamakami

Since A′
1 ⊆ D∗

vj+1
the non-empty sets A′

1 ∩B1 and A′
1 ∩B2 are both subsets of D∗

vj+1

so A1 × B′
1 ⊆ R and A1 × B′

2 ⊆ R. Similarly, B1 ⊆ D∗
vj+1

, so A′
2 ∩ B1 ⊆ D∗

vj+1
so

A2 × B′
1 ⊆ R. However, (A2 × B′

2) ∩ R = ∅, so R is not rectangular. We will now
derive a contradiction by showing that R is rectangular. Note that

R = HM
Dv1

,Dv2
◦ · · · ◦HM

Dvj−1
,Dvj
◦HM

Dvj
,D∗

vj+1

◦HM
D∗

vj+1
,Dvj+2

but this relation is rectangular because the hypothesis of the lemma guarantees that
the sequence

Dv1
, . . . , Dvj

, D∗
vj+1

, Dvj+2

is not an L-M -derectangularising sequence and all of the elements of this sequence
are in L, and {Dv1

, . . . , Dvj
, D∗

vj+1
, Dvj+2

} is M -purifying.

5. Polynomial-time algorithms and the dichotomy theorem. Bulatov [3]
showed that every problem of the form #CSP(Γ) is either in FP or #P-complete.
Together with Proposition 15, his result immediately shows that a similar dichotomy
exists for the special case of the problem#L-M-partitions in which L isM -purifying
and is closed under subsets. Our algorithmic work in Section 4 can be combined with
Dyer and Richerby’s explicit dichotomy for #CSP to obtain an explicit dichotomy for
this special case of #L-M-partitions. In particular, Lemma 18 gives a polynomial-
time algorithm for the case in which there is no L-M -derectangularising sequence.
When there is such a sequence, ΓL,M is not “strongly rectangular” in the sense of [8].
It follows immediately that #CSP(ΓL,M) is #P-complete [8, Lemma 24] so #L-M-

partitions is also #P-complete by Proposition 15. In fact, the dichotomy for this
special case does not require the full generality of Dyer and Richerby’s dichotomy. If
there is an L-M -derectangularising sequence then it follows immediately from work
of Bulatov and Dalmau [4, Theorem 2 and Corollary 3] that #CSP(ΓL,M) is #P-
complete.

In this section we will move beyond the case in which L is M -purifying to provide
a full dichotomy for the problem#L-M-partitions. We will use two data structures:
sparse-dense partitions and a representation of the set of splits of a bipartite graph.
Similar data structures were used by Hell et al. [18] in their dichotomy for the #M-

partitions problem for matrices of size at most 3-by-3.

5.1. Data Structures. We use two types of graph partition. The first is a
special case of a sparse-dense partition [15] which is also called an (a, b)-graph with
a = b = 2.

Definition 19. A bipartite–cobipartite partition of a graph G is a partition (B,C)
of V (G) such that B induces a bipartite graph and C induces the complement of a
bipartite graph.

Lemma 20. [15, Theorem 3.1; see also the remarks on (a, b)-graphs.] There is a
polynomial-time algorithm for finding all bipartite–cobipartite partitions of a graph G.

The second decomposition is based on certain sub-hypercubes called subcubes.
For any finite set U, a subcube of {0, 1}U is a subset of {0, 1}U that is a Cartesian
product of the form

∏

u∈U Su where Su ∈ {{0}, {1}, {0, 1}} for each u ∈ U. We can
also associate a subcube

∏

u∈U Su with the set of assignments σ : U → {0, 1} such
that σ(u) ∈ Su for all u ∈ U. Subcubes can be represented efficiently by listing the
projections Su.

Definition 21. Let G = (U,U ′, E) be a bipartite graph, where U and U ′ are dis-
joint vertex sets, and E ⊆ U×U ′. A subcube decomposition of G is a list U1, . . . , Uk of

Counting List Matrix Partitions of Graphs 15

subcubes of {0, 1}U and a list U ′
1, . . . , U

′
k of subcubes of {0, 1}U

′

such that the following
hold.

(i) The union (U1×U ′
1)∪ · · ·∪ (Uk×U ′

k) is the set of assignments σ : U ∪U ′ →
{0, 1} such that:

no edge (u, u′) ∈ E has σ(u) = σ(u′) = 0 and (2)

no pair (u, u′) ∈ (U × U ′) \ E has σ(u) = σ(u′) = 1. (3)

(ii) For distinct i, j ∈ [k], Ui × U ′
i and Uj × U ′

j are disjoint.
(iii) For each i ∈ [k], either |Ui| = 1 or |U ′

i | = 1 (or both).
Note that, although we require Ui × U ′

i and Uj × U ′
j to be disjoint for distinct

i, j ∈ [k], we allow Ui ∩Uj 6= ∅ as long as U ′
i and U ′

j are disjoint, and vice-versa. It is
even possible that Ui = Uj , and indeed this will happen in our constructions below.

Lemma 22. A subcube decomposition of a bipartite graph G = (U,U ′, E) can be
computed in polynomial time, with the subcubes represented by their projections.

Proof. For a vertex x in a bipartite graph, let Γ(x) be its set of neighbours and
let Γ(x) be its set of non-neighbours on the other side of the graph. Thus, for x ∈ U,
Γ(x) = U ′ \ Γ(x) and, for x ∈ U ′, Γ(x) = U \ Γ(x).

Observe that we can write {0, 1}n \ {0}n as the disjoint union of n subcubes
{0}k−1 × {1}1 × {0, 1}n−k with 1 ≤ k ≤ n, and similarly for any other cube minus a
single point.

We first deal with two base cases. If G has no edges, then the set of assignments
σ : U ∪ U ′ → {0, 1} satisfying (2) and (3) is the disjoint union of

{0}U × {0}U
′

, ({0, 1}U \ {0}U)× {0}U
′

, and {0}U × ({0, 1}U
′

\ {0}U
′

).

The second and third terms can be decomposed into subcubes as described above to
produce the output. Similarly, if G is a complete bipartite graph, then the set of
assignments satisfying (2) and (3) is the disjoint union of

{1}U × {1}U
′

, ({0, 1}U \ {1}U)× {1}U
′

, and {1}U × ({0, 1}U
′

\ {1}U
′

).

If neither of these cases occurs then there is a vertex x such that neither Γ(x) nor
Γ(x) is empty. If possible, choose x ∈ U ; otherwise, choose x ∈ U ′. To simplify the
description of the algorithm, we assume that x ∈ U ; the other case is symmetric. We
consider separately the assignments where σ(x) = 0 and those where σ(x) = 1. Note
that, for any assignment, if σ(y) = 0 for some vertex y, then σ(z) = 1 for all z ∈ Γ(y)
and, if σ(y) = 1, then σ(z) = 0 for all z ∈ Γ(y). Applying this iteratively, setting
σ(x) = c for c ∈ {0, 1} also determines the value of σ on some set Sx=c ⊆ U ∪ U ′ of
vertices.

Thus, we can compute a subcube decomposition for G recursively. First, compute
Sx=0 and Sx=1. Then, recursively compute subcube decompositions of G−Sx=0 (the
graph formed from G by deleting the vertices in Sx=0) and G − Sx=1. Translate
these subcube decompositions into a subcube decomposition of G by extending each
subcube (Ui × U ′

i) of G − Sx=c to a subcube (Vi × V ′
i) of G whose restriction to

G−Sx=c is (Ui×U ′
i) and whose restriction to Sx=c is an assignment σ with σ(x) = c

(in fact, all assignments that set x to c agree on the set Sx=c, by construction).
It remains to show that the algorithm runs in polynomial time. The base cases

are clearly computable in polynomial time, as are the individual steps in the recursive
cases, so we only need to show that the number of recursive calls is polynomially

16 A. Göbel, L. A. Goldberg, C. McQuillan, D. Richerby and T. Yamakami

bounded. At the recursive step, we only choose x ∈ U ′ when E(G) = U ′′ × U ′ for
some proper subset ∅ ⊂ U ′′ ⊂ U and, in this case, the two recursive calls are to base
cases. Since each recursive call when x ∈ U splits U ′ into disjoint subsets, there can
be at most |U ′| − 1 such recursive calls, so the total number of recursive calls is linear
in |V (G)|.

5.2. Reduction to a problem with M-purifying lists. Our algorithm for
counting listM -partitions uses the data structures from Section 5.1 to reduce problems
where L is not M -purifying to problems where it is (which we already know how to
solve from Sections 3 and 4). The algorithm is defined recursively on the set L of
allowed lists. The algorithm for parameters L and M calls the algorithm for Li and
M where Li is a subset of L. The base case arises when Li is M -purifying.

We will use the following computational problem to reduce #L-M-partitions

to a collection of problems #L′-M-partitions that are, in a sense, disjoint.
Name. #L-M-purify.
Instance. A graph G and a function L : V (G)→ L.
Output. Functions L1, . . . , Lt : V (G)→ L such that

(i) for each i ∈ [t], the set {Li(v) | v ∈ V (G)} is M -purifying,
(ii) for each i ∈ [t] and v ∈ V (G), Li(v) ⊆ L(v), and
(iii) each M -partition of G that respects L respects exactly one of the

functions L1, . . . , Lt.
We will give an algorithm for solving the problem #L-M-purify in polynomial

time when there is no L-M -derectangularising sequence of length exactly 2. The
following computational problem will be central to the inductive step.
Name. #L-M-purify-step.
Instance. A graph G and a function L : V (G)→ L.
Output. Functions L1, . . . , Lk : V (G)→ L such that

(i) for each i ∈ [k] and v ∈ V (G), Li(v) ⊆ L(v),
(ii) every M -partition of G that respects L respects exactly one of

L1, . . . , Lk, and
(iii) for each i ∈ [k], there is a W ∈ L which is inclusion-maximal in L

but does not occur in the image of Li.
Note that we can trivially produce a solution to the problem #L-M-purify-

step by letting L1, . . . , Lk be an enumeration of all possible functions such that all
lists Li(v) have size 1 and satisfy Li(v) ⊆ L(v). Such a function Li corresponds to
an assignment of vertices to parts so there is either exactly one Li-respecting M -
partition or none, which means that every L-respecting M -partition is Li-respecting
for exactly one i. However, this solution is exponentially large in |V (G)| and we are
interested in solutions that can be produced in polynomial time. Also, if L(v) = ∅ for
some vertex v, the algorithm is entitled to output an empty list, since no M -partition
respects L.

The following definition extends rectangularity to {0, 1, ∗}-matrices and is used
in our proof.

Definition 23. A matrix M ∈ {0, 1, ∗}X×Y is ∗-rectangular if the relation HM
X,Y

is rectangular. Thus, M is ∗-rectangular if and only if Mx,y = Mx′,y = Mx,y′ = ∗
implies that Mx′,y′ = ∗ for all x, x′ ∈ X ′ and all y, y′ ∈ Y ′′.

We will show in Lemma 24 that the function #L-M-purify-step from Algo-
rithm 4 is a polynomial-time algorithm for the problem #L-M-purify-step when-
ever L is not M -purifying and there is no length-2 L-M -derectangularising sequence.
Note that a length-2 L-M -derectangularising sequence is a pair X,Y ∈ L such

Counting List Matrix Partitions of Graphs 17

Algorithm 4 A polynomial-time algorithm for the problem #L-M-purify-step

when L ⊆ P(D) is subset-closed, L is not M -purifying and there is no length-2 L-M -
derectangularising sequence. The input is a pair (G,L) with V (G) = {v1, . . . , vn}.

function #L-M-purify-step(G,L)
if there is a vi ∈ V (G) with L(vi) = ∅ then return the empty sequence
else if there are X,Y ∈ L, a, b ∈ X, and d ∈ Y

such that Ma,d = 0 and Mb,d = 1 then

Run Algorithm 5 /* Case 1 */
else if there is an X ∈ L such that M |X×X is not pure then

Run Algorithm 6 /* Case 2 */
else

Run Algorithm 7 /* Case 3 */

Algorithm 5 Case 1 in Algorithm 4.

Choose X,Y ∈ L, a, b ∈ X, and d ∈ Y
such that Ma,d = 0, Mb,d = 1 and X and Y are inclusion-maximal in L
for i ∈ [n] do

Li(vi)← L(vi) ∩ {d}
for j < i do

if (vi, vj) ∈ E(G) then
Li(vj)← {d

′ ∈ L(vj) | d
′ 6= d and Md,d′ 6= 0}

else

Li(vj)← {d
′ ∈ L(vj) | d

′ 6= d and Md,d′ 6= 1}

for j > i do
if (vi, vj) ∈ E(G) then

Li(vj)← {d
′ ∈ L(vj) |Md,d′ 6= 0}

else

Li(vj)← {d
′ ∈ L(vj) |Md,d′ 6= 1}

Ln+1(vi)← L(vi) \ {d}
return L1, . . . , Ln+1 (of course, if we have Li(v) = ∅ for any i and v then Li can
be omitted from the output)

that M |X×Y , M |X×X and M |Y×Y are pure and M |X×Y is not ∗-rectangular. If
L 6= P(D), it is possible that a matrix that is not ∗-rectangular has no length-2 L-M -
derectangularising sequence. For example, let D = {1, 2, 3} and L = P({1, 2}) and
let M3,3 = 0 and Mi,j = ∗ for every other pair (i, j) ∈ D2. M is not ∗-rectangular but
this fact is not witnessed by any submatrix M |X×Y for X,Y ∈ L.

Lemma 24. Let M be a symmetric matrix in {0, 1, ∗}D×D and let L ⊆ P(D) be
subset-closed. If L is not M -purifying and there is no length-2 L-M -derectangularising
sequence, then Algorithm 4 is a polynomial-time algorithm for the problem #L-M-

purify-step.

Proof. We consider an instance (G,L) of the problem #L-M-purify-step with
V (G) = {v1, . . . , vn}. If there is a vi ∈ V (G) with L(vi) = ∅ then no M -partition
of G respects L, so the output is correct. Otherwise, we consider the three cases that
can occur in the execution of the algorithm.

Case 1. In this case column d of M |X×Y contains both a zero and a one. Equiv-
alently, row d of M |Y×X does. Algorithm 5 groups the set of M -partitions of G that

18 A. Göbel, L. A. Goldberg, C. McQuillan, D. Richerby and T. Yamakami

Algorithm 6 Case 2 in Algorithm 4.

Choose X ∈ L such that M |X×X is not pure and X is inclusion-maximal in L
Let X0 ⊆ X be the set of rows of M |X×X that contain a 0
X1 ← X \X0

VX ← {vj ∈ V (G) | L(vj) = X}
if VX = ∅ then return L
else

Use the algorithm promised in Lemma 20 to compute the list
(B1, C1), . . . , (Bk, Ck) of all bipartite–cobipartite partitions of G[VX]

for i ∈ [k], j ∈ [n] do
if vj /∈ VX then

Li(vj)← L(vj)
else if vj ∈ Bi then

Li(vj)← X0

else /* vj ∈ Ci*/
Li(vj)← X1

return L1, . . . , Lk

respect L, based on the first vertex that is placed in part d. For i ∈ [n], Li requires
that vi is placed in part d and v1, . . . , vi−1 are not in part d; Ln+1 requires that part d
is empty. Thus, no M -partition can respect more than one of the Li. Now consider
an L-respecting M -partition σ : V (G) → D and suppose that i is minimal such that
σ(vi) = d. We claim that σ respects Li. We have σ(vi) = d, as required. For j 6= i,
we must have σ(vj) ∈ L(vj) since σ respects L and we must have Md,σ(vj) 6= 1 if
(vi, vj) /∈ E(G) and Md,σ(vj) 6= 0 if (vi, vj) ∈ E(G), since σ is an M -partition. In
addition, by construction, σ(vj) 6= d if j < i. Therefore, σ respects Li. A similar
argument shows that σ respects Ln+1 if σ(v) 6= d for all v ∈ V (G). Hence, any
M -partition that respects L respects exactly one of the Li.

Finally, we show that, for each i ∈ [n + 1], there is a set W which is inclusion-
maximal in L and is not in the image of Li. For i ∈ [n], we cannot have both a and b
in Li(vj) for any vj , so X is not in the image of Li. Y contains d, so Y is not in the
image of Ln+1.

Case 2. In this case, every row of M |X0×X contains a 0, while every row of
M |X1×X fails to contain a zero. Since M |X×X is not pure, but no row of M |X×X

contains both a zero and a one (since we are not in Case 1), X0 and X1 are non-empty.
Note that M |X0×X0

and M |X1×X1
are both pure, but every entry of M |X0×X1

is a ∗.

If VX = ∅ then X is an inclusion-maximal member of L that is not in the image
of L, so the output of Algorithm 6 is correct. Otherwise, (B1, C1), . . . , (Bk, Ck) is the
list containing all partitions (B,C) of VX such that B induces a bipartite graph in G
and C induces the complement of a bipartite graph. The algorithm returns L1, . . . , Lk.
X is not in the image of any Li so, to show that {L1, . . . , Lk} is a correct output for
the problem #L-M-purify-step, we just need to show that every M -partition of G
that respects L respects exactly one of L1, . . . , Lk. For i 6= i′, (Bi, Ci) 6= (Bi′ , Ci′) so
there is at least one vertex vj such that Li(vj) = X0 and Li′(vj) = X1 or vice-versa.
Since X0 and X1 are disjoint, no M -partition can simultaneously respect Li and Li′ .
It remains to show that every M -partition respects at least one of L1, . . . , Lk. To do
this, we deduce two structural properties of M |X×X .

First, we show that M |X×X has no ∗ on its diagonal. Suppose towards a contra-

Counting List Matrix Partitions of Graphs 19

Algorithm 7 Case 3 in Algorithm 4.

Choose inclusion-maximal X and Y in L so that M |X×Y is not pure
Let X0 ⊆ X be the set of rows of M |X×Y that contain a 0
X1 ← X \X0

Let Y0 ⊆ Y be the set of columns of M |X×Y that contain a 0
Y1 ← Y \ Y0

VX ← {vj ∈ V (G) | L(vj) = X}
VY ← {vj ∈ V (G) | L(vj) = Y }
if VX = ∅ or VY = ∅ then return L
else

Let E be the set of edges of G between VX and VY

Use the algorithm promised in Lemma 22 to produce a subcube decomposition
(U1, U

′
1), . . . , (Uk, U

′
k) of (VX , VY , E)

for i ∈ [k], j ∈ [n] do
if vj ∈ VX and the projection of Ui on vj is {0} then

Li(vj)← X0

else if vj ∈ VX and the projection of Ui on vj is {1} then
Li(vj)← X1

else if vj ∈ VY and the projection of U ′
i on vj is {0} then

Li(vj)← Y0

else if vj ∈ VY and the projection of U ′
i on vj is {1} then

Li(vj)← Y1

else

Li(vj)← L(vj)
return L1, . . . , Lk

diction that Md,d = ∗ for some d ∈ X. If d ∈ X0, then, for each d′ ∈ X1, Md,d′ =
Md′,d = ∗ because, as noted above, every entry of M |X0×X1

is a ∗. Therefore, the 2×2
matrix M ′ = M |{d,d′}×{d,d′} contains at least three ∗s so it is pure. {d, d′} ⊆ X ∈ L
so, by the hypothesis of the lemma, the length-2 sequence {d, d′}, {d, d′} is not L-
M -derectangularising, so M ′ must be ∗-rectangular, so Md′,d′ = ∗ for all d′ ∈ X1.
Similarly, if Md′,d′ = ∗ for some d′ ∈ X1, then Md,d = ∗ for all d ∈ X0. Therefore,
if M |X×X has a ∗ on its diagonal, every entry on the diagonal is ∗. But M contains
a 0, say Mi,j = 0 with i, j ∈ X0. For any k ∈ X1,

M |{i,j}×{j,k} =

(

0 ∗
∗ ∗

)

,

so the length-2 sequence {i, j}, {j, k} is L-M -derectangularising, contradicting the
hypothesis of the lemma (note that {i, j}, {j, k} ⊆ X ∈ L).

Second, we show that there is no sequence d1, . . . , dℓ ∈ X0 of odd length such
that

Md1,d2
= Md2,d3

= · · · = Mdℓ−1,dℓ
= Mdℓ,d1

= ∗ .

Suppose for a contradiction that such a sequence exists. Note that M |X0×X0
is ∗-

rectangular since X0, X0 is not an L-M -derectangularising sequence and M |X0×X0

is pure since Case 1 does not apply. We will show by induction that for every non-
negative integer κ ≤ (ℓ− 3)/2, Md1,dℓ−2κ−2

= ∗. This gives a contradiction by taking
κ = (ℓ − 3)/2 since Md1,d1

= ∗ and we have already shown that M |X0×X0
has no ∗

20 A. Göbel, L. A. Goldberg, C. McQuillan, D. Richerby and T. Yamakami

on its diagonal. For every κ, the argument follows by considering the matrix Mκ =
M |{d1,dℓ−2κ−1}×{dℓ−2κ−2,dℓ−2κ}. The definition of the sequence d1, . . . , dℓ together with
the symmetry of M guarantees that both entries in row dℓ−2κ−1 of Mκ are ∗. It is also
true that Md1,dℓ−2κ

= ∗: If κ = 0 then this follows from the definition of the sequence;
otherwise it follows by induction. The fact that Md1,dℓ−2κ−2

= ∗ then follows by
∗-rectangularity.

This second structural property implies that, for any M |X×X -partition of G[VX],
the graph induced by vertices assigned to X0 has no odd cycles, and is therefore
bipartite. Similarly, the vertices assigned to X1 induce the complement of a bipartite
graph. Therefore, any M -partition of G that respects L must respect at least one of
the L1, . . . , Lk, so it respects exactly one of them, as required.

Case 3. Since Cases 1 and 2 do not apply and L is not M -purifying, there are
distinct X,Y ∈ L such that X and Y are inclusion-maximal in L and M |X×Y is not
pure. As in the previous case, the sets X0, X1, Y0 and Y1 are all non-empty.

If either VX or VY is empty then either X or Y is an inclusion-maximal set
in L that is not in the image of L so the output of Algorithm 7 is correct. Oth-
erwise, (U1, U

′
1), . . . , (Uk, U

′
k) is a subcube decomposition of the bipartite subgraph

(VX , VY , E). The Uis are subcubes of {0, 1}VX and the U ′
is are subcubes of {0, 1}VY .

The algorithm returns L1, . . . , Lk.

Note that if |U ′
i | = 1 then Y is not in the image of Li. Similarly, if |U ′

i | > 1 but
|Ui| = 1 then X is not in the image of Li. The definition of subcube decompositions
guarantees that, for every i, at least one of these is the case. To show this definition
of L1, . . . , Lk is a correct output for the problem #L-M-purify-step, we must show
that any M -partition of G that respects L also respects exactly one Li. Since the sets
in {Ui × U ′

i | i ∈ [k]} are disjoint subsets of {0, 1}VX∪VY , any M -partition of G that
respects L respects at most one Li so it remains to show that every M -partition of G
respects at least one Li. To do this, we deduce two structural properties of M |X×Y .

First, we show that every entry of M |X0×Y0
is 0. The definition of X0 guarantees

that every row of M |X0×Y0
contains a 0. Since Case 1 does not apply, and M is

symmetric, every entry of M |X0×Y0
is either 0 or ∗. Suppose for a contradiction that

Mi,j = ∗ for some (i, j) ∈ X0 × Y0. Pick i′ ∈ X1. For any j′ ∈ Y0 \ {j} we have
Mi,j = Mi′,j = Mi′,j′ = ∗, so by ∗-rectangularity of M |X×Y0

we have Mi,j′ = ∗. Thus,
every entry of M |{i}×Y0

is ∗, so there is a ∗ in every Y0-indexed column of M . By
the same argument, swapping the roles of X and Y , every entry in M |X0×Y0

is ∗,
contradicting the fact that M |X×Y contains a 0 since M |X×Y is not pure.

Second, a similar argument shows that every entry of M |X1×Y1
is 1.

Thus for all M -partitions σ of G respecting L, for all x ∈ VX and y ∈ VY , if
(x, y) ∈ E then (σ(x), σ(y)) /∈ X0×Y0 while if (x, y) /∈ E then (σ(x), σ(y)) /∈ X1×Y1.
Using the definition of subcube decompositions, this shows that any M -partition of
G respecting L respects some Li.

We can now give an algorithm for the problem #L-M-purify. The algorithm
consists of the function #L-M-purify, which is defined in Algorithm 8 for the trivial
case in which L is M -purifying and in Algorithm 9 for the case in which it is not.
Note that for any fixed L and M the algorithm is defined either in Algorithm 8 or in
Algorithm 9 and the function #L-M-purify is not recursive. However, the definition
is recursive, so the function #L-M-purify defined in Algorithm 9 does make a call
to a function #Li-M-purify for some Li which is smaller than L. The function
#Li-M-purify is in turn defined in Algorithm 8 or Algorithm 9. The correctness
of the algorithm follows from the definition of the problem. The following lemma

Counting List Matrix Partitions of Graphs 21

Algorithm 8 A trivial algorithm for the problem #L-M-purify for the case in
which L is M -purifying.

function #L-M-purify(G,L) return L

Algorithm 9 A polynomial-time algorithm for the problem #L-M-purify when
L ⊆ P(D) is subset-closed and is not M -purifying and there is no length-2 L-M -
derectangularising sequence. This algorithm calls the function #L-M-purify-step

from Algorithm 4. It also calls the function #Li-M-purify for various lists Li which
are shorter than L. These functions are defined inductively in Algorithm 8 and here.

function #L-M-purify(G,L)
// ∅ ∈ L since L is subset-closed. Since L is not M -purifying, L 6= {∅},
// hence |L| > 1.
Let B be the empty sequence of list functions
L1, . . . , Lk ← #L-M-purify-step(G,L)
for i ∈ [k] do
Li ←

⋃

v∈V (G) P(Li(v))

L′
1, . . . , L

′
j ← #Li-M-purify(G,Li)

Add L′
1, . . . , L

′
j to B

return B

bounds the running time.

Lemma 25. Let M ∈ {0, 1, ∗}D×D be a symmetric matrix and let L ⊆ P(D) be
subset-closed. If there is no length-2 L-M -derectangularising sequence, then the func-
tion #L-M-purify as defined in Algorithms 8 and 9 is a polynomial-time algorithm
for the problem #L-M-purify.

Proof. Note that L is a fixed parameter of the problem #L-M-purify — it is
not part of the input. The proof is by induction on |L|. If |L| = 1 then L = {∅} so it
is M -purifying. In this case, function #L-M-purify is defined in Algorithm 8. It is
clear that it is a polynomial-time algorithm for the problem #L-M-purify.

For the inductive step suppose that |L| > 1. If L is M -purifying then func-
tion #L-M-purify is defined in Algorithm 8 and again the result is trivial. Oth-
erwise, function #L-M-purify is defined in Algorithm 9. Note that L ⊆ P(D) is
subset-closed and there is no length-2 L-M -derectangularising sequence. From this,
we can conclude that, for any subset-closed subset L′ of L, there is no length-2 L′-
M -derectangularising sequence. So we can assume by the inductive hypothesis that
for all subset-closed L′ ⊂ L, the function #L′-M-purify runs in polynomial time.

The result now follows from the fact that the function #L-M-purify-step runs
in polynomial time (as guaranteed by Lemma 24) and from the fact that each Li is a
strict subset of L, which follows from the definition of problem #L-M-purify-step.
Each M -partition that respects L respects exactly one of L1, . . . , Lk and, hence, it
respects exactly one of the list functions that is returned.

5.3. Algorithm for #L-M-partitions and proof of the dichotomy. We
can now present our algorithm for the problem #L-M-partitions. The algorithm
consists of the function #L-M-partitions which is defined in Algorithm 10 for the
case in which L is M -purifying and in Algorithm 11 when it is not.

Lemma 26. Let M ∈ {0, 1, ∗}D×D be a symmetric matrix and let L ⊆ P(D) be
subset-closed. If there is no L-M -derectangularising sequence, then the function #L-

22 A. Göbel, L. A. Goldberg, C. McQuillan, D. Richerby and T. Yamakami

Algorithm 10 A polynomial-time algorithm for the problem #L-M-partitions

when L is subset-closed and M -purifying and there is no L-M -derectangularising
sequence.

function #L-M-partitions(G,L)
(V,C)← the instance of #CSP(ΓL,M) obtained by applying the polynomial-

time Turing reduction from Proposition 15 to the input (G,L)
return AC(V,C) where AC is the function from Algorithm 3

Algorithm 11 A polynomial-time algorithm for the problem #L-M-partitions

when L is subset-closed and not M -purifying and there is no L-M -derectangularising
sequence. The algorithm calls the function #L-M-purify(G,L) from Algorithm 9.

function #L-M-partitions(G,L)
L1, . . . , Lt ← #L-M-purify(G,L)
Z ← 0
for i ∈ [t] do
Li ←

⋃

v∈V (G) P(Li(v))

(V,Ci)← the instance of #CSP(ΓLi,M) obtained by applying the
polynomial-time Turing reduction from Proposition 15 to the input (G,Li)

Zi ← AC(V,Ci) where AC is the function from Algorithm 3
Z ← Z + Zi

return Z

M-partitions as defined in Algorithms 10 and 11 is a polynomial-time algorithm for
the problem #L-M-partitions.

Proof. If L is M -purifying then the function #L-M-partitions is defined in
Algorithm 10. Proposition 15 shows that the reduction in Algorithm 10 to a CSP
instance is correct and takes polynomial time. The CSP instance can be solved by
the function AC in Algorithm 3, whose running time is shown to be polynomial in
Lemma 18.

If L is not M -purifying then the function #L-M-partitions is defined in Algo-
rithm 11. Lemma 25 guarantees that the function #L-M-purify is a polynomial-
time algorithm for the problem #L-M-purify. If the list L1, . . . , Lt is empty then
there is no M -partition of G that respects L so it is correct that the function #L-
M-partitions returns 0. Otherwise, we know from the definition of the problem
#L-M-purify that

(i) functions L1, . . . , Lt are from V (G) to L,
(ii) for each i ∈ [t], the set {Li(v) | v ∈ V (G)} is M -purifying,
(iii) for each i ∈ [t] and v ∈ V (G), Li(v) ⊆ L(v), and
(iv) each M -partition of G that respects L respects exactly one of L1, . . . , Lt.

The desired result is now the sum, over all i ∈ [t], of the number of M -partitions
of G that respect Li. Since the list L1, . . . , Lt is generated in polynomial time, t is
bounded by some polynomial in |V (G)|.

Now, for each i ∈ [t], Li is a subset-closed subset of L. Since there is no L-M -
derectangularising sequence, there is also no Li-M -derectangularising sequence. Also,
Li is M -purifying. Thus, the argument that we gave for the purifying case shows that
Zi is the desired quantity.

We can now combine our results to establish our dichotomy for the problem #L-

Counting List Matrix Partitions of Graphs 23

M-partitions.
Theorem 9. Let M be a symmetric matrix in {0, 1, ∗}D×D and let L ⊆ P(D)

be subset-closed. If there is an L-M -derectangularising sequence, then the problem
#L-M-partitions is #P-complete. Otherwise, it is in FP.

Proof. Suppose that there is an L-M -derectangularising sequence D1, . . . , Dk.
Recall (from Definition 2) the definition of the subset-closure S(L′′) of a set L′′ ⊆
P(D). Let

L′ = S({D1, . . . , Dk}) .

Since {D1, . . . , Dk} is M -purifying, so is L′, which is also subset-closed. It follows
that ΓL′,M is well defined (see Definition 12) and contains each of the relations
HM

D1,D2
, . . . , HM

Dk−1,Dk
(and possibly others). Since HM

D1,D2
◦HM

D2,D3
◦ · · · ◦HM

Dk−1,Dk

is not rectangular, #CSP(ΓL′,M) is #P-complete [4, Theorem 2 and Corollary 3] (see
also [8, Lemma 24]). By Proposition 15, the problem #L′-M-partitions is #P-
complete so the more general problem #L-M-partitions is also #P-complete. On
the other hand, if there is no L-M -derectangularising sequence, then the result follows
from Lemma 26.

6. Complexity of the dichotomy criterion. The dichotomy established in
Theorem 9 is that, if there is an L-M -derectangularising sequence, then the problem
#L-M-partitions is #P-complete; otherwise, it is in FP. This section addresses the
computational problem of determining which is the case, given L and M .

The following lemma will allow us to show that the problem ExistsDerectSeq

(the problem of determining whether there is an S(L)-M -derectangularising sequence,
given L and M) and the related problem MatrixHasDerectSeq (the problem of
determining whether there is a P(D)-M -derectangularising sequence, given M) are
both in NP. Note that, for this “meta-problem”, L and M are the inputs whereas,
previously, we have regarded them as fixed parameters.

Lemma 28. Let M ∈ {0, 1, ∗}D×D be symmetric, and let L ⊆ P(D) be subset-
closed. If there is an L-M -derectangularising sequence, then there is one of length at
most 512(|D|3 + 1).

Proof. Pick an L-M -derectangularising sequence D1, . . . , Dk with k minimal; we
will show that k ≤ 512(|D|3 + 1). Define

R = HM
D1,D2

◦HM
D2,D3

◦ · · · ◦HM
Dk−1,Dk

.

Note that R ⊆ D1 ×Dk. By the definition of derectangularising sequence, there are
a, a′ ∈ D1 and b, b′ ∈ Dk such that (a, b), (a′, b) and (a, b′) are all in R but (a′, b′) 6∈ R.
So there exist

(x1, . . . , xk), (y1, . . . , yk), (z1, . . . , zk) ∈ D1 × · · · ×Dk

with (x1, xk) = (a, b), (y1, yk) = (a′, b) and (z1, zk) = (a, b′) such that Mxi,xi+1
=

Myi,yi+1
= Mzi,zi+1

= ∗ for every i ∈ [k−1] but, for any (w1, . . . , wk) ∈ D1×· · ·×Dk

with (w1, wk) = (a′, b′), there is an i ∈ [k − 1] such that Mwi,wi+1
6= ∗.

Setting D′
i = {xi, yi, zi} for each i gives an L-M -derectangularising sequence

D′
1, . . . , D

′
k with |D′

i| ≤ 3 for each 1 ≤ i ≤ k. (Note that any submatrix of a pure
matrix is pure.) For all 1 ≤ s < t ≤ k define

Rs,t = HM
D′

s,D
′

s+1
◦HM

D′

s+1
,D′

s+2
◦ · · · ◦HM

D′

t−1
,D′

t
.

24 A. Göbel, L. A. Goldberg, C. McQuillan, D. Richerby and T. Yamakami

Since D′
1, . . . , D

′
k is L-M -derectangularising, R1,k is not rectangular but, by the min-

imality of k, every other Rs,t is rectangular. Note also that no Rs,t = ∅ since, if that
were the case, we would have R1,k = ∅, which is rectangular.

Suppose for a contradiction that k > 512(|D|3 + 1). There are at most |D|3 + 1
subsets of D with size at most three, so there are indices 1 ≤ i0 < i1 < i2 < · · · <

i512 ≤ k such that D′
i0

= · · · = D′
i512

. There are at most 2|D
′

i0
|2 − 1 ≤ 29 − 1 = 511

non-empty binary relations on D′
i0
, so Ri0,im = Ri0,in for some 1 ≤ m < n ≤ 512.

Since R1,k is not rectangular,

R1,k = R1,i0 ◦Ri0,in ◦Rin,k = R1,i0 ◦Ri0,im ◦Rin,k = R1,im ◦Rin,k

is not rectangular. Therefore, D′
1, D

′
2, . . . , D

′
im
, D′

1+in
, D′

2+in
, . . . , D′

k is an L-M -
derectangularising sequence of length less than k, which contradicts the minimality
of k.

Now that we have membership in NP, we can prove completeness.
Theorem 10. ExistsDerectSeq is NP-complete under polynomial-time many-

one reductions.
Proof. We first show that ExistsDerectSeq is in NP. Given D, a symmet-

ric matrix M ∈ {0, 1, ∗}D×D and L ⊆ P(D), a non-deterministic polynomial time
algorithm for ExistsDerectSeq first “guesses” an S(L)-M -derectangularising se-
quence D1, . . . , Dk with k ≤ 512(|D|3 + 1). Lemma 28 guarantees that such a se-
quence exists if the output should be “yes”. The algorithm then verifies that each
Di is a subset of a set in L, that {D1, . . . , Dk} is M -purifying, and that the relation
HM

D1,D2
◦HM

D2,D3
◦ · · · ◦HM

Dk−1,Dk
is not rectangular. All of these can be checked in

polynomial time without explicitly constructing S(L).
To show that ExistsDerectSeq is NP-hard, we give a polynomial-time reduc-

tion from the well-known NP-hard problem of determining whether a graph G has an
independent set of size k.

Let G and k be an input to the independent set problem. Let V (G) = [n] and
assume without loss of generality that k ∈ [n]. Setting D = [n]× [k]× [3], we construct
a D×D matrix M and a set L of lists such that there is an S(L)-M -derectangularising
sequence if and only if G has an independent set of size k.

M will be a block matrix, constructed using the following 3 × 3 symmetric ma-
trices. Note that each is pure, apart from Id.

Mstart =





∗ ∗ 0
∗ ∗ 0
0 0 ∗



 Mend =





∗ 0 0
0 ∗ ∗
0 ∗ ∗



 Mbij =





∗ 0 0
0 ∗ 0
0 0 ∗





0 =





0 0 0
0 0 0
0 0 0



 Id =





1 0 0
0 1 0
0 0 1



 .

For v ∈ [n] and j ∈ [k], let D[v, j] = {(v, j, c) | c ∈ [3]}. Below, when we say
that M |D[v,j]×D[v′,j′] = N for some 3 × 3 matrix N , we mean more specifically that
M(v,j,c),(v′,j′,c′) = Nc,c′ for all c, c

′ ∈ [3]. M is constructed as follows.
(i) For all v ∈ [n], M |D[v,1]×D[v,1] = Mstart and M |D[v,k]×D[v,k] = Mend.
(ii) For all v ∈ [n] and all j ∈ {2, . . . , k − 1}, M |D[v,j]×D[v,j] = Mbij.
(iii) If v 6= v′, (v, v′) /∈ E(G) and j < k, then
1. M |D[v,j]×D[v′,j+1] = M |D[v′,j+1]×D[v,j] = Mbij and
2. M |D[v,j]×D[v′,j′] = M |D[v′,j′]×D[v,j] = 0 for all j′ > j + 1.

Counting List Matrix Partitions of Graphs 25

(iv) For all v, v′ ∈ [n] and j, j′ ∈ [k] not covered above, M |D[v,j]×D[v′,j′] = Id.
To complete the construction, let L = {D[v, j] | v ∈ [n], j ∈ [k]}. We will show that G
has an independent set of size k if and only if there is an S(L)-M -derectangularising
sequence.

For the forward direction of the proof, suppose that G has an independent set
I = {v1, . . . , vk} of size k. We will show that

D[v1, 1], D[v1, 1], D[v2, 2], D[v3, 3], . . . , D[vk−1, k − 1], D[vk, k], D[vk, k]

(where the first and last elements are repeated and the others are not) is S(L)-M -
derectangularising. Since there is no edge (vi, vi′) ∈ E(G) for i, i′ ∈ [k], the matrix
M |D[vi,i]×D[vi′ ,i

′] is always one of Mstart, Mend, Mbij and 0, so it is always pure.
Therefore, {D[v1, 1], . . . , D[vk, k]} isM -purifying. It remains to show that the relation

R = HM
D[v1,1],D[v1,1]

◦HM
D[v1,1],D[v2,2]

◦ · · · ◦HM
D[vk−1,k−1],D[vk,k]

◦HM
D[vk,k],D[vk,k]

is not rectangular.
Consider i ∈ [k − 1]. Since (vi, vi+1) /∈ E(G), M |D[vi,i]×D[vi+1,i+1] = Mbij so

HM
D[vi,i],D[vi+1,i+1] is the bijection that associates (vi, i, c) with (vi+1, i+1, c) for each

c ∈ [3]. Therefore,

HM
D[v1,1],D[v1,2]

◦ · · · ◦HM
D[vk−1,k−1],D[vk,k]

is the bijection that associates (v1, 1, c) with (vk, k, c) for each c ∈ [3]. We have
M |D[v1,1]×D[v1,1] = Mstart and M |D[vk,k]×D[vk,k] = Mend so

HM
D[v1,1],D[v1,1]

= {((v1, 1, c), (v1, 1, c
′)) | c, c′ ∈ [2]} ∪ {((v1, 1, 3), (v1, 1, 3))}

HM
D[vk,k],D[vk,k]

= {((vk, k, 1), (vk, k, 1))} ∪ {((vk, k, c), (vk, k, c
′)) | c, c′ ∈ {2, 3}} ,

and, therefore,

R = {((v1, 1, c), (vk, k, c
′)) | c, c′ ∈ [3]} \ {((v1, 1, 3), (vk, k, 1))} ,

which is not rectangular, as required.
For the reverse direction of the proof, suppose that there is an S(L)-M -derectangu-

larising sequenceD1, . . . , Dm. The fact that the sequence is derectangularising implies
that |Di| ≥ 2 for each i ∈ [m] — see the remarks following Definition 8. Each set in
the sequence is a subset of some D[v, j] in L so for every i ∈ [m] let vi denote the
vertex in [n] and let ji denote the index in [k] such that Di ⊆ D[vi, ji]. Clearly, it is
possible to have (vi, ji) = (vi′ , ji′) for distinct i and i′ in [m].

We will finish the proof by showing that G has a size-k independent set. Let

R = HM
D1,D2

◦ · · · ◦HM
Dm−1,Dm

,

which is not rectangular because the sequence is S(L)-M -derectangularising. Since
{D1, . . . , Dm} is M -purifying, and any submatrix of Id with at least two rows and at
least two columns is impure, every pair (i, i′) ∈ [m]2 satisfies M |D[vi,ji]×D[vi′ ,ji′]

6= Id.
This means that we cannot have (vi, vi′) ∈ E(G) for any pair (i, i′) ∈ [m]2 so the set
I = {v1, . . . , vm} is independent in G. It remains to show that |I| ≥ k.

Observe that, if vi = vi′ , we must have ji = ji′ since, otherwise, the construction
ensures that

M |D[vi,ji]×D[vi′ ,ji′]
= M |D[vi,ji]×D[vi,ji′]

= Id ,

26 A. Göbel, L. A. Goldberg, C. McQuillan, D. Richerby and T. Yamakami

which we already ruled out. Therefore, |I| ≥ |{j1, . . . , jm}|.
We must have |ji − ji+1| ≤ 1 for each i ∈ [m − 1] as, otherwise, we would

have M |D[vi,ji]×D[vi+1,ji+1] = 0, which implies that R = ∅, which is rectangular.
There must be at least one i ∈ [m − 1] such that vi = vi+1 and ji = ji+1 = 1, so
M |D[vi,ji]×D[vi+1,ji+1] = Mstart. If not, R is a composition of relations corresponding
to Mbij and Mend and any such relation is either a bijection, or of the form of Mend,
so it is rectangular. Similarly, there must be at least one i such that vi = vi+1

and ji = ji+1 = k, giving M |D[vi,ji]×D[vi+1,ji+1] = Mend. Therefore, the sequence
j1, . . . , jm contains 1 and k. Since |ji − ji+1| ≤ 1 for all i ∈ [m − 1], it follows that
[k] ⊆ {j1, . . . , jm}, so |I| ≥ k, as required. In fact, {j1, . . . , jm} = [k] since each
ji ∈ [k] by construction.

We defined the problem ExistsDerectSeq using a concise input representation:
S(L) does not need to be written out in full. Instead, the instance is a subset L
containing the maximal elements of S(L). For example, when the instance is L =
{D}, we have S(L) = P(D). It is important to note that the NP-completeness of
ExistsDerectSeq is not an artifact of this concise input coding. The elements of
the list L constructed in the NP-hardness proof have length at most three, so the list
S(L) could also be constructed explicitly in polynomial time.

Lemma 28 has the following immediate corollary for the complexity of the di-
chotomy criterion of the general #List-M-partitions problem. Recall that, in this
version of the meta-problem, the input is just the matrix M .

Corollary 11. MatrixHasDerectSeq is in NP.
Proof. Take L = {D} in Lemma 28.

7. Cardinality constraints. Finally, we show how lists can be used to imple-
ment cardinality constraints of the kind that often appear in counting problems in
combinatorics.

Feder, Hell, Klein and Motwani [15] point out that lists can be used to determine
whether there areM -partitions that obey simple cardinality constraints. For example,
it is natural to require some or all of the parts to be non-empty or, more generally,
to contain at least some constant number of vertices. Given a D ×D matrix M , we
represent such cardinality constraints as a function C : D → Z≥0. We say that an
M -partition σ of a graph G satisfies the constraint if, for each d ∈ D, |{v ∈ V (G) |
σ(v) = d}| ≥ C(d). Given a cardinality constraint C, we write |C| =

∑

d∈D C(d).
We can determine whether there is an M -partition of G = (V,E) that satisfies

the cardinality constraint C by making at most |V ||C|
queries to an oracle for the list

M -partitions problem, as follows. Let LC be the set of list functions L : V → P(D)
such that:

(i) for all v ∈ V, either L(v) = D or |L(v)| = 1, and
(ii) for all d ∈ D, there are exactly C(d) vertices v with L(v) = {d}.

There are at most |V ||C|
such list functions and it is clear that G has an M -partition

satisfying C if, and only if, it has a list M -partition that respects at least one L ∈ LC .
The number of queries is polynomial in |V | as long as the cardinality constraint C is
independent of G.

For counting, the situation is a little more complicated, as we must avoid double-
counting. The solution is to count all M -partitions of the input graph and subtract
off those that fail to satisfy the cardinality constraint. We formally define the problem
#C-M-partitions as follows, parameterized by a D×D matrix M and a cardinality
constraint function C : D → Z≥0.
Name. #C-M-partitions.

Counting List Matrix Partitions of Graphs 27

Instance. A graph G.
Output. The number of M -partitions of G that satisfy C.

Proposition 31. #C-M-partitions is polynomial-time Turing reducible to
#List-M-partitions.

Proof. Given the cardinality constraint function C, let R = {d ∈ D | C(d) > 0}:
that is, R is the set of parts that have a non-trivial cardinality constraint. For
any set P ⊆ R, say that an M -partition σ of a graph G = (V,E) fails on P if
|{v ∈ V | σ(v) = d}| < C(d) for all d ∈ P . That is, if σ violates the cardinality
constraints on all parts in P (and possibly others, too). Let Σ be the set of all M -
partitions of our given input graph G. For i ∈ R, let Ai = {σ ∈ Σ | σ fails on {i}}
and let A =

⋃

i∈R Ai. By inclusion-exclusion,

|A| = −
∑

∅⊂P⊆R

(−1)|P |
∣

∣

∣

⋂

i∈P

Ai

∣

∣

∣

= −
∑

∅⊂P⊆R

(−1)|P |∣
∣{σ ∈ Σ | σ fails on P}

∣

∣ .

We wish to compute

∣

∣{σ ∈ Σ | σ satisfies C}
∣

∣ =
∣

∣Σ
∣

∣− |A|

=
∣

∣Σ
∣

∣+
∑

∅⊂P⊆R

(−1)|P |
∣

∣{σ ∈ Σ | σ fails on P}
∣

∣ .

Therefore, it suffices to show that we can use lists to count the M -partitions that
fail on each non-empty P ⊆ R. For such a set P , let LP be the set of list functions L
such that

(i) for all v ∈ V , either L(v) = D \ P or L(v) = {p} for some p ∈ P , and
(ii) for all p ∈ P ,

∣

∣

{

v ∈ V | L(v) = {p}
}∣

∣ < C(p).

Thus, the set of M -partitions that respect some L ∈ LP is precisely the set of M -
partitions that fail on P . Also, for distinct L and L′ in LP , the set of M -partitions
that respect L is disjoint from the set of M -partitions that respect L′. So we can
compute

∣

∣{σ ∈ Σ | σ fails on P}
∣

∣ by making |LP | calls to #List-M-partitions,

noting that |LP | ≤ |V |
|C|.

As an example of a combinatorial structure that can be represented as an M -
partition problem with cardinality constraints, consider the homogeneous pairs intro-
duced by Chvátal and Sbihi [6]. A homogeneous pair in a graph G = (V,E) is a
partition of V into sets U , W1 and W2 such that:

(i) |U | ≥ 2;
(ii) |W1| ≥ 2 or |W2| ≥ 2 (or both);
(iii) for every vertex v ∈ U , v is either adjacent to every vertex in W1 or to none

of them; and
(iv) for every vertex v ∈ U , v is either adjacent to every vertex in W2 or to none

of them.

Feder et al. [15] observe that the problem of determining whether a graph has a
homogeneous pair can be represented as the problem of determining whether it has

28 A. Göbel, L. A. Goldberg, C. McQuillan, D. Richerby and T. Yamakami

an Mhp-partition satisfying certain constraints, where D = {1, . . . , 6} and

Mhp =

















∗ ∗ 1 0 1 0
∗ ∗ 1 1 0 0
1 1 ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗

















.

W1 corresponds to the set of vertices mapped to part 1 (row 1 of Mhp), W2

corresponds to the set of vertices mapped to part 2 (row 2 of Mhp), and U corresponds
to the set of vertices mapped to parts 3–6.

In fact, there is a one-to-one correspondence between the homogeneous pairs of G
in which W1 and W2 are non-empty and the Mhp-partitions σ of G that satisfy the
following additional constraints. For d ∈ D, let Nσ(d) = |{v ∈ V (G) | σ(v) = d}| be
the number of vertices that σ maps to part d. We require that

(i) Nσ(3) +Nσ(4) +Nσ(5) +Nσ(6) ≥ 2,
(ii) Nσ(1) > 0 and Nσ(2) > 0, and
(iii) at least one Nσ(1) and Nσ(2) is at least 2.

To see this, consider a homogeneous pair (U,W1,W2) in which W1 and W2 are non-
empty. Note that there is exactly one Mhp-partition of G in which vertices in W1

are mapped to part 1 and vertices in W2 are mapped to part 2 and vertices in U are
mapped to parts 3–6. There is exactly one part available to each v ∈ U since v has
an edge or non-edge to W1 (but not both!) ruling out exactly two parts and v has
an edge or non-edge to W2 ruling out an additional part. Going the other way, an
Mhp-partition that satisfies the constraints includes a homogeneous pair.

Now let

Mhs =





∗ 0 1
0 ∗ ∗
1 ∗ ∗



 .

There is a one-to-one correspondence between the homogeneous pairs ofG in whichW2

is empty and theMhs-partitions of G that satisfy the following additional constraints.
(i) At least two vertices are mapped to parts 2–3 (vertices in these parts are

in U).
(ii) At least two vertices are mapped to part 1 (vertices in this part are in W1).

Symmetrically, there is also a one-to-one correspondence between the homogeneous
pairs of G in which W1 is empty and the Mhs-partitions of G that satisfy the above
constraints. (Partitions according to Mhs correspond to so-called “homogeneous sets”
but we do not need the details of these.)

It is known from [9] that, in deterministic polynomial time, it is possible to
determine whether a graph contains a homogeneous pair and, if so, to find one. We
show that the homogeneous pairs in a graph can also be counted in polynomial time.
We start by considering the relevant list-partition counting problems.

Theorem 32. There are polynomial-time algorithms for #List-Mhp-partitions

and #List-Mhs-partitions.
Proof. We first show that there is a polynomial-time algorithm for #List-Mhp-

partitions. The most natural way to do this would be to show that there is no
P(D)-Mhp-derectangularising sequence and then apply Theorem 9. In theory, we
could show that there is no P(D)-Mhp-derectangularising sequence by brute force

Counting List Matrix Partitions of Graphs 29

since |D| = 6, but the number of possibilities is too large to make this feasible.
Instead, we argue non-constructively.

First, if there is no P(D)-Mhp-derectangularising sequence, the result follows from
Theorem 9.

Conversely, suppose that D1, . . . , Dk is a P(D)-Mhp-derectangularising sequence.
Let M be the matrix such that Mi,j = 0 if (Mhp)i,j = 1 and Mi,j = (Mhp)i,j ,
otherwise. D1, . . . , Dk is also a P(D)-M -derectangularising sequence, since HM

X,Y =

H
Mhp

X,Y for any X,Y ⊆ D and any sequence D1, . . . , Dk is M -purifying because M is
already pure. Therefore, by Theorem 9, counting list M -partitions is #P-complete.

However, counting the list M -partitions of a graph G corresponds to counting
list homomorphisms from G to the 6-vertex graph H whose two components are
an edge and a 4-clique, and which has loops on all six vertices. There is a very
straightforward polynomial-time algorithm for this problem (a simple modification
of the version without lists in [7]). Thus, #P = FP so, in particular, there is a
polynomial-time algorithm for counting list Mhp-partitions.

The proof that there is a polynomial-time algorithm for #List-Mhs-partitions

is similar.

Corollary 33. There is a polynomial-time algorithm for counting the homoge-
neous pairs in a graph.

Proof. We are given a graph G = (V,E) and we wish to compute the number of
homogeneous pairs that it contains. By the one-to-one correspondence given earlier,
it suffices to show how to count Mhp-partitions and Mhs-partitions of G satisfying
additional constraints. We start with the first of these. Recall the constraints on the
Mhp-partitions σ that we wish to count:

(i) Nσ(3) +Nσ(4) +Nσ(5) +Nσ(6) ≥ 2,
(ii) Nσ(1) > 0 and Nσ(2) > 0, and
(iii) at least one Nσ(1) and Nσ(2) is at least 2.

Define three subsets Σ1, Σ2 and Σ1,2 of the set of Mhp-partitions of G that satisfy
the constraints. In the definition of each of Σ1, Σ2 and Σ1,2, we will require that parts 1
and 2 are non-empty and parts 3–6 contain a total of at least two vertices. In Σ1,
part 1 must contain at least two vertices; in Σ2, part 2 must contain at least two
vertices; in Σ1,2, both parts 1 and 2 must contain at least two vertices. The number
of suitable Mhp-partitions of G is |Σ1|+ |Σ2| − |Σ1,2|.

Each of |Σ1|, |Σ2| and |Σ1,2| can be computed by counting the Mhp-partitions
of G that satisfy appropriate cardinality constraints. Parts 1 and 2 are trivially dealt
with. The requirement that parts 3–6 must contain at least two vertices between
them is equivalent to saying that at least one of them must contain at least two
vertices or at least two must contain at least one vertex. This can be expressed with a
sequence of cardinality constraint functions and using inclusion–exclusion to eliminate
double-counting.

Counting constrained Mhs-partitions of G is similar (but simpler).

REFERENCES

[1] B. Bollobás and A. Thomason, The structure of hereditary properties and colourings of

random graphs, Combinatorica, 20 (2000), pp. 173–202.
[2] A. Brandstädt, Partitions of graphs into one or two independent stable sets and cliques,

Discrete Math., 152 (1996), pp. 47–54.

30 A. Göbel, L. A. Goldberg, C. McQuillan, D. Richerby and T. Yamakami

[3] A. Bulatov, The complexity of the counting constraint satisfaction problem, in Proc. 35th
International Colloquium on Automata, Languages and Programming (ICALP 2008),
vol. 5125 of LNCS, Springer, 2008, pp. 646–661.

[4] A. Bulatov and V. Dalmau, Towards a dichotomy theorem for the counting constraint sat-

isfaction problem, Inform. Comput., 205 (2007), pp. 651–678.
[5] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong perfect graph

theorem, Ann. Math. (2), 164 (2006), pp. 51–229.
[6] V. Chvátal and N. Sbihi, Bull-free Berge graphs are perfect, Graph. Combinator., 3 (1987),

pp. 127–139.
[7] M. Dyer and C. Greenhill, The complexity of counting graph homomorphisms, Random

Struct. Algorithms, 17 (2000), pp. 260–289.
[8] M. Dyer and D. Richerby, An effective dichotomy for the counting constraint satisfaction

problem, SIAM J. Comput, 42 (2013), pp. 1245–1274.
[9] H. Everett, S. Klein, and B. Reed, An algorithm for finding homogeneous pairs, Discrete

Appl. Math., 72 (1997), pp. 209–218.
[10] , An optimal algorithm for finding clique-cross partitions, in Proc. 29th Southeastern

International Conference on Combinatorics, Graph Theory and Computing, vol. 135, 1998,
pp. 171–177.

[11] T. Feder and P. Hell, List homomorphisms to reflexive graphs, J. Combin. Theory Ser. B,
72 (1998), pp. 236–250.

[12] , Full constraint satisfaction problems, SIAM J. Comput., 36 (2006), pp. 230–246.
[13] T. Feder, P. Hell, and J. Huang, List homomorphisms and circular arc graphs, Combina-

torica, 19 (1999), pp. 487–505.
[14] , Bi-arc graphs and the complexity of list homomorphisms, J. Graph Theory, 42 (2003),

pp. 61–80.
[15] T. Feder, P. Hell, S. Klein, and R. Motwani, List partitions, SIAM J. Discrete Math., 16

(2003), pp. 449–478.
[16] T. Feder and M. Vardi, The computational structure of monotone monadic SNP and con-

straint satisfaction: a study through Datalog and group theory, SIAM J. Comput., 28
(1999), pp. 57–104.

[17] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Elsevier Science, second ed.,
2004.

[18] P. Hell, M. Hermann, and M. Nevisi, Counting partitions of graphs, in Proc. 23rd Inter-
national Symposium on Algorithms and Computation (ISAAC 2012), vol. 7676 of LNCS,
Springer, 2012, pp. 227–236.

[19] C. Lecoutre, Constraint Networks: Techniques and Algorithms, Wiley–IEEE Press, 2009.
[20] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Math., 2 (1972),

pp. 253–267.

