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Abstract. We present fully polynomial time approximation schemes
for a broad class of Holant problems with complex edge weights, which
we call Holant polynomials. We transform these problems into parti-
tion functions of abstract combinatorial structures known as polymers
in statistical physics. Our method involves establishing zero-free re-
gions for the partition functions of polymer models and using the most
significant terms of the cluster expansion to approximate them.
Results of our technique include new approximation and sampling algo-
rithms for a diverse class of Holant polynomials in the low-temperature
regime (i.e. small external field) and approximation algorithms for gen-
eral Holant problems with small signature weights. Additionally, we
give randomised approximation and sampling algorithms with faster
running times for more restrictive classes. Finally, we improve the
known zero-free regions for a perfect matching polynomial.
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1. Introduction

The ongoing effort to characterise the complexity of approximat-
ing partition functions that originate from statistical physics has
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recently seen great progress. Such partition functions take as input
a metric, usually a graph, that encodes how particles interact. Two
kinds of such partition functions have been studied in the litera-
ture: vertex spin systems, where vertices assume some state (spin)
and edges are functions encoding the energy of vertex interactions;
and edge spin systems, where the edges assume spins and the ver-
tices are functions encoding the energy of edge interactions. So far,
the main body of literature focuses on the first category of vertex
spin systems. Results include remarkable connections between the
phase transitions spin systems undergo and the approximability
of their partition function, see e.g. (Galanis et al. 2014; Peters &
Regts 2019; Sly 2010; Weitz 2006).

This article focuses on the second category of edge spin systems,
which can be naturally encoded under the Holant framework of
counting problems. Our results include approximation algorithms
for Holant polynomials in the low energy regime and approxima-
tion algorithms for Holant problems with vertices encoding small
weights. In particular, we identify new tractable cases for such
Holants with respect to their approximability.

The Holant framework originates in Valiant’s “Holographic al-
gorithms” (2008) to model perfect matching computations and was
extended by Cai et al. (2011) to encode partition functions of edge
spin systems such as edge covers and Eulerian orientations. A
Holant problem is parametrised by a finite set of functions (often
called signatures) F with domain D. For a graph G = (V,E) and
a mapping π : V → F , where π(v) = fv maps v ∈ V to a function
fv : DE(v) → C, the Holant problem is to compute the function

HolF(G, π) =
∑

σ∈DE

∏

v∈V

fv(σ|E(v))

with E(v) denoting the set of edges incident to v.
External conditions like fugacity are known in statistical physics

as external fields and encoded in partition functions as weights in
the system. In the Holant framework, this yields Holant problems
with external fields, which we call Holant polynomials. For a sig-
nature set F and a domain D = {0, 1, . . . , κ} for some κ ∈ Z>0

the Holant polynomial maps a graph G = (V,E) and a mapping
π : V → F to the function
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ZF(G, π, z) =
∑

σ∈DE

∏

v∈V

fv(σ|E(v))
κ∏

i=0

z
|σ|i
i ,

where z = (z0, z1, . . . , zκ) and |σ|i denotes the number of edges
e ∈ E with σ(e) = i. As an example, if z = (1, z) and the set of
signatures F contains the functions taking the value 1 if at most
one of the input variables is set to 1 and the value 0 otherwise, the
Holant polynomial is the matching polynomial ZM(G, z).

Our results restrict the signature sets to be subsets of F0 =
{f | f(0) �= 0} and to contain only polynomially computable sig-
natures, i.e. f ∈ FP. For f ∈ F0 with arity d we define r(f) =
maxx∈Dd\{0}{|f(x)|/|f(0)|} and for a signature class F ⊆ F0 we
define r(F) = maxf∈F{r(f)}. Our main theorem is the following.

Theorem 1.1. Let F ⊆ F0. For all graphs G of maximum degree
Δ and all π : V → F , the Holant polynomial admits an FPTAS for
z in
{

(z0, . . . , zκ) ∈ C
κ+1

∣∣∣ z0 �= 0,
|zi|
|z0| < (Δκe2r1(r1 + 1))−1, i ∈ [κ]

}

with r1 = max{1, r(F)}.

This result captures a very broad class of Holant polynomials.
The only requirement in terms of the class of signatures is that
the all zeros assignment σ0 contributes a nonzero term in the sum.
Essentially, this ensures the existence of a trivially computable so-
lution for the related decision problem: the all zeros configuration.
In a sense, an efficient way to show the existence of a solution is nec-
essary since hardness of this decision problem immediately implies
hardness of approximation as Dyer et al. (2004, Theorem 1) ob-
serve.

The region stated in Theorem 1.1 excludes the value z = 1,
therefore it does not apply to Holant problems directly. However,
our technique also yields the following theorem.

Theorem 1.2. Let F ⊆ F0, with r(F) < max{(2
√

e)−1(Δκe)−Δ
2 ,

0.2058(κ + 1)−Δ}. For all graphs G of maximum degree Δ and all
π : V → F , the Holant problem ZF(G, π) admits an FPTAS.



   11 Page 4 of 52 K. Casel et al. cc

Key to our technique is to translate the mappings σ as pertur-
bations from a ground state σ0, which results in a mathematical
object called abstract polymer model (see Section 1.1). One of the
advantages of polymer models is that they are self-reducible. A
known implication of self-reducibility is the equivalence between
approximate counting and sampling (Jerrum et al. 1986, Sinclair
& Jerrum 1989). As Helmuth et al. (2019, Section 5) observe,
counting algorithms for polymer models can be converted to algo-
rithms that approximately sample from the Gibbs distribution μG,
where in our case is defined as

μG(σ) =

∏
v∈V (G) fv(σ|E(v))

∏κ
i=0 z

|σ|i
i

ZF(G, π, z)
.

One of the downsides of the above algorithms is that the run-
time is in O(nΔ). Under more restrictive conditions and for par-
ticular polymer models, Chen et al. (2021) showed how to obtain
faster randomised algorithms. As we discuss in Section 5, we ex-
tend their technique to show that it also applies to polymer models
for Holants.

The approach of our technique allows establishing improved
regions of approximability when we restrict the set of signatures
further. In Section 6.1.1, we illustrate this via the perturbative per-
fect matching polynomial, a holant polynomial defined as follows.
For a graph G and a perfect matching M of G, let

Zpm(G,M, z) =
∑

σ∈{0,1}E

∏

v∈V

f(σ|E(v))z
|σΔσM |.

Here, σM ∈ {0, 1}E denotes the signature corresponding to M ,
σΔσ̄ = {e ∈ E | σ(e) �= σ̄(e)} for any two assignments σ, σ̄ ∈
{0, 1}E and f is the “exactly one” function. This Holant polyno-
mial was studied by Barvinok & Regts (2019), where they showed
FPTAS for |z| ≤ (3.07438Δ)−1, where Δ is the maximum degree of
G. Using a polymer representation, we improve this region, even
asymptomatically in terms of Δ.

Theorem 1.3. For all graphs G of maximum degree Δ, the poly-
nomial Zpm(G,M, z) admits an FPTAS for z ∈ C with |z| ≤(√

4.85718 (Δ − 1)
)−1

.
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1.1. Methodology. The central part of our technical approach
is to define a polymer model representation for Holant problems
and Holant polynomials. Polymer models are an established tool
for the study of partition functions in statistical physics (Friedli
& Velenik 2017, Chapter 7) originating from the work of Gru-
ber & Kunz (1971) and Kotecký & Preiss (1986). A polymer
model consists of a finite set K of elements called polymers and
a symmetric and reflexive binary incompatibility relation denoted
by �∼ ⊆ K ×K. Based on this relation, I(K) denotes the set of all
subsets Γ ⊆ K of pairwise compatible polymers, which we will call
families of pairwise compatible polymers. Given an assignment
of weights (polymer functionals) Φ: K → C to the polymers, we
define the polymer partition function

Z(K, Φ) =
∑

Γ∈I(K)

∏

γ∈Γ

Φ(γ) .

Given a polymer model, we can construct the polymer graph
(K, �∼) where the polymers represent the vertices of this graph and
the edges are given by the incompatibility relation. In this way,
we observe that the families of compatible polymers are the inde-
pendent sets of the polymer graph. Weighted sums of independent
sets are naturally expressed by the independence polynomial of a
graph G defined on z = (zv)v∈V (G) as

ZI(G, z) =
∑

I∈I(G)

∏

v∈I

zv,

where I(G) is the set of independent sets of G. From this definition
observe that the partition function of a polymer system is the in-
dependence polynomial of the polymer graph, where each vertex γ
in the polymer graph has weight Φ(γ).

As a simple example of how to translate a Holant polynomial
to a polymer system, consider again the matching polynomial ZM.
By converting G to its line graph G′, observe that ZM(G, (1, z)) =
ZI(G′, z), where z = (z)v∈V (G). Our general method of Holant
polynomials applied to the matching polynomial precisely captures
this conversion: The polymer graph (K, �∼) is the line graph G′ of
G, polymers are the edges of G and the weight function is Φ(γ) = z.
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In Section 3, we show how this translation can be extended to
a general class of Holant polynomials.

Deterministic Algorithms The strategy to derive a multiplica-
tive approximation for ZF is to obtain an additive approximation
for log Z(G, Φ). This idea originates from the work of Mayer &
Montroll (1941), which gave a convenient infinite series represen-
tation of log Z called the cluster expansion and observed that one
can obtain good evaluations of limV (G)→∞ 1

V (G)
log Z(G, Φ) using

the cluster expansion of log Z(G, Φ).

There are two main advantages of translating a partition func-
tion to a polymer system. The first one is the convenient-to-use
theorem of Kotecký & Preiss (1986, Theorem 1) that establishes
conditions for zero-free regions of Z(G, Φ) and absolute conver-
gence of the cluster expansion of log Z(G, Φ). The second ad-
vantage is that if the cluster expansion of log Z(G, Φ) converges
absolutely then an additive approximation for log Z(G, Φ) can be
computed by enumerating small subgraphs of the polymer graph.

The first ones to derive approximation schemes employing poly-
mer systems were Helmuth et al. (2019). In Theorem 2.2, they give
conditions under which such a system can be used to obtain de-
terministic approximation algorithms. These results only apply to
polymer systems for vertex spin systems and not to our polymer
model. To this end, we extend their theorem and give conditions
under which partition functions of general polymer systems can
be efficiently approximated (Theorem 2.5). We note that Theo-
rem 2.5 is not restricted to polymers for Holants and it might be
of independent interest.

Randomised Algorithms The fast randomised algorithms are
based on the Markov chain Monte Carlo method (MCMC). Given a
polymer system (K, �∼) with weight function Φ we define a Markov
chain with I(K) as state space and stationary distribution μK ,
where

μK(Γ) =

∏
γ∈Γ Φ(γ)

Z(K, Φ)
.
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We identify the conditions that constitute this chain as rapidly mix-
ing, i.e. the distribution of its state after polynomially many transi-
tions is ε-close to its stationary distribution. A random sample Γ is
obtained by running this chain starting with ∅ for O(Δn log(n/ε))
time. Our polymer representation for Holants yields a bijection be-
tween the families in I(K) and assignments σ of the edges; thus, a
sampling algorithm for polymers implies a sampling algorithm for
Holants.

Chen et al. (2021) studied a Markov chain for polymers rep-
resenting a vertex spin system and established conditions to ef-
ficiently sample using this chain. We obtain our algorithms by
adapting their approach to polymer models that originate from
Holants. The sampling algorithms give fast randomised approx-
imate counting algorithms. We discuss the technical details in
Section 5.

1.2. Related literature and discussion of our results.

Holant polynomials Most Holant polynomials considered in
the literature study special cases of graph polynomials. Among
them, the matching polynomial ZM(G, π, (z, 1)) of a graph G is
perhaps the most studied from an algorithmic perspective. It was
first studied in statistical physics as the partition function of the
monomer–dimer model (Heilmann & Lieb 1972). The first approx-
imation algorithm for the matching polynomial was the MCMC
algorithm of Jerrum & Sinclair (1989). Barvinok (2016b) (see also
2016a, Section 5.1) was the first to connect the absence of ze-
ros with approximation algorithms. He gave a quasi-polynomial
algorithm for all z ∈ C that are not negative reals with z ≤
−1/(4(Δ−1)) by computing O(log |V (G)|) coefficients of the Tay-
lor series expansion of the logarithm of the matching polynomial.
Patel & Regts (2017) refined the computation of coefficients and
gave an FPTAS for this region. On the other hand, Bezáková et al.
(2021) showed that it is #P-hard to approximate ZM(G, (1, z))
when z ∈ R and z < −1/(4(Δ − 1)).

Another graph polynomial studied in the literature is the edge
cover polynomial. Translated to our framework, this is the Holant
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polynomial ZC(G, π, (1, z)) where C contains the functions that
evaluate to 1 if at least one of the inputs is 1. Liu et al. (2014)
discovered an FPTAS for the edge cover polynomial for z ∈ R≥0.
Csikvári & Oboudi (2011) showed that the roots of the edge cover
polynomial—contrary to the matching polynomial—can take imag-
inary values and are contained in {z ∈ C | |z| ≤ 5.1}.

A different kind of Holant polynomial was studied by Lu et al.
(2014). In their setting, each edge contributes its own individual
weight instead of each domain element as in our case. Their results
include approximation algorithms for real weighted Holants with a
special type of signatures called Fibonacci gates.

Holant problems There is an assiduous ongoing effort to char-
acterise the computational complexity of Holant problems. The lit-
erature on exact computations of Holant problems is extensive and
most results restrict the signatures to be of Boolean domain and
symmetric, i.e. their value only depends on the Hamming weight
of their input (Cai et al. 2016a). Due to the complexity of the
problem, only few results go beyond symmetric signatures (Back-
ens 2018; Cai et al. 2018; Lin & Wang 2017) or consider higher
domain symmetric functions (Cai et al. 2016b, 2013).

Considering the complexity of approximating Holant problems,
there are classical results targeting particular cases such as match-
ings (Jerrum & Sinclair 1989), weighted even subgraphs (Jerrum &
Sinclair 1993), and edge covers (Bubley & Dyer 1997) and newer
results on restricted classes of Holant problems (Cai et al. 2019;
Huang et al. 2016; McQuillan 2013). Recently, Guo et al. (2021)
have given a complexity characterisation for a subclass of Boolean
symmetric functions called “generalised second-order recurrences.”
Their results rely on proving zero-free regions and apply to Holant
problems where each vertex of the input graph is mapped to the
same signature. They remark that it is not clear how to get ap-
proximation algorithms when the vertices are mapped to different
signatures. Theorem 1.2 partially addresses this as it allows for
mixed signature classes.

To our knowledge, the only result on zero-free regions of Holant
problems with arbitrary domain size that includes non-symmetric
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signatures and the possibility to assign mixed signatures to vertices
is due to Regts (2018). As discussed by Patel & Regts (2017), this
result can be used to derive FPTAS’ for such Holant problems. The
results of Regts (2018) require the signatures to output a complex
value close to 1 on any input which makes them incomparable
to Theorem 1.2, requiring our signatures to output only complex
values close to 0. An advantage of Theorem 1.2 is that it allows
for signatures to encode hard constraints, i.e. to take the value 0.

As an interesting side note, we mention possible implications
for the problem of counting perfect matchings, a central problem
in computational counting whose complexity remains unresolved.
There is an expanding list of approximation problems that are
equivalent to counting perfect matchings (Cai & Liu 2020; Guo
et al. 2021; McQuillan 2013). In one of these results, Guo et al.
(2021) show approximation equivalence between counting perfect
matchings and some classes of Holant problems. These signature
families are not included in Theorem 1.2 for the Holant problems
but are captured by Theorem 1.1. Thus, if one could show a re-
duction to a Holant polynomial for a value of z within the ones in
Theorem 1.1, then one would get an approximation algorithm for
counting perfect matchings.

Further applications of our technique The translation of a
partition function to that of a polymer model has been particu-
larly advantageous for vertex spin systems when the input graph
is restricted to be a bipartite expander (Jenssen et al. 2020; Liao
et al. 2019) or an unbalanced bipartite graph, in the sense that the
maximum degree of one partition is much larger than the maxi-
mum degree of the other partition (Cannon & Perkins 2020). In
the case of edge spin systems, it is not obvious if such properties
can be helpful. We leave as future work to identify possible graph-
theoretic properties that yield improved bounds for Holants.

As we already remarked, Theorem 2.5 applies to general poly-
mer systems, that is the polymer system does not need to origi-
nate from a graph-theoretic problem. In Section 6, we discuss the
potential extensions of our technique to the problem of counting
weighted solutions to a system of sparse linear equations. This
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problem was recently studied by Barvinok & Regts (2019) where
they obtained zero-free regions and approximation algorithms. We
show how to express this problem naturally as a polymer system
and use the Kotecký–Preiss condition to obtain bounds for zero-
free regions and deterministic algorithms. Although our bounds
for the general case are weaker than the ones of Barvinok & Regts
(2019), we can get improved bounds for some cases. In particular,
one can define a univariate polynomial expressing perfect match-
ings in hypergraphs as deviations from a ground perfect matching.
For this polynomial, we use our technique and improve the bounds
of Barvinok & Regts (2019) (see Section 6.1.1 for details). It re-
mains to be seen if, by refining the analysis, one can obtain better
bounds for the general case.

2. Abstract polymer models and
approximation algorithms

We develop a general tool to derive approximation schemes for
polymer partition functions. Thereby, we will use the following
definition of approximation.

Definition 2.1 (Patel & Regts 2017). Let q and ζ be nonzero
complex numbers. We call ζ a multiplicative ε-approximation to q
if e−ε ≤ |q|/|ζ| ≤ eε and if the angle between ζ and q (as seen as
vectors in C = R

2) is at most ε.

The following observation follows immediately from the defini-
tion of the multiplicative ε-approximation.

Observation 2.2. For any ε, c > 0, if ζ is a multiplicative ε-
approximation to some value q, then we can also achieve a multi-
plicative ε-approximation for cq, namely cζ.

A fully polynomial time approximation scheme (FPTAS) is an al-
gorithm that, given a problem and some fixed parameter ε > 0,
produces a multiplicative ε-approximation of its solution in time
polynomial in n and 1/ε.

Recall from Section 1.1 that a general polymer system consists
of a finite set K of polymers and an incompatibility relation �∼
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⊆ K × K. For a family of weight functionals {Φ(·, z) : K → C |
z ∈ C}, one can consider the corresponding partition functions
as a mapping Z(K, Φ(·, ·)) : C → C, with z 
→ Z(K, Φ(·, z)). For
each polymer γ ∈ K, its weight can then be seen as a function
Φ(γ, ·) : C → C with z 
→ Φ(γ, z).

Recently, Helmuth et al. (2019) have also used a polymer rep-
resentation to derive FPTAS’ for some graph polynomials. We
briefly explain their results before we adapt them to our setting.
The polymer system defined by Helmuth et al. (2019) is used to
model problems characterised by edge-constraints and assignments
on the vertices of the input graph. Translated to our notation their
system is defined as follows. A polymer γv for a graph G is a pair
(γ, ϕγ), where γ is a connected subgraph of G and ϕγ : V (γ) → D.
Denote the collection of these polymers by Cv(G). In this edge-
constraint system, polymers are already incompatible if they affect
a common edge, which formally translates to γv �∼ γ′

v if the graph
distance of the respective subgraphs γ and γ′ in G is less than 2.
In their model, Helmuth et al. consider weight functions over one
variable z. Additionally, they assume the weight functions Φ(γv, z)
under study to be analytic functions of z in a neighbourhood of
the origin of the complex plane and that there is an absolute con-
stant ρ > 0 such that for each γv ∈ Cv(G) the first nonzero term
in the Taylor series expansion of Φ(γv, z) around zero is of order
k ≥ |γ|ρ; this property is what they refer to as Assumption 1.
For this polymer model, the conditions to derive an FPTAS for
the resulting polymer partition function Z(Cv(G), Φ(·, z)) are sum-
marised in the following theorem.

Theorem 2.3 (Helmuth et al. 2019). Fix Δ and let G be a set of
graphs of degree at most Δ. Suppose:

(i) There is a constant c so that Z(Cv(G), Φ(·, z)) is a polynomial
in z of degree at most c|G| for all G ∈ G.

(ii) The weight functions satisfy Assumption 1 and the Taylor
coefficients up to order m of Φ(γv, z) can be computed in
time exp(O(m + log |G|)) for each G ∈ G and γv ∈ Cv(G).
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(iii) For every connected subgraph G′ of every G ∈ G, we can list
all polymers γv ∈ Cv(G) with γ = G′ in time exp(O(|G′|)).

(iv) There exists δ > 0 so that for all |z| < δ and all G ∈ G,
Z(Cv(G), Φ(·, z)) �= 0.

Then for every z with |z| < δ, there is an FPTAS for the partition
function Z(Cv(G), Φ(·, z)) for all G ∈ G.

The proof of this result is based on calculating the contribution
of polymers of small size to the logarithm of the partition function.
Assumption 1 ensures that only those small polymers contribute to
the required first coefficients of the Taylor expansion. Enumerating
all polymers up to a fixed size, however, is not enough to repro-
duce these coefficients as the polymers contribute within families
and an enumeration of all small families would be too costly. To
circumvent this problem the contribution of all small families can
be computed by an inclusion–exclusion principle on sets of incom-
patible polymers. More formally, this yields a representation of
log Z(Cv(G), Φ(·, z)) not over families of compatible polymers but
instead over connected subgraphs of the polymer graph. An enu-
meration of trees and labellings with incompatible polymers then
gives an efficient way to compute the low coefficients of the Taylor
expansion of log Z(Cv(G), Φ(·, z)) via this representation.

The crucial step to consider the more convenient representa-
tion of log Z(Cv(G), Φ(·, z)) is the so-called cluster expansion for
hard-core interactions (Friedli & Velenik 2017), which holds not
only for the specific function Z(Cv(G), Φ(·, z)) but for general poly-
mer partition functions. In our notation, the cluster expansion of
the partition function Z(K, Φ(·, z)) of a polymer system K with
weights Φ(·, z) is the following representation (which is always pos-
sible as soon as the Taylor expansion of log Z(K, Φ(·, z)) around
zero converges absolutely):

(2.4) log Z(K, Φ(·, z)) =
∑

k≥1

1

k!

∑

(γ1,...,γk)

φ(γ1, . . . , γk)
k∏

i=1

Φ(γi, z).

The sum in the above display equation is over ordered tuples
of polymers. φ is the Ursell function of such a tuple, with
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φ(γ1, . . . , γk) =
∑

G∈T (γ1,...,γk)

(−1)|E(G)|,

where T (γ1, . . . , γk) denotes the set of all spanning connected sub-
graphs of the polymer incompatibility graph restricted to the poly-
mers that appear in (γ1, . . . , γk). Observe that the Ursell function
assigns zero to all polymer sets S which are disconnected in the
polymer graph, which yields the aforementioned representation of
log Z(K, Φ(·, z)) only requiring connected subgraphs of the poly-
mer incompatibility graph.

In order to describe the properties required to approximate the
partition function of a general polymer model (K, �∼), we use the
following notation. For γ ∈ K the notion |γ| denotes some fixed
size function | · | : K → R+, which can be chosen suitably similar
to the function a in Theorem 4.1. Similarly we use |K| to denote a
suitable size (not necessarily the cardinality) for the set of polymers
K. With these notions we can lift (Helmuth et al. 2019, Theorem
2.2) to the general definition of a polymer model and derive the
following set of conditions to efficiently compute approximations
to a polymer partition function.

Theorem 2.5. Let (K, �∼) be a polymer system and let {Φ(·, z) :
K → C | z ∈ C} be a family of weight functions with the following
conditions:

(i) The function Z(K, Φ(·, z)) is a polynomial of z of degree d.

(ii) Each function Φ(γ, z), γ ∈ K, is analytic in an open neigh-
bourhood around zero such that the first nonzero term in its
Taylor series expansion around zero is of order k ≥ |γ|ρ for
some ρ > 0.

(iii) For each m ∈ N and γ ∈ K, the Taylor coefficients up to order
m of Φ(γ, z) can be computed in time exp(O(m + log |K|)).

(iv) All polymers γ ∈ K with |γ| ≤ m can be enumerated in time
exp(O(m) + log |K|).

(v) For each polymer γ ∈ K all polymers γ′ ∈ K with γ′ �∼ γ
and |γ′| ≤ m can be enumerated in time exp(O(m+log |γ|)).
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(vi) There exists δ > 0 so that for all |z| < δ, the cluster expansion
of Z(K, Φ(·, ·)) converges absolutely.

Then for every z with |z| < δ and every ε > 0 an ε-approximation
for Z(K, Φ(·, z)) can be computed in time

exp(O(
1

ρ
(1 − |z|

δ
)−1 log(

d

ε
) + log(|K|))).

Proof. First assume Z(K, Φ(·, z)) is a polynomial of degree d in
z. Absolute convergence of log Z(K, Φ(·, z)) for all z with |z| < δ
implies that Z(K, Φ(·, z)) has no roots in the open disc of radius
δ around zero. By (Patel & Regts 2017, Lemma 2.2) exponentiat-
ing the value of the Taylor series of log Z(K, Φ(·, z)) truncated at

m = (1 − |z|
δ
)−1 log(d

ε
) yields a multiplicative ε-approximation for

Z(K, Φ(·, z)), for each z with |z| < δ.
Due to the representation in (2.4) and the absolute convergence

of this series, the k-th Taylor coefficient of log Z(K, Φ(·, z)) can be
computed with the Taylor coefficients of order k of the products of
functions Φ(γ, z) for γ ∈ S ⊆ K (here the subsets S contain the
elements of the corresponding k-tuple in (2.4)). By condition 2,
the k-th Taylor coefficient of Φ(γ, z) is nonzero only for polymers
of size at most k

ρ
. All S ⊆ K which play a role in computing the

k-th Taylor coefficient of log Z(K, Φ(·, z)) are connected subgraphs
of the polymer graph (otherwise the Ursell function is zero) which
only contain at most k polymers of size at most k

ρ
.

Enumerating all these sets S can be done as in the proof of Hel-
muth et al. (2019, Theorem 2.2) by enumerating all trees with at
most k vertices (to be spanning trees that ensure connectivity) and
assigning them polymers of size at most k

ρ
such that only incompat-

ible polymers are assigned to adjacent vertices to create all subsets
S ⊆ K such that G(S) is connected. Property 3 ensures that it is
possible to efficiently enumerate the at most exp(O(k) + log |K|)
polymers to choose for the root vertex, and moving downward in
the tree, property 4 restricts and efficiently computes the choices
to pick an incompatible neighbouring polymer. Regardless of the
underlying polymer structure, the Ursell function of a graph H
(subgraph G(S) of the polymer graph of the general polymer sys-
tem) can be computed in time exp(O(|V (H)|)) as described by
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Helmuth et al. (2019, Lemma 2.6). This enumeration of the rel-
evant sets S ⊆ K and the computation of their contribution to
the k-th Taylor coefficient of log Z(K, Φ(·, z)) can be done in time
exp(O(k) + log |K|). Overall, an ε-approximation for Z(K, Φ(·, ·))
can hence be computed by computing the k-th Taylor coefficient
of log Z(K, Φ(·, z)) for all k ≤ m which yields a total running time

in exp(O((1 − |z|
δ
)−1 log(d

ε
)) + log |K|). �

3. Holants as polymer models

In this section, we explain how to express a Holant polynomial as
the partition function of a polymer system. Recall the definition
of a Holant polynomial

ZF(G, π, z) =
∑

σ∈DE

∏

v∈V (G)

fv(σ|E(v))
κ∏

i=0

z
|σ|i
i ,

where |σ|i denotes the number of edges for which σ assigns the value
i. We implicitly assume a fixed total order on the edges in G, which
gives a well-defined mapping of a subset of edges to a vector: in
the above definition σ|E(v) represents the vector (σ(e1), . . . , σ(ed)),
where (e1, . . . , ed) is the ordered set of edges adjacent to v.

To represent a general Holant polynomial as a polymer partition
function, we restrict the class of signatures to F0 = {f | f(0) �= 0}.
We further require that z0 �= 0. If we are interested in approxi-
mating Holants with z that contains 0 values, we can retranslate
the Holant to reduce the domain and exclude these elements as
any assignment that maps to them will not contribute to the par-
tition function. These requirements ensure that the assignment
σ0, which maps every edge to 0, contributes a nonzero weight to
the partition function. The families of compatible polymers will
express assignments in terms of their “deviations” from the ground
state σ0.

Given ZF0(G, π, z) over domain D = {0, 1, . . . , κ}, we define
the following polymer model. Let C(G) be the set of connected
subgraphs of G containing at least one edge. A polymer γφ for G
is a pair (γ, φγ), where γ ∈ C(G) and φγ : E(γ) → [κ]. Let Cκ(G)
denote the set of all such polymers for G. For γφ, γ

′
φ ∈ Cκ(G), we
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say that two polymers are incompatible γφ �∼ γ′
φ, if V (γ)∩V (γ′) �=

∅. Finally, we write Iκ(G) to denote the collection of finite subsets
of pairwise compatible polymers of Cκ(G).

For π : V → F0, we define the weight function Φπ for each
γφ ∈ Cκ(G) and z ∈ C

κ+1 by

Φπ(γφ, z) =

(
κ∏

i=1

(
zi

z0

)|Eκ(γφ)|i
)

∏

v∈V (γ)

fv(E
κ(γφ))

1

fv(0)

for each polymer γφ. We denote (ϕγ(e1), . . . , ϕγ(ed)) by Eκ(γφ)
with E(v) = {e1, . . . , ed} (listed in the implicitly assumed fixed
total order on the edges), where ϕγ(e) = φγ(e), if e ∈ γ and ϕγ(e) =
0, otherwise. Further, |Eκ(γφ)|i denotes the number of occurrences
of the value i in Eκ(γφ).

The partition function for this graph polymer model then trans-
lates to:

Z(Cκ(G), Φπ(·, z)) =
∑

Γ∈Iκ(G)

∏

γφ∈Γ

Φπ(γφ, z)

=
∑

Γ∈Iκ(G)

∏

γφ∈Γ

(
κ∏

i=1

(
zi

z0

)|Eκ(γφ)|i
)

∏

v∈V (γ)

fv(E
κ(γφ))

1

fv(0)
.

Now we show that our polymer model encodes the Holant as in-
tended, i.e. an ε-approximation for the polymer partition function
yields a ε-approximation for the Holant polynomial.

Lemma 3.1. For all finite graphs G = (V,E), all F ⊆ F0, all
π : V → F0 and all z ∈ C

κ+1 with z0 �= 0,

ZF(G, π, z) = z
|E(G)|
0

(
∏

v∈V

fv(0)

)
Z(Cκ(G), Φπ(·, z)).

Proof. Every assignment σ uniquely corresponds to the set of
κ-edge-coloured connected subgraphs which are induced by the
edges e ∈ E with σ(e) �= 0 together with the colouring given by σ.
More formally, let G[σ] be the subgraph of G induced by the edges
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e with σ(e) �= 0. By definition, each maximal connected compo-
nent γ in G[σ] is a polymer in C(G), so (γ, σ|E(γ)) is a polymer in
Cκ(G); observe that by definition σ only assigns the colours in [κ]
to such a component. Furthermore, the collection of all maximal
connected components in G[σ] is a set of pairwise compatible poly-
mers in C(G), so their coloured versions are pairwise compatible in
Cκ(G). Consequently, the set of maximal connected components in
G[σ] together with their colourings assigned by σ is a set in Iκ(G).

Conversely, every set Γ̄ ∈ Iκ(G) uniquely corresponds to the
assignment σΓ̄ defined by σΓ̄(e) = φγ(e) if e ∈ E(γ), for some
γφ = (γ, φγ) ∈ Γ̄ and σΓ̄(e) = 0 otherwise. Observe that in the
former case, e ∈ E(γ), there is only one γφ ∈ Γ which covers this
edge by the compatibility condition, so this is well defined.

We abuse notation and denote families Γ̄ ∈ Iκ(G) with “bar”
to use Γ to refer to the corresponding collection of subgraphs γ ∈
C(G) with (γ, φ) ∈ Γ̄ for some colouring function φ. Such an
uncoloured collection Γ can then be seen as a subgraph of G. These
observations yield

z
|E(G)|
0

(
∏

v∈V

fv(0)

)
Z(Cκ(G), Φπ(·, z))

= z
|E(G)|
0

(
∏

v∈V

fv(0)

)

·
∑

Γ̄∈Iκ(G)

∏

γφ∈Γ̄

(
κ∏

i=1

(
zi

z0

)|Eκ(γφ)|i
)

∏

v∈V (γ)

fv(E
κ(γφ))

1

fv(0)

= z
|E(G)|
0

∑

Γ̄∈Iκ(G)

∏

v/∈V (G[Γ])

fv(0)
∏

v∈V (G[Γ])

fv(E
κ(Γ̄))

(
κ∏

i=1

(
zi

z0

)|Eκ(Γ̄)|i
)

= z
|E(G)|
0

∑

Γ̄∈Iκ(G)

∏

v∈V

fv(E
κ(Γ̄))

(
κ∏

i=1

(
zi

z0

)|Eκ(Γ̄)|i
)

= z
|E(G)|
0

∑

Γ̄∈Iκ(G)

∏

v∈V

fv(σΓ̄|E(v))

(
κ∏

i=1

(
zi

z0

)|σΓ̄|i
)



   11 Page 18 of 52 K. Casel et al. cc

= z
|E(G)|
0

∑

σ∈DE

∏

v∈V (G)

fv(σ|E(v))
κ∏

i=1

(
zi

z0

)|σ|i

=
∑

σ∈DE

∏

v∈V (G)

fv(σ|E(v))
(
z

|E(G)|−∑k
i=1 |σ|i

0

) κ∏

i=1

z
|σ|i
i

=
∑

σ∈DE

∏

v∈V (G)

fv(σ|E(v))
κ∏

i=0

z
|σ|i
i

= ZF(G, π, z) .

This concludes the lemma. �

We remark that the choice to use colour 0 as a ground state is
only for convenience. If there exists c ∈ D with zc �= 0 and the all c
configuration σc evaluating a nonzero term in the Holant partition
function, we can use a polymer model whose compatible families
express deviations from σc. In fact, as we will see in Section 6, we
can define polymer systems as deviations from any ground state
assignment σ with nonzero weight.

4. Deterministic algorithms

We have already explained how to translate a Holant partition
function ZF0(G, π, z) into Z(C(G), Φπ(·, z)), for z with z0 �= 0. In
this section, we will first identify the combinations of signature fam-
ilies and values of z for which the Taylor expansion of the Holants
converges absolutely via the Kotecký–Preiss condition and then
show how Theorem 2.5 applies.

4.1. Holant polynomials. We begin by establishing absolute
convergence for the logarithm of Holant polynomials. A crucial
component is the following theorem of Kotecký & Preiss.

Theorem 4.1 (Kotecký & Preiss 1986, Theorem 1). If there ex-
ists a function a : K → [0,∞) such that for all γ ∈ K,

∑

γ′ �∼γ

|Φ(γ′)|ea(γ′) ≤ a(γ) ,
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where the sum is over all polymers γ′ incompatible with γ, then
the cluster expansion for log Z(K, Φ) converges absolutely and, in
particular, Z(K, Φ) �= 0.

To apply the above theorem, we use an upper bound of Borgs
et al. (2013, Lemma 2.1(b)) on the number of connected subgraphs
of the input graph G that contain a fixed vertex, which is based on a
well-known formula for bounding the number of subtrees (Stanley
1999, Theorem 5.3.10) (also see Bollobs 2006, Equation 7 for a
bound based on the number of vertices).

Lemma 4.2. In any graph G of maximum degree Δ, the number
of connected subgraphs of G with m edges containing a fixed vertex
is at most 1

m+1

(
(m+1)Δ

m

)
< (eΔ)m

2
.

As Holant polynomials have a domain of arbitrary size, we will
use the following generalisation of Lemma 4.2.

Corollary 4.3. In any graph G of maximum degree Δ, the num-
ber of connected κ-edge-coloured subgraphs of G with m edges
containing a fixed vertex is at most (Δκe)m

2
.

Proof. Considering the κm different colourings that can be as-
signed to a graph with m edges and using Lemma 4.2, the claimed
bound follows immediately. �

Recall that for f ∈ F0 with arity d we defined the value r(f) =
maxx∈Dd\{0}{|f(x)|/|f(0)|} and that for a function class F ⊆ F0

we defined r(F) = maxf∈F{r(f)}.

Lemma 4.4. Let F ⊆ F0. For all graphs G of maximum degree
Δ and all π : V → F , the Taylor expansion of log ZF(G, π, z) con-
verges absolutely in

{
(z0, . . . , zκ) ∈ C

κ+1
∣∣∣ z0 �= 0,

|zi|
|z0| ≤ (Δκe2r1(r1 + 1))−1, i ∈ [κ]

}

with r1 = max{1, r((F))}.
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Proof. We aim to apply Theorem 4.1 on the polymer represen-
tation Z(Cκ(G), Φπ(·, z)). Consider a fixed polymer γφ ∈ Cκ(G).
Each polymer γ′

φ incompatible with γφ contributes to the sum that
has to be bounded by a(γφ) the term

|Φπ(γ′
φ, z)| ea(γ′

φ) =

=

⎛

⎝
κ∏

i=1

( |zi|
|z0|

)|Eκ(γ′
φ)|i ∏

v∈V (γ′)

|fv(E
κ(γ′

φ))| 1

|fv(0)|

⎞

⎠ ea(γ′
φ)

≤
(

max
1≤i≤κ

{ |zi|
|z0|

})|E(γ′)|
r

|V (γ′)|
1 ea(γ′

φ).

In the following, we will estimate the number of polymers γ′
φ

incompatible with γφ with respect to their number of edges. To
this end, denote by Cγφ

κ (i) the set of polymers γ′
φ ∈ Cκ(G) with

γ′
φ �∼ γφ and i = |E(γ′)|, for each 1 ≤ i ≤ |E(G)|. First, observe

that by the definition of the polymers in Cκ(G) the incompatibility
γ′

φ �∼ γφ implies that the corresponding subgraphs γ′ and γ share
at least one vertex. Further, γ′ has to be a connected subgraph
of G. By Corollary 4.3 we conclude that Cγφ

κ (i) has cardinality at

most |V (γ)|( (Δκe)i

2
).

Consider a(γφ) = α|E(γ)| for some constant α > 0 to be as-
signed optimally later. This choice of a with the bounds on the
cardinality of Cγφ

κ (i), and the fact that a connected subgraph with
i edges contains at most i + 1 vertices, yields

∑

γ′
φ �∼γφ

|Φπ(γ′
φ, z)|ea(γ′

φ) ≤
|E(G)|∑

i=1

|Cγφ
κ (i)|

(
max
1≤i≤κ

{ |zi|
|z0|

})i

ri+1
1 eαi

≤
|E(G)|∑

i=1

|V (γ)|(Δκe)i

2

(
max
1≤i≤κ

{ |zi|
|z0|

})i

ri+1
1 eαi.

With β as shorthand on the upper bound on max1≤i≤κ

{
|zi|
|z0|

}
in

order to describe the region for z, we can reformulate the condition
of Theorem 4.1 to
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|E(G)|∑

i=1

|V (γ)|(Δκe)i

2
βi ri+1

1 eαi ≤ α|E(γ)|

⇔
|E(G)|∑

i=1

(Δκeα+1βr1)
i ≤ 2α

|E(γ)|
|V (γ)|r1

⇐ 1

1 − Δκeα+1βr1

− 1 ≤ α

r1

⇔ Δκeα+1βr1 ≤ α

α + r1

⇔ β ≤ α

r1Δκeα+1(α + r1)
.

Maximising the region for z for which approximation is possible
means choosing α depending on r1 to maximise α

r1eα+1(α+r1)
.

The first derivative of this expression with respect to α is

r1e
α+1(α + r1) − α(r1e

α+1(α + r1) + r1e
α+1)

(r1eα+1(α + r1))2
=

r1 − r1α − α2

r1eα+1(α + r1)2
.

The only positive value for α that sets the derivative to zero is
α = 1

2
(
√

r1

√
r1 + 4− r1), and furthermore, the second derivative is

negative at this point.
Plugging this into the bound on β gives

β ≤
√

r1

√
r1 + 4 − r1

r1Δκ(
√

r1

√
r1 + 4 + r1)e

1
2
(
√

r1
√

r1+4−r1)+1
.

Note that any value of α > 0 gives a bound. As r1 goes to
infinity, α goes to 1. Setting α = 1 gives the simpler bound

β ≤ 1

Δκe2r1(r1 + 1)

stated in the lemma. �

What remains to obtain an FPTAS is to show how to apply
Theorem 2.5 to the polymer partition function Z(Cκ(G), Φπ(·, z)).
Observe that from the definition of the weights Φπ(γφ, z), the parti-
tion function Z(Cκ(G), Φπ(·, z)) can be a multivariate polynomial,
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so not necessarily univariate. This introduces a catalogue of is-
sues when attempting to apply Theorem 2.5 on Z(Cκ(G), Φπ(·, z))
directly. To circumvent these issues, we introduce an additional
variable x and transform the weights Φπ(γφ, z) to univariate poly-
nomials of x where we assume the variables z to be fixed.

For a given weight Φπ(γφ, z), we define the univariate weight

Φx
π(γφ, z, x) =

(
κ∏

i=1

(
zi

z0

)|Eκ(γφ)|i
)

x|E(γ)| ∏

v∈V (γ)

fv(E
κ(γφ))

1

fv(0)
,

which serves as input for Z(Cκ(G), Φx
π(·, z, x)). In particular, set-

ting x = 1 yields the original weight Φx
π(γφ, z, 1) = Φπ(γφ, z) and,

interpreted as this univariate polynomial weight function, the de-
gree of Φx

π(·, z, ·) corresponds to the number of edges γφ which
enables the application of Theorem 2.5.

Theorem 4.5. Let F ⊆ F0. For all graphs G of maximum degree
Δ and all π : V → F , the Holant polynomial admits an FPTAS for
z in
{

(z0, . . . , zκ) ∈ C
κ+1

∣∣∣ z0 �= 0,
|zi|
|z0| < (Δκe2r1(r1 + 1))−1, i ∈ [κ]

}

with r1 = max{1, r(F)}.

Proof. Due to the definition of F0 and Lemma 3.1, we obtain

ZF(G, π, z) = z
|E(G)|
0

(
∏

v∈V

fv(0)

)
Z(Cκ(G), Φπ(·, z));

thus, it suffices to approximate Z(Cκ(G), Φπ(·, z)). We use the
above defined representation of ZF(G, π, z) as a univariate poly-
nomial Z(Cκ(G), Φx

π(·, z, x)) to apply Theorem 2.5 and show how
Z(Cκ(G), Φx

π(·, z, x)) satisfies the theorem’s conditions. As size
functions, we choose |Cκ(G)| the cardinality of G, i.e. the num-
ber of vertices, and as |γφ| the number of edges of the support
graph.

1. The partition function Z(Cκ(G), Φx
π(·, z, x)) is a polynomial

of x of maximum degree |E(G)|.
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2. For each polymer γφ, its weight Φx
π(γφ, z, x) is a monomial in

x of degree |E(γ)| = |γφ|; thus, condition 2 holds with ρ = 1.

3. For each polymer γφ, its weight Φx
π(γφ, z, x) can be computed

exactly, not just its first m Taylor coefficients, which can be
done in time O(G) = O(|Cκ(G)|). Recall here that we only
consider constraint functions that can be computed efficiently
for the general ground class F0.

4. The support γ of a polymer γφ is a connected subgraph of
G and adjoined with the edge-colouring φγ we obtain, us-

ing Corollary 4.3, that there are at most (Δκe)m

2
such edge-

coloured connected subgraphs with at most m edges con-
taining a fixed vertex. There are |V (G)| many choices for a
fixed vertex and thus there are at most |V (G)|m(Δκe)m ∈
exp(O(m + log |Cκ(G)|)) polymers of size m. We can enu-
merate these as Patel & Regts (2017, Lemma 3.7.) by enu-
merating all connected subgraphs S ⊆ G of size |S| ≤ m,
which requires a run-time in O(|V (G)|2m7)). Afterwards, for
every such subgraph S we add the κ|S| ≤ κm different edge-
colourings and obtain a run-time in exp(O(m + log |V (G)|)).

5. For γφ ∈ Cκ(G) with |γ| = m, we have that γ′
φ ∈ Cκ(G)

is incompatible with γφ if their supports γ and γ′ share at
least one vertex v. Hence, we enumerate for all v ∈ V (γ) all
polymers γ′

φ of size at most m containing v and then remove

duplicates. There are at most (Δκe)m

2
such edge-coloured con-

nected subgraphs of size m containing a fixed vertex due to
Corollary 4.3. For each v ∈ V (γ), we can then enumerate all
connected subgraphs γ′ ⊆ G containing v and of size at most
m as Patel & Regts (2017, Lemma 3.7.), which takes time
O(|γ|2m7)) ⊆ exp(O(m + log |γ|)).

6. From Lemma 4.4, we have that log(Z(Cκ(G), Φπ(·, z))) con-

verges absolutely for z with |zi|
|z0| ≤ (Δκe2r1(r1 + 1))−1 for all

1 ≤ i ≤ κ. For a fixed z in the region defined by the state-
ment of the theorem, denote q = min{ |z0|

|zi| (Δκe2r1(r1 +1))−1 |
1 ≤ i ≤ κ} > 1. Adding x with |x| ≤ q to the calculations
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in Lemma 4.4 shows that log(Z(Cκ(G), Φx
π(·, z, x))) converges

absolutely for |x| ≤ q and z in the region defined in the state-
ment of the theorem.

In summary, the conditions of Theorem 2.5 are satisfied with K =
Cκ(G), ρ = 1 and d = E(G) and for all x with |x| ≤ q. This
shows that a (1 + ε)-approximation for Z(Cκ(G), Φx

π(·, z, x) can

be computed in time exp(O((1 − |x|
q

)−1 log(E(G)
ε

) + log(|Cκ(G)|))).
With our choice of |Cκ(G)| = |V (G)| and with x chosen to be 1,
to approximate the original partition function Z(Cκ(G), Φπ(·, z)),
this yields an overall running time in exp(O((1 − 1

q
)−1 log(E(G)

ε
) +

log |V (G)|)) which is in exp(O(log(1
ε
) + log |V (G)|)) for any fixed

z. �

4.2. Holant problems. The partition function ZF(G, π) of a
Holant problem can be viewed as the value of a Holant polynomial
ZF(G, π,1) at z = (1, 1, . . . , 1). This immediately gives a poly-
mer representation for Holant problems. The polymer partition
function is simply Z(Cκ(G), Φπ(·,1)). In this section, we derive
bounds that depend only on the functions of F that target Holant
problems in particular. This gives the analogue of Lemma 4.4 for
Holant problems.

Lemma 4.6. Let F ⊆ F0, with r(F) ≤ max{(2
√

e)−1(Δκe)−Δ
2 ,

0.2058(κ + 1)−Δ}. For all graphs G of maximum degree Δ and
all π : V → F , the Taylor expansion of log ZF(G, π) converges
absolutely.

Proof. We again aim to apply Theorem 4.1 on the polymer
representation Z(Cκ(G), Φπ(·,1)). Consider a fixed polymer γφ ∈
Cκ(G). With z fixed to 1, each polymer γ′

φ incompatible with γφ

contributes to the sum that has to be bounded by a(γφ) the term

|Φπ(γ′
φ,1)| ea(γ′

φ) =

⎛

⎝
∏

v∈V (γ′)

|fv(E
κ(γ′

φ))| 1

|fv(0)|

⎞

⎠ ea(γ′
φ)

≤ r(F)|V (γ′)| ea(γ′
φ).
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As in the proof of Lemma 4.4, we use Cγφ
κ (i) to denote the set

of polymers with i edges and incompatible with γφ, and use the

estimate |Cγφ
κ (i)| ≤ |V (γ)|( (Δκe)i

2
).

Since now r(F) < 1, we need to consider a lower bound on
the number of vertices in a polymer in Cγφ

κ (i) to upper bound its
weight. A connected subgraph of maximum degree Δ with i ver-
tices contains at most Δi

2
edges. This bound together with the

choice a(γφ) = α|V (γ)| for some α > 0 to be fixed later and
r = r(F) yields

∑

γ′
φ �∼γφ

|Φπ(γ′
φ,1)|ea(γ′

φ) ≤
|V (G)|∑

i=1

|Cγφ
κ (Δi

2
)| ri eiα

≤
|V (G)|∑

i=1

|V (γ)|1
2
((Δκe)

Δ
2 r eα)i.

With geometric series estimate for this sum, bounding this by
a(γφ) = α|V (γ)| yields the inequality

|V (γ)|1
2

(
1

1 − (Δκe)
Δ
2 r eα

− 1

)
≤ α|V (γ)|

1 − (Δκe)
Δ
2 r eα ≥ 1

2α + 1

(Δκe)
Δ
2 r eα ≤ 1 − 1

2α + 1

r ≤ 2α

(2α + 1)(Δκe)
Δ
2 eα

.

The best bound for α maximises the function 2α
(2α+1)eα . The first

derivative for α is −4α2−2α+2
(2α+1)2eα . This expression is zero when α = 1

2

and the second derivative is negative at this point. This yields the
bound

r ≤ 1

2(Δκe)
Δ
2

√
e
.

To obtain the second bound of the lemma, we use Vγφ
κ (j) to

denote the set of polymers with j vertices that are incompatible
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with γφ. As Borgs et al. (2013), we bound |Vγφ
κ (j)| ≤ |V (γ)|(κ +

1)jΔ. This bound together with the choice a(γφ) = α|V (γ)| for
some α > 0 yields the bound

∑

γ′
φ �∼γφ

|Φπ(γ′
φ,1)|ea(γ′

φ) ≤
|V (G)|∑

j=1

|Vγφ
κ (j)| rj eαj

≤
|V (G)|∑

j=1

|V (γ)|(κ + 1)jΔ rj eαj.

The Kotecký–Preiss condition is hence satisfied for α and r such
that the inequality

|V (G)|∑

j=1

|V (γ)|(κ + 1)jΔ rj eαj ≤ α|V (γ)|

⇔
|V (G)|∑

j=1

((κ + 1)Δr eα)j ≤ α

⇐ 1

1 − (κ + 1)Δr eα
≤ α + 1

⇔ 1 − (κ + 1)Δr eα ≥ 1

α + 1

⇔ (κ + 1)Δr eα ≤ 1 − 1

α + 1

⇔ r ≤ α

(α + 1)(κ + 1)Δeα

holds. To find the best α to maximise the function α
(α+1)eα , we

again find the positive root of the derivative.
This gives α =

√
5−1
2

, and the second derivative is negative at
this point. We obtain the bound

r ≤
√

5 − 1

(
√

5 + 1)(κ + 1)Δe
√

5−1
2

≈ 0.2058(κ + 1)−Δ.

Together the two bounds give the lemma. �
As in the case for Holant polynomials, the above lemma gives

rise to FPTAS’ for the following Holant problems.
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Theorem 4.7. Let F ⊆ F0, with r(F) < max{(2
√

e)−1(Δκe)−Δ
2 ,

0.2058(κ + 1)−Δ}. For all graphs G of maximum degree Δ and all
π : V → F , the Holant problem ZF(G, π) admits an FPTAS.

Proof. Since a Holant problem is a Holant polynomial at z =
1, the proof is identical to the proof of Theorem 1.1 by using
Lemma 4.6 instead of Lemma 4.4. The only difference is that q

is now defined by (max{ (2
√

e)−1(Δκe)− Δ
2

r(F)
, 0.2058(κ+1)−Δ

r(F)
})

1
Δ , where the

exponent 1
Δ

ensures that in the calculations of Lemma 4.6 the term

r|V (γ′)| cancels out the |x||E(γ′)| term. �

5. Fast randomised algorithms

Recently, Chen et al. (2021) have studied Markov chains on vertex
spin polymer models. Their results establish conditions yielding
fast randomised sampling and counting algorithms with polyno-
mial run-time and linear dependency on the maximum degree Δ
of the input graph. We follow their approach and show how their
algorithms can be adapted to Holant problems and Holant poly-
nomials exploiting the respective polymer models.

Consider a Holant polynomial ZF(G, π, z), where for the rest
of this section we restrict the values of the signatures in F to be
nonnegative reals and we further restrict z ∈ (R≥0)

κ+1. We aim to
design fast algorithms that sample from the distribution μG with

μG(σ) =

∏
v∈V (G) fv(σ|E(v))

∏κ
i=0 z

|σ|i
i

ZF(G, π, z)
.

To do so, we will use polymer models. Recall our definition of the
polymer partition function Z(Cκ(G), Φπ(·, z)) from Section 3. The
restrictions to the nonnegative reals imply Φπ(·, z) ∈ R≥0. We will
design a Markov chain with the families of Iκ(G) as state space
with stationary distribution μCκ(G), where

μCκ(G)(Γ) =

∑
γφ∈Γ Φπ(γφ, z)

Z(Cκ(G), Φπ(·, z)) .

To ensure that the Markov chain converges to its stationary distri-
bution in polynomial time, we require the following condition.
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Definition 5.1. Let G be a graph. The polymer model (Cκ(G),
Φπ(·, z)) satisfies the mixing condition if there exists a constant
ξ ∈ (0, 1) such that for each γφ ∈ Cκ(G),

∑

γ′
φ �∼γφ

|E(γ′
φ)|Φπ(γ′

φ, z) ≤ ξ|E(γφ)| .

For every e0 ∈ E(G), let Cκ(e0) = {γφ ∈ Cκ(G) | e0 ∈ γ} be the
set of polymers whose underlying graph contains the edge e0 and let
α(e0) =

∑
γ∈Cκ(e0) Φπ(γφ, z). We define the probability distribution

μ0 on C(e0) ∪ {∅} by μ0(γφ) = Φπ(γφ, z) and μ0(∅) = 1 − α(e0).
Definition 5.1 ensures that α(e0) < 1, for every e0 ∈ E(G) (by
choosing any γφ with γ = e0); hence, μ0 is a valid probability
distribution. We are now ready to define the transition of the
Holant polymer Markov chain (Γt)t∈N.

◦ Choose e0 ∈ E(G) uniformly at random.

◦ If there exists γφ ∈ Γt with e0 ∈ E(γφ), then Γt+1 ← Γt\{γφ}
with probability 1/2.

◦ Otherwise, sample γφ from μ0 and if Xt ∪ {γφ} ∈ I(G), then
Γt+1 ← Γt ∪ {γφ} with probability 1/2.

In all other cases, we set Γt+1 ← Γt.
Let P be the transition matrix of the above chain and let T (ε) =

maxΓ∈Iκ(G) min{t | ‖P t(Γ, ·) − μCκ(G)(·)‖T V ≤ ε} be its mixing
time. We have the following lemma.

Lemma 5.2. Let F ⊆ F0 and G be a graph of maximum degree
Δ and let π : V (G) → F . When the mixing condition applies, the
Holant polymer Markov chain has stationary distribution μCκ(G)

and mixes in T (ε) ∈ O(Δn log(n/ε)) many iterations.

Proof. The Markov chain (Γt)t∈N is ergodic and thus it has
a unique stationary distribution, which is the limit distribution.
We first show that μCκ(G) is the unique stationary distribution of
the above Markov chain. Let Γ, Γ′ ∈ Iκ(G) such that there ex-
ists γφ ∈ Cκ(G) with Γ ∪ {γφ} = Γ′. It suffices to show that
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μCκ(G)(Γ)P (Γ, Γ′) = μCκ(G)(Γ
′)P (Γ′, Γ). The latter holds, since

μCκ(G)(Γ)P (Γ, Γ′) =

∏
γ′

φ∈Γ Φπ(γ′
φ, z)

ZF(G, π, z)

|E(γ)|
|E(G)|

1

2
Φπ(γφ)

=

∏
γ′

φ∈Γ′ Φπ(γ′
φ, z)

ZF(G, π, z)

|E(γ)|
|E(G)|

1

2

= μCκ(G)(Γ
′)P (Γ′, Γ).

To upper bound the mixing time of this Markov chain, we will
use path coupling as Dyer & Greenhill (1999). To this end, we
define a metric dist(·, ·) on Ω by setting dist(Γ, Γ′) = 1 if for some
γφ ∈ Cκ(G), Γ ∪ {γφ} = Γ′ or Γ′ ∪ {γφ} = Γ. This function
dist can be naturally extended to all pairs Γ, Γ′ in Ω by shortest
paths. Formally let Γ = Γ0, Γ1, . . . , Γ� = Γ′ be a shortest path
between Γ and Γ′ in Ω, then dist(Γ, Γ′) =

∑�
i=1 dist(Γi−1, Γ). We

can now observe that the diameter W = max(Γ,Γ′){dist(Γ, Γ′)} of
Ω is at most n, since no family in Iκ(G) can contain more than n

2

polymers.
We define our coupling to be the chain denoted by (Xt, Yt) as

follows. First observe that as we are using path coupling, we only
need to define how the chain progresses for pairs that only differ in
one polymer. Let γφ = (γ, φγ) ∈ Cκ(G) be such that Xt∪{γφ} = Yt,
then (Xt, Yt) progresses as follows.

◦ For both Xt and Yt, choose the same e0 ∈ E(G) uniformly at
random.

◦ If e0 ∈ γ, let Xt+1 ← Xt and Yt+1 ← Yt\{γφ} with probability
1/2. With remaining probability 1/2, sample γ′

φ from μ0 and
let Xt+1 ← Xt ∪ {γ′

φ} and Yt+1 ← Yt.

◦ If e0 /∈ γ, then Xt behaves as the original chain Γt and Yt

copies Xt if possible, otherwise Yt remains at the same state.

We will now show that the distance of adjacent states reduces
in expectation. We have that E[dist(Xt+1, Yt+1) | Xt, Yt] is at most

1 +
1

2|E(G)|

⎛

⎝−|E(γ)| +
∑

γ′
φ �∼γφ

|E(γ′
φ)|Φπ(γ′

φ, z)

⎞

⎠ ,
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since the distance decreases by 1 with probability 1/2 if we choose
an edge in γ and it increases by 1 with probability 1/2 if we sample
a polymer that is incompatible with γφ. The latter occurs with
probability |E(G)|−1

∑
γ′

φ �∼γφ
|E(γ′)|Φπ(γ′

φ, z). From the statement

of the lemma, the mixing condition applies, which yields

E[dist(Xt+1, Yt+1) | Xt, Yt] ≤ 1 − |E(γ)| 1 − ξ

2|E(G)| ≤ 1 − 1 − ξ

2|E(G)| .

Now we can use the path coupling lemma (Dyer & Greenhill
1999, (17) in Section 6) which yields T (ε) ≤ log(W/ε)2|E(G)|/(1−
ξ) ∈ O(Δn log(n/ε)). �

To obtain a fast sampling algorithm, we have to show that each
iteration of the polymer Markov chain only requires constant time
in expectation. To do so, as Chen et al. (2021, Definition 4), we
need to identify under which condition this holds.

Definition 5.3. Given a graph G of maximum degree Δ, we say
that a polymer model (Cκ(G), Φ(·, z)) satisfies the polymer sam-
pling condition with constant τ ≥ 5 + 3 ln(κΔ) if Φ(γφ, z) ≤
e−τ |E(γ)| for all γφ ∈ Cκ(G).

Mimicking Chen et al. (2021), we consider the following al-
gorithm to sample from μ0 in constant time in expectation. Let
� = τ − 2 − ln(κΔ) ≥ 3 + 2 ln(κΔ).

◦ Choose k according to the geometric distribution with pa-
rameter 1 − e−
, that is P(k = i) = (1 − e−
)e−
i. Note that
P(k ≥ i) = e−
i.

◦ List all polymers in Cκ(e0, k) = {γφ ∈ Cκ(e0) | |E(γ)| ≤ k}
and compute their weight functions Φ(·, z). Recall that z is
considered to be fixed.

◦ Mutually exclusively output γφ ∈ Cκ(e0, k) with probability
Φ(γφ, z)e


|E(γ)| and with all remaining probability output ∅.
Observe that if k = 0 then we output ∅ with probability 1.
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Lemma 5.4. The above sampling algorithm under the polymer
sampling condition (Definition 5.3) outputs a polymer γ from the
distribution μ0 in constant time in expectation.

Proof. The proof follows that of Chen et al. (2021, Lemma 16).
We first show that the algorithm is well defined, i.e. the proba-
bilities Φ(γφ, z)e


|E(γ)| sum to less than 1. Using Lemma 4.2 we
have

∑

γ∈Cκ(e0)

Φ(γφ, z)e

|E(γ)| ≤ 1

2

∑

k≥1

eτk−
k(eκΔ)k

=
1

2

∑

k≥1

e−k(2+ln(κΔ))(eκΔ)k

=
1

2

∑

k≥1

e−k < 1.

Next, we will show that the output of the sampler has distri-
bution μ0. Let γφ ∈ Cκ(e0). In order to have nonzero probability
to output γφ we must choose k ≥ |E(γ)|. This happens with
probability e−
|E(γ)| by the distribution of k. Conditioned on the
choice of an appropriate k, the probability of the sampler to output
γφ is then Φ(γφ, z)e


|E(γ)|. Thus, the probability of choosing any
γφ ∈ Cκ(e0) is Φ(γφ, z), showing that the outputs of our sampler
are distributed according to μ0.

Finally, we analyse the expected run-time of the sampler. Note
that as Patel & Regts (2017, Lemma 3.5) we can enumerate all
polymers in Cκ(e0, k) in time O(k5(eΔ)2k). From Corollary 4.3,
the number of weights we have to consider are at most k(κeΔ)k/2.
Given a polymer with k edges, we can compute its weight in polyno-
mial time; hence, we can compute all weights in time O(kc(κeΔ)k)
for some constant c. Following the calculations of Chen et al. (2021,
Lemma 16), we can show that the expected run-time is constant. �

Corollary 5.5. Let G be a graph of maximum degree Δ, let F ⊆
F0 and let π : V (G) → F . Let (Cκ(G), Φπ(·, z)) be a polymer model
satisfying the sampling condition. There is an ε-approximate sam-
pling algorithm for μCκ(G) with run-time in O(Δn log(n/ε)).
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Proof. The proof is identical to the proof of Chen et al. (2021,
Theorem 5). �

Chen et al. (2021, Section 3) show how to use a sampler with
simulated annealing in order to obtain a fast randomised algo-
rithm. The run-time of this algorithm can be upper-bounded by
the O(n/ε2 log(Δn/ε)) calls to the randomised sampler. This ap-
proach can be used with the randomised sampler we describe above
to get a randomised algorithm with run-time in O(Δn2/ε2 log2(Δn/ε)).

By randomised approximation algorithm, we mean a fully poly-
nomial time randomised approximation scheme (FPRAS). The lat-
ter is an algorithm that, given a problem and some fixed parameter
ε > 0, produces with probability at least 3/4 a multiplicative ε-
approximation of its solution in time polynomial in n and 1/ε.

Theorem 5.6. Let G be a graph of maximum degree Δ, F ⊆ F0

and π : V (G) → F . For the Holant polynomial ZF(G, π, z), there
exists an ε-sampling algorithm from the distribution μG with run-
time in O(Δn log(n/ε)) for z in

{
(z0, . . . , zκ) ∈ (R≥0)

κ+1
∣∣∣ z0 �= 0,

zi

z0

≤ ((Δκ)3e5r2
1)

−1, i ∈ [κ]

}

with r1 = max{1, r(F)}. Furthermore, ZF(G, π, z) admits an
FPRAS with run-time O(Δn2/ε2 log2(Δn/ε)) for these values of
z.

Proof. Recall from the proof of Lemma 3.1 that there is a bi-
jection between the assignments σ for the Holant polynomial and
the families of polymers Γ ∈ Iκ(G). Using this bijection, it suffices
to sample from the equivalent distribution μCκ(G). It remains to
show that the mixing and the sampling conditions apply for our
polymer model.

From the statement of the lemma, for any γφ ∈ Cκ(G), we have

Φπ(γφ, z) =

(
κ∏

i=1

(
zi

z0

)|Eκ(γφ)|i
)

∏

v∈V (γ)

fv(E
κ(γφ))

1

fv(0)

≤ ((Δκ)3e5r2
1)

−|E(γ)|r(F)|V (γ)|.
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The graphs of our polymers are connected; hence, for each γφ ∈
Cκ(G), |V (γ)| ≤ |E(γ)| + 1. Together with the fact that r1 =
max{1, r(F)}, this gives

(5.7) Φπ(γφ, z) ≤ ((Δκ)3e5)−|E(γ)|.

Thus, this polymer system satisfies the sampling condition (Defi-
nition 5.3).

Regarding the mixing condition, recall that for any polymer γφ,

|Cγφ
κ (i)| ≤ |V (γ)|( (Δκe)i

2
). Using the latter and (5.7), we have

∑

γ′
φ �∼γφ

|E(γ′
φ)|Φπ(γ′

φ, z) ≤
m∑

i=1

i|V (γ)|((Δκe)i

2
)((Δκ)3e5)−i

≤
m∑

i=1

|V (γ)|
2

((Δκ)2e3)−i

<
|V (γ)|

2
.

Since for any connected graph γ, |V (γ)| ≤ E(γ) + 1, the mixing
condition (Definition 5.1) holds. �

Similar to the Holant polynomials, we prove the following the-
orem for Holant problems.

Theorem 5.8. Let G be a graph of maximum degree Δ, F ⊆ F0

such that r(F) ≤ ((Δκ)− 3Δ
2 e− 5Δ

2 ) and π : V (G) → F . There exists
an ε-sampling algorithm from the distribution μG for ZF(G, π)
with run-time in O(Δn log(n/ε)). Furthermore, ZF(G, π) admits
an FPRAS with run-time O(Δn2/ε2 log2(Δn/ε)).

Proof. Following the proof of Theorem 5.6, we only have to
show that the sampling and the mixing condition hold.

From the statement of the lemma, for any γφ ∈ Cκ(G), we have

Φπ(γφ, z) =
∏

v∈V (γ)

fv(E
κ(γφ))

1

fv(0)
≤ r(F)|V (γ)|.

From the conditions of the lemma, we have r(F) < 1. Recall
that G has maximum degree Δ, thus for each γφ ∈ γ, we have
|V (γ)| ≥ (2|E(γ)|)/Δ yielding
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Φπ(γφ, z) ≤ (r(F))− 2|E(γ)|
Δ ≤ ((Δκ)3e5)−|E(γ)|,

which implies the sampling condition (Definition 5.3).
The proof for the mixing condition (Definition 5.1) is identical

to the proof Theorem 5.6. �

6. Further applications of abstract polymers

In this section, we will show how the problem of counting weighted
solutions to a system of sparse equations as studied by Barvinok
& Regts (2019) can be modelled as a polymer system and derive
zero-free regions for this problem. The parameter of this problem
is a set of complex numbers w1, w2, . . . , wm ∈ C. We define the
weight of a vector x ∈ Z

m
≥0 with x = (x1, x2, . . . , xm) as w(x) =

wx1
1 wx2

2 . . . wxm
m . Given a finite set X ⊂ Z

m
≥0, we define its weight,

w(X) =
∑

x∈X

w(x).

Given an n × m matrix A = (ai,j) with ai,j ∈ Z and positive
integers κ1, . . . , κm ∈ Z>0 the task is to approximate w(X) with

(6.1) X =
{
x ∈ Z

m
≥0 | Ax = 0 and for all j ∈ [m], xj ≤ κj

}
.

We view the above as a Holant problem where the input is a
hypergraph. Here, the vectors correspond to edge assignments and
the constraints given by each row of the matrix correspond to the
vertex functions. We are going to model this problem as a polymer
system.

First, we explain the underlying hypergraph HA of the ma-
trix A. Given an n × m integer matrix A = (ai,j), we define the
hypergraph HA with n vertices and m edges, where vertex i is in
edge j if ai,j �= 0. Hence computing w(X) is a Holant problem on
the hypergraph HA, where edge j can take an assignment in [κj]
and the signature of vertex i outputs the value 1 if the constraint∑m

j=1 ai,jxj = 0 is satisfied. A vector x ∈ X corresponds to an
assignment to the set of hyperedges of H.

Given a vector x, its support supp(x) = {j ∈ [m] | xj �= 0}
is the set of indices of its nonzero entries. Given a hypergraph H
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and a hyperedge set S ⊆ E(H), let H[S] be the subhypergraph
induced by the hyperedge set S. A hypergraph H is connected
if its underlying bipartite graph GH is connected, where GH =
(V1, V2, E) with V1 = V (H), V2 = E(H) and E = {{u, v} | u ∈
V1, v ∈ V2 and v ∈ u}. We say that a vector x ∈ Z

m
≥0 is connected

if the subhypergraph H[supp(x)] induced by the hyperedge set in
the support of x is connected.

The idea of translating the system into a polymer model is to
express the solutions in terms of their distance from 0, which is a
solution to the system, and to represent this distance by a sum of
connected vectors. Hence, we define the set of polymers C(X) to
contain the connected (with respect to HA) vectors of X \ {0} and
the weight of a polymer γ ∈ C(X) to be Φ(γ) = w(γ). The reason
we exclude 0 from our polymer set is that this will be the ground
state in our polymer representation. Two polymers γ1, γ2 ∈ C(X)
are defined to be incompatible, γ1 �∼ γ2, if their underlying hyper-
graphs share vertices, i.e. V (HA[supp(γ1)])∩V (HA[supp(γ2)]) �= ∅.
The resulting families of pairwise compatible polymers denoted by
I(X) contain then vectors with pairwise disjoint support. This is
crucial to show that the sum over all vectors in such a family yields
a vector in X.

Lemma 6.2. For the polymer system C(X), we have

Z(C(X), Φ(·)) = w(X).

Proof. We define the function σ : I(X) → Z
m
≥0 with σ(∅) = 0

and, for each Γ ∈ I(X), σ(Γ) =
∑

γ∈Γ γ, where the summation of
vectors is done element-wise. As we defined above, two compatible
polymers γ1 ∼ γ2 cannot share vertices in the underlying hyper-
graph HA, which implies that supp(γ1) ∩ supp(γ2) = ∅. Thus, for
a family of compatible polymers Γ we have that σ(Γ) ∈ X since
there is no j ∈ [m] with σ(Γ)j > κj, and Aσ(Γ) = 0 as for each
polymer γ ∈ Γ we have Aγ = 0. We now show that σ is bijective.

For injectivity consider two families of compatible polymers
Γ1 �= Γ2. Let γ1 ∈ Γ1ΔΓ2 be a polymer with maximum support
cardinality and assume without loss of generality that γ1 ∈ Γ1 \Γ2.
First assume the existence of j ∈ supp(γ1) that is not in the
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support of any polymer in Γ2. The latter assumption implies
σ(Γ1) �= σ(Γ2), since (σ(Γ1))j �= 0 = (σ(Γ2))j.

Now assume the contrary, i.e. supp(γ1) ⊆ ⋃
γ∈Γ2

supp(γ). Since
γ1 is connected in HA, the support of γ1, which represents a set of
connected hyperedges in HA, cannot be partitioned into pairwise
compatible sets. Hence, Γ2 can contain at most one polymer γ2

with supp(γ1) ⊆ supp(γ2). Due to the maximality of the support
cardinality in the choice of γ1, we have supp(γ1) = supp(γ2). Since
γ1 /∈ Γ2, this means that γ1 �= γ2 which means that there is at
least one index j in which γ1 and γ2 differ. By the definition
of incompatibility, no other polymer in Γ1 or Γ2 can affect this
index j and it follows that (σ(Γ1))j = (σ({γ1}))j �= (σ({γ2}))j =
(σ(Γ2))j. This implies σ(Γ1) �= σ(Γ2) and concludes the proof that
σ is injective.

For surjectivity, we will argue that, given a vector x ∈ X, there
is always a family of polymers Γ ∈ I(X) with σ(Γ) = x. Assume
that the hypergraph HA[supp(x)] induced by the support of x has
k connected components induced by the sets of edges C1 . . . Ck for
some k ≥ 0. We deduce that the vectors γi with (γi)j = xj for all
j ∈ Ci and (γi)j = 0 otherwise are in C(X) since by definition their
support induces connected subhypergraphs of HA. Hence, for the
family Γ = {γ1, . . . γk} we have σ(Γ) = x.

Finally, observe that for any family Γ ∈ I(X) we have that∏
γ∈Γ w(γ) = w(σ(Γ)). The latter yields

Z(C(X), Φ(·)) =
∑

Γ∈I(X)

∏

γ∈Γ

w(γ)

=
∑

Γ∈I(X)

w(σ(Γ)) =
∑

x∈X

w(x) = w(X),

where the last equality comes from the bijectivity of σ. �

By this polymer representation, we can now apply Theorem 4.1
to prove absolute convergence of log w(X) which yields the follow-
ing.

Lemma 6.3. Let A be an n × m integer matrix, let κ1, . . . , κm ∈
Z>0 and X as in (6.1). Assume the number of nonzero entries in
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every row of A does not exceed r for some r ≥ 2 and the number
of nonzero entries in every column of A does not exceed c for some
c ≥ 1. Let w = max{|w1|, . . . , |wm|} and κ = max{κ1, . . . , κm}. If
w ≤ ((re + 1)cκe1/2)−1, then log w(X) converges absolutely.

Proof. Consider the polymer representation of w(X) appearing
in Lemma 6.2. Based on the definition of w and w ≤ 1 we deduce
that for every γ ∈ C(X) it holds w

xj

j ≤ w for all j ∈ supp(γ).

Thus, Φ(γ) = w(γ) ≤ w|E(γ)|. To apply Theorem 4.1 consider an
arbitrary fixed polymer γ ∈ C(X) and denote by Cγ(i) = |{γ′ ∈
C(X) | γ′

� γ, |E(γ)| = i}| the number of polymers of size i
incompatible with γ. As in the previous bounds, we choose a(γ′) =
α|E(γ′)| where α ∈ R>0 will be chosen later in order to optimise
the bound.

∑

γ′�γ

|Φ(γ′)|ea(γ′) ≤
∑

γ′�γ

w|E(γ′)|ea(γ′)

≤
m∑

i=1

Cγ(i)wieαi.

Observe that in the hypergraph representation r denotes the
maximum degree of HA and c denotes the maximum hyperedge
size of HA. Further observe that a hypergraph H = (V,E) is
also a hypergraph H ′ = (E, V ) with the same underlying bipartite
graph representation, i.e. GH = GH′ . Now we use (Liu et al. 2018,

Corollary 3.8) to deduce that there are at most (erc)i−1

2
κi many

hyperedge-coloured connected hyperedge-induced subhypergraphs
of HA with i hyperedges that contain a fixed hyperedge. The latter
corollary applies as coloured hypergraphs fall into the definition
of insects (Liu et al. 2018, Definition 3.8). This bound implies

Cγ(i) ≤ (erc)i−1

2
κi|V (γ)|, which gives

∑

γ′�γ

|Φ(γ′)|ea(γ′) ≤
m∑

i=1

(erc)i−1

2
κi|V (γ)|wieαi

≤ |V (γ)|
2rce

m∑

i=1

(eα+1rcκw)i.
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We apply Theorem 4.1 and it remains to identify the values of
w for which the following holds,

|V (γ)|
2rce

m∑

i=1

(eα+1rcκw)i ≤ α|E(γ)|.

Since m can be arbitrarily large, we use the geometric series
formula for the sum on the left-hand side of the above inequality,
hence the above equation is implied by

∞∑

i=0

(eα+1rcκw)i − 1 ≤ 2rceα
|E(γ)|
|V (γ)|

⇐ 1

1 − eα+1rcκw
− 1 ≤ 2rceα

|E(γ)|
|V (γ)| .

We know that in H each hyperedge contains at most c vertices,
therefore for any polymer γ we have |V (γ)| ≤ c|E(γ)|. Using this,
the above inequality is implied by

1

1 − eα+1rcκw
− 1 ≤ 2reα

⇔ eα+1rcκw ≤ 2reα

2reα + 1

⇔ w ≤ 2α

(2reα + 1)cκeα
.

Through derivative analysis, we find this is maximal for 2erα2 +
α − 1 = 0, which resolves to α =

√
8er+1−1

4er
. This brings the final

bound to

w ≤
√

8er + 1 − 1

(
√

8er + 1 + 1)rcκe(
√

8er+1−1)/(4er)+1
.

Choosing α = 1
2

for simplicity instead yields the bound given
in the statement

w ≤ 1

(re + 1)cκe1/2
.

�
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When X is restricted to vectors in {0, 1}m Barvinok & Regts
(2019, Theorem 1.1) using a different technique were able to ob-
tain the improved bound of w ≤ 0.46

r
√

c
. Furthermore given an inte-

ger κ > 1 for X ⊆ (Z/κZ)m, Barvinok & Regts (2019, Theorem
1.2) showed the bound w ≤ 0.46

(κ−1)r
√

c
. The bounds for w(X) yield

smaller regions than the theorems of Barvinok & Regts but are
applicable to a broader class of sets X. As a possible application
of their theorem, they give a polynomial expressing perfect match-
ings in terms of their distance from a given perfect matching. As
we show in the next section, we can utilise the type of constraints
perfect matchings impose and obtain a better bound by using our
polymer approach.

6.1. Improved zero-free regions for a perfect matching
polynomial. Given a k-hypergraph H = (V,E) and a perfect
matching M ⊆ E, as we discussed in the introduction for graphs,
we define the perturbative perfect matching polynomial expressing
the distance to M in the following way

Zpm(H,M, z) =
∑

σ∈{0,1}E

∏

v∈V

f(σ|E(v))z
|σΔσM |.

Here, σM ∈ {0, 1}E denotes the signature corresponding to M ,
σΔσ̄ = {e ∈ E | σ(e) �= σ̄(e)} for any two assignments σ, σ̄ ∈
{0, 1}E and f is the “exactly one” function. Note that finding a
perfect matching on a k-hypergraph with k ≥ 3 is NP-complete
(see e.g. Ausiello et al. 1999), therefore we assume that M is given.
Barvinok & Regts (2019) prove that for |z| ≤ 0.46

Δ
√

k
this polynomial

has no roots. When the k-hypergraph is k-partite, this can be
improved to |z| ≤ 1√

Δ−1
(Barvinok 2019). By using our technique,

we improve the general bound to |z| ≤ ((Δ − 1 + k)e)−1 for any
k-hypergraph of maximum degree Δ.

Let H = (V,E) be a k-hypergraph of maximum degree Δ.
Let G = (VL, VR, E) be the corresponding bipartite graph, where
VL = V (H), VR = E(H) and E(G) = {(u, e) | u ∈ V (H), e ∈
E(H) and u ∈ e}. Let ΔL = Δ be the maximum degree of the
vertices in VL and ΔR = k be the maximum degree of the vertices
in VR. Any perfect matching M ′ in H can be seen as an assignment
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σM ′ : VR → {0, 1}, with σM ′(v) = 1 if and only if v ∈ M ′. Let M
be the “ground” perfect matching for H. Hence, M ⊆ VR in the
bipartite graph G.

Given a perfect matching M ′, let EM ′ = {v ∈ VR | σM(v) �=
σM ′(v)} and consider the subgraph G[SM ′ ] induced by the set
SM ′ = EM ′ ∪⋃

v∈EM′ ΓG(v). We rewrite Zpm in terms of the bipar-
tite graph G as

Zpm(G,M, z) =
∑

M ′∈PM(H)

z|VR(G[SM′ ])|,

where PM(H) denotes the set of perfect matchings of H. Observe
that for each M ′ ∈ PM(H), G[SM ′ ] has the property that each
vertex v ∈ V (G[SM ′ ]) ∩ VL has exactly one neighbour in M and
one neighbour in VR \ M .

We are now ready to define a polymer model for Zpm(G,M, z).
The set of polymers C(G) contains the connected subgraphs of
G such that every vertex in VL has exactly one neighbour in M
and exactly one neighbour in VR \ M and that for every v ∈ VR,
ΓG(v) ⊆ V (γ). We say that two polymers γ �∼ γ′ are incompatible
if V (γ) ∩ V (γ′) �= ∅. Given a polymer γ and z ∈ C, we define
Φpm(γ, z) = z|VR(γ)|.

Lemma 6.4. Let H = (V,E) be a finite hypergraph and let G be
the corresponding bipartite graph. For all z ∈ C, Zpm(H,M, z) =
Z(C(G), Φpm(·, z)).

Proof. Since Zpm(H,M, z) = Zpm(G,M, z), it suffices to show
that Zpm(G,M, z) = Z(C(G), Φpm(·, z)). We now give a bijection
between the perfect matchings M ′ and the families of polymers Γ,
such that z|VR(G[SM′ ])| =

∏
γ∈Γ Φpm(γ, z).

The ground matching M corresponds to the empty set. Given
a perfect matching M ′ observe that the connected components of
G[SM ′ ] are in fact polymers in C(G), say γ1, γ2, . . . , γj, where j ≥ 0.
Since γ1, γ2, . . . , γj are the connected components of G[SM ′ ], they
are pairwise compatible. From the definition of Φpm(γ, z), it follows
that

∏j
i=1 Φpm(γi, z) =

∏
i=1 z|VR(γi)| = z|VR(G[SM′ ])|. �

In order to apply Theorem 4.1, we will use the following lemma.
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Lemma 6.5. Let G = (VL, VR, E) be a bipartite graph, where ΔL

is the maximum degree of the vertices in VL, such that the vertices
in VR have degree at least 2. Let M ⊆ VR, such that every vertex
v ∈ VL has exactly one neighbour in M . Given a vertex u ∈ VL,
the number of connected induced subgraphs G′ of G such that the
following hold:

(i) u ∈ V (G′);

(ii) |V (G′) ∩ VR| = k;

(iii) for each v ∈ VR, ΓG(v) ⊆ V (G′); and

(iv) each v ∈ (V (G′)∩VL) has exactly one neighbour in V (G′)∩M
and exactly one neighbour in V (G′) ∩ (VR \ M)

is at most (ΔL − 1)k−1.

Proof. Let V ′
L = V (G′) ∩ VL and V ′

R = V (G′) ∩ VR. Since
u ∈ VL, we have u ∈ V ′

L. Condition 4 implies that in G′ the
vertex u has exactly two neighbours vM ∈ M and vM̄ /∈ M . By
the definition of M the choice of vM is fixed and there are at most
ΔL − 1 choices for vM̄ ∈ VR \ M . Since G′ is connected, either
k = 2 and the lemma is proved, or there must exist at least one
other vertex u1 ∈ ΓG′(vM)∪ΓG′(vM̄). As in the case of u, Condition
4 implies the existence of a fixed neighbour of u1 in M and at most
ΔL−1 choices for a neighbour of u1 in VR\M . Proceeding with this
argumentation for each vertex in V ′

L we observe that each vertex
in V ′

R \ M is a result of one of the up to ΔL − 1 choices for each
vertex in V ′

L. Since there must be at least one vertex v ∈ M whose
choice is fixed, the number of the induced subgraphs G′ is at most
(ΔL − 1)k−1. �

Lemma 6.6. For all k-hypergraphs H with maximum degree Δ
and a given ground perfect matching M , Zpm(H,M, z) has no roots
in |z| ≤ ((Δ − 1 + k)e)−1.

Proof. Let H be a k-hypergraph with G = (VL, VR, E) its cor-
responding bipartite graph, where ΔL = Δ and ΔR = k. Consider
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the polymer model with Z(C(G), Φpm(·, z)) = Zpm(H,M, z). As in
the previous absolute convergence proofs, we apply Theorem 4.1
for Z(C(G), Φpm(·, z)) by choosing a(γ) = α|VR(γ)|, where α ∈ R≥0

to be chosen later. Let Cγ
pm(i) be the number of polymers γ′ �∼ γ

with |VR(γ′)| = i. We have

∑

γ′�γ

|Φ(γ′)|ea(γ′) ≤
∑

γ′�γ

|z||VR(γ′)|eα|VR(γ′)|

≤
|VR|∑

i=1

Cγ
pm(i)|z|ieαi.

We observe that each polymer γ is a connected induced sub-
graph of G that fulfils Conditions 3 and 4 of the statement of
Lemma 6.5, with M = M0. Therefore, by Lemma 6.5 we have
Cγ

pm(i) ≤ |VL(γ)|(ΔL − 1)i−1. In order to prove the lemma, it suf-
fices to show that

|VR|∑

i=1

|VL(γ)|(ΔL − 1)i−1|z|ieαi ≤ α|VR(γ)|

⇔ |VL(γ)|
ΔL − 1

|VR|∑

i=1

(ΔL − 1)i|z|ieαi ≤ α|VR(γ)|.

Since ΔR is the maximum degree of each vertex in VR, for each
polymer γ, 1

ΔR
≤ |VR(γ)|

|VL(γ)| . It remains to show

|VR|∑

i=0

(ΔL − 1)i|z|ieαi ≤ α(ΔL − 1) + ΔR

ΔR

.

Since |VR| might be arbitrarily large, using the formula for ge-
ometric series, the above inequality is implied by

1

1 − (ΔL − 1)eα|z| ≤ α(ΔL − 1) + ΔR

ΔR

⇔ (ΔL − 1)eα|z| ≤ 1 − ΔR

α(ΔL − 1) + ΔR
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⇔ (ΔL − 1)eα|z| ≤ α(ΔL − 1)

α(ΔL − 1) + ΔR

⇔ |z| ≤ α

(α(ΔL − 1) + ΔR)eα
.

Substituting Δ = ΔL and k = ΔR, we obtain

|z| ≤ α

(α(Δ − 1) + k)eα
.

The optimal bound can be found by maximising the function
f(α) = α

(α(Δ−1)+k)eα . We observe that

f ′(α) =
(α(Δ − 1) + k)eα − α((Δ − 1)eα + (α(Δ − 1) + k)eα)

((α(Δ − 1) + k)eα)2
.

Solving f ′(α) = 0 for α > 0 yields α =

√
k2+4(Δ−1)k−k

2(Δ−1)
and,

furthermore, f ′′(α) < 0 at this value.
Substituting we obtain the bound

|z| ≤
√

k2 + 4(Δ − 1)k − k

(Δ − 1)(
√

k2 + 4(Δ − 1)k + k)e

√
k2+4(Δ−1)k−k

2(Δ−1)

.

Setting α = 1 for simplicity yields the bound |z| ≤ ((Δ − 1 +
k)e)−1 given in the statement of the lemma. �

6.1.1. Perfect matchings on graphs. When H = G is a graph
of maximum degree Δ, instead of a hypergraph, we obtain even
better bounds for Zpm(G,M, z). Since perfect matchings on graphs
G are Holants, we recall the definition of our polymer system we
employed for the study of the Holant framework. That is, C(G)
is the set of connected subgraphs containing at least one edge and
for two polymers γ, γ′ ∈ C(G) we defined γ �∼ γ′ if and only if
V (γ) ∩ V (γ′) �= ∅. Furthermore, we identified an assignment σ ∈
{0, 1}E of edges with a vector in {0, 1}|E| by assuming an inherent
enumeration of the edges. In fact, we can use this model to consider
the distance to a ground state different from the empty set. To
this end, for v ∈ V we define the vertex constraints fv to pick
only assignments corresponding to cycles alternating between the



   11 Page 44 of 52 K. Casel et al. cc

perfect matching M and the assigned edgeset, where we also allow
an empty cycle. Formally, fv assigns 1 to 0 as well as to vectors
1eM

+ 1e for eM ∈ M and e ∈ E(G) \ M with v ∈ eM ∩ e, and 0
otherwise. We define the weight function for a polymer γ ∈ C(G)
and z ∈ C by

Φpm(γ, z) =
∏

v∈V (γ)

fv(1E(γ))z
|E(γ)|.

Lemma 6.7. Zpm(G,M, z) = Z(C(G), Φpm(·, z)) for all z ∈ C and
all finite graphs G = (V,E).

Proof. Every perfect matching corresponds to an assignment
σ ∈ {0, 1}E with f(σ) = 1 that contributes zσΔσM to the partition
function Zpm(G,M, z). The difference σΔσM corresponds to a set
of disjoint cycles, alternating with respect to M . In this way, any
perfect matching σ translates to a set of polymers, each of nonzero
weight, which together yield the value zσΔσM .

Conversely, an incompatible set of polymers Γ ∈ I(G) of nonzero
weight assigned by Φpm translates to a perfect matching by edit-
ing the ground matching M according to the edges altered by the
polymer as follows. The set Γ corresponds to the perfect matching
MΓ = (M \ (M ∩ E(Γ))) ∪ (E(Γ) \ M) which differs from M by
|M ∩ E(Γ))| + |E(Γ) \ M | = |E(Γ)| edges, so

∏
γ∈Γ Φpm(γ, z) =

z|E(Γ)| = zσMΔσMΓ .
In both cases, the empty family {∅} ∈ I(G) corresponds to the

assignment σ = 0 which counts 1 to represent the contribution of
the ground polymer. �

We will now show the following bound, which matches asymp-
totically the bound of Barvinok (2019) for bipartite graphs; how-
ever, our bound applies to all graphs.

Theorem 6.8. For all graphs G of maximum degree Δ, the poly-
nomial Zpm(G,M, z) has no roots in the region {z ∈ C | |z| ≤(√

4.85718 (Δ − 1)
)−1

} and the cluster expansion of its logarithm

converges absolutely.
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Proof. We will again apply Theorem 4.1 to the polymer rep-
resentation Z(C(G), Φpm(·, z)). For the sake of simplicity, we now
restrict this polymer definition to the set of polymers with nonzero
contribution to the partition function. Hence, let

Cpm(G) = {γ ∈ C(G) |
∏

v∈V (γ)

fv(1E(γ)) = 1}

and, therefore, Z(C(G), Φpm(·, z)) = Z(Cpm(G), Φpm(·, z)).
We fix a polymer γ ∈ Cpm(G) and in order to bound the number

of polymers incompatible with γ we denote by Cγ
pm(i) the number

of polymers γ′ �∼ γ with |E(γ′)| = i. First, observe that each
polymer in Cpm(G) has an even number of edges, and more pre-
cisely, |E(γ′) ∩ M | = 1

2
|E(γ′)|. Further, by the special structure of

polymers in Cpm(G) we can estimate |Cγ
pm(i)| better than with the

general Lemma 4.2.
Any γ′ ∈ Cpm(G) with γ′ �∼ γ has to intersect with γ on at least

one of the edges from M . There are exactly 1
2
|E(γ)| choices for

such a common edge in M ∩ E(γ) ∩ E(γ′). Starting with such a
fixed edge from M , γ′ builds a cycle alternating between edges from
E(G) \M and M . As M is a perfect matching, the choice of edges
from E(G) \ M completely determines the edges from M ∩ E(γ′).
Moreover, in a graph of maximum degree Δ there are only Δ − 1
choices to continue from a fixed vertex with edges from E(G) \M .
This yields a total of at most 1

2
|E(γ)|(Δ−1)i/2 polymers in Cγ

pm(i).
We now set a(γ) = α|E(γ)|, where we will choose α > 0 later

in order to improve the bound on the region. By this choice of a(γ)
and with j = i

2
, we obtain

∑

γ′ �∼γ

|Φpm(γ′, z)|ea(γ′) ≤
1
2
|V (G)|∑

j=2

|Cγ
pm(2j)| |z|2j e2αj

≤
1
2
|V (G)|∑

j=2

1

2
|E(γ)|(Δ − 1)j |z|2j e2αj.

In order to apply Theorem 4.1, we are going to choose a bound on
|z| such that
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1
2
|V (G)|∑

j=2

1

2
|E(γ)|(Δ − 1)j |z|2j e2αj ≤ a(γ) = α|E(γ)|,

which is equivalent to

1
2
|V (G)|∑

j=2

(Δ − 1)j |z|2j e2αj ≤ 2α.

We now set q = (Δ − 1) |z|2 e2α, which is equivalent to |z| =√
q

(Δ−1)e2α , and by this choice and the geometric series, we obtain

1
2
|V (G)|∑

j=2

(Δ − 1)j |z|2j e2αj =

1
2
|V (G)|∑

j=2

qj <
1

1 − q
− 1

assuming that q ∈ (0, 1). Hence, we have to choose α such that
1

1−q
− 1 ≤ 2α, which holds exactly if q ≤ 2α

1+2α
. We insert this

choice of q into the chosen bound on |z| and obtain

(6.9) |z| ≤
√

2α

1 + 2α

1

(Δ − 1)e2α
.

Define g(α) =
√

2α
1+2α

1
(Δ−1)e2α . The derivative of g has a positive

root at α = −1+
√

5
4

and, furthermore, f ′′(α) < 0 at this point.

Therefore, choosing α = −1+
√

5
4

maximises the bound of (6.9)
to

|z| ≤
√√√√ 3 − √

5

2(Δ − 1)
(
e

√
5−1
2

) ≈
(√

4.85718 (Δ − 1)
)−1

.

�

Theorem 1.3 is an immediate corollary of the above theorem
together with Theorem 2.5.
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Péter Csikvári & Mohammad Reza Oboudi (2011). On the roots
of edge cover polynomials of graphs. European Journal of Combinatorics
32(8), 1407 – 1416.

Martin Dyer & Catherine Greenhill (1999). Random walks on
combinatorial objects. In Surveys in Combinatorics 1999, 101–136.

Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Green-

hill & Mark Jerrum (2004). The Relative Complexity of Approxi-
mate Counting Problems. Algorithmica 38(3), 471–500.

Sacha Friedli & Yvan Velenik (2017). Statistical Mechanics of
Lattice Systems: A Concrete Mathematical Introduction. Cambridge
University Press.

Andreas Galanis, Qi Ge, Daniel Stefankovic, Eric Vigoda &
Linji Yang (2014). Improved inapproximability results for counting
independent sets in the hard-core model. Random Structures and Al-
gorithms 45(1), 78–110.



   11 Page 50 of 52 K. Casel et al. cc
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