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Abstract

Abstract polymer models are systems of weighted objects, called polymers, equipped

with an incompatibility relation. An important quantity associated with such models is

the partition function, which is the weighted sum over all sets of compatible polymers.

Various approximation problems reduce to approximating the partition function of a polymer

model. Central to the existence of such approximation algorithms are weight conditions of

the respective polymer model. Such conditions are derived either via complex analysis or

via probabilistic arguments. We follow the latter path and establish a new condition—the

clique dynamics condition—, which is less restrictive than the ones in the literature. We

introduce a new Markov chain where the clique dynamics condition implies rapid mixing

by utilizing cliques of incompatible polymers that naturally arise from the translation of

algorithmic problems into polymer models. This leads to improved parameter ranges for

several approximation algorithms, such as a factor of at least 2
1/𝛼

for the hard-core model on

bipartite 𝛼-expanders.

Keywords: Markov chain, partition function, Gibbs distribution, approximate

counting, abstract polymer model



1 Introduction

Statistical physics models systems of interacting particles as probability distributions. This ap-

proach explains a variety of real-world phenomena, including ferromagnetism [21], segrega-

tion [35], and real-world network generation [10]. Characteristic of such systems is that they

undergo phase transitions depending on some external parameter. Such phase transitions have

been recently linked to the tractability of computational tasks, leading to a two-way exchange:

tools from statistical physics are used to explain computational phenomena, and tools from com-

puter science are used to explain physical phenomena. An established technique for investigating

these phase transitions that involves translating the states of a spin system as perturbations from

a ground state [16, Chapter 7] has been recently introduced to computer science as an algorithmic

tool for computational tasks of spin systems [20].

To motivate the definition of the central mathematical object of this article, we give a high-level

description of how to model a spin system in terms of perturbations from a ground state. Assume

we study a 𝑞-state spin system on a graph 𝐺 . The states of the spin system are usually mappings

𝜎 : 𝑉 (𝐺) → 𝑄 from the vertices of 𝐺 to some finite set 𝑄 . Each such configuration 𝜎 has a weight

𝑤 (𝜎) ∈ R≥0 and the sum of the weights of all the configurations𝑍 =
∑
𝜎 𝑤 (𝜎) is called the partition

function. For each configuration 𝜎 , the probability distribution 𝜇 that characterizes our system

yields 𝜇 (𝜎) = 𝑤 (𝜎)/𝑍 . Let 𝜎0 be the ground state we use in this translation. Given a configuration

𝜎 , we identify the set of vertices 𝐷 ⊆ 𝑉 (𝐺) where, for each 𝑣 ∈ 𝐷 , we have 𝜎0(𝑣) ≠ 𝜎 (𝑣). Observe
that we can uniquely identify this configuration by a set 𝛤 whose elements 𝛾 consist of a connected

component of 𝐺 [𝐷] together with the restriction of 𝜎 on this component. Furthermore, we assign

a weight 𝑤𝛾 to each 𝛾 ∈ 𝛤 , such that

∏
𝛾 ∈𝛤 𝑤𝛾 = 𝑤 (𝜎)/𝑤 (𝜎0). Thus, provided that all such sets

of pairs 𝛤 contain no two pairs 𝛾 , 𝛾 ′ that are incompatible, i.e. 𝛤 cannot be uniquely decoded

to an assignment because for example 𝛾 and 𝛾 ′ map the same vertex to a different element in 𝑄 ,

there is a bijection between the configurations 𝜎 and the sets 𝛤 . Furthermore, the distribution 𝜇 is

expressed as a distribution over the sets 𝛤 , since it retains the property that the probability of 𝛤 is

proportional to its weight. Such a construction suggests the following definition.

A polymer model P = (C, 𝑤, ≁) is a tuple consisting of a non-empty, countable
1
set C, a set

𝑤 = {𝑤𝛾 }𝛾 ∈C of positive real weights and a reflexive and symmetric relation ≁ ⊆ C2. The elements

𝛾 ∈ C are called polymers. The relation ≁ is called the incompatibility relation and, for 𝛾,𝛾 ′ ∈ C,
we say that 𝛾 and 𝛾 ′ are incompatible if 𝛾 ≁𝛾 ′, and that they are compatible otherwise. We call

a finite subset 𝛤 ⊆ C a polymer family if and only if all polymers of 𝛤 are pairwise compatible.

Given a polymer model P, let F (P) denote the set of all polymer families of P. Note that F (P) is
countable since the set of finite subsets of a countable set is countable. The partition function of P
is defined as

𝑍 (P) =
∑︁

𝛤 ∈F (P)

∏
𝛾 ∈𝛤

𝑤𝛾 , (1)

which we require to be finite. Further, theGibbs distribution of P is the probability distribution 𝜇 (P)

1
In our applications, C is finite.
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over F (P) such that, for all 𝛤 ∈ F (P) ,

𝜇 (P) (𝛤 ) =
∏
𝛾 ∈𝛤 𝑤𝛾

𝑍 (P) . (2)

A helpful interpretation for understanding the definition of a polymer model is the following.

Ignoring the reflexivity of ≁, we view the pair (C, ≁) as a graph, which we call the polymer graph.
We observe that the families of F (P) correspond to the independent sets of (C, ≁). Thus, for the
special case where 𝑤𝛾 = 𝜆 ∈ R, for each 𝛾 ∈ C, the distribution 𝜇 is the hard-core model [34] on

the polymer graph and 𝑍 (P) is the independence polynomial [32].

We aim to maximize the parameter range for which the following two computational tasks can

be done in polynomial time.

(1) Approximately sampling from the Gibbs distribution of a polymer model, i.e., return a

random family 𝛤 from a distribution with total-variation distance at most 𝜀 from 𝜇 (P) .

(2) Returning an estimate 𝑍 , such that (1−𝜀)𝑍 (P) ≤ 𝑍 ≤ (1+𝜀)𝑍 (P) with constant probability
greater than

1

2
.

1.1 Known Algorithmic Results

There is an expanding list of results that utilize abstract polymer models to obtain efficient

approximation and sampling algorithms for new parameter regimes for various spin systems on

graphs. This line of research was initiated by Helmuth et al. [20], who used polymers to obtain

polynomial-time approximation and sampling algorithms at a regime where the weight of the

interactions of particles with an external field is low. For problems that are hard to approximate

on general inputs, polynomial-time approximation algorithms are derived by utilizing restrictions

upon the input graph of a spin system. Examples include spin systems on expander graphs [18,

22, 23, 27], the hard-core model on unbalanced bipartite graphs [6], and the ferromagnetic Potts

model on 𝑑-dimensional lattices [4]. Furthermore, polymer models have been used to approximate

and sample edge spin systems (holant problems) at low temperatures [7].

Translating a spin system on a graph𝐺 with𝑛 vertices into an abstract polymer model commonly

results in an exponential number of polymers in terms of 𝑛—as can be observed in our initial

example. However, we are interested in approximation and sampling algorithms with a runtime

polynomial in 𝑛. There are two main approaches for such algorithms.

(i) Cluster Expansion This approach considers complex weights for the polymers and is based

on an infinite series expansion of ln𝑍 (the cluster expansion). The essential element for polynomial-

time computation is a theorem of Kotecký and Preiss [26, Theorem 1], a condition for establishing

absolute convergence of the cluster expansion. By satisfying this condition, the cluster expansion is

truncated to its most significant terms, obtaining an 𝜀-additive approximation for ln𝑍 . Computing

the significant terms is achieved by enumerating connected induced subgraphs of the polymer
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graph of small size. By an algorithm of Patel and Regts, the enumeration takes polynomial time in

terms of the input graph of the spin system [31]. The 𝜀-additive approximation of ln𝑍 immediately

gives a multiplicative 𝜀-approximation for 𝑍 . The runtime of this approach is commonly 𝑛O(log𝛥 ) ,
where 𝛥 is the maximum degree of the input graph 𝐺 for the spin system and 𝑛 = |𝑉 (𝐺) |. Based
on an approximation algorithm for 𝑍 , self-reducibility of the polymer model yields an approximate

sampler for 𝜇 (P) [20].

(ii) Markov Chain Monte Carlo Initiated by Chen et al. [8], this approach defines a Markov

chain with state space F (P) and stationary distribution 𝜇 (P) . The Markov chain requires the

polymer model to have originated from a spin system on a graph 𝐺 with 𝑛 vertices. Iteratively,

the chain samples a polymer 𝛾 with probability proportional to its weight 𝑤𝛾 and then adds or

removes 𝛾 from its state if possible. When the mixing condition [8, Definition 1] is satisfied, the

Markov chain converges to 𝜇 (P) after O(𝑛 log𝑛) iterations. The mixing condition matches a

convergence condition arising from an analysis by Fernández et al. [14] of another stochastic

process of polymers on lattices. An 𝜀-approximate sampler for 𝜇 (P) is obtained by simulating the

Markov chain. The computational challenge for this approach is to sample the polymer 𝛾 in order

to perform a transition of the Markov chain. As Chen et al. [8] show, this can be done in expected

constant time provided the sampling condition [8, Definition 4] is satisfied. This results in an

O(𝑛 log𝑛) algorithm for sampling from the Gibbs distribution of a spin system. Using Simulated

Annealing, Chen et al. convert this sampler into a randomized approximation scheme (FPRAS) for

𝑍 that runs in expected O

(
𝑛2 log𝑛

)
time.

Comparison of Established Conditions for the Methods Above A number of conditions for

the convergence of the cluster expansion have appeared in the literature [11, 15, 26]. The condition

of Fernández and Procacci [15] is the least restrictive among them, i.e., the other conditions imply

it. Thus, using the Fernández–Procacci condition, one could potentially obtain approximation

algorithms for broader parameter ranges than the ones obtained by using, e.g., the Kotecký–Preiss

condition [26]. However, the condition by Kotecký and Preiss is convenient to apply in polymer

models of vertex spin systems and comes with implications on the rate of convergence of the

cluster expansion used in algorithmic settings. When compared to cluster expansion conditions

(restricted to non-negative real weights), the mixing condition of Chen et al. [8] is less restrictive

than the Kotecký–Preiss condition, however, it is incomparable with the Fernández–Procacci

condition. Note that the fast run-times of Chen et al. [8] are dependent on the sampling condition,

which imposes the largest restriction on the parameter range of the applications it is used for.

1.2 Our Results

We study a new Markov chain (𝑋𝑡 )𝑡 ∈N for abstract polymer models with stationary distribu-

tion 𝜇 (P) , called the polymer clique dynamics. The dynamics of our Markov chain are based on a

clique cover, i.e., a set 𝛬 = {𝛬𝑖}𝑖∈[𝑚] with
⋃
𝛬 = C such that the polymers in each clique 𝛬𝑖 are

pairwise incompatible. Note that families of compatible polymers contain at most one polymer per
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clique. At each step, our Markov chain chooses 𝑖 ∈ [𝑚] uniformly at random and samples a family

in 𝛬𝑖 according to the distribution 𝜇 |𝛬𝑖 defined as follows. For 𝛾 ∈ 𝛬𝑖 , we have 𝜇 |𝛬𝑖 ({𝛾}) = 𝑤𝛾/𝑍 |𝛬𝑖
and, for the empty set, 𝜇 |𝛬𝑖 (∅) = 1/𝑍 |𝛬𝑖 , where 𝑍 |𝛬𝑖 = 1 +∑

𝛾 ∈𝛬𝑖 𝑤𝛾 . If the empty family is chosen

and 𝑋𝑡 contains a polymer from 𝛬𝑖 , then the chain removes this polymer. If the family chosen

contains a polymer, then, if possible, the chain adds this polymer to its state. For a detailed

description of our chain, please refer to Definition 7.

Our chain can be viewed as a generalization of the single-site Glauber dynamics (cf. [13, in-

sert/delete chain]). Any abstract polymer model has a trivial clique cover, where each clique

contains exactly one polymer. The clique dynamics with the trivial clique cover coincides with

the Glauber dynamics. Clique covers with a much smaller number of cliques than the number of

polymers arise naturally from the translation of spin systems into polymer models. For example,

the translation we discussed earlier in the introduction yields a clique cover with 𝑛 cliques, one

for each vertex in the original graph𝐺 . Since the number of polymers is commonly exponential in

the size of 𝐺 , our chain utilizes that a family of compatible polymers may contain at most one

polymer from each polymer clique. The chain of Chen et al. [8] also utilizes this fact, however, in

a more restricted setting and with a different sampling distribution for each clique.

Central to our mixing time analysis for this chain is the following condition.

▶ Condition 1 (Clique Dynamics). Let P = (C, 𝑤, ≁) be a polymer model, and let 𝑓 : C → R>0.

We say that P satisfies the clique dynamics condition with 𝑓 if and only if, for all 𝛾 ∈ C,∑︁
𝛾 ′∈C : 𝛾 ′ ≁𝛾,

𝛾 ′≠𝛾

𝑓 (𝛾 ′)
𝑤𝛾 ′

1 +𝑤𝛾 ′
≤ 𝑓 (𝛾) . ◀

We show that when the clique dynamics condition is satisfied, the mixing time of our Markov

chain is polynomial in the number of cliques in the clique cover and logarithmic in 𝑓 .

▶ Theorem 2. Let P = (C, 𝑤, ≁) be a polymer model, let 𝛬 be a polymer clique cover of P
with size𝑚, and let 𝑍max = max𝑖∈[𝑚]{𝑍 |𝛬𝑖 }. Further assume that P satisfies the clique dynamics

condition with function 𝑓 , and let 𝑓max = max𝛾 ∈C{𝑓 (𝛾)} and 𝑓min = min𝛾 ∈C{𝑓 (𝛾)}.
Then the polymer clique dynamicsM(P) has the unique stationary distribution 𝜇 (P) and, for

all 𝜀 ∈ (0, 1], it holds that

𝜏M(P) (𝜀) ∈ O
(
𝑚3𝑍max ln

(
𝑚2𝑍 2

max

𝑓max

𝑓min

)
2

ln

(
1

𝜀

))
. ◀

When restricted to the setting of Chen et al. [8], the clique dynamics condition is implied by

the mixing condition and thus less restrictive. Due to that weaker assumptions, our mixing time

bound is slightly worse than the one proposed in [8]. The function 𝑓 in our condition makes it

easily comparable to conditions for cluster expansion. Unlike the Kotecký–Preiss condition [26],

the clique dynamics condition allows for a more flexible choice of 𝑓 in order to obtain a greater

parameter range for the algorithmic applications (cf. [7, Remark 2.4]).
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We further show that the clique dynamics condition is more general than the Fernández–

Procacci [15] condition for the cluster expansion—and consequently more general than the

Kotecký–Preiss condition [26] (see Section 3.1). An implication of our analysis is that cluster

expansion conditions imply our condition for the mixing time of clique dynamics. To the best

of our knowledge, this is the first connection between cluster expansion and mixing times of

Markov chains for polymer models and might be of independent interest to the statistical-physics

community. This is in line with the special case of the hard-core model, where the parameter

range on the reals has a bigger radius than on the complex plane [32].

The clique dynamics condition allows us to prove the following theorem for approximately

sampling from 𝜇, which is our main algorithmic result.

▶ Theorem 3. Let P = (C, 𝑤, ≁) be a polymer model with polymer clique cover 𝛬 of size𝑚, as-

sumeP and 𝛬 are computationally feasible as stated inDefinition 12, and let𝑍max = max𝑖∈[𝑚]{𝑍 |𝛬𝑖 }.
Further assume that

(a) P satisfies the clique dynamics condition for a function 𝑓 such that, for all 𝛾 ∈ C, it holds
that e

−poly(𝑚) ≤ 𝑓 (𝛾) ≤ e
poly(𝑚)

,

(b) 𝑍max ∈ poly(𝑚), and that,

(c) for all 𝑖 ∈ [𝑚], we can sample from 𝜇 |𝛬𝑖 in time poly(𝑚).

Then, for all 𝜀 ∈ (0, 1], we can 𝜀-approximately sample from 𝜇 in time poly(𝑚/𝜀). ◀

Additionally, as we discuss in Section 4.2, we use self-reducibility on the clique cover as well as

Theorem 3 to obtain an 𝜀-approximation algorithm for the partition function 𝑍 .

▶ Theorem 4. Let P = (C, 𝑤, ≁) be a polymer model with polymer clique cover 𝛬 of size𝑚 such

that P and 𝛬 are computationally feasible as stated in Definition 12. Assume that P satisfies the

conditions of Theorem 3. For all 𝜀 ∈ (0, 1], there is a randomized 𝜀-approximation of 𝑍 computable

in time poly(𝑚/𝜀). ◀

Since it is common for spin systems on graphs with 𝑛 vertices to translate into polymer models

with a clique cover of 𝑛 cliques, Theorems 3 and 4 imply polynomial-time algorithms for their

respective problems. Assumption (a) allows for a broad range in the choice of 𝑓 from Condition 1,

and assumption (b) is commonly satisfied by choosing the parameters such that they satisfy

assumption (a). However, when considering spin systems previously studied in the literature,

assumption (c) is not straightforward to satisfy, as the sizes of the cliques are commonly exponential

in 𝑛 = |𝑉 (𝐺) |. We introduce the clique truncation condition as a way to deal with this requirement

in a general setting.

▶ Condition 5 (Clique Truncation). Let P = (C, 𝑤, ≁) be a polymer model, let 𝛬 be a polymer

clique cover of P with size𝑚, and let |·| be a size function for P as in Definition 15. For all 𝑖 ∈ [𝑚],

5



we say that 𝛬𝑖 satisfies the clique truncation condition for a monotonically increasing, invertible

function 𝑔 : R→ R>0 and a bound 𝐵 ∈ R>0 if and only if∑︁
𝛾 ∈𝛬𝑖

𝑔( |𝛾 |)𝑤𝛾 ≤ 𝐵. ◀

We show that the clique truncation condition allows to reduce the size of each clique to a

polynomial in 𝑛 by removing low-weight polymers from the polymer model.
2
More precisely,

Corollary 19 states that, for an 𝜀-approximation, it is sufficient to consider only polymers 𝛾 with

|𝛾 | ≤ 𝑔−1(𝐵𝑚/𝜀). This allows us to use the algorithm of Patel and Regts [31] to sample from

the Gibbs distribution of each clique by enumerating all its polymers. Table 1 illustrates the

improved conditions for approximation for different algorithmic problems that can be obtained

from combining the clique truncation condition with Theorem 4.

Problem Previous range New range

Hard-core model on

bipartite 𝛼-expanders

𝜆 > (e2𝛥2) 1𝛼 [22] 𝜆 ≥
(
e

0.8
𝛥2

) 1

𝛼

𝑞-state Potts model on

𝛼-expanders

𝛽 >
9/4+ln(𝛥𝑞)

𝛼
[22] 𝛽 ≥ 3/2+ln(𝛥𝑞)

𝛼

Hard-core model on

unbalanced bipartite graphs

6𝛥L𝛥R𝜆R ≤ (1 + 𝜆L)
𝛿
R

𝛥
L [6] 3.3353𝛥L𝛥R𝜆R ≤ (1 + 𝜆L)

𝛿
R

𝛥
L

Perfect matching

polynomial

𝑧 ≤
(√︁

4.8572 (𝛥 − 1)
)−1

[7] 𝑧 ≤
(√︁

2.8399(𝛥 − 1)
)−1

Table 1: Improvement on the parameter ranges of our technique for problems with known ap-

proximation algorithms. Note that for a fair comparison, we refined the calculations of

the bounds in [22] in a similar fashion as in Section 6.

Interplay of Conditions So far, we introduced two major conditions for approximating the

partition function of abstract polymer models, namely the clique dynamics condition and the

clique truncation condition. We briefly want to discuss their interplay.

In Section 5.1 we investigate to what extent an additional condition, besides being computation-

ally feasible (Definition 12) and satisfying the clique dynamics condition, is required to ensure

that the partition function of a polymer model can be approximated efficiently. To this end, we

show that, unless NP = RP, those two conditions are not sufficient to ensure the existence of an

algorithm that takes time polynomial in the size of the used clique cover. The intuition is that,

even if rapid mixing of the clique dynamics is guaranteed, it might be computationally hard to

sample efficiently from each polymer clique without additional assumptions. The clique truncation

2
A similar idea was used for the hard-core model on bipartite expanders in the first arXiv version of [8].
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condition presents a general way to deal with this problem. However, for specific applications of

polymer models, it might be replaced with a different approach using more structural insights.

Besides this theoretical result, it should be noted that in all calculations we did to obtain Table 1,

the parameter regime was mainly determined by the clique dynamics condition. More precisely,

choosing the parameters such that the clique dynamics condition is satisfied always ensured that

the clique truncation condition is also satisfied. Thus, from a practical point of view, the clique

truncation condition usually does not impose any additional restriction. Note that for none of the

problems in the table any computational hardness results are known. This means that there is

currently no way to argue that any of the given bounds is tight, even in terms of the asymptotic

dependency on problem specific parameters, such as the maximum degree 𝛥 or the expansion

parameter 𝛼 . However, in all cases, our approach improves the previously known algorithmic

results by at least a constant factor.

1.3 Recent Results, Other Applications, and Outlook

In this paper, we introduced clique dynamics and demonstrated how they can be applied to

overcome the exponential blow-up resulting from encoding spin systems in polymer models.

An interesting question for future work is whether there are other applications where clique

dynamics can be used in a similar manner. In a subsequent work, we improve the parameter

regime for efficient approximation of the partition function of the continuous hard-sphere model,

using clique dynamics to handle the super-exponential sized graph that results from the applied

discretization scheme [17]. This raises the question if clique dynamics can be applied similarly

to other continuous models from statistical physics to obtain approximation results based on

discretization.

Another direction for future research is to further improve the condition for rapid mixing of

clique dynamics, which is crucial for the efficient algorithmic application. In [17], we prove, using a

recent spectral independence method [1, 9], a version of Condition 1 that involves strict inequality

to guarantee rapid mixing of clique dynamics. Note that such a result could also be obtained by

directly using the path coupling method of Bubley and Dyer [5]. However, as discussed before,

such a strict condition is not comparable to the best known conditions for convergence of the

cluster expansion, such as the Fernández–Procacci condition. Furthermore, we prove in [17] that,

for the case that all polymers have the same weight (which corresponds to a hard-core model

on the polymer graph), clique dynamics are actually rapidly mixing up to the tree threshold of

the polymer graph, which is in general considered a tight bound for local Markov chains [29].

Thus, in the univariate case (and in contrast to the multivariate case), the result based on spectral

independence is strictly better than Condition 1. It would be interesting to get a more theoretical

comparison between the power of both techniques in terms of rapid mixing results. Especially, it

raises the question if a more sophisticated application of the spectral independence method is able

to prove equivalent or even better conditions for rapid mixing of clique dynamics when weights

are not uniform. This would directly lead to further improvements of the results on polymer

models, presented in this work.
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Finally, in a more recent work Blanca et al. [2] introduced a near-linear time perfect sampling

algorithm for polymer models that are based on vertex spin systems. Their algorithm achieves

similar parameter regimes as our approach by combining a coupling from the past argument with

a new percolation based method for sampling polymers that contain a fixed vertex. Note that

the latter could also be incorporated into our Markov chain as an efficient sampling method for

the polymer clique distribution of such vertex spin polymer models, which would improve the

running time that is given in our paper for several applications.

2 Preliminaries

We denote the set of all natural numbers, including 0, by N and the set of all real numbers by R.

For all 𝑛 ∈ N, let [𝑛] = [1, 𝑛] ∩N. If the polymer model P is clear from context, we may drop the

index and write F , 𝑍 , and 𝜇 instead of F (P) , 𝑍 (P), and 𝜇 (P) , respectively.
We use the following formal notion of approximate sampling. Let 𝜈 be a probability distribution

on a countable state space𝛺 . For 𝜀 ∈ (0, 1], we say that a distribution 𝜉 on𝛺 is an 𝜀-approximation
of 𝜈 if and only if 𝑑TV

(
𝜈, 𝜉

)
≤ 𝜀, where 𝑑TV

(
·, ·

)
denotes the total-variation distance. Further, we

say that we can 𝜀-approximately sample from 𝜈 if and only if we can sample from some distribution

𝜉 such that 𝜉 is an 𝜀-approximation of 𝜈 .

For 𝑥 ∈ R>0 and 𝜀 ∈ (0, 1], we call a random variable 𝑋 a randomized 𝜀-approximation for 𝑥
if and only if Pr[(1 − 𝜀)𝑥 ≤ 𝑋 ≤ (1 + 𝜀)𝑥] ≥ 3/4. Note that if 𝑥 is the output to an algorithmic

problem on an instance and independent samples of 𝑋 can be obtained in polynomial time in the

instance size and 1/𝜀, this translates to the definition of an FPRAS.

2.1 Restricted Polymer Models

We base the transitions of our Markov chain for a polymer model (C, 𝑤, ≁) on restricted sets

B ⊆ C. We define the set of all polymer families restricted to B to be F| B = F ∩ 2
B
. Further,

we define the restricted partition function 𝑍 | B to be equation (1) but with F (P) replaced by F| B .
Similarly, we define the restricted Gibbs distribution 𝜇 | B to be a probability distribution over F| B ,
i.e., equation (2) but with 𝑍 (P) replaced by 𝑍 | B . Our restrictions are special sets of polymers,

which we define next.

By definition, for a polymer model, a polymer family 𝛤 cannot contain incompatible polymers.

Thus, when considering a subset B ⊆ C where all polymers are pairwise incompatible, at most

one polymer of B is in 𝛤 . We call such a subset B a polymer clique.
Last, for an𝑚 ∈ N>0, we call a set 𝛬 = {𝛬𝑖}𝑖∈[𝑚] of polymer cliques a polymer clique cover if

and only if

⋃
𝛬 = C, and we call𝑚 the size of 𝛬. Note that the elements of 𝛬 need not be pairwise

disjoint. Further note that, for each 𝑖 ∈ [𝑚], we have

𝑍 |𝛬𝑖 =
∑︁

𝛤 ∈F|𝛬𝑖

∏
𝛾 ∈𝛤

𝑤𝛾 = 1 +
∑︁
𝛾 ∈𝛬𝑖

𝑤𝛾 ,

8



as the polymers of 𝛬𝑖 are pairwise incompatible and thus each non-empty family of 𝛬𝑖 contains a

single polymer. Similarly, the Gibbs distribution restricted to 𝛬𝑖 simplifies to 𝜇 |𝛬𝑖 (∅) = 1/𝑍 |𝛬𝑖 =
1/(1 +∑

𝛾 ∈𝛬𝑖 𝑤𝛾 ) and, for each 𝛾 ′ ∈ 𝛬𝑖 , to 𝜇 |𝛬𝑖 ({𝛾 ′}) = 𝑤𝛾 ′/𝑍 |𝛬𝑖 = 𝑤𝛾 ′/(1 +
∑
𝛾 ∈𝛬𝑖 𝑤𝛾 ).

2.2 Markov Chains

For a Markov chainM with a unique stationary distribution 𝐷 and an 𝜀 ∈ (0, 1], let 𝜏M (𝜀) denote
the mixing time ofM (with error 𝜀). That is, 𝜏M (𝜀) denotes the first point in time 𝑡 ∈ N such that,

for every initial state, the total-variation distance between 𝐷 and the distribution ofM at time 𝑡 is

at most 𝜀.

In order to bound mixing times, we use a theorem by Greenberg et al. [19, Theorem 3.4]. We

state it in a form that better suits our purpose, providing a full proof in Appendix A.

▶ Theorem 6. LetM be an ergodic Markov chain with state space𝛺 and with transition matrix 𝑃

such that, for all 𝑥 ∈ 𝛺 , it holds that 𝑃 (𝑥, 𝑥) > 0. For 𝑑, 𝐷 ∈ R>0, 𝑑 ≤ 𝐷 , let 𝛿 : 𝛺2 → {0} ∪ [𝑑, 𝐷]
be such that 𝛿 (𝑥,𝑦) = 0 if and only if 𝑥 = 𝑦. Assume that there is a coupling between the transitions

of two copies (𝑋𝑡 )𝑡 ∈N and (𝑌𝑡 )𝑡 ∈N ofM such that, for all 𝑡 ∈ N and all 𝑥,𝑦 ∈ 𝛺 , it holds that

E[𝛿 (𝑋𝑡+1, 𝑌𝑡+1) | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ] ≤ 𝛿 (𝑥,𝑦). (3)

Furthermore, assume that there are 𝜅, 𝜂 ∈ (0, 1) such that, for the same coupling and all 𝑡 ∈ N and

all 𝑥,𝑦 ∈ 𝛺 with 𝑥 ≠ 𝑦, it holds that

Pr[|𝛿 (𝑋𝑡+1, 𝑌𝑡+1) − 𝛿 (𝑥,𝑦) | ≥ 𝜂𝛿 (𝑥,𝑦) | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ] ≥ 𝜅. (4)

Then, for all 𝜀 ∈ (0, 1], it holds that

𝜏M (𝜀) ≤
(
ln(𝐷/𝑑) + 2 ln(2)

)
2

ln(1 + 𝜂)2𝜅 ln

(
1

𝜀

)
.

If ln(𝐷/𝑑) ∈ Ω(1), then this bound simplifies to

𝜏M (𝜀) ∈ O
(
ln(𝐷/𝑑)2
ln(1 + 𝜂)2𝜅 ln

(
1

𝜀

))
. ◀

3 Polymer Dynamics

We analyze the following Markov chain for a polymer model with a polymer clique cover.

▶ Definition 7 (Polymer Clique Dynamics). Let P be a polymer model, and let 𝛬 be a polymer

clique cover of P with size𝑚. We defineM(P) to be a Markov chain with state space F . Let
(𝑋𝑡 )𝑡 ∈N denote a (random) sequence of states ofM(P), where 𝑋0 is arbitrary.

Then, for all 𝑡 ∈ N, the transitions ofM(P) are as follows:

9



1: choose 𝑖 ∈ [𝑚] uniformly at random ;

2: choose 𝛤 ∈ F|𝛬𝑖 according to 𝜇 |𝛬𝑖 ;
3: if 𝛤 = ∅ then 𝑋𝑡+1 = 𝑋𝑡 \ 𝛬𝑖 ;
4: else if 𝑋𝑡 ∪ 𝛤 is a valid polymer family then 𝑋𝑡+1 = 𝑋𝑡 ∪ 𝛤 ;

5: else 𝑋𝑡+1 = 𝑋𝑡 ; ◀

Given a polymer model P = (C, 𝑤, ≁) and a polymer Markov chainM(P), let 𝑃 denote the

transition matrix ofM(P), that is, for all 𝛤, 𝛤 ′ ∈ F (P) , the entry 𝑃 (𝛤, 𝛤 ′) denotes the probability
to transition from state 𝛤 to state 𝛤 ′ in a single step. Note that 𝑃 is time-homogeneous and that,

for all 𝛤, 𝛤 ′ ∈ F (P) with 𝑃 (𝛤, 𝛤 ′) > 0, the symmetric difference of 𝛤 and 𝛤 ′ has a cardinality
of at most 1, since the polymer families of a polymer clique are all singletons. Further note

thatM(P) has a positive self-loop probability, as the polymers from a polymer clique are pairwise

incompatible.

The transition probabilities of two neighboring states ofM(P) follow a simple pattern. In order

to ease notation, for all 𝛾 ∈ C, let 𝑧𝛾 =
∑
𝑖∈[𝑚] : 𝛾 ∈𝛬𝑖 1/𝑍 |𝛬𝑖 . For all 𝛤, 𝛤 ′ ∈ F (P) such that there is

a 𝛾 ∈ C, 𝛾 ∉ 𝛤 with 𝛤 ′ = 𝛤 ∪ {𝛾}, it holds that

𝑃 (𝛤, 𝛤 ′) = 1

𝑚

∑︁
𝑖∈[𝑚] :
𝛾 ∈𝛬𝑖

𝜇 |𝛬𝑖 ({𝛾}) =
1

𝑚

∑︁
𝑖∈[𝑚] :
𝛾 ∈𝛬𝑖

𝑤𝛾

𝑍 |𝛬𝑖
= 𝑤𝛾

𝑧𝛾

𝑚
> 0 and that (5)

𝑃 (𝛤 ′, 𝛤 ) = 1

𝑚

∑︁
𝑖∈[𝑚] :
𝛾 ∈𝛬𝑖

𝜇 |𝛬𝑖 ({∅}) =
1

𝑚

∑︁
𝑖∈[𝑚] :
𝛾 ∈𝛬𝑖

1

𝑍 |𝛬𝑖
=
𝑧𝛾

𝑚
> 0.

The polymer clique dynamics is suitable for sampling from the Gibbs distribution of a polymer

model, since the limit distribution of the Markov chain converges to 𝜇.

▶ Lemma 8. Let P be a polymer model. The polymer Markov chainM(P) is ergodic with
stationary distribution 𝜇 (P) . ◀

Proof. First, note thatM(P) is irreducible, as there is a positive probability to go from any polymer

family 𝛤 ∈ F to the empty polymer family ∅ in a finite number of steps by consecutively removing

each polymer 𝛾 ∈ 𝛤 . Similarly, there is a positive probability to go from ∅ to any polymer family

𝛤 ′ ∈ F in a finite number of steps by consecutively adding all polymers 𝛾 ′ ∈ 𝛤 ′.
We proceed by proving that 𝜇 (P) , which we abbreviate as 𝜇, is a stationary distribution ofM(P).

To this end, we show thatM(P) satisfies the detailed-balance condition with respect to 𝜇. That is,

for all 𝛤, 𝛤 ′ ∈ F , it holds that

𝜇 (𝛤 ) · 𝑃 (𝛤, 𝛤 ′) = 𝜇 (𝛤 ′) · 𝑃 (𝛤 ′, 𝛤 ) . (6)

Note that it is sufficient to check equation (6) for all pairs of states with a symmetric difference of

exactly one polymer.
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Let 𝛤, 𝛤 ′ ∈ F and assume without loss of generality that 𝛤 ′ = 𝛤 ∪ {𝛾} for some polymer 𝛾 ∉ 𝛤 .

Note that, by equation (5), 𝑃 (𝛤, 𝛤 ′) = 𝑤𝛾 · 𝑃 (𝛤 ′, 𝛤 ). Further, by definition of the Gibbs distribution,

we have 𝜇 (𝛤 ′) = 𝑤𝛾 · 𝜇 (𝛤 ). Thus, we get

𝜇 (𝛤 ) · 𝑃 (𝛤, 𝛤 ′) = 𝜇 (𝛤 ) ·𝑤𝛾 · 𝑃 (𝛤 ′, 𝛤 ) = 𝜇 (𝛤 ′) · 𝑃 (𝛤 ′, 𝛤 ),

which shows that 𝜇 is a stationary distribution of M(P).
Finally, we argue that M(P) is ergodic. Note that an irreducible Markov chain has a stationary

distribution if and only if it is positive recurrent. In addition, every state of M(P) has a positive
self-loop probability, which implies that the chain is aperiodic. This shows that M(P) is ergodic
and concludes the proof. ■

Recall Condition 1 (clique dynamics) from the introduction. Assuming that the condition holds,

we obtain the following bound on the mixing time ofM(P).

▶ Lemma 9. Let P = (C, 𝑤, ≁) be a polymer model satisfying Condition 1 with function 𝑓 , and

let 𝛬 be a polymer clique cover of P with size𝑚. Then, for all 𝜀 ∈ (0, 1], it holds that

𝜏M(P) (𝜀) ∈ O
©­­«

𝑚3

min𝛾 ∈C{𝑧𝛾 }
ln

©­­«𝑚
max𝛾 ∈C

{
𝑓 (𝛾 )

𝑧𝛾 (1+𝑤𝛾 )

}
min𝛾 ∈C

{
𝑓 (𝛾 )

𝑧𝛾 (1+𝑤𝛾 )

} ª®®¬
2

ln

(
1

𝜀

)ª®®¬. ◀

Proof. We aim to apply Theorem 6, which requires us to define a potential 𝛿 . We do so by utilizing

the function 𝛿 ′ : C → R>0 with 𝛾 ↦→ 𝑓 (𝛾)/
(
𝑧𝛾 (1+𝑤𝛾 )

)
. Let ⊕ denote the symmetric set difference.

For all 𝛤, 𝛤 ′ ∈ F , we define
𝛿 (𝛤, 𝛤 ′) =

∑︁
𝛾 ∈𝛤⊕𝛤 ′

𝛿 ′(𝛾) .

Note that 𝛿 (𝛤, 𝛤 ′) only depends on the symmetric difference of 𝛤 and 𝛤 ′ and that 𝛿 (𝛤, 𝛤 ′) = 0 if

and only if 𝛤 ⊕ 𝛤 ′ = ∅, which is the case only when 𝛤 = 𝛤 ′.
We continue by constructing a coupling between two copies ofM(P), namely between (𝑋𝑡 )𝑡 ∈N

and (𝑌𝑡 )𝑡 ∈N. We couple these chains such that, for each transition,

• both choose the same index 𝑖 ∈ [𝑚] and

• both draw the same polymer family 𝛤 ∈ F|𝛬𝑖 from 𝜇 |𝛬𝑖 .

This constitutes a valid coupling, as each chain transitions according to its desired marginal

transition probabilities.

We now show for all 𝑡 ∈ N and 𝛤, 𝛤 ′ ∈ F that

E[𝛿 (𝑋𝑡+1, 𝑌𝑡+1) | 𝑋𝑡 = 𝛤,𝑌𝑡 = 𝛤 ′ ] ≤ 𝛿 (𝛤, 𝛤 ′) .

Note that this trivially holds if 𝛤 = 𝛤 ′, as the chains 𝑋 and 𝑌 behave identically from then on.

Thus, we are left with the case that 𝛤 ≠ 𝛤 ′, which implies that |𝛤 ⊕ 𝛤 ′ | ≥ 1.
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We introduce the following notation. For all 𝛾 ∈ C, let 𝑁 (𝛾) = {𝛾 ′ ∈ C | 𝛾 ′ ≁𝛾,𝛾 ′ ≠ 𝛾} denote
the neighborhood of 𝛾 . We extend this definition to arbitrary subsets of polymers B ⊆ C by

𝑁 (B) = ⋃
𝛾 ∈B 𝑁 (𝛾) (note that 𝑁 (B) might contain polymers from B).

Let 𝛥 = 𝛤 ⊕ 𝛤 ′, and let 𝛾 ∈ 𝛥. Assume without loss of generality that 𝛾 ∈ 𝛤 . By equation (5),

with probability 𝑧𝛾/𝑚, the chain 𝑋 removes 𝛾 , causing 𝛿 (𝑋𝑡+1, 𝑌𝑡+1) to decrease by at least
3 𝛿 ′(𝛾).

Further, if 𝛾 ∈ 𝛥 \ 𝑁 (𝛥), with probability 𝑤𝛾𝑧𝛾/𝑚, the chain 𝑌 adds 𝛾 and the chain 𝑋 remains in

its state. Again, 𝛿 (𝑋𝑡+1, 𝑌𝑡+1) decreases by 𝛿 ′(𝛾). Note that the case 𝛾 ∈ 𝛤 ′ is exactly symmetric

with 𝑋 and 𝑌 swapped.

Let 𝛿− (𝛤, 𝛤 ′) denote the expected (conditional) decrease of 𝛿 . By the observations above, we

see that

𝛿− (𝛤, 𝛤 ′) =
∑︁
𝛾 ∈𝛥

𝛿 ′(𝛾)
𝑧𝛾

𝑚
+

∑︁
𝛾 ∈𝛥\𝑁 (𝛥 )

𝛿 ′(𝛾)𝑤𝛾
𝑧𝛾

𝑚
=

∑︁
𝛾 ∈𝛥

𝛿 ′(𝛾)
𝑧𝛾

𝑚
(1 +𝑤𝛾 ) −

∑︁
𝛾 ∈𝛥∩𝑁 (𝛥 )

𝛿 ′(𝛾)𝑤𝛾
𝑧𝛾

𝑚
.

Moreover, 𝛿 increases whenever a polymer 𝛾 is added to only one of the chains. This only occurs

if 𝛾 ∈ 𝑁 (𝛥) \ 𝛥 and has probability 𝑤𝛾𝑧𝛾/𝑚 for each such polymer. Similarly to the expected

decrease, we denote the expected increase by 𝛿+(𝛤, 𝛤 ′). We bound

𝛿+(𝛤, 𝛤 ′) ≤
∑︁

𝛾 ∈𝑁 (𝛥 )\𝛥
𝛿 ′(𝛾)𝑤𝛾

𝑧𝛾

𝑚

=
∑︁

𝛾 ∈𝑁 (𝛥 )
𝛿 ′(𝛾)𝑤𝛾

𝑧𝛾

𝑚
−

∑︁
𝛾 ∈𝛥∩𝑁 (𝛥 )

𝛿 ′(𝛾)𝑤𝛾
𝑧𝛾

𝑚

≤
∑︁
𝛾 ∈𝛥

∑︁
𝛾 ′∈𝑁 (𝛾 )

𝛿 ′(𝛾 ′)𝑤𝛾 ′
𝑧𝛾 ′

𝑚
−

∑︁
𝛾 ∈𝛥∩𝑁 (𝛥 )

𝛿 ′(𝛾)𝑤𝛾
𝑧𝛾

𝑚
,

where the first inequality comes from the fact that there might be polymers 𝛾 ∈ 𝑁 (𝛥) \ 𝛥 that

cannot be added by any of both chains.

Together, we obtain

E[𝛿 (𝑋𝑡+1, 𝑌𝑡+1) | 𝑋𝑡 = 𝛤,𝑌𝑡 = 𝛤 ′ ] = 𝛿 (𝛤, 𝛤 ′) + 𝛿+(𝛤, 𝛤 ′) − 𝛿− (𝛤, 𝛤 ′)

≤ 𝛿 (𝛤, 𝛤 ′) +
∑︁
𝛾 ∈𝛥

∑︁
𝛾 ′∈𝑁 (𝛾 )

𝛿 ′(𝛾 ′)𝑤𝛾 ′
𝑧𝛾 ′

𝑚
−

∑︁
𝛾 ∈𝛥

𝛿 ′(𝛾)
𝑧𝛾

𝑚
(1 +𝑤𝛾 )

= 𝛿 (𝛤, 𝛤 ′) +
∑︁
𝛾 ∈𝛥

©­«
∑︁

𝛾 ′∈𝑁 (𝛾 )
𝛿 ′(𝛾 ′)𝑤𝛾 ′

𝑧𝛾 ′

𝑚
− 𝛿 ′(𝛾)

𝑧𝛾

𝑚
(1 +𝑤𝛾 )

ª®¬.
We proceed by showing that, for each 𝛾 ∈ 𝛥, the respective summand in the sum above is at

3
A larger decrease is possible if 𝑌 also removes some polymer 𝛾 ′ ∈ 𝛥. However, we only need a crude lower bound.
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most zero. By the definition of 𝛿 ′, we get

∑︁
𝛾 ′∈𝑁 (𝛾 )

𝛿 ′(𝛾 ′)𝑤𝛾 ′
𝑧𝛾 ′

𝑚
− 𝛿 ′(𝛾)

𝑧𝛾

𝑚
(1 +𝑤𝛾 ) =

1

𝑚

©­«
∑︁

𝛾 ′∈𝑁 (𝛾 )
𝑓 (𝛾 ′)

𝑤𝛾 ′

1 +𝑤𝛾 ′
− 𝑓 (𝛾)ª®¬.

By the definition of 𝑁 (𝛾) and since P satisfies the clique dynamics condition, we bound

1

𝑚

©­«
∑︁

𝛾 ′∈𝑁 (𝛾 )
𝑓 (𝛾 ′)

𝑤𝛾 ′

1 +𝑤𝛾 ′
− 𝑓 (𝛾)ª®¬ =

1

𝑚

©­­­«
∑︁

𝛾 ′∈C : 𝛾 ′ ≁𝛾
𝛾 ′≠𝛾

𝑓 (𝛾 ′)
𝑤𝛾 ′

1 +𝑤𝛾 ′
− 𝑓 (𝛾)

ª®®®¬ ≤ 0.

Consequently, we get that

E[𝛿 (𝑋𝑡+1, 𝑌𝑡+1) | 𝑋𝑡 = 𝛤,𝑌𝑡 = 𝛤 ′ ] ≤ 𝛿 (𝛤, 𝛤 ′) .

We now show that there are values 𝜂, 𝜅 ∈ (0, 1) such that, for all 𝑡 ∈ N and all 𝛤, 𝛤 ′ ∈ F with

𝛤 ≠ 𝛤 ′, it holds that

Pr

[
|𝛿 (𝑋𝑡+1, 𝑌𝑡+1) − 𝛿 (𝛤, 𝛤 ′) | ≥ 𝜂𝛿 (𝛤, 𝛤 ′)

�� 𝑋𝑡 = 𝛤,𝑌𝑡 = 𝛤 ′] ≥ 𝜅. (7)

Note that every polymer family in F has at most𝑚 polymers because it can have at most one

polymer from each polymer clique. Thus, for 𝛥 = 𝛤 ⊕ 𝛤 ′, we bound |𝛥 | ≤ 2𝑚. Consequently,

there is at least one polymer 𝛾 ∈ 𝛥 such that 𝛿 ′(𝛾) ≥ 𝛿 (𝛤, 𝛤 ′)/(2𝑚). Assume without loss of

generality that 𝛾 ∈ 𝛤 . With probability 𝑧𝛾/𝑚, chain 𝑋 deletes 𝛾 , resulting in 𝛿 decreasing by at

least |𝛿 (𝑋𝑡+1, 𝑌𝑡+1) − 𝛿 (𝛤, 𝛤 ′) | ≥ 𝛿 ′(𝛾) ≥ 𝛿 (𝛤, 𝛤 ′)/(2𝑚). Thus, equation (7) is true for 𝜂 = 1/(2𝑚)
and 𝜅 = 𝑧𝛾/𝑚 ≥

(
min𝛾 ∈C{𝑧𝛾 }

)
/𝑚.

It remains is to determine 𝑑, 𝐷 ∈ R>0 such that, for all 𝛤, 𝛤 ′ ∈ F with 𝛤 ≠ 𝛤 ′, it holds that
𝛿 (𝛤, 𝛤 ′) ∈ [𝑑, 𝐷]. Let 𝛥 = 𝛤 ⊕ 𝛤 ′, noting again that |𝛥 | ≤ 2𝑚. We choose

𝑑 ≥ min

𝛾 ∈C
{𝛿 ′(𝛾)} = min

𝛾 ∈C

{
𝑓 (𝛾)

𝑧𝛾 (1 +𝑤𝛾 )

}
and

𝐷 ≤ 2𝑚max

𝛾 ∈C
{𝛿 ′(𝛾)} = 2𝑚max

𝛾 ∈C

{
𝑓 (𝛾)

𝑧𝛾 (1 +𝑤𝛾 )

}
.

Applying Theorem 6 and observing that ln

(
1 + 1

2𝑚

)
2 ≥ 1

4𝑚2
concludes the proof. ■

By combining Lemmas 8 and 9 and observing that 1/𝑍max ≤ 𝑧𝛾 ≤ 𝑚 and 1 ≤ 1 +𝑤𝛾 ≤ 𝑍max for

all polymers 𝛾 ∈ C, we obtain Theorem 2.
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3.1 Comparison to Conditions for Cluster Expansion

In order to set our clique dynamics condition in the context of existing conditions for absolute

convergence of the cluster expansion, we compare it to the condition of Fernández and Procacci [15].

We choose it because it is, to the best of our knowledge, the least restrictive condition for absolute

convergence of the cluster expansion of abstract polymer models. As Fernández and Procacci

show, their condition is an improvement over other known conditions, including the Dobrushin

condition [11] and the Kotecký–Preiss condition [26].

▶Definition 10 (From [15]). LetP = (C, 𝑤, ≁) be a polymermodel, and let𝑁 (𝛾) = {𝛾 ′ ∈ C | 𝛾 ′ ≁𝛾 }.
We say that P satisfies the Fernández–Procacci condition if and only if there is a function 𝑓 : C →
R>0 such that, for all 𝛾 ∈ C, it holds that∑︁

𝛤 ∈F (P)|𝑁 (𝛾 )

∏
𝛾 ′∈𝛤

𝑓 (𝛾 ′)𝑤𝛾 ′ ≤ 𝑓 (𝛾) . ◀

Note that we state the condition slightly differently from the version of the original authors to

ease comparison. The original form is recovered by setting 𝑓 : 𝛾 ↦→ ˆ𝑓 (𝛾)/𝑤𝛾 for some function

ˆ𝑓 : C → R>0. Further, the original version allows 𝑓 (or ˆ𝑓 respectively) to take the value 0. However,

note that if 𝑓 (𝛾) = 0 for any 𝛾 ∈ C, then the condition is trivially void because ∅ ∈ F (P)|𝑁 (𝛾 ) , which

lower bounds the left hand side of the inequality by 1.

The following statement shows how our clique dynamics condition relates to the Fernández–

Procacci condition as given in Definition 10.

▶ Proposition 11. If a polymer model P = (C, 𝑤, ≁) satisfies the Fernández–Procacci condition
for a function 𝑓 , then it also satisfies the clique dynamics condition for the same function. ◀

Proof. Instead of directly workingwith the clique dynamics condition, we show that the Fernández–

Procacci condition implies that ∑︁
𝛾 ′∈C : 𝛾 ′ ≁𝛾

𝑓 (𝛾 ′)𝑤𝛾 ′ ≤ 𝑓 (𝛾),

for all polymers𝛾 ∈ C. By𝑤𝛾 >
𝑤𝛾

1+𝑤𝛾 , we can immediately conclude that clique dynamics condition

is satisfied as well.

Note that ∅ ∈ F (P)|𝑁 (𝛾 ) and, for all 𝛾
′ ∈ C with 𝛾 ′ ≁𝛾 , it holds that {𝛾 ′} ∈ F (P)|𝑁 (𝛾 ) . Thus,∑︁

𝛾 ′∈C : 𝛾 ′ ≁𝛾
𝑓 (𝛾 ′)𝑤𝛾 ′ < 1 +

∑︁
𝛾 ′∈C : 𝛾 ′ ≁𝛾

𝑓 (𝛾 ′)𝑤𝛾 ′ ≤
∑︁

𝛤 ∈F (P)|𝑁 (𝛾 )

∏
𝛾 ′∈𝛤

𝑓 (𝛾 ′)𝑤𝛾 ′ ≤ 𝑓 (𝛾),

which proves the claim. ■

Note that Proposition 11 implies that if a polymer model satisfies the Fernández–Procacci

condition, then Theorem 2 bounds the mixing time of the polymer Markov chain for any given
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clique cover. Further, Proposition 11 and its implied mixing time bounds for the polymer Markov

chain carry over to all convergence conditions that are more restrictive than the Fernández–

Procacci condition, such as the Dobrushin and the Kotecký–Preiss condition. We emphasize that,

even though the Proposition 11 in fact proves that the Fernández–Procacci condition implies the

clique dynamics condition with a strict inequality, it does not necessarily lead to an improved

mixing time bound via a path coupling argument. The reason is that the actual contraction along

a path coupling might not be sufficiently strong.

4 Algorithmic Results

We now discuss how the polymer Markov chainM of a polymer model P with a clique cover

of size𝑚 is used to approximate 𝑍 (P) in a randomized fashion. To this end,M is turned into

an approximate sampler for P (Theorem 3). Then this sampler is applied in an algorithmic

framework (Algorithm 1) that yields an 𝜀-approximation of 𝑍 (P) (Theorem 4). Under certain

assumptions, such as that the restricted partition function of each polymer clique is in poly(𝑚),
the approximation is computable in time poly(𝑚/𝜀).

In order to discuss the computation time of operations on a polymer model rigorously, we need

to make assumptions about the operations we consider and their computational cost.

▶ Definition 12 (Computationally Feasible). We say that a polymer model P = (C, 𝑤, ≁) with
a polymer clique cover 𝛬 of size𝑚 is computationally feasible if and only if all of the following

operations can be performed in time poly(𝑚):

(1) for all 𝑖 ∈ [𝑚] and all 𝛾 ∈ C, we can check whether 𝛾 ∈ 𝛬𝑖 ,

(2) for all 𝛾,𝛾 ′ ∈ C, we can check whether 𝛾 ≁𝛾 ′,

(3) for all 𝛾 ∈ C, we can compute 𝑤𝛾 . ◀

In addition to the operations above, we further assume for all 𝛾 ∈ C and all 𝛤 ∈ F that we can

compute 𝛤 \ {𝛾} and 𝛤 ∪ {𝛾} and that we can decide whether 𝛤 = ∅ in time poly(𝑚).

4.1 Sampling From the Gibbs Distribution

We discuss under what assumptions one can approximately sample from the Gibbs distribution of

a computationally feasible polymer model in time polynomial in the size of the clique cover. Our

main result is the following theorem.

▶ Theorem 3. Let P = (C, 𝑤, ≁) be a polymer model with polymer clique cover 𝛬 of size𝑚, as-

sumeP and 𝛬 are computationally feasible as stated inDefinition 12, and let𝑍max = max𝑖∈[𝑚]{𝑍 |𝛬𝑖 }.
Further assume that

(a) P satisfies the clique dynamics condition for a function 𝑓 such that, for all 𝛾 ∈ C, it holds
that e

−poly(𝑚) ≤ 𝑓 (𝛾) ≤ e
poly(𝑚)

,
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(b) 𝑍max ∈ poly(𝑚), and that,

(c) for all 𝑖 ∈ [𝑚], we can sample from 𝜇 |𝛬𝑖 in time poly(𝑚).

Then, for all 𝜀 ∈ (0, 1], we can 𝜀-approximately sample from 𝜇 in time poly(𝑚/𝜀). ◀

Proof. In order to sample from 𝜇, we utilize the polymer Markov chainM(P) based on 𝛬. By

Theorem 2, it holds that

𝜏M(P) (𝜀) ∈ O
(
𝑚3𝑍max ln

(
𝑚2𝑍 2

max

𝑓max

𝑓min

)
2

ln

(
1

𝜀

))
.

Due to assumptions (a) and (b), it holds that 𝜏M(P) (𝜀) ∈ poly(𝑚/𝜀). It remains to show that each

step ofM(P), as laid out in Definition 7, can be computed in time poly(𝑚). To this end, let 𝑋𝑡
denote the current state of poly(𝑚).
We first sample 𝑖 ∈ [𝑚] uniformly at random. Because of assumption (c), we can then sample

𝛤 ∈ F|𝛬𝑖 according to 𝜇 |𝛬𝑖 in time poly(𝑚). This covers lines 1 and 2.

Regarding Line 3, note that we can check whether 𝛤 = ∅ in time poly(𝑚). Assume that 𝛤 = ∅,
and note that |𝑋𝑡 | ≤ 𝑚 ∈ poly(𝑚), as 𝑋𝑡 contains at most one polymer per polymer clique. In

order to compute 𝑋𝑡 \ 𝛬𝑖 , it suffices to iterate over every 𝛾 ∈ 𝛤 and check if 𝛾 ∈ 𝛬𝑖 , which can be

done in time poly(𝑚), by assumption (1). Once we found 𝛾 ∈ 𝛬𝑖 , we remove it in time poly(𝑚).
Regarding Line 4, assume now that 𝛤 = {𝛾} for some 𝛾 ∈ 𝛬𝑖 . In order to decide if 𝑋𝑡 ∪ 𝛤 is a

valid polymer family, it is sufficient to iterate over all 𝛾 ′ ∈ 𝑋𝑡 and check whether any of them

is incompatible to 𝛾 . By assumption (2) this can be done in time poly(𝑚), which concludes the

proof. ■

By making a slightly stronger assumption about the polymer model, assumptions (a) and (b) of

Theorem 3 are easily satisfied.

▶ Observation 13. If P satisfies, for all 𝛾 ∈ C,∑︁
𝛾 ′∈C : 𝛾 ′ ≁𝛾

𝑓 (𝛾 ′)𝑤𝛾 ′ ≤ 𝑓 (𝛾), (8)

then the clique dynamics condition is satisfied for the same function 𝑓 . Thus, if equation (8)

holds for a function 𝑓 with e
−poly(𝑚) ≤ 𝑓 (𝛾) ≤ e

poly(𝑚)
for all 𝛾 ∈ C, assumption (a) also

holds. Further, by setting 𝛾 to be the polymer in 𝛬𝑖 that minimizes 𝑓 , equation (8) implies that

𝑍 |𝛬𝑖 = 1 +∑
𝛾 ′∈𝛬𝑖 𝑤𝛾 ′ ≤ 2, meaning that assumption (b) is trivially satisfied. ◀

Although the condition above is slightly more restrictive than the clique dynamics condition,

it is more convenient to use for algorithmic applications. It can be seen as a weaker and more

general version of the mixing condition by Chen et al. [8].
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4.2 Approximation of the Partition Function

By now, we mainly discussed conditions for approximately sampling from the Gibbs distribution.

We now discuss how to turn this into a randomized approximation for the partition function.

To this end, we apply self-reducibility [25]. However, note that the obvious way for applying

self-reducibility, namely based on single polymers, might take |C| reduction steps. This is not

feasible in many algorithmic applications of polymer models.

To circumvent this problem, we propose a self-reducibility argument based on polymer cliques.

By doing so, the number of reductions is bounded by the size of the clique cover that is used, thus

adding no major overhead to the runtime of our proposed approximate sampling scheme. Besides

this idea of applying self-reducibility based on cliques, most of our arguments are analogous to

known applications, like in [24, Chapter 3].

We proceed by formalizing clique-based self-reducibility. Let P = (C, 𝑤, ≁) be a polymer model,

and let 𝛬 be a polymer clique cover of P with size𝑚. We define a sequence of subsets of polymers

(𝐾𝑖)0≤𝑖≤𝑚 with 𝐾0 = ∅ and, for 𝑖 ∈ [𝑚], with 𝐾𝑖 = 𝐾𝑖−1 ∪ 𝛬𝑖 .
Further, for all 𝑖 ∈ [𝑚], let 𝜎𝑖 = 𝑍 |𝐾𝑖−1/𝑍 |𝐾𝑖 . Note that 𝑍 |𝐾0

= 1 and 𝑍 |𝐾𝑚 = 𝑍 . Thus,

𝑍 =
∏
𝑖∈[𝑚]

𝑍 |𝐾𝑖
𝑍 |𝐾𝑖−1

=

( ∏
𝑖∈[𝑚]

𝜎𝑖

)−1
.

Hence, when approximating 𝑍 , it is sufficient to focus, for all 𝑖 ∈ [𝑚], on approximating 𝜎𝑖 .

For all 𝑖 ∈ [𝑚], a similar relation holds with respect to the probability that a random 𝛤 ∈ F|𝐾𝑖 is
already in F|𝐾𝑖−1 . More formally, let 𝑖 ∈ [𝑚], and let 𝛤 ∼ 𝜇 |𝐾𝑖 . Note that

E

[
1
{
𝛤 ∈ F|𝐾𝑖−1

}]
=

∑︁
𝛤 ∈F|𝐾𝑖

𝜇 |𝐾𝑖 (𝛤 ) · 1
{
𝛤 ∈ F|𝐾𝑖−1

}
=

∑︁
𝛤 ∈F|𝐾𝑖−1

𝜇 |𝐾𝑖 (𝛤 ) =
𝑍 |𝐾𝑖−1
𝑍 |𝐾𝑖

= 𝜎𝑖 . (9)

We use these observations in order to obtain a randomized approximation of 𝑍 , as given in

Algorithm 1, by iteratively approximating 𝜎𝑖 via sampling from 𝜇 |𝐾𝑖 for all 𝑖 ∈ [𝑚].

Algorithm 1: Randomized approximation of the partition function of a polymer model

Input: polymer model P = (C, 𝑤, ≁), polymer clique cover of P with size𝑚, number of

samples 𝑠 ∈ N>0, sampling error 𝜀𝑠 ∈ (0, 1]
Output: 𝜀-approximation of 𝑍 (P) according to Lemma 14

1 for 𝑖 ∈ [𝑚] do
2 for 𝑗 ∈ [𝑠] do
3 𝛤 ( 𝑗 ) ← 𝜀𝑠-approximate sample from 𝜇 |𝐾𝑖 ;

4 𝜎𝑖 ← 1

𝑠

∑
𝑗∈[𝑠 ] 1

{
𝛤 ( 𝑗 ) ∈ F|𝐾𝑖−1

}
;

5 𝜎 ←∏
𝑖∈[𝑚] 𝜎𝑖 ;

6 return 1/𝜎 ;
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The following result bounds, for all 𝜀 ∈ (0, 1], the number of samples 𝑠 and the sampling error 𝜀𝑠
that are required by Algorithm 1 to obtain an 𝜀-approximation of 𝑍 . Our main approximation

result, Theorem 4, is then implied by this bound.

▶ Lemma 14. Let P = (C, 𝑤, ≁) be a polymer model, let 𝛬 be a polymer clique cover of P
with size 𝑚, let 𝑍max = max𝑖∈[𝑚]{𝑍 |𝛬𝑖 }, and let 𝜀 ∈ (0, 1]. Consider Algorithm 1 for P with

𝑠 = 1 + 125𝑍max𝑚/𝜀2 and 𝜀𝑠 = 𝜀/(5𝑍max𝑚).
Then Algorithm 1 returns a randomized 𝜀-approximation of 𝑍 . ◀

Proof. Let 𝑖 ∈ [𝑚]. We start by bounding 𝜎𝑖 . Note that 𝑍 |𝐾𝑖 ≥ 𝑍 |𝐾𝑖−1 and 𝑍 |𝐾𝑖 ≤ 𝑍 |𝐾𝑖−1𝑍 |𝛬𝑖 . Thus,
1/𝑍max ≤ 𝜎𝑖 ≤ 1.

The remaining proof is split into two parts. First, we bound E[𝜎] with respect to 1/𝑍 . Second,
we bound the absolute difference of 𝜎 and E[𝜎]. Combining both errors concludes the proof.

Bounding E[𝜎]. Note that, for all 𝑖 ∈ [𝑚], it holds that 𝜎𝑖 − 𝜀𝑠 ≤ E[𝜎𝑖] ≤ 𝜎𝑖 + 𝜀𝑠 , since 𝜎𝑖 is the
mean of 𝜀𝑠-approximate samples. By the bounds on 𝜎𝑖 and our choice of 𝜀𝑠 , we get(

1 − 𝜀

5𝑚

)
𝜎𝑖 ≤ E[𝜎𝑖] ≤

(
1 + 𝜀

5𝑚

)
𝜎𝑖 .

Recall that 1/𝑍 =
∏
𝑖∈[𝑚] 𝜎𝑖 . Further, since {𝜎𝑖}𝑖∈[𝑚] are mutually independent, we have

E[𝜎] =
∏
𝑖∈[𝑚] E[𝜎𝑖]. Consequently, since, for all 𝑥 ∈ [0, 1] and all 𝑘 ∈ N>0, it holds that

e
−𝑥/𝑘 ≤ 1 − 𝑥/(𝑘 + 1) [24, Chapter 3], we obtain

e
−𝜀/4 1

𝑍
≤

(
1 − 𝜀

5𝑚

)𝑚 1

𝑍
≤ E[𝜎] ≤

(
1 + 𝜀

5𝑚

)𝑚 1

𝑍
≤ e

𝜀/5 1

𝑍
≤ e

𝜀/4 1

𝑍
. (10)

Bounding the absolute difference of 𝜎 and E[𝜎]. By Chebyshev’s inequality, we get

Pr

[
|𝜎 − E[𝜎] | ≥ 𝜀

5

E[𝜎]
]
≤ 25

𝜀2
Var[𝜎]
E[𝜎]2

=
25

𝜀2

(
E

[
𝜎2

]
E[𝜎]2

− 1
)
.

Again, by the mutual independence of {𝜎𝑖}𝑖∈[𝑚] , we have E[𝜎]2 =
∏
𝑖∈[𝑚] E[𝜎𝑖]2 and E

[
𝜎2

]
=∏

𝑖∈[𝑚] E
[
𝜎𝑖

2
]
. Thus,

Pr

[
|𝜎 − E[𝜎] | ≥ 𝜀

5

E[𝜎]
]
≤ 25

𝜀2
©­«

∏
𝑖∈[𝑚]

E

[
𝜎𝑖

2
]

E[𝜎𝑖]2
− 1ª®¬ =

25

𝜀2
©­«

∏
𝑖∈[𝑚]

(
1 + Var[𝜎𝑖]

E[𝜎𝑖]2

)
− 1ª®¬.

For bounding the variance of 𝜎𝑖 , recall that 𝜎𝑖 =
1

𝑠

∑
𝑗∈[𝑠 ] 1

{
𝛤 ( 𝑗 ) ∈ F|𝐾𝑖−1

}
, where {𝛤 ( 𝑗 ) } 𝑗∈[𝑠 ]

are independently drawn from an 𝜀𝑠-approximation of 𝜇 |𝐾𝑖 . By equation (9), we have

Var[𝜎𝑖] =
1

𝑠2

∑︁
𝑗∈[𝑠 ]

Var

[
1
{
𝛤 ( 𝑗 ) ∈ F|𝐾𝑖−1

}]
=
1

𝑠
E[𝜎𝑖] (1 − E[𝜎𝑖]) .
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Noting that E[𝜎𝑖] ≥
(
1 − 𝜀/(5𝑚)

)
𝜎𝑖 ≥ 4/(5𝑍max), we bound

Var[𝜎𝑖]
E[𝜎𝑖]2

=
1

𝑠E[𝜎𝑖]
− 1

𝑠
≤ 5𝑍max

4𝑠
.

Hence, using that, for all 𝑥 ∈ [0, 1] and all 𝑘 ∈ N>0, it holds that e
𝑥/(𝑘+1) ≤ 1 + 𝑥/𝑘 , we obtain

Pr

[
|𝜎 − E[𝜎] | ≥ 𝜀

5

E[𝜎]
]
≤ 25

𝜀2

((
1 + 5𝑍max

4𝑠

)𝑚
− 1

)
≤ 25

𝜀2

(
e
5𝑍max𝑚/(4𝑠 ) − 1

)
≤ 25

𝜀2
5𝑍max𝑚

4𝑠 − 1 .

Due to our choice of 𝑠 , and using the same approach as in bounding equation (10), with probability

at least 3/4, it holds that

e
−𝜀/4

E[𝜎] ≤
(
1 − 𝜀

5

)
E[𝜎] ≤ 𝜎 ≤

(
1 + 𝜀

5

)
E[𝜎] ≤ e

𝜀/4
E[𝜎] . (11)

Combining the results. Combining equations (10) and (11) yields that

(1 − 𝜀)𝑍 ≤ e
−𝜀/2𝑍 ≤ 1

𝜎
≤ e

𝜀/2𝑍 ≤ (1 + 𝜀)𝑍

with probability at least 3/4, which concludes the proof. ■

We can now prove our main approximation result.

▶ Theorem 4. Let P = (C, 𝑤, ≁) be a polymer model with polymer clique cover 𝛬 of size𝑚 such

that P and 𝛬 are computationally feasible as stated in Definition 12. Assume that P satisfies the

conditions of Theorem 3. For all 𝜀 ∈ (0, 1], there is a randomized 𝜀-approximation of 𝑍 computable

in time poly(𝑚/𝜀). ◀

Proof. The statement follows from Lemma 14, choosing the parameters of Algorithm 1 accordingly.

Note that Theorem 3 assumes that 𝑍max ∈ poly(𝑚). This implies that 𝑠 ∈ poly(𝑚/𝜀) and that we

can sample 𝜀𝑠-approximately from 𝜇 in time poly(𝑚/𝜀). Note that, for all 𝑖 ∈ [𝑚], the same holds

for 𝜇 |𝐾𝑖 , as this only requires the Markov chain to ignore some of the polymer cliques in each

step. ■

5 Truncation of Polymer Cliques

In Section 4, we discuss under which assumptions the partition function of a polymer model P
with polymer clique cover 𝛬 of size𝑚 can be approximated in time polynomial in𝑚 (Theorem 4).

One of the assumptions requires to be able to sample, for all 𝑖 ∈ [𝑚], from 𝜇 |𝛬𝑖 in time poly(𝑚).
Unfortunately, for many algorithmic problems, the number of polymer families of each polymer
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clique is large, and efficient sampling from 𝜇 |𝛬𝑖 is non-trivial. However, as we only require to

approximately sample from 𝜇 |𝛬𝑖 , it is sufficient to ignore polymer families with low probabilities,

that is, with low weight.

To this end, we define a size function for polymers. We aim to remove polymers of large size

(low weight), which still yields a sufficient approximation of 𝜇 |𝛬𝑖 (Lemma 17). As a consequence,

we can still approximate 𝑍 (P) in time polynomial in𝑚 (Theorem 20) by truncating the polymer

model to polymers of small size.

▶ Definition 15 (Size Function). Given a polymer model (C, 𝑤, ≁), a size function is a function

|·| : C → R>0. Given a polymer 𝛾 ∈ C, we call |𝛾 | the size of 𝛾 . ◀

▶ Definition 16 (Truncation). Let (C, 𝑤, ≁) be a polymer model equipped with a size function |·|,
and let B ⊆ C. For all 𝑘 ∈ R, we call B≤𝑘 = {𝛾 ∈ B | |𝛾 | ≤ 𝑘} the truncation of B to size 𝑘 .

Further, we write B>𝑘 = B \ B≤𝑘 . ◀

Note that B ⊆ C and that B≤𝑘 ,B>𝑘
is a partition of B, implying B≤𝑘 ,B>𝑘 ⊆ C. Thus, we

can apply our notions of restricted polymer families, partition function, and Gibbs distribution

as in Section 2.1 to B≤𝑘 and B>𝑘
as well. The case B = C (i.e., we truncate the entire polymer

model) plays a special role, which is why we use the shorter notation F≤𝑘 = FC≤𝑘 , 𝑍≤𝑘 = 𝑍C≤𝑘 ,
and 𝜇≤𝑘 = 𝜇C≤𝑘 . Analogously, we define F>𝑘 , 𝑍>𝑘 , and 𝜇>𝑘 .

▶ Lemma 17. Let P = (C, 𝑤, ≁) be a polymer model, let 𝛬 be a polymer clique cover of P with

size𝑚, and let |·| be a size function for P. Assume that there is a 𝑘 ∈ R and an 𝜀 ∈ (0, 1) such that,

for all 𝑖 ∈ [𝑚], it holds that ∑︁
𝛾 ∈𝛬>𝑘

𝑖

𝑤𝛾 ≤
𝜀

𝑚
. (12)

Then e
−𝜀 ≤ 𝑍≤𝑘/𝑍 ≤ 1 and 𝑑TV

(
𝜇, 𝜇≤𝑘

)
≤ 𝜀. ◀

Proof. We start by proving e
−𝜀 ≤ 𝑍≤𝑘/𝑍 ≤ 1. Since 𝑍≤𝑘 ≤ 𝑍 , as removing polymers does not

increase the partition function, it remains to show that 𝑍 ≤ e
𝜀𝑍≤𝑘 .

We observe that 𝑍 ≤ 𝑍≤𝑘𝑍>𝑘 with equality if and only if, for all 𝛤 ∈ F≤𝑘 and all 𝛤 ′ ∈ F>𝑘 , it
holds that 𝛤 ∪ 𝛤 ′ ∈ F . We proceed by showing that 𝑍>𝑘 ≤ e

𝜀
.

Note that C>𝑘 =
⋃
𝑖∈[𝑚] 𝛬

>𝑘
𝑖 and that each polymer family in F>𝑘 contains at most one polymer

from each 𝛬>𝑘
𝑖 . Thus, we obtain

𝑍>𝑘 ≤
∏
𝑖∈[𝑚]

𝑍 |𝛬>𝑘
𝑖

=
∏
𝑖∈[𝑚]

©­«1 +
∑︁
𝛾 ∈𝛬>𝑘

𝑖

𝑤𝛾
ª®¬.

Due to equation (12), we get 𝑍>𝑘 ≤ (1 + 𝜀/𝑚)𝑚 ≤ e
𝜀
, which proves the first claim.

Observing that

𝑑TV
(
𝜇, 𝜇≤𝑘

)
=
𝑍 − 𝑍≤𝑘

𝑍
≤ 1 − e−𝜀 ≤ 𝜀
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proves the second claim. ■

Recall the clique truncation condition (Condition 5). If the clique truncation condition is satisfied,

by choosing a reasonable 𝑘 for truncating a polymer model, little overall weight is removed. That

is, the truncated model represents a good approximation of the original.

▶ Lemma 18. Let P = (C, 𝑤, ≁) be a polymer model, let 𝛬 be a polymer clique cover of P with

size𝑚, let |·| be a size function for P, and let 𝑖 ∈ [𝑚]. Assume that 𝛬𝑖 satisfies Condition 5 for a

function 𝑔 and a bound 𝐵.

Then, for all 𝜀′ ∈ (0, 1) and all 𝑘 ≥ 𝑔−1(𝐵/𝜀′), it holds that ∑𝛾 ∈𝛬>𝑘
𝑖
𝑤𝛾 ≤ 𝜀′. ◀

Proof. Let 𝜀′ ∈ (0, 1) and 𝑘 ≥ 𝑔−1(𝐵/𝜀′). Due to the clique truncation condition and the mono-

tonicity of 𝑔, we observe that

𝑔(𝑘)
∑︁
𝛾 ∈𝛬>𝑘

𝑖

𝑤𝛾 ≤
∑︁
𝛾 ∈𝛬>𝑘

𝑖

𝑔( |𝛾 |)𝑤𝛾 ≤
∑︁
𝛾 ∈𝛬𝑖

𝑔( |𝛾 |)𝑤𝛾 ≤ 𝐵.

As 𝑔 is positive, dividing by 𝑔(𝑘) yields ∑
𝛾 ∈𝛬>𝑘

𝑖
𝑤𝛾 ≤ 𝐵/𝑔(𝑘). Substituting our bound for 𝑘 and

noting that 𝑔 is invertible, we conclude that∑︁
𝛾 ∈𝛬>𝑘

𝑖

𝑤𝛾 ≤
𝐵

𝑔
(
𝑔−1

(
𝐵
𝜀′
) ) = 𝜀′,

which proves the claim. ■

As a direct consequence of Lemma 18, we get that the partition function of the truncated model

is a useful approximation of the original partition function. Combining Lemmas 17 and 18 and

choosing 𝜀′ = 𝜀/𝑚 directly implies the following result.

▶ Corollary 19. Let P = (C, 𝑤, ≁) be a polymer model, let 𝛬 be a polymer clique cover of P with

size𝑚, and let |·| be a size function for P. Assume that there is a 𝑔 : R→ R>0 and a 𝐵 ∈ R>0 such

that, for 𝑖 ∈ [𝑚], the polymer clique 𝛬𝑖 satisfies Condition 5 for 𝑔 and 𝐵.

Then, for all 𝜀 ∈ (0, 1) and 𝑘 ≥ 𝑔−1(𝐵𝑚/𝜀), it holds that e−𝜀 ≤ 𝑍≤𝑘/𝑍 ≤ 1 and 𝑑TV
(
𝜇, 𝜇≤𝑘

)
≤

𝜀. ◀

Using the truncated polymer model, we achieve an 𝜀-approximation result of the partition

function of the original model that is computable in time poly(𝑚/𝜀), similar to Theorem 4. Note

that Observation 13 applies to Theorem 20 as well.

▶ Theorem 20. LetP = (C, 𝑤, ≁) be a computationally feasible polymer model, let 𝛬 be a polymer

clique cover ofP with size𝑚, and let |·| be a size function forP. Further, let𝑍max = max𝑖∈[𝑚]{𝑍 |𝛬𝑖 },
and let 𝑡 (𝑘) denote an upper bound, for all 𝑖 ∈ [𝑚], on the time to enumerate 𝛬≤𝑘

𝑖
. Last, assume

that
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(a) 𝑍max ∈ poly(𝑚),

(b) P satisfies the clique dynamics condition for a function 𝑓 such that, for all 𝛾 ∈ C, it holds
that e

−poly(𝑚) ≤ 𝑓 (𝛾) ≤ e
poly(𝑚)

, and that

(c) there are 𝑔 : R → R>0 and 𝐵 ∈ R>0 with 𝐵 ∈ poly(𝑚) and 𝑡 (𝑔−1(𝑥)) ∈ poly(𝑥) (for all
𝑥 ∈ R>0) such that, for all 𝑖 ∈ [𝑚], it holds that 𝛬𝑖 satisfies Condition 5.

Then, for all 𝜀 ∈ (0, 1], we can 𝜀-approximately sample from 𝜇 in time poly(𝑚/𝜀), and there is a

randomized 𝜀-approximation of 𝑍 computable in time poly(𝑚/𝜀). ◀

Proof. As in the proof of Theorem 3, we consider the polymer Markov chainM(P). Further, let
𝑘 = 𝑔−1(2𝐵𝑚/𝜀), letM𝑘 denote the polymer Markov chain on (C≤𝑘 , 𝑤, ≁), and let 𝑃𝑘 denote its

transitions. We aim to runM𝑘 for at least 𝑡
∗ = 𝜏M(P) (𝜀/2) iterations, starting from ∅ ∈ F≤𝑘 .

We prove that 𝑑TV
(
𝜇, 𝑃𝑡

∗

𝑘
(∅, ·)

)
≤ 𝜀. By the triangle inequality, we obtain

𝑑TV
(
𝜇, 𝑃𝑡

∗

𝑘
(∅, ·)

)
≤ 𝑑TV

(
𝜇, 𝜇≤𝑘

)
+ 𝑑TV

(
𝜇≤𝑘 , 𝑃

𝑡∗

𝑘
(∅, ·)

)
.

By our choice of 𝑘 and by Corollary 19 together with assumption (c), we get that 𝑑TV
(
𝜇, 𝜇≤𝑘

)
≤ 𝜀/2.

Further, note that truncation preserves the clique dynamics condition for the same function 𝑓 .

Thus, Theorem 2 applies toM𝑘 , and we obtain 𝑑TV
(
𝜇≤𝑘 , 𝑃

𝑡∗

𝑘
(∅, ·)

)
≤ 𝜀/2 for our choice of 𝑡∗.

It remains to show that the runtime is bounded by poly(𝑚/𝜀). Analogously to the proof of

Theorem 3, due to assumptions (a) and (b), we know that 𝜏M(P) (𝜀/2) ∈ poly(𝑚/𝜀), which implies

𝜏M𝑘
(𝜀/2) ∈ poly(𝑚/𝜀). Also analogously, it holds that each step can be done in poly(𝑚), except

for sampling, for all 𝑖 ∈ [𝑚], from 𝜇 |𝛬𝑖 . However, note that, for all 𝑖 ∈ [𝑚], we only need to sample

from 𝜇 |𝛬≤𝑘
𝑖
. We do so by enumerating 𝛬≤𝑘

𝑖
in time 𝑡 (𝑘). By our choice of 𝑘 and by assumption (c),

this takes time at most

𝑡 (𝑘) = 𝑡
(
𝑔−1

(
2𝐵𝑚

𝜀

))
∈ poly

(𝑚
𝜀

)
,

which proves that we can 𝜀-approximately sample from 𝜇 in the desired runtime.

Showing that we can 𝜀-approximate 𝑍 in time poly(𝑚/𝜀) is done analogously. By Corollary 19

and assumption (c), we know that for 𝑘 = 𝑔−1(2𝐵𝑚/𝜀) it holds that e−𝜀/2 ≤ 𝑍≤𝑘/𝑍 ≤ 1, which

implies e
−𝜀/2𝑍 ≤ 𝑍≤𝑘 ≤ 𝑍 . As argued above, the truncation of the polymer model P to this size 𝑘

satisfies the conditions of Theorem 3, where the sampling from each clique is done by ignoring

polymers larger than 𝑘 . Thus, by Theorem 4, we obtain an 𝜀/2-approximation for 𝑍≤𝑘 in time

poly(2𝑚/𝜀) = poly(𝑚/𝜀). Noting that, for 𝜀 ≤ 1, it holds that

1 − 𝜀 ≤
(
1 − 𝜀

2

)
e
−𝜀/2

and

(
1 + 𝜀

2

)
≤ 1 + 𝜀,

which concludes the proof. ■

We apply Theorem 20 together with Observation 13 to obtain the results from Table 1. In

Section 6, we calculate the bound for the hard-core model on bipartite expanders, and we discuss
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how to obtain the other results and how to choose the function 𝑓 for Condition 1.

5.1 Necessity of Clique Truncation

Before we showcase how our results are applied to improve algorithmic bounds for specific

problems, we briefly discuss the interplay between the clique dynamics condition and the clique

truncation condition. More specifically, we argue that, unless NP = RP, no polynomial running

time guarantees in terms of the size of a clique cover can be given for approximating the partition

function of an abstract polymer model if it only satisfies Definition 12 (i.e., being computationally

feasible) and the clique dynamics condition. To this end, we encode the Unambiguous Sat problem

in such a polymer model. Note that this is not a polynomial time reduction in the usual sense.

Similarly to other applications of polymer models, the resulting model has size exponential in the

original problem instance.

Unambiguous Sat is defined as the problem of deciding if a Boolean formula in conjunctive

normal form on 𝑛 variables has a satisfying assignment, restricted to instances with at most one

such satisfying assignment. Due to Valiant and Vazirani [33], it is known that no (randomized)

polynomial time algorithm for Unambiguous Sat exists unless NP = RP. By a standard fact from

complexity theory, this even holds when considering randomized algorithms with two-sided errors

(see [30, Problem 11.5.18]).

We encode an instance of Unambiguous Sat by considering a polymer model P = (C, 𝑤, ≁)
that contains one polymer 𝛾 ∈ C for each assignment. For a polymer 𝛾 ∈ C, define the weight
𝑤𝛾 = 1

8
if the corresponding assignment is satisfying and 𝑤𝛾 = 1

2
𝑛+4 otherwise. Moreover, we set

all polymers to be pairwise incompatible.

Note that the resulting polymer model consists of one giant clique. However, to ensure that the

weight 𝑤𝛾 can be computed in time polynomial in the size of the clique cover, we have to choose a

clique cover that is at most polynomial in 𝑛. One option to do so is to assume some ordering of

the variables 𝑣1, . . . , 𝑣𝑛 and assign each polymer to the clique 𝛬𝑖 if 𝑖 ∈ [𝑛] is the first variable set
to true. If all variables are false, we may assign it to an arbitrary clique (say 𝛬𝑛). This way, we

get a clique cover 𝛬 of size 𝑛 and the resulting polymer model together with the clique cover is

computationally feasible. We proceed by arguing that P satisfies the clique dynamics condition.
4

To this end, set 𝑓 (𝛾) = 1 for all polymers 𝛾 ∈ C and observe that∑︁
𝛾 ′ ≁𝛾

𝑓 (𝛾 ′)𝑤𝛾 ′ ≤
2
𝑛

2
𝑛+4 +

1

8

< 𝑓 (𝛾).

If there is no satisfying assignment, then it holds that

𝑍 (P) = 1 +
∑︁
𝛾 ∈C

𝑤𝛾 = 1 + 2
𝑛

2
𝑛+4 = 1 + 1

16

.

4
In fact, it even satisfies the widely applied and much more restrictive Kotecký–Preiss condition [26].
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On the other hand, if there is such a satisfying assignment, we have 𝑍 (P) ≥ 1 + 1

8
. Thus, assume

we can compute 𝑍 such that

(
1 − 1

128

)
𝑍 (P) ≤ 𝑍 ≤

(
1 + 1

128

)
𝑍 (P) with probability at least

3

4
in

time polynomial in the size of the clique cover 𝛬 then this gives us a randomized algorithm to

decide if there is a satisfying assignment in time poly(𝑛) with two-sided error probability of at

most
1

4
. Assuming NP ≠ RP, this should not be possible.

In a sense, the above construction shows that, even if the clique dynamics of a polymer model

is rapidly mixing, the clique dynamics condition and the fact that the model is computationally

feasible might not be sufficient to argue that each step of the Markov chain runs efficiently. More

precisely, the sheer size of each polymer clique and a lack of structural knowledge makes it hard to

sample from each cliques distribution. The clique truncation condition is one way to circumvent

this problem by giving a sufficient condition to ignore most of the polymers in each clique. In

general, this shows that some additional condition or detailed structural knowledge is required.

6 Example Application: Hard-Core Model on Bipartite Expanders

In order to demonstrate how Theorem 20 improves known bounds for the algorithmic use of

polymer models, we investigate the hard-core model for high fugacity 𝜆 ∈ R>0 on bipartite

𝛼-expanders with bounded maximum degree 𝛥. For a graph (𝑉 , 𝐸) and an 𝑆 ⊆ 𝑉 , let 𝑁𝐺 (𝑆) denote
the set of all vertices that are adjacent to a vertex in 𝑆 .

▶ Definition 21 (bipartite 𝜶 -expander). Let 𝐺 = (𝑉 , 𝐸) be a bipartite graph with partition

𝑉 = 𝑉L ∪𝑉R. For all 𝑖 ∈ {L, R}, we call 𝑆 ⊆ 𝑉𝑖 small if and only if |𝑆 | ≤ |𝑉𝑖 |/2. For all 𝛼 ∈ (0, 1),
graph 𝐺 is a bipartite 𝛼-expander if and only if, for all small sets of vertices 𝑆 , it holds that

|𝑁𝐺 (𝑆) | ≥ (1 + 𝛼) |𝑆 |. ◀

For any graph 𝐺 , the hard-core partition function is a graph polynomial of some parameter

𝜆 ∈ R>0, called fugacity. Let I𝐺 be the set of all independent sets in 𝐺 . The hard-core partition

function for fugacity 𝜆 is now formally defined as

𝑍 (𝐺, 𝜆) =
∑︁
𝐼 ∈I𝐺

𝜆 |𝐼 | .

We approximate 𝑍 (𝐺, 𝜆) in terms of the partition function of two polymer models, constructed

as proposed by Jenssen et al. [22]. For a bipartite 𝛼-expander 𝐺 with bounded degree 𝛥, we

consider the graph 𝐺2
, which is the graph with vertices 𝑉 and an edge between 𝑣,𝑢 ∈ 𝑉 if 𝑣,𝑢

have at most distance 2 in 𝐺 . For all 𝑖 ∈ {L, R}, we define a polymer model P (𝑖 ) = (C (𝑖 ) , 𝑤 (𝑖 ) , ≁)
as follows:

• each polymer 𝛾 ∈ C (𝑖 ) is defined by a non-empty set of vertices 𝛾 ⊆ 𝑉𝑖 such that 𝛾 is small

and induces a connected subgraph in 𝐺2
,

• for 𝛾 ∈ C (𝑖 ) , let 𝑤 (𝑖 )𝛾 = 𝜆 |𝛾 |/
(
(1 + 𝜆) |𝑁𝐺 (𝛾 ) |

)
, and
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• two polymers 𝛾,𝛾 ′ ∈ C (𝑖 ) are incompatible if and only if there are vertices 𝑣 ∈ 𝛾,𝑤 ∈ 𝛾 ′ with
graph distance at most 1 in 𝐺2

.

To ease notation, for all 𝑖 ∈ {L, R}, we write 𝜇 (𝑖 ) and 𝑍 (𝑖 ) instead of 𝜇 (P
(𝑖 ) )

and 𝑍 (P (𝑖 ) ), respec-
tively.

We use P (L) and P (R) for approximating the hard-core partition function of bipartite 𝛼-

expanders in the following sense.

▶ Lemma 22 ([22, Lemma 19]). Given a bipartite 𝛼-expander𝐺 = (𝑉L∪𝑉R, 𝐸) with |𝑉L ∪𝑉R | = 𝑛,
let 𝑍 (𝐺, 𝜆) denote its hard-core partition function with fugacity 𝜆 ∈ R>0, and let the polymer

models P (L) ,P (R) be defined as above. For all 𝜆 ≥ e
11/𝛼

, it holds that

(1 − e−𝑛)𝑍 (𝐺, 𝜆) ≤ (1 + 𝜆) |𝑉R |𝑍 (L) + (1 + 𝜆) |𝑉L |𝑍 (R) ≤ (1 + e−𝑛)𝑍 (𝐺, 𝜆). ◀

To apply Theorem 20, we have to fix a polymer clique cover 𝛬 for each polymer model P (𝑖 ) with
𝑖 ∈ {L, R}. Based on the incompatibility relation, a natural choice is to define, for each 𝑣 ∈ 𝑉𝑖 , a
clique 𝛬𝑣 such that 𝛾 ∈ 𝛬𝑣 if and only if 𝑣 ∈ 𝛾 . As we need to verify the clique dynamics condition,

it is useful to have a bound on the number of incompatible polymers, which the following lemma

provides.

▶ Lemma 23 ([3, Lemma 2.1]). For an undirected graph 𝐺 = (𝑉 , 𝐸) with maximum degree 𝛥

and for all 𝑣 ∈ 𝑉 , the number of vertex-induced connected subgraphs that contain 𝑣 and have at

most 𝑘 ∈ N>0 vertices is bounded from above by e
𝑘𝛥𝑘−1/

(
𝑘3/2
√
2π

)
. ◀

Commonly, the bound (e𝛥)𝑘−1/2 is applied, as it is more convenient to work with. However,

this bound actually only holds for 𝑘 ≥ 2. Further, note that Jenssen et al. [22] used a weaker bound,

namely (e𝛥)𝑘 . Although this bound holds for all 𝑘 ∈ N>0, it yields a much worse dependency on

𝛥. For a fair comparison, we added the result of refined calculations for the approach by Jenssen

et al. [22] to Table 1.

In order to apply truncation, we further need a notion of size for polymers. An obvious choice

is to set |𝛾 | = |𝛾 |. The following lemma then bounds the time for enumerating polymers in a clique

up to some size 𝑘 ∈ N>0.

▶ Lemma 24 ([31, Lemma 3.7]). Let𝐺 = (𝑉 , 𝐸) be an undirected graph with maximum degree 𝛥,

and let 𝑣 ∈ 𝑉 . There is an algorithm that enumerates all connected, vertex-induced sugraphs of 𝐺

that contain 𝑣 and have at most 𝑘 ∈ N>0 vertices in time e
O(𝑘 log(𝛥 ) )

. ◀

We now prove our bound on 𝜆 for an efficient approximation of the hard-core partition function

on bipartite 𝛼-expanders. Most of the calculations are similar to those of Jenssen et al. [22], except

that we use our newly obtained conditions.

▶ Proposition 25. Let 𝐺 (𝑉L ∪ 𝑉R, 𝐸) be a bipartite 𝛼-expander with |𝑉L ∪𝑉R | = 𝑛 and with

maximum degree 𝛥 ∈ N>0. For 𝜆 ≥ max{(e𝛥2/0.8)1/𝛼 , e11/𝛼 } and for all 𝜀 ∈ (0, 1], there is an
FPRAS for 𝑍 (𝐺, 𝜆) with runtime (𝑛/𝜀)O(ln(𝛥 ) ) . ◀
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Proof. If 𝜀 ∈ O(e−𝑛), we compute 𝑍 (𝐺, 𝜆) by enumerating all independent sets. Since there are at

most 2
𝑛
independent sets, which is polynomial in 1/e−𝑛 , the statement then follows. It remains to

analyze the case 𝜀 ∈ Ω(e−𝑛). To this end, assume that 𝜀 ≥ 4e
−𝑛
.

By Lemma 22, 𝑍 (𝐺, 𝜆) can be e
−𝑛
-approximated using 𝑍 (L) and 𝑍 (R) . We aim for an 𝜀/4-

approximation of 𝑍 (L) and 𝑍 (R) , each with failure probability at most 1 −
√
3/2. Note that

1 − 𝜀 ≤ (1 − e−𝑛)
(
1 − 𝜀

4

)
and (1 + e−𝑛)

(
1 + 𝜀

4

)
≤ 1 + 𝜀.

Thus, with probability at least (
√
3/2)2 = 3/4 the result is an 𝜀-approximation of 𝑍 (𝐺, 𝜆). We

can obtain the desired error probability of at most 1 −
√
3/2 for the approximations of 𝑍 (L) and

𝑍 (R) by taking the median of O

(
ln(2/(2 −

√
3))

)
= O(1) independent approximations with failure

probability at most 1/4.
Let 𝑖 ∈ {L, R}. In order to approximate 𝑍 (𝑖 ) , we aim to apply Theorem 20. To this end, for all

𝑣 ∈ 𝑉𝑖 , we define a polymer clique 𝛬𝑣 containing all polymers 𝛾 ∈ C (𝑖 ) with 𝑣 ∈ 𝛾 . This results in a

polymer clique cover of size 𝑛.

We proceed by proving that the polymer model satisfies the clique dynamics condition for

𝑓 (𝛾) = |𝛾 |. We use Observation 13 to simplify this step. This also implies that assumption (a) of

Theorem 20 is satisfied. For any 𝛾 ∈ C (𝑖 ) we start by bounding the set of polymers 𝛾 ′ ≁𝛾 by∑︁
𝛾 ′∈C (𝑖 ) : 𝛾 ′ ≁𝛾

𝑓 (𝛾 ′)𝑤 (𝑖 )
𝛾 ′ ≤

∑︁
𝑣∈𝑁

𝐺2 (𝛾 )

∑︁
𝛾 ′∈𝛬𝑣

𝑓 (𝛾 ′)𝑤 (𝑖 )
𝛾 ′ =

∑︁
𝑣∈𝑁

𝐺2 (𝛾 )

∑︁
𝑘∈N>0

∑︁
𝛾 ′∈𝛬𝑣
|𝛾 ′ |=𝑘

𝑓 (𝛾 ′)𝑤 (𝑖 )
𝛾 ′ .

Because 𝐺 is a bipartite 𝛼-expander, for all 𝛾 ∈ C (𝑖 ) , we have 𝑤 (𝑖 )𝛾 ≤ 1/𝜆𝛼 |𝛾 | . Further, note that
the degree of 𝐺2

is bounded by 𝛥2
. By Lemma 23 and our definition of 𝑓 , we obtain∑︁

𝑣∈𝑁
𝐺2 (𝛾 )

∑︁
𝑘∈N>0

∑︁
𝛾 ′∈𝛬𝑣
|𝛾 ′ |=𝑘

𝑓 (𝛾 ′)𝑤 (𝑖 )
𝛾 ′ ≤ 𝛥

2 |𝛾 |
∑︁

𝑘∈N>0

e
𝑘
(
𝛥2

)𝑘−1
𝑘3/2
√
2𝜋
· 𝑘 · 1

𝜆𝛼𝑘
=
|𝛾 |
√
2𝜋

∑︁
𝑘∈N>0

(
e𝛥2

𝜆𝛼

)𝑘
1

√
𝑘
.

For 𝜆 ≥
(
e𝛥2/0.8

)
1/𝛼

, we get

|𝛾 |
√
2𝜋

∑︁
𝑘∈N>0

(
e𝛥2

𝜆𝛼

)𝑘
1

√
𝑘
≤ |𝛾 |√

2𝜋

∑︁
𝑘∈N>0

(0.8)𝑘 1

√
𝑘
≤ |𝛾 |√

2𝜋

√
2𝜋 = 𝑓 (𝛾) .

It remains to show, for all 𝑣 ∈ 𝑉𝑖 , that 𝛬𝑣 satisfies the clique truncation condition for a 𝑔 : R→
R>0 and a 𝐵 ∈ R>0. To this end, for all 𝛾 ∈ C (𝑖 ) , let |𝛾 | = |𝛾 |, let 𝑔( |𝛾 |) = e

0.2 |𝛾 |
, and let 𝐵 = 1.
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Analogously to our verification of the clique dynamics condition, we see, for all 𝑣 ∈ 𝑉𝑖 , that∑︁
𝛾 ∈𝛬𝑣

𝑔( |𝛾 |)𝑤 (𝑖 )𝛾 ≤
1

𝛥2

√
2𝜋

∑︁
𝑘∈N>0

(
e𝛥2

𝜆𝛼

)𝑘
1

𝑘3/2
e
0.2𝑘 =

1

𝛥2

√
2𝜋

∑︁
𝑘∈N>0

(
e
1.2𝛥2

𝜆𝛼

)𝑘
1

𝑘3/2
.

For 𝜆 ≥
(
e𝛥2/0.8

)
1/𝛼

, we get

1

𝛥2

√
2𝜋

∑︁
𝑘∈N>0

(
e
1.2𝛥2

𝜆𝛼

)𝑘
1

𝑘3/2
≤ 1

𝛥2

√
2𝜋

∑︁
𝑘∈N>0

(
0.8e0.2

)𝑘 1

𝑘3/2
<

1

𝛥2

√
2𝜋

2.2 ≤ 𝐵.

Last, we bound the runtime of the FPRAS. By Lemma 24, we can enumerate each polymer clique

up to size 𝑘 in time 𝑡 (𝑘) ∈ e
O(𝑘 log(𝛥 ) )

. As 𝑔−1 : 𝑥 ↦→ 5 ln(𝑥), we have 𝑡 ◦ 𝑔−1 : 𝑥 ↦→ 𝑥O(ln(𝛥 ) ) ,
which is polynomial for 𝛥 ∈ Θ(1). For the runtime bound, note that we truncate to size 𝑘 =

𝑔−1(𝑛/𝜀). Thus, the time for computing each step of the polymer Markov chain is bounded by

𝑡 (𝑘) = (𝑛/𝜀)O(ln(𝛥 ) ) , which dominates the runtime. ■

Choice of 𝒇 and Calculation of Table 1 Note that the choice of the function 𝑓 used in the

clique dynamics condition is very sensitive to the bound on the number of subgraphs. For the

bound stated in Lemma 23, it turns out that using 𝑓 (𝛾) = |𝛾 | yields the best bounds on 𝜆 (see

the proof of Proposition 25 for details). With this choice of 𝑓 , the condition that we identified in

Observation 13 is similar to the mixing condition of [8, Definition 1], except that we do not require

a strict inequality. Further, note that such a choice of 𝑓 is not possible for the Kotecký–Preiss

condition [26]. If purely exponential bounds on the number of subgraphs are used, the best results

are usually obtained by setting 𝑓 to take an exponential form. A detailed understanding of how to

choose 𝑓 might be of interest for applications to specific graph classes and other combinatorial

structures.

The results for the remaining applications in Table 1 are derived via similar calculations. For

the Potts model on expander graphs and the hard-core model on unbalanced bipartite graphs,

we use Lemmas 23 and 24 together with the same function 𝑓 for the clique dynamics condition

as in the proof of Proposition 25. For the perfect matching polynomial, we use the bounds for

the number of polymers and for polymer enumeration that are stated by Casel et al. [7], and we

choose 𝑓 (𝛾) = e
𝑎 |𝛾 |

for 𝑎 ≈ 0.2.
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A Appendix: Coupling Theorem

We closely follow the proof of Greenberg et al. [19]. Central to this is the following theorem, which

we present in a slightly different fashion than Greenberg et al. [19, Lemma 3.5].

▶ Theorem 26. Let 𝑑, 𝐷 ∈ Rwith 𝑑 ≤ 𝐷 , let (𝑆𝑡 )𝑡 ∈N be a stochastic process adapted to a filtration

(F𝑡 )𝑡 ∈N, and let 𝑇 be a stopping time with respect to F . Assume that, for all 𝑡 ∈ N, it holds that

𝑆min{𝑡,𝑇 } ∈ [𝑑, 𝐷], that

E[𝑆𝑡+1 | F𝑡 ] · 1{𝑡 < 𝑇 } ≤ 𝑆𝑡 · 1{𝑡 < 𝑇 }, (13)

and that there is a 𝑄 ∈ R>0 such that

E

[
(𝑆𝑡+1 − 𝑆𝑡 )2

�� F𝑡 ] · 1{𝑡 < 𝑇 } ≥ 𝑄 · 1{𝑡 < 𝑇 }. (14)

Then

E[𝑇 | F0 ] ≤
E

[
(𝐷 − 𝑆𝑇 )2

�� F0 ] − (𝐷 − 𝑆0)2
𝑄

. ◀

Before we prove the theorem, we discuss the changes we made in the phrasing of the theorem.

Different to the original theorem by Greenberg et al. [19, Lemma 3.5], we include a filtration and

we use indicator functions. Our reasons are as follows. The proof of Theorem 26 aims to apply

the optional-stopping theorem for submartingales. A submartingale is, by definition, a stochastic

process (𝑍𝑡 )𝑡 ∈N adapted to a filtration (F𝑡 )𝑡 ∈N such that, for all 𝑡 ∈ N, the expectation of 𝑍𝑡 is

finite and E[𝑍𝑡+1 | F𝑡 ] ≥ 𝑍𝑡 . It is important to note that the expectation E[𝑍𝑡+1 | F𝑡 ] is itself a
random variable and that the inequality E[𝑍𝑡+1 | F𝑡 ] ≥ 𝑍𝑡 is stronger than E[𝑍𝑡+1] ≥ E[𝑍𝑡 ] (which
follows by the law of total expectation). Hence, we require a filtration.

Second, the indicator functions make sure that equations (13) and (14) (and the boundedness

of 𝑆) only have to hold as long as 𝑆 did not stop. Afterward, they are trivially satisfied. This is

important, as 𝑆 is bounded from below by 𝑑 and its conditional expectation does not increase.

Assume that we did not use indicator functions. If there is a 𝑡 ∈ N such that 𝑆𝑡 = 𝑑 , then 𝑆𝑡+1 = 𝑑
holds as well, as otherwise the inequality E[𝑆𝑡+1 | F𝑡 ] ≤ 𝑆𝑡 does not hold. However, this implies

that E

[
(𝑆𝑡+1 − 𝑆𝑡 )2

�� F𝑡 ] = 0 (since the process is now almost surely deterministic), which violates

equation (14) if not for the indicator functions.

Note that our additional assumptions in Theorem 26 only fix issues in the proof of Greenberg

et al. [19, Lemma 3.5]. The proof itself remains mostly unchanged.

Proof of Theorem 26. Let𝑀 ∈ R≥0 such that, for all 𝑡 ∈ N, it holds that𝑀 ≥ (𝐷 − 𝑆𝑡 )2 · 1{𝑡 ≤ 𝑇 }.
Note that such an𝑀 exists, as, for all 𝑡 ∈ N, by assumption, 𝑆min{𝑡,𝑇 } is bounded. For all 𝑡 ∈ N, let

𝑍𝑡 =
(
(𝐷 − 𝑆𝑡 )2 −𝑄𝑡 −𝑀

)
· 1{𝑡 ≤ 𝑇 }. Note that, for all 𝑡 ∈ N, due to the definition of𝑀 and due

to 1{𝑡 < 𝑇 } ≤ 1{𝑡 ≤ 𝑇 }, it holds that(
(𝐷 − 𝑆𝑡 )2 −𝑄𝑡 −𝑀

)
· 1{𝑡 < 𝑇 } ≥

(
(𝐷 − 𝑆𝑡 )2 −𝑄𝑡 −𝑀

)
· 1{𝑡 ≤ 𝑇 } = 𝑍𝑡 . (15)
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We show that 𝑍 is a submartingale with respect to F . Let 𝑡 ∈ N. By noting that 1{𝑡 + 1 ≤ 𝑇 } =
1{𝑡 < 𝑇 }, since 𝑇 is integer, and by applying equations (13) to (15), we get

E[𝑍𝑡+1 | F𝑡 ] = E

[ (
(𝐷 − 𝑆𝑡+1)2 −𝑄 (𝑡 + 1) −𝑀

)
· 1{𝑡 + 1 ≤ 𝑇 }

�� F𝑡 ]
= E

[ (
(𝐷 − 𝑆𝑡+1)2 −𝑄 (𝑡 + 1) −𝑀

)
· 1{𝑡 < 𝑇 }

�� F𝑡 ]
=

(
𝐷2 − 2𝐷E[𝑆𝑡+1 | F𝑡 ] + E

[
𝑆2𝑡+1

�� F𝑡 ] −𝑄 −𝑄𝑡 −𝑀 )
· 1{𝑡 < 𝑇 }

(14)

≥
(
𝐷2 − 2𝐷E[𝑆𝑡+1 | F𝑡 ] + 2𝑆𝑡E[𝑆𝑡+1 | F𝑡 ] − 𝑆2𝑡 −𝑄𝑡 −𝑀

)
· 1{𝑡 < 𝑇 }

=
(
𝐷2 − 2E[𝑆𝑡+1 | F𝑡 ] (𝐷 − 𝑆𝑡 ) − 𝑆2𝑡 −𝑄𝑡 −𝑀

)
· 1{𝑡 < 𝑇 }

(13)

≥
(
𝐷2 − 2𝑆𝑡 (𝐷 − 𝑆𝑡 ) − 𝑆2𝑡 −𝑄𝑡 −𝑀

)
· 1{𝑡 < 𝑇 }

=
(
(𝐷 − 𝑆𝑡 )2 −𝑄𝑡 −𝑀

)
· 1{𝑡 < 𝑇 }

(15)

≥ 𝑍𝑡 .

Since 𝑍 is bounded, it is uniformly integrable [12, Theorems 4.2.11 and 4.6.4]. By applying

the optional-stopping theorem for uniformly integrable submartingales [12, Theorem 4.8.3], we

get that E[𝑍𝑇 | F0 ] ≥ E[𝑍0 | F0 ]. Solving this inequality for E[𝑇 | F0 ] and noting that 𝑍0 is

F0-measurable concludes the proof. ■

While we state Theorem 26 in an elaborate fashion, we use it in a different way in the following

proof of Theorem 6. Instead of considering expected values conditional on a σ-algebra, we consider
expected values conditional on each of the outcomes of the random process before it stops. We

formalize this statement in the following remark.

▶ Remark 27. Let (𝑋𝑡 )𝑡 ∈N denote a random process over R, defined over a probability space

with sample space 𝛺 , let (F𝑡 )𝑡 ∈N denote the natural filtration of 𝑋 , and let 𝑇 be a stopping time

with respect to F . If 𝑋 is discrete and Markovian, then, for all 𝑡 ∈ N and all 𝛿 ∈ R, the following
equivalence holds:

∀𝑥 ∈ {𝑦 ∈ R | ∃𝜔 ∈ 𝛺 : 𝑋𝑡 (𝜔) = 𝑦 ∧ 𝑡 < 𝑇 (𝜔)} : E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 = 𝑥 ] ≤ 𝛿 (16)

↔
E[(𝑋𝑡 − 𝑋𝑡+1) · 1{𝑡 < 𝑇 } | F𝑡 ] ≤ 𝛿 · 1{𝑡 < 𝑇 }. (17)

◀

Informally, on the one hand, proposition (17) considers all instantiations𝜔 ∈ 𝛺 of𝑋 where𝑋 did

not stop up to time 𝑡 . On the other hand, proposition (16) partitions𝛺 with respect to𝑋𝑡 and shows

the relevant inequality for the sets 𝑋 −1𝑡 (𝑥) (for the values of 𝑥 as specified in the proposition).

Since for all 𝜔 ∈ 𝑋 −1𝑡 (𝑥) the value E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 ] (𝜔) is the same (since 𝑋 is Markovian), it

suffices to consider their average, which is E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 = 𝑥 ].
More formally, first note that the indicator functions in proposition (17) relate to the predicate

“𝑡 < 𝑇 (𝜔)” in the set of values for 𝑥 in proposition (16), which makes sure to consider only such
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values 𝑥 for which the process did not stop yet, as these are the only instantiations of 𝑋 for which

proposition (17) is not trivially satisfied.

By definition of the conditional expectation for discrete random variables, it holds that

E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 = 𝑥 ] =
∑︁
𝜔∈𝛺

E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 ] (𝜔) · Pr
[
{𝜔}

�� 𝑋 −1𝑡 (𝑥) ]
=

∑︁
𝜔∈𝛺 :

𝑋𝑡 (𝜔 )=𝑥

E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 ] (𝜔) ·
Pr[{𝜔}]

Pr

[
𝑋 −1𝑡 (𝑥)

] .
Since𝑋 isMarkovian, for all𝜔 ∈ 𝛺 where𝑋𝑡 (𝜔) = 𝑥 , the random variable E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 ] has the
same value 𝑣 ∈ R, as the distribution of𝑋𝑡+1 only depends on𝑋𝑡 = 𝑥 . That is, E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 = 𝑥 ] =
E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 ] (𝜔) = 𝑣. Since 𝑋 is Markovian and thus conditioning on 𝑋𝑡 is the same as condi-

tioning on F𝑡 , this shows that E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 = 𝑥 ] = E[𝑋𝑡 − 𝑋𝑡+1 | F𝑡 ] (𝜔).

Proof of Theorem 6 We now start with the stating the proof of the coupling theorem, which

we restate here for convenience.

▶ Theorem 6. LetM be an ergodic Markov chain with state space𝛺 and with transition matrix 𝑃

such that, for all 𝑥 ∈ 𝛺 , it holds that 𝑃 (𝑥, 𝑥) > 0. For 𝑑, 𝐷 ∈ R>0, 𝑑 ≤ 𝐷 , let 𝛿 : 𝛺2 → {0} ∪ [𝑑, 𝐷]
be such that 𝛿 (𝑥,𝑦) = 0 if and only if 𝑥 = 𝑦. Assume that there is a coupling between the transitions

of two copies (𝑋𝑡 )𝑡 ∈N and (𝑌𝑡 )𝑡 ∈N ofM such that, for all 𝑡 ∈ N and all 𝑥,𝑦 ∈ 𝛺 , it holds that

E[𝛿 (𝑋𝑡+1, 𝑌𝑡+1) | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ] ≤ 𝛿 (𝑥,𝑦). (3)

Furthermore, assume that there are 𝜅, 𝜂 ∈ (0, 1) such that, for the same coupling and all 𝑡 ∈ N and

all 𝑥,𝑦 ∈ 𝛺 with 𝑥 ≠ 𝑦, it holds that

Pr[|𝛿 (𝑋𝑡+1, 𝑌𝑡+1) − 𝛿 (𝑥,𝑦) | ≥ 𝜂𝛿 (𝑥,𝑦) | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ] ≥ 𝜅. (4)

Then, for all 𝜀 ∈ (0, 1], it holds that

𝜏M (𝜀) ≤
(
ln(𝐷/𝑑) + 2 ln(2)

)
2

ln(1 + 𝜂)2𝜅 ln

(
1

𝜀

)
.

If ln(𝐷/𝑑) ∈ Ω(1), then this bound simplifies to

𝜏M (𝜀) ∈ O
(
ln(𝐷/𝑑)2
ln(1 + 𝜂)2𝜅 ln

(
1

𝜀

))
. ◀

Proof. We aim to bound the expected time until 𝛿 hits 0 for the coupled copies (𝑋𝑡 )𝑡 ∈N and (𝑌𝑡 )𝑡 ∈N
ofM and for all pairs of starting states 𝑥,𝑦 ∈ 𝛺 . This results in a bound on the expected coupling
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time, and, becauseM is ergodic, also bounds 𝜏M (see, for example, Chapter 11 by Mitzenmacher

and Upfal [28] for a detailed discussion).

We start by defining a scaled potential 𝛿 ′ such that, for all 𝑥,𝑦 ∈ 𝛺 , it holds that 𝛿 ′(𝑥,𝑦) =
𝛿 (𝑥,𝑦)/𝑑 . Note that 𝛿 ′ takes values in {0} ∪ [1, 𝐷/𝑑], and, for all 𝑡 ∈ N, it holds that

𝑋𝑡 = 𝑌𝑡 ↔ 𝛿 (𝑋𝑡 , 𝑌𝑡 ) = 0↔ 𝛿 ′(𝑋𝑡 , 𝑌𝑡 ) = 0.

Further, for all 𝑥,𝑦 ∈ 𝛺 , by the linearity of expectation and by equation (3), it holds that

E[𝛿 ′(𝑋𝑡+1, 𝑌𝑡+1) | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ] =
1

𝑑
E[𝛿 (𝑋𝑡+1, 𝑌𝑡+1) | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]

≤ 1

𝑑
𝛿 (𝑥,𝑦) = 𝛿 ′(𝑥,𝑦)

and, by equation (4), that

Pr[|𝛿 ′(𝑋𝑡+1, 𝑌𝑡+1) − 𝛿 ′(𝑥,𝑦) | ≥ 𝜂𝛿 ′(𝑥,𝑦) | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]
= Pr[|𝛿 (𝑋𝑡+1, 𝑌𝑡+1) − 𝛿 (𝑥,𝑦) | ≥ 𝜂𝛿 (𝑥,𝑦) | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]
≥ 𝜅.

We define the stochastic processes whose expected hitting time we bound by 𝜑 = (𝜑𝑡 )𝑡 ∈N,
where 𝜑𝑡 = 𝛿

′(𝑋𝑡 , 𝑌𝑡 ). Further, for all 𝑥 ∈ [0, 𝐷/𝑑], let

ln(𝑥) =
{
2 ln(2)𝑥 − 2 ln(2) if 𝑥 ∈ [0, 1),
ln(𝑥) if 𝑥 ∈ [1, 𝐷/𝑑],

and let𝜓 = (𝜓𝑡 )𝑡 ∈N with𝜓𝑡 = ln(𝜑𝑡 ) for all 𝑡 ∈ N. Note that

𝜓𝑡 = −2 ln(2) ↔ 𝜑𝑡 = 0↔ 𝑋𝑡 = 𝑌𝑡 .

Let 𝑇 = inf𝑡 ∈N{𝜓𝑡 ≤ −2 ln(2)}. To obtain the desired bound on the mixing time, we bound

E[𝑇 | 𝑋0 = 𝑥,𝑌0 = 𝑦 ] for every pair 𝑥,𝑦 ∈ 𝛺 .
To this end, we aim to apply Theorem 26 to𝜓 (with the natural filtration of (𝑋𝑡 , 𝑌𝑡 )𝑡 ∈N) together

with Remark 27, which requires showing, for all 𝑡 ∈ N, all 𝑥 ∈ rng(𝑋𝑡 ), and all 𝑦 ∈ rng(𝑌𝑡 )
such that there is an instantiation 𝜔 from the sample space with 𝑋𝑡 (𝜔) = 𝑥 , 𝑌𝑡 (𝜔) = 𝑦, and

𝑡 < 𝑇 (𝜔), that E[𝜓𝑡+1 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ] ≤ 𝜓𝑡 (equation (13)) and obtaining a lower bound on

E

[
(𝜓𝑡+1 −𝜓𝑡 )2

�� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]
(equation (14)).

Let 𝑡 ∈ N, 𝑥 ∈ rng(𝑋𝑡 ), and 𝑦 ∈ rng(𝑌𝑡 ), all as described above. Note that this implies

𝜓𝑡 ∈ [0, ln(𝐷/𝑑)] and𝑋𝑡 ≠ 𝑌𝑡 . Further note that ln is a concave function and that 𝜑𝑡 ≥ 1. Applying

Jensen’s inequality to the conditional expectation, we obtain

E[𝜓𝑡+1 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ] ≤ ln(E[𝜑𝑡+1 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]) ≤ ln(𝜑𝑡 ) = 𝜓𝑡 ,
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which shows equation (13).

We proceed by bounding E

[
(𝜓𝑡+1 −𝜓𝑡 )2

�� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]
from below. Let 𝐴 be the event that𝜓

jumps from 𝜓𝑡 ≥ 0 directly to 𝜓𝑡+1 = −2 ln(2) (i.e., 𝜑𝑡 ≥ 1 and 𝜑𝑡+1 = 0). The positive self-loop

probability ofM implies that Pr[𝐴 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ] < 1 and Pr

[
𝐴

�� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦] > 0. By the

law of total expectation, we obtain

E

[
(𝜓𝑡+1 −𝜓𝑡 )2

�� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]
= E

[
(𝜓𝑡+1 −𝜓𝑡 )2

�� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
Pr[𝐴 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]

+ E
[
(𝜓𝑡+1 −𝜓𝑡 )2

��� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
(1 − Pr[𝐴 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]) .

We lower-bound each term in the sum separately. Because of𝜓𝑡 ≥ 0, we have

E

[
(𝜓𝑡+1 −𝜓𝑡 )2

�� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
Pr[𝐴 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]

=
(
− 2 ln(2) −𝜓𝑡

)
2 · Pr[𝐴 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]

≥ 4 ln(2)2 · Pr[𝐴 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ] . (18)

Furthermore, because 𝜂 > 0, by conditional Markov’s inequality, we get

E

[
(𝜓𝑡+1 −𝜓𝑡 )2

��� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
≥ ln(1 + 𝜂)2Pr

[
(𝜓𝑡+1 −𝜓𝑡 )2 ≥ ln(1 + 𝜂)2

��� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
= ln(1 + 𝜂)2Pr

[
|𝜓𝑡+1 −𝜓𝑡 | ≥ ln(1 + 𝜂)

��� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
.

We decompose the probability as

Pr

[
|𝜓𝑡+1 −𝜓𝑡 | ≥ ln(1 + 𝜂)

��� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
= Pr

[
𝜓𝑡+1 −𝜓𝑡 ≥ ln(1 + 𝜂)

��� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
+ Pr

[
𝜓𝑡+1 −𝜓𝑡 ≤ − ln(1 + 𝜂)

��� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
.

We rewrite the first of these probabilities as

Pr

[
𝜓𝑡+1 −𝜓𝑡 ≥ ln(1 + 𝜂)

��� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
= Pr

[
ln

(
𝜑𝑡+1
𝜑𝑡

)
≥ ln(1 + 𝜂)

���� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
= Pr

[
𝜑𝑡+1
𝜑𝑡
≥ 1 + 𝜂

���� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
= Pr

[
𝜑𝑡+1 − 𝜑𝑡 ≥ 𝜂𝜑𝑡

��� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
. (19)
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Since, for all 𝑧 ∈ (0, 1), it holds that − ln(1 + 𝑧) ≥ ln(1 − 𝑧), we bound the other probability by

Pr

[
𝜓𝑡+1 −𝜓𝑡 ≤ − ln(1 + 𝜂)

��� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
≥ Pr

[
𝜓𝑡+1 −𝜓𝑡 ≤ ln(1 − 𝜂)

��� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
= Pr

[
ln

(
𝜑𝑡+1
𝜑𝑡

)
≤ ln(1 − 𝜂)

���� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
= Pr

[
𝜑𝑡+1
𝜑𝑡
≤ 1 − 𝜂

���� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
= Pr

[
𝜑𝑡+1 − 𝜑𝑡 ≤ −𝜂𝜑𝑡

��� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
. (20)

Combining equations (19) and (20), we obtain

Pr

[
|𝜓𝑡+1 −𝜓𝑡 | ≥ ln(1 + 𝜂)

��� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
≥ Pr

[
|𝜑𝑡+1 − 𝜑𝑡 | ≥ 𝜂𝜑𝑡

��� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
. (21)

For bounding the right-hand side of equation (21), recall that we consider an instantiation of

the process such that 𝜑𝑡 ≥ 1. Consider the probability that 𝜑 takes steps of at least size 𝜂𝜑𝑡 . By

the law of total probability,

Pr[|𝜑𝑡+1 − 𝜑𝑡 | ≥ 𝜂𝜑𝑡 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]
= Pr[|𝜑𝑡+1 − 𝜑𝑡 | ≥ 𝜂𝜑𝑡 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]Pr[𝐴 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]

+ Pr
[
|𝜑𝑡+1 − 𝜑𝑡 | ≥ 𝜂𝜑𝑡

��� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
(1 − Pr[𝐴 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]).

Since 𝐴 is the event to go from 𝜑𝑡 ≥ 1 to 𝜑𝑡+1 = 0, for all 𝜂 ∈ (0, 1), it holds that

Pr[|𝜑𝑡+1 − 𝜑𝑡 | ≥ 𝜂𝜑𝑡 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ] = 1.

Thus, and by equation (4), we obtain

Pr

[
|𝜑𝑡+1 − 𝜑𝑡 | ≥ 𝜂𝜑𝑡

��� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
=
Pr[|𝜑𝑡+1 − 𝜑𝑡 | ≥ 𝜂𝜑𝑡 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ] − Pr[𝐴 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]

1 − Pr[𝐴 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]

≥ 𝜅 − Pr[𝐴 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]
1 − Pr[𝐴 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]

. (22)
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By combining equations (21) and (22) and observing that for 𝜑𝑡 ≥ 1 it holds that 𝜑𝑡 = e
𝜓𝑡
, we get

E

[
(𝜓𝑡+1 −𝜓𝑡 )2

��� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
≥ ln(1 + 𝜂)2Pr

[
|𝜓𝑡+1 −𝜓𝑡 | ≥ ln(1 + 𝜂)

��� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦,𝐴 ]
≥ ln(1 + 𝜂)2𝜅 − Pr[𝐴 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]

1 − Pr[𝐴 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]
. (23)

Last, we use equations (18) and (23) and that 𝜂 < 1 implies ln(1 + 𝜂) ≤ ln(2) to obtain

E

[
(𝜓𝑡+1 −𝜓𝑡 )2

�� 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]
≥ 4 ln(2)2Pr[𝐴 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]

+ (1 − Pr[𝐴 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]) ln(1 + 𝜂)2
𝜅 − Pr[𝐴 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]
1 − Pr[𝐴 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]

= 4 ln(2)2Pr[𝐴 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ] + ln(1 + 𝜂)2𝜅 − ln(1 + 𝜂)2Pr[𝐴 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ]
≥ 3 ln(2)2Pr[𝐴 | 𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦 ] + ln(1 + 𝜂)2𝜅
≥ ln(1 + 𝜂)2𝜅,

which shows equation (14).

By Theorem 26 and𝜓0 ≤ ln(𝐷/𝑑), we get for all 𝑥,𝑦 ∈ 𝛺 that

E[𝑇 | 𝑋0 = 𝑥,𝑌0 = 𝑦 ] ≤
(
ln(𝐷/𝑑) + 2 ln(2)

)
2

ln(1 + 𝜂)2𝜅 .

This results in the desired mixing time bound of

𝜏M (𝜀) ≤
(
ln(𝐷/𝑑) + 2 ln(2)

)
2

ln(1 + 𝜂)2𝜅 ln

(
1

𝜀

)
. ■
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