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ON THE DIAMETER OF HYPERBOLIC RANDOM GRAPHS∗

TOBIAS FRIEDRICH† AND ANTON KROHMER†

Abstract. Large real-world networks are typically scale-free. Recent research has shown
that such graphs are described best in a geometric space. More precisely, the Internet can be
mapped to a hyperbolic space such that geometric greedy routing is close to optimal [M. Boguñá, F.
Papadopoulos, and D. Krioukov, Nature Commun., 1 (2010), pp. 1–62]. This observation has pushed
the interest in hyperbolic networks as a natural model for scale-free networks. Hyperbolic random
graphs follow a power law degree distribution with controllable exponent β and show high clustering
[L. Gugelmann, K. Panagiotou, and U. Peter, Proceedings of the 39th International Colloquium on
Automata, Languages and Programming, 2012, pp. 573–585]. For understanding the structure of the
resulting graphs and for analyzing the behavior of network algorithms, the next question is bounding
the size of the diameter. The only known explicit bound is O((logn)32/((3−β)(5−β))+1) [M. Kiwi
and D. Mitsche, Proceedings of ANALCO, 2015, pp. 26–39]. We present two much simpler proofs
for an improved upper bound of O((logn)2/(3−β)) and a lower bound of Ω(logn). If β > 3, we show
that the latter bound is tight by proving an upper bound of O(logn) for the diameter.
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1. Introduction. Large real-world networks are almost always sparse and non-
regular. Their degree distribution typically follows a power law, which is synony-
mously used for being scale-free. Since the 1960s, large networks have been studied
in detail and dozens of models have been suggested. In the past few years, a new line
of research has emerged, which showed that scale-free networks can be modeled more
realistically when incorporating geometry.

Euclidean random graphs. It is not new to study graphs in a geometric space.
In fact, graphs with Euclidean geometry have been studied intensively for more than
a decade. The standard Euclidean models are random geometric graphs. They result
from placing n nodes independently and uniformly at random on a Euclidean space.
Edges are created between pairs of nodes if and only if their distance is below some
fixed threshold r. These graphs have been studied in relation to subjects such as clus-
ter analysis, statistical physics, hypothesis testing, and wireless sensor networks [33].
The resulting graphs are more or less regular and hence do not show scale-free behavior
with power law degree distribution as observed in large real-world graphs.

Hyperbolic random graphs. For modeling scale-free graphs, it is natural
to apply a non-Euclidean geometry with negative curvature. Krioukov et al. [26]
introduced a new graph model based on hyperbolic geometry. Similar to Euclidean
random graphs, nodes are uniformly distributed in a hyperbolic space and two nodes
are connected if their hyperbolic distance is small. The resulting graphs have many
properties observed in large real-world networks. This was impressively demonstrated
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Table 1
Known diameter bounds for various random graphs. In all cases the diameter depends on

the choice of the model parameters. Here we consider a constant average degree. For scale-free
networks, we also assume a power law exponent 2 < β < 3. Note that the table therefore refers to a
nonstandard PA version with adjustable power law exponent 2 < β < 3 (normally, β = 3).

Random graph model Diameter

Sparse Erdős–Rényi [9] Θ(logn) [34]

d-dim. Euclidean [33] Θ(n1/d) [21]
Watts–Strogatz [37] Θ(logn) [10]
Kleinberg [25] Θ(logn) [28]

Chung–Lu [13] Θ(logn) [13]
PA [3] Θ(log logn) [15]

Hyperbolic [26] O((logn)
32

(3−β)(5−β)+1
) [24]

power law graphs

by Boguñá, Papadopoulos, and Krioukov [8]. They computed a maximum likelihood
fit of the Internet graph in the hyperbolic space and showed that greedy routing in
this hyperbolic space finds nearly optimal shortest paths in the Internet graph. The
quality of this embedding is an indication that hyperbolic geometry naturally appears
in large scale-free graphs.

Known properties. A number of properties of hyperbolic random graphs have
been studied. Gugelmann, Panagiotou, and Peter [22] compute exact asymptotic ex-
pressions for the expected number of vertices of degree k and prove a constant lower
bound for the clustering coefficient. They confirm that the clustering is nonvanish-
ing and that the degree sequence follows a power law distribution with controllable
exponent β. For 2 < β < 3, hyperbolic random graphs have a giant component of
size Ω(n) [6] and an average distance of Θ(log log n) [11], similar to other scale-free
networks like that of Chung and Lu [13]. Other studied properties include the clique
number [19], bootstrap percolation [12], and tree width [4], as well as algorithms for
efficient generation of hyperbolic random graphs [11, 35] and embedding real networks
in the hyperbolic plane [2, 5, 31, 32, 36].

Diameter. The diameter of a graph G is the longest shortest path between any
two nodes in (the giant component of) G. It is a fundamental structural property
of a random graph because it sets a worst-case lower bound on the number of steps
required for all communication processes. Imagine, for instance, a simple broadcast
protocol in which each activated node activates all neighbors. Starting with one
active node, it takes Ω(D) iterations of this process to activate all nodes in the giant
component, where D is the diameter.

In contrast to the average distance, the diameter is determined by just one single
long path. Due to this sensitivity to small changes, the diameter is notoriously hard to
analyze. Even subtle changes to the graph model can make an exponential difference in
the diameter, as can be seen when comparing Chung–Lu (CL) random graphs [13] and
preferential attachment (PA) graphs [3] in the range of the power law exponent 2 <
β < 3. On the one hand, it has been shown that a CL graph can be embedded in a PA
graph and they behave effectively the same [18]. On the other hand, the diameter of
CL graphs is Θ(log n) [13], while for PA graphs it is Θ(log log n) [15]. Table 1 provides
an overview of existing results in other random graph models. The only known upper

bounds on the diameter of hyperbolic random graphs are O((log n)
32

(3−β)(5−β) +1) by
Kiwi and Mitsche [24] and a polylogarithm with no explicit constant by Bringmann,
Keusch, and Lengler [11]. Our conference paper [20] gave an incorrect proof of a
logarithmic upper bound on the diameter for the case 2 < β < 3. In particular,



1316 TOBIAS FRIEDRICH AND ANTON KROHMER

Lemma 14 of [20] used wrong probabilities pi due to a sign error. Therefore, the best
known bounds for the diameter are so far the polylogarithmic upper bounds by Kiwi
and Mitsche [24].

2. Our contribution. We improve upon the previous results as follows. First,
we present a much simpler proof which also shows a polylogarithmic upper bound for
the diameter, but with a better (that is, smaller) exponent.

Theorem 1. Let 2 < β < 3. The diameter of the giant component in the hyper-

bolic random graph is O((log n)
2

3−β ) with probability 1−O(n−2).

The proof of Theorem 1 is presented in section 4. It serves as an introduction
to the proof of a logarithmic upper bound for the diameter presented in section 5.
There we show with more advanced techniques that for large power law exponents
the following theorem holds.

Theorem 2. Let β > 3. Then, the diameter of the hyperbolic random graph is
O(log n) with probability 1−O(n−2).

The logarithmic upper bound is optimal. In particular, we show that Theorem 2
is tight by presenting the following matching lower bound.

Theorem 3. Let β > 2. Then, there exists a component in the hyperbolic random

graph with diameter Ω(log n) with probability 1−O(n1− β2 ). If β < 3, this is the giant
component.

Let us briefly discuss these results. First, even though we prove all diameter
bounds on the giant component for the case 2 < β < 3, our proofs will make apparent
that the giant component is in fact the component with the largest diameter in the
graph. Second, the statements in Theorems 1 and 2 hold with probability 1−O(n−2).
It is, however, straightforward to modify our proofs to show that these statements
hold with probability 1−O(n−c) for any constant c. Note that this does not hold for
Theorem 3.

It is an open problem to close the gap between the lower bound Ω(log n) and

the upper bound O(log
2

3−β n) on the diameter in the case 2 < β < 3. We conjecture
that the diameter in this case is Θ(log n) as well. A major indicator for this is that

the bound O(log
2

3−β n) becomes worse as β → 3, whereas for β > 3 we have a tight
result. On the other hand, similar to most scale-free random graph models, hyperbolic
random graphs have a distinct phase transition at β = 3. This makes such a behavior
unlikely but not impossible. We discuss the difficulties in proving a tight bound for
the case 2 < β 6 3 in more detail at the end of section 5.

Techniques used. Our formal analysis of the diameter deals with a number of
technical challenges. First, in contrast to proving a bound on the average distance,
it is not possible to average over all path lengths. In fact, it is not even sufficient to
exclude a certain kind of path with probability 1 − O(n−c) because this has to hold
for all possible Ω(n!) paths.

A second major challenge is the fact that a probabilistic analysis of shortest
paths typically uncovers the probability space in a consecutive fashion. Successively
revealing the positions of nodes on the path introduces strong stochastic dependencies
that are difficult to handle with probabilistic tail bounds [16]. Instead of studying
the stochastic dependence structure in detail, we use the geometry and model the
hyperbolic random graph as a Poisson point process (PPP). This allows us to analyze
different areas in the graph independently, which in turn supports our stochastic
analysis of shortest paths.
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We then bound the length of a shortest path by a multiplicative drift argument
known from evolutionary computation [27]. We show that the length of O(log n)
shortest paths follows an Erlang distribution and is thereby still O(log n). This result
may be of independent interest, as it relaxes some of the conditions that are usually
required to apply the drift theorem.

3. Notation and preliminaries. In this section, we briefly introduce hyper-
bolic random graphs. For a more thorough investigation of this model, we refer
to [22, 26].

Let H2 be the hyperbolic plane. Following [26], we use the native representation.
Here, a point v ∈ H2 is represented by polar coordinates (rv, ϕv), and rv is the
hyperbolic distance of v to the origin.1

To construct a hyperbolic random graph G with parameters n, α, and C, consider
a circle DR with radius R = 2 lnn + C that is centered at the origin of H2. Inside
DR, n points are distributed independently as follows. For each point v, draw ϕv
uniformly at random from [0, 2π), and draw rv according to the probability density
function

ρ(r) :=
α sinh(αr)

cosh(αR)− 1
≈ αeα(r−R).

Next, connect two points u, v if their hyperbolic distance is at most R, i.e., if

d(u, v) := cosh−1(cosh(ru) cosh(rv)− sinh(ru) sinh(rv) cos(∆ϕu,v)) 6 R.(1)

By ∆ϕu,v we describe the small relative angle between two nodes u, v, i.e., ∆ϕu,v :=
cos−1(cos(ϕu − ϕv)) 6 π.

This results in a graph whose degree distribution follows a power law with expo-
nent β = 2α + 1 if α > 1

2 , and β = 2 otherwise [22]. Since most real-world networks
have been shown to have a power law exponent β > 2, we assume throughout the
paper that α > 1

2 . Gugelmann, Panagiotou, and Peter [22] proved that the average

degree in this model is then (1 + o(1)) 2α2e−C/2

π(α−1/2)2 .

We now present a handful of lemmas useful for analyzing the hyperbolic random
graph. Most of them can be found in [22]. We begin with an upper bound for
the angular distance between two connected nodes. Consider two nodes with radial
coordinates r, y. Denote by θ(r, y) the maximal radial distance such that these two
nodes are connected. By (1),

θ(r, y) = arccos

(
cosh(y) cosh(r)− cosh(R)

sinh(y) sinh(r)

)
.(2)

This convoluted expression is closely approximated by the following lemma.

Lemma 4 (see [22]). Let 0 6 r, y 6 R and y + r > R. Then,

θ(r, y) = θ(y, r) = 2e
R−r−y

2 (1±Θ(eR−r−y)).

For most computations on hyperbolic random graphs, we need expressions for the
probability that a sampled point falls into a certain area. To this end, Gugelmann,
Panagiotou, and Peter [22] define the probability measure of a set S ⊆ DR as

µ(S) :=

∫
S

f(y) dy,

1In this model, unlike some others (e.g., Poincaré halfplane), the radial hyperbolic distance is
preserved by the embedding into the Euclidean plane.
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where f(r) := ρ(r)
2π = α sinh(αr)

2π(cosh(αR)−1) is the probability mass of a point p = (r, ϕ). By

substituting the definitions of cosh and sinh, f is closely approximated by

f(r) = α
2π e

α(r−R) · (1 + Θ(e−αR − e−2αr)).(3)

We define the ball with radius x around a point (r, ϕ) as

Br,ϕ(x) := {(r′, ϕ′) | d((r′, ϕ′), (r, ϕ)) 6 x}.

For brevity, we write Br(x) instead of Br,0(x). Note that DR = B0(R). Using these
definitions, we can formulate the following lemma.

Lemma 5 (see [22]). For any 0 6 r 6 R we have

µ(B0(r)) = e−α(R−r)(1 + o(1)),(4)

µ(Br(R) ∩B0(R)) =
2αe−r/2

π(α− 1/2)
· (1±O(e−(α−1/2)r + e−r)).(5)

Let us also mention a useful result from [7]. It essentially states that when two
nodes are connected in the hyperbolic random graph, they remain connected even
when moved closer to the center of the disk DR. This means that a node v that has a
smaller radial coordinate than v′—but the same angular coordinate—is connected to
all neighbors of v′, and possibly more. The neighborhood of a node v is thus monotone
in the radial coordinate rv.

Lemma 6 (see [7]). Consider two nodes u = (ru, ϕu), v = (rv, ϕv) in the hyper-
bolic random graph. If d(u, v) 6 x and ru, rv 6 x, then it holds that

d(u′, v′) 6 x,

where u′ = (r′u, ϕu), v′ = (r′v, ϕv) with r′u 6 ru and r′v 6 rv.

Finally, we often make use of the well-known inequality 1 + x 6 ex that holds
for all x ∈ R. Let us mention here that for x → 0 this inequality is actually a close
approximation, as seen in the following lemma.

Lemma 7. Let 0 < x < 1 and let ε be such that 1 − x = e−ε. Then, 1 − x >
e−(1+ε)x.

Proof. Since 1− x = e−ε, it suffices to show that e−ε > e−(1+ε)x. Thus,

e−ε > e−(1+ε)x,

⇔ ε 6 (1 + ε)x,

⇔ (1− x) 6 1
1+ε .

Thus, by estimating 1 + ε 6 eε, the statement holds if 1 − x 6 e−ε. But this is true
by assumption.

Notice that when x is very small, that is, x = o(1), it must hold that ε = o(1).
Thus, we have that 1 − x > e−(1+o(1))x (i.e., the estimation 1 − x ≈ e−x is accurate
in that case).
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3.1. The Poisson point process. We often want to argue about the probability
that an area S ⊆ DR contains one or more nodes. To this end, we usually apply the
simple formula2

Pr[∃v ∈ S] = 1− (1− µ(S))n > 1− exp(−n · µ(S)).(6)

Unfortunately, this formula becomes significantly more complicated once the positions
of some nodes are already known. This introduces conditions on Pr[∃v ∈ S] which
are hard to grasp analytically. For instance, assume we condition on the event that
all nodes are in some area S ⊂ DR. Then, the probability that a node is sampled in
DR \ S is always 0.

To circumvent this technical problem, we use a PPP [33]. It describes a differ-
ent way of distributing nodes inside DR. Let the random variable Pn = {(r1, ϕ1),
(r2, ϕ2), . . . , (rN , ϕN )} denote the set of nodes produced by the PPP. Then, Pn is
fully characterized by the following two properties:

• If two areas S, S′ are disjoint, then the number of nodes in Pn that fall within
S and S′ are independent random variables.

• The expected number of points in Pn that fall within S is
∫
S
nµ(S).

One can show that the above properties imply that the number of nodes inside S
follows a Poisson distribution with mean nµ(S). In particular, we obtain that the
number of nodes N = |Pn| inside DR is distributed as Po(n), i.e., E [N ] = n and

Pr(N = n) =
e−nnn

n!
= Θ

(
n−

1
2

)
.

Moreover, by conditioning on N = n, we recover the original distribution of nodes
in DR. Thus, let P be any property that holds with probability at most O(n−c)
on a hyperbolic random graph whose node set was sampled using Pn. Then, P also
holds with probability at most O(n

1
2−c) in hyperbolic random graphs. This makes the

PPP an extremely useful tool as any result that holds with a high enough polynomial
probability directly translates to hyperbolic random graphs with an error term of n

1
2 .

A useful side effect of this model is that (6) changes to an equality, that is, we
have Pr[∃v ∈ S] = 1− exp(−n · µ(S)).

Let us finally mention that conditioning a PPP on the existence of a point does
not change its distribution; see, e.g., [23, Proposition 5]. More formally, denote by Pxn
the random point set created by a PPP when conditioning on the probability that a
given point x ∈ H2 is in the result. Then, Pn ∪ {x} is equivalent in distribution to
Pxn .

We indicate explicitly whenever we use the PPP instead of the normal hyperbolic
random graph. In particular, section 4 does not require use of this technique.

4. Polylogarithmic upper bound. In this section, we show a polylogarithmic
upper bound on the diameter of the hyperbolic random graph. The proof proceeds in
two steps. First, we show that nodes close to the center form a connected component
of diameter O(log log n). This covers all nodes that are at least bO away from the
boundary of DR. We call this area BI := B0(R − bO) the inner band, where bO =
Θ(logR) will be chosen suitably later. See Figure 1 for an illustration. Afterward, we
prove that all remaining nodes in the outer band BO := DR \BI form components of
at most polylogarithmic diameter.

2Note that we write ∃v ∈ S informally to mean whether S ⊆ DR contains a vertex v ∈ V . To be
formally precise, we would have to write V ∩ S 6= ∅. Since it is usually clear from the context that v
refers to a node, we choose to keep notation concise.
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OR

R/2

BO

BI

bO

2bO

O(log log n)

O(log log n)

Fig. 1. The disk DR is separated into an inner band BI = B0(R − bO) and an outer band
BO = DR \ BI of thickness bO. All nodes closer than R/2 to the center form a clique and thus
have diameter 1. All nodes closer than R − 2bO to the center have a path of length O(log logn)
to a node in B0(R/2). All nodes closer than R − bO have a path of length O(log logn) to a node
in B0(R − 2bO). Thus, all nodes in BI are connected, and the diameter of the induced graph is
O(log logn).

During the proof, it will sometimes be useful to use a discretization of the radial
coordinates. To this end, we partition DR into R layers of constant thickness 1, where
the first layer contains all nodes furthest away from the origin. Thus, all nodes with
radial coordinates in (R − i, R − i + 1] are in layer i.3 We denote the layer i by
Li := B0(R − i + 1) \ B0(R − i), where i > 1. The next lemma gives a bound on
the maximal angle that two nodes in layers i, j may have while still being connected.
Recall that for two nodes u, v with fixed radius ru, rv, the term θ(ru, rv) describes the
maximum angle ∆ϕu,v such that u, v are still connected; see (2).

Lemma 8. Let 1 6 i, j 6 R/2, and consider two nodes u ∈ Li, v ∈ Lj. Then,

2

e
e
i+j−R

2

(
1 + Θ

(
ei+j−R

))
6 θ(ru, rv) 6 2e

i+j−R
2

(
1 + Θ

(
ei+j−R

))
.

Proof. By Lemma 4, θ(rv, rw) = 2e
R−rv−rw

2 (1 +O(eR−rv−rw)). Since v ∈ Li, we
have that R − i 6 rv 6 R − i + 1, and similarly R − j 6 rw 6 R − j + 1. Thus, we
obtain

2e
i+j−2−R

2

(
1 + Θ

(
ei+j−R

))
6 θ(ru, rv) 6 2e

i+j−R
2

(
1 + Θ

(
ei+j−R

))
.

Furthermore, we require an estimate for the probability that a node u in layer Li
has a neighbor in layer Lj . To this end, the next lemma computes the probability
mass of the area Bu(R) ∩ Lj .

Lemma 9. Let 1 6 i, j 6 R/2, and consider a node u ∈ Li. Then, for all α > 0,

µ(Lj ∩Bu(R)) = Θ
(
e−αj+

i+j−R
2

)
.

3Though we never need it explicitly, we note that the last layer only covers [0, R− bRc].
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If further (i + j)/R < 1 − ε for some constant ε > 0 holds, we obtain the explicit
bounds for large n

α
eπ · e−αj+

i+j−R
2 6 µ(Lj ∩Bv(R)) 6 eαα

π · e−αj+
i+j−R

2 .

Proof. We have by Lemma 4 and (3)

µ(Lj ∩Bv(R)) 6 µ(Lj)θ(R− i, R− j)
6 f(R− j + 1) · 2e i+j−R2

(
1 + Θ

(
ei+j−R

))
6 α

π e
i+j−R

2 +α(R−j+1)−αR
(

1 + Θ
(
e−αR − e−2α(R−i) + ei+j−R

))
6 eαα

π e
i+j−R

2 −αj (1 + Θ
(
e−αR + ei+j−R

))
.

For the other direction, a similar computation yields

µ(Lj ∩Bv(R)) > µ(Lj)θ(R− i+ 1, R− j + 1)

> f(R− j) · 2
ee

i+j−R
2

(
1 + Θ

(
ei+j−R

))
> α

eπ e
i+j−R

2 +α(R−j)−αR
(

1 + Θ
(
e−αR − e−2α(R−i) + ei+j−R

))
> α

eπ e
i+j−R

2 −αj (1 + Θ
(
e−αR + ei+j−R

))
.

Using Lemmas 8 and 9, we can now prove that every node v ∈ BI has a path of
length O(log log n) that leads to a node in B0(R/2). Recall that the inner band was
defined as BI := B0(R− bO).

Lemma 10. Consider a node v ∈ Li ⊂ BI . If α < 1, it holds with probability
1−O(n−3) that

1. if i ∈ [bO, 2bO], then v has a neighbor in layer Li+1, and
2. if i ∈ [2bO, R/2], then v has a neighbor in layer Lj for j = α

2α−1 i.

Proof. We begin by proving the first claim. By combining (6) and Lemma 9, the
probability that node v ∈ Li does not contain a neighbor in Lj = Li+1 is at most

exp(−nµ(Lj ∩Bv(R))) 6 exp
(
−Θ(1) · eR/2 · e−αj+ i+j−R

2

)
(7)

= exp
(
−Θ(1) · e−αj+ i+j

2

)
= exp

(
−Θ(1) · e−α(i+1)+i+ 1

2

)
= exp

(
−Θ(1) · e(1−α)i

)
.

We now choose bO appropriately. Since in the first case we have i > bO, our goal is
to set bO to a value such that above term is at most O(n−3). This is achieved by
bO := logR

1−α + c for some large enough constant c. Then, we have

exp(−nµ(Lj ∩Bv(R))) 6 exp(−Θ(1) · elogR+(1−α)c) 6 exp(−3 log n).

This proves part 1 of the claim. For part 2, we set j = α
2α−1 i and i > 2bO in (7). It

is then upper bounded by
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exp
(
−Θ(1) · e− α2

2α−1 i+
i
2 + α

4α−2 i
)

= exp
(
−Θ(1) · e(3α−1−2α2) i

4α−2

)
= exp

(
−Θ(1) · e(1−α) i2

)
6 exp

(
−Θ(1) · elogR+ 1−α

2 c
)

6 exp(−3 log n),

which again holds if the constant c in bO = logR
1−α + c was chosen large enough.

Plugging everything together, we obtain that the diameter of the inner band is
at most O(log log n).

Corollary 11. Let 1
2 < α < 1. With probability 1−O(n−2), each pair of nodes

u, v ∈ BI in the hyperbolic random graph is connected by a path of length O(log log n).

Proof. By a union bound over at most n nodes in BI , the statement in Lemma 10
holds for every node in BI with probability 1−O(n−2). Consider thus a node in a layer
[bO, 2bO]. Since by Lemma 10, every such node has a neighbor in the subsequent layer,
we need at most O(log log n) hops to reach a node in layer i ∈ [2bO,

R
2 ]. Similarly,

every such node has a neighbor in layer j = α
2α−1 i = (1 + ε)i for some constant ε > 0.

Thus, we need at most O(logR) = O(log log n) hops to reach some node in B0(R/2).
Since all nodes in B0(R/2) form a clique by the triangle inequality, we therefore obtain
that all nodes in BI form a connected component with diameter O(log log n).

4.1. Outer band. By Corollary 11, we obtain that the diameter of the graph
induced by nodes in the inner band BI is at most O(log log n). In particular, since all
nodes in B0(R/2) belong to the giant component [7], the nodes in the inner band all
belong to the giant component as well. In this section, we prove that each component
in the outer band BO has a polylogarithmic diameter. One can then conclude that
the overall diameter of the giant component is at most polylogarithmic, since the
diameter is then dominated by the components in the outer band.

To argue over sequences of nodes on a path, we introduce the concept of between-
ness: We say that a node v is between two nodes u,w if ∆ϕu,v + ∆ϕv,w = ∆ϕu,w.
As an example, consider the nodes u = (r1, 0), v = (r2,

π
2 ) and w = (r3, π). Then,

v lies between u and w, but w does not lie between u and v as ∆ϕu,v = π/2 but
∆ϕu,w + ∆ϕw,v = 3

4π.
If a node v is between two connected nodes u,w and has a small radial coordinate,

it is also connected to u,w as shown by the following lemma. Figure 2 contains an
illustration.

Lemma 12. Let u, v, w ∈ V be nodes such that v lies between u and w, and let
{u,w} ∈ E. If rv 6 ru, then v is connected to w.

v

w

u
v

w

u

Fig. 2. Illustration of the statement in Lemma 12. By definition, the edge {u,w} passes under
v in both cases.
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Proof. By Lemma 6, we know that if two nodes (r1, ϕ1), (r2, ϕ2) are connected,
then so are (r′1, ϕ1), (r′2, ϕ2), where r′1 6 r1 and r′2 6 r2. Observe that ∆ϕv,w 6
∆ϕu,w, since v lies between u,w. As the hyperbolic distance is monotone on ∆ϕ 6 π,
we therefore have d(v, w) 6 d(u,w) 6 R.

Note that by symmetry, if rv 6 ru and rv 6 rw both hold, then v is connected to
both u,w.

We say that an edge {u,w} passes under v if the requirement of Lemma 12 is
fulfilled. Using this, we are ready to show Theorem 1. In this argument, we investigate
the angular distance a path can at most traverse until it passes under a node in BI .
By Lemma 12, we then have with high probability (w.h.p.) a short path to the center
B0(R/2) of the graph.

Theorem 1. Let 2 < β < 3. The diameter of the giant component in the hyper-

bolic random graph is O((log n)
2

3−β ) with probability 1−O(n−2).

Proof. Partition the hyperbolic disc into n disjoint sectors of equal angle Θ(1/n).
Recall that bO = logR

1−α +c for a large enough constant c. By (4) and (6), the probability
that k consecutive sectors contain no node in BI is

(1−Θ(k/n) · µ(B0(R− bO)))n 6 exp
(
−Θ(1) · k · e−α logR/(1−α)

)
= exp

(
−Θ(1) · k · (log n)−

α
1−α
)
.

By choosing k := Θ((log n)
1

1−α ) large enough, we obtain that with probability 1 −
O(n−3), there are no k such consecutive sectors. By a Chernoff bound, the number

of nodes in k such consecutive sectors is Θ((log n)
1

1−α ) with probability 1−O(n−3).
Applying a union bound, we get that with probability 1−O(n−2), every sequence of
k consecutive sectors contains at least one node in BI and at most c′k = Θ(k) nodes
in total, for some constant c′.

Consider now a node v ∈ BO that belongs to the giant component. Any path
(without loops) from v that is longer than c′k must thus span more than k sectors.
This holds since by the argument above there are no k consecutive sectors containing
more than c′k nodes.

In particular, this path then either uses a node in BI or passes under a node in
BI . By Lemma 12, there must thus exist a path from v to some node u ∈ BI of length
at most O(k). From u, there is a path of length O(log log n) to the center B0(R/2)
of the hyperbolic disc by Corollary 11. Since this holds for all nodes and the center

forms a clique, the diameter is therefore O((log n)
1

1−α ) = O((log n)
2

3−β ).

From the proof it follows that every component inhabiting Ω((log n)
2

3−β ) sectors
is connected to the center. We derive the following corollary.

Corollary 13. Let 2 < β < 3. The second largest component of the hyperbolic

random graph is of size at most O((log n)
2

3−β ) with probability 1−O(n−3/2).

Proof. The second largest component may not be connected to a node in BI .
Otherwise, as shown above, it belongs (w.h.p.) to the giant component. By the
same argument as in Theorem 1, the largest such component can contain at most

O((log n)
2

3−β ) nodes.

These bounds improve upon the results in [24], who show an upper bound on

the diameter of O((log n)
32

(3−β)(5−β) +1
) and an upper bound on the second largest
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component of O((log n)
64

(3−β)(5−β) +1
). As we will see in Theorem 3, however, the

lower bound on the diameter is only Ω(log n). It is an open problem to show a tight
result for 1

2 < α < 1. For the case α > 1, we bridge this gap in the next section.

5. Logarithmic upper bound. In this section, we show that the diameter of
the hyperbolic random graph is O(log n), if β > 3, or, equivalently, α > 1. Note
that we use a different intuition for our analysis in this section than before. Instead
of showing the existence of short paths to the center of the graph from all nodes,
we show that all shortest paths terminate after O(log n) steps since they reach the
boundary of DR. This holds because for each node v, its largest degree neighbor has
(in expectation) a degree smaller than v itself. Thus, a shortest path visits successively
nodes of a smaller and smaller degree, until it cannot continue.

In this section, we prove all intermediate results using the PPP; see subsection 3.1.
Recall that we defined a layer Li as B0(R− i+ 1) \B0(R− i). We begin by showing
that each node’s largest degree neighbor is of small degree or, equivalently, is in a
small layer. Here, we have to deal with an additional technicality. When sampling a
shortest path, we already have uncovered a neighbor of the current node. To resolve
this issue, recall that conditioning a PPP on a point is equivalent to adding this point
to the distribution, as established in subsection 3.1.

Given a node v and a forbidden neighbor f , we denote by the random variable
Y (v, f) the largest layer in which v has a neighbor that is not f . If v has no other
neighbors than f , we set Y (v, f) = 0. We show the following.

Lemma 14. Let i > ε, j be such that v ∈ Li and f ∈ Lj. Then, there exist
constants ε, δ > 0 such that

EPv,fn [Y (v, f)] 6 (1− δ)i.

Proof. Recall that Pv,fn is distributionally equivalent to Pn ∪ {v, f}. We may
therefore consider the standard PPP with the points v, f added for this proof.

We first compute the probability that v ∈ Li has no neighbors in layer x. This
happens when no nodes are sampled in the area Lx ∩Bv(R). Recall that in the PPP,
it holds that Pr[|Pv,fn ∩ S| > 0] = 1 − exp(−nµ(S)); see subsection 3.1. Thus, by
Lemma 9,

Pr[|Γ(v) ∩ Lx| = 0] = exp(−nµ(Lx ∩Bv(R)))

= exp(−Θ(1) · e i2−(α− 1
2 )x).(8)

We now compute the probability that all neighbors Γ(v) \ f are below layer m.

PrPv,fn [Y (v, f) < m] = Pr[∀x > m : |Γ(v) ∩ Lx| = 0]

=
∏
x>m

exp
(
−Θ(1) · e i2−(α− 1

2 )x
)

= exp

−Θ(1) ·
∑
x>m

e
i
2−(α− 1

2 )x


= exp

(
−Θ(1) · e i2−(α− 1

2 )m
)
,

since the sum is geometric.
Finally, to compute the expectation of Y (v, f), we sum over the complementary

cumulative distribution function. This yields
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EPv,fn [Y (v, f)] =

∞∑
m=1

PrPv,fn [Y (v, f) > m]

=

∞∑
m=1

(
1− PrPv,fn [Y (v, f) < m]

)
6
∞∑
m=1

(
1− exp

(
−Θ(1) · e i2−(α− 1

2 )m
))

.

Since the first 1
2α−1 i terms of the sum are close to 1, we simply overestimate them

with 1. For the remaining part of the sum, we again apply the inequality 1− e−x 6 x
and obtain

EPv,fn [Y (v, f)] 6
i

2α− 1
+

∞∑
m= 1

2α−1 i

(
1− exp

(
−Θ(1) · e i2−(α− 1

2 )m
))

6
i

2α− 1
+

∞∑
m= 1

2α−1 i

Θ(1) · e i2−(α− 1
2 )m

6
i

2α− 1
+ Θ(1).

To prove the claim, we choose ε > 0 as a large enough constant and δ > 0 as a
small enough constant. Then, since i > ε by assumption and α > 1, it holds that

1
2α−1 + Θ( 1

i ) 6 1− δ.
We note that the same result can be achieved when there is no forbidden node f

as the PPP distribution does not change. In this case, we simply write Y (v) instead
of Y (v, f).

Assume we now fix some vertex u and sample an arbitrary shortest path π =
[u = V0, V1, V2, . . .]. We want to obtain a bound on the length |π| that holds w.h.p.
Unfortunately, this process is hard to analyze exactly since it is governed by many
dependencies. For example, V2 may not be connected to V0, as otherwise, π is not a
shortest path. We may, however, analyze an alternative process that is closely related.
To this end, consider the following sequence of random variables, also called a random
walk :

(Yi)i>1, Y1 := Y (V0), Yi := Y (Vi−1, Vi−2) if i > 2.

Recall that Y (Vi−1, Vi−2) denotes the largest layer in which Vi−1 has a neighbor that is
not Vi−2. It is therefore immediate that Vi is always in a layer smaller than or equal
to Yi, since Yi denotes the highest layer in which the shortest path can continue.
Further, if Yi = 0, then |π| 6 i as Vi−1 has no further neighbors apart from Vi−2.
Recall now that a node’s neighborhood is monotone in its radial coordinate (i.e., the
smaller the rv, the more neighbors v has; see Lemma 6). Thus, we may overestimate
the radial coordinates of the nodes V0, V1, . . . and obtain an upper bound on |π|, since
each node in π may only gain additional neighbors.

A natural candidate for this overestimation is to use the upper bounds given by
Y (·). For example, we know that V0 has no neighbors in layers above Y (V0), thus
we may overestimate that V1 has radial coordinate R − Y (V0). The next lemma
formalizes this intuition by giving a random walk (Xi)i>1 that dominates (Yi)i>1,
that is, it holds Pr[Xi > x] > Pr[Yi > x] for all i and x.
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Lemma 15. Consider the random walk (Xi)i>1 with Xi ∈ N, X1 := Y1 and dis-
tribution

Pr[Xi+1 > j | Xi = `] = 1− exp(−ce `2−(α− 1
2 )j) if ` > 0,(9)

Pr[Xi+1 = 0 | Xi = 0] = 1 otherwise.

If c is a large enough constant, this random walk dominates (Yi)i>1.

Proof. We need to give a coupling between the two random walks on which Xi is
always greater than or equal to Yi. By definition, this holds for X1 and Y1. We now
assume inductively that such a coupling exists for 1, . . . , i and show how to produce
it for i+ 1.

We first reveal Γ(Vi), i.e., all neighbors of Vi. Obviously, the shortest path formed
by the vertices V1, . . . , Vi will continue on a node from Γ(Vi) \ Vi−1 or end at Vi.
Consider now a fresh instance of a hyperbolic random graph in which no nodes have
been sampled yet. Assume that in this new instance, we place a node V ′i at position
(R−Xi, ϕVi). Observe that this node has a radius smaller than or equal to Vi, since by
induction we know that Xi > Yi. Further, we have that by Lemma 6, BV ′i (R)∩B0(R)
is a superset of BVi(R) ∩ B0(R). Since we are in the PPP, vertices in the additional
area BV ′i (R) ∩B0(R) \BVi(R) may be sampled independently from BVi(R) ∩B0(R)
since these regions are disjoint.

Thus, we may couple the neighborhood of V ′i to contain copies of all nodes Γ(Vi)
and possibly more. Therefore, the largest layer containing a neighbor of V ′i that is not
the copy of Vi−1 satisfies Y (V ′i , Vi−1) > Y (Vi, Vi−1). And as derived in Lemma 14,
there is a constant c such that Y (V ′i , Vi−1) is distributed as

Pr[Y (V ′i , Vi−1) > j | Xi = `] 6 1− exp(−ce `2−(α− 1
2 )j).

This agrees with (9), and since Y (V ′i , Vi−1) > Y (Vi, Vi−1), so is Xi+1 > Yi+1.

Observe that Lemma 14 shows that by definition of (Xi)i>1, it also holds that

E [Xi+1 | Xi] 6 (1− δ)Xi

if Xi is at least a large enough constant ε. In other words, (Xi)i>1 has a so-called
multiplicative drift toward 0 while it is above some constant layer ε.

We now finally turn to analyzing the length of the random walk (Xi)i>1 until it
reaches 0 and thus, by our explanations above, the length |π| of a shortest path. Let
T := min{i | Xi = 0} be the random variable describing the number of iterations until
Xi hits 0. We bound T by a multiplicative drift theorem as presented by Lehre and
Witt [27, Theorem 7] and originally developed by Doerr and Goldberg [14, Theorem 1]
for the analysis of evolutionary algorithms. For the sake of completeness, we restate
their result.

Theorem 16 (from [14, 27]). Let (Xi)i>1 be a stochastic process over some state
space {0} ∪ [xmin, xmax], where xmin > 0. Suppose that there exists some 0 < δ < 1
such that E [Xi+1 | X0, . . . , Xi] 6 (1 − δ)Xi. Then, for the hitting time T := min{i |
Xi = 0} it holds that

Pr[T > 1
δ (ln(X0/xmin) + r) | X0] 6 e−r ∀ r > 0.

Unfortunately, in our case, the multiplicative drift vanishes once Xi < ε. We
therefore split the random walk (Xi)i>1 into several stages, where a certain stage
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Negative drift

Layer ε

Layer 1

T0

T1

T2

T3

Fig. 3. A sketch of the diameter proof. Until layer ε, there is a negative drift on the next node
of the random walk. Between layer ε and layer 1, there is a constant probability for the walk to end.
Thus, the overall walk visits the marked area O(logn) times. Naively, the random walk is thus of
length O(log2 n); however, Lemma 17 shows that it is w.h.p. of length O(logn).

ends when the random walk falls below ε; see Figure 3. Thus, we map all points
x < ε to 0 and set X0 6 R and xmin = ε. Using Lemma 14 this shows that

Pr[T0 > 1
δ · (log log n− log ε+ r)] 6 e−r,(10)

where T0 refers to the hitting time of the first stage of the random walk. Hence,
by setting r = 4 log n we obtain that with probability 1 − O(n−4), the random walk
(Xi)i>1 ends after O(log n) steps below ε.

Once Xi crosses ε, we consider two possibilities: either the random walk ends, or
it continues at ε. For the latter case, observe that Pr[Xi+1 > j | Xi] is monotonously
increasing in Xi; see (9). Thus, increasing Xi to ε results in a dominating random
walk. Again, by Theorem 16, its stopping time Tj , j > 0, is distributed as

Pr[Tj > 1
δ · r] 6 e−r.(11)

As we prove later, the probability for Xi to end is constant if it is below ε. By
the Chernoff bound, the random walk therefore visits w.h.p. at most O(log n) nodes
below layer ε before stopping. A naive application of (10) and (11) thus yields that
(Xi)i>1 is w.h.p. of length O(log2 n); see Figure 3. It is, however, possible to improve
this result. The reason is that when adding together O(log n) random variables that
are exponentially distributed, most of them will be of constant size. Thus, intuitively,
the main contribution to the sum comes from just one variable achieving a value of
Ω(log n), whereas all others are small. In the following, we prove this intuition and
thereby show that if (Xi)i>1 drops below layer ε not more than O(log n) times, then
the total length of the random walk is still w.h.p. O(log n).

Lemma 17. Let (Tj)j=1...x be x = dc log ne independent random variables, each
with distribution as in (11). Then, with probability 1−O(n−5),

∑x
j=1 Tj 6 O(log n).

Proof. As we only know an exponential tail bound but not the exact distribution
of Tj , we instead investigate the random variables T ′j whose distribution is given by

Pr[T ′j > r] = exp(−δr).

Note that T ′j dominates Tj ; therefore it suffices to find a tail bound on T ∗x :=
∑x−1
j=0 T

′
j .

Since T ∗x is a sum of x exponentially distributed variables with equal mean, the distri-
bution of T ∗x is an Erlang(x, δ) distribution (a special case of the Gamma distribution;
see [17]) and we have
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Pr[T ∗x > t] =

x−1∑
i=0

1

i!
e−δt(δt)i.(12)

To estimate this term, we observe that a random variable P that is Poisson distributed
with mean δt has probability mass function Pr[P = i] = (δt)ie−δt 1

i! . This term equals
the summands in (12), and we can therefore write

Pr[T ∗x > t] =

x−1∑
i=0

Pr[P = i] = Pr[P < x].

By a Chernoff bound for Poisson variables [29], we can estimate this with

Pr[P < x] 6
e−δt(eδt)x

xx
,

as long as x = dc log ne 6 δt. Choosing t = c′ log n large enough, we obtain

Pr[T ∗x > t] 6
e−δc

′ logn(eδc′ log n)c logn

(c log n)c logn

= n−δc
′
( eδc

′

c )c logn

= n−δc
′+c log( eδc

′
c ) 6 n−5.

Using our auxiliary lemmas, we can prove that the diameter of the hyperbolic
random graph is O(log n) if β > 3 or, equivalently, α > 1.

Theorem 2. Let β > 3. Then, the diameter of the hyperbolic random graph is
O(log n) with probability 1−O(n−2).

Proof. We show that for each of the O(n2) connected node pairs, there exists a
shortest path of length O(log n) w.h.p. It then follows from a union bound over all
pairs of nodes that the diameter is upper bounded by O(log n).

Consider any node v and a shortest path beginning in v. The length of the shortest
path is dominated by the length of the random walk (Xi)i>1 as defined in (9). Let
s = c log n for some large enough constant c, and let ε be a large enough constant.
By Lemma 14 and (10), Xs < ε with probability 1 − O(n−4). The probability that
Xs+1 = 0 is then by (9)

Pr[Xs+1 = 0 | Xs < ε] = Pr[Xs+1 < 1 | Xs < ε]

> exp
(
−ce ε2−(α− 1

2 )
)

= Θ(1).

Thus, for a large enough constant c′, the probability that the random walk (Xi)i>1

returns more than c′ log n times to a value < ε is at most n−5. Consequently, we may
apply Lemma 17 and obtain that with probability 1−O(n−5), the length of the walk
(Xi)i>1 is O(log n). Thereby, the length of a shortest path from any node v in the
Poisson point model is at most O(log n) with a probability of at least 1 − O(n−5).
By the union bound, it thus holds that all O(n2) shortest paths in the graph have
a length of at most O(log n) with probability 1 − O(n−3). Finally, since we have
done the analysis in the Poisson point model, we have that the probability that the
shortest path in the hyperbolic random graph is O(log n) with probability at least
1−O(n−2).

Let us conclude this section by mentioning that the case 2 < β 6 3 remains
an open problem. Even though we provided a better polylogarithmic bound on the
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diameter, the lower bound in the next section only produces a path of length Ω(log n).
These bounds leave an open gap, and until now it remains unclear whether the diam-
eter is truly logarithmic or in fact polylogarithmic.

The main problem in proving a better bound in this case lies within the outer band
BO. Consider a similar approach as in Theorem 2: if β < 3, then the random walk
Yi has a multiplicative drift toward the center of DR. While this sounds promising,
there is a significant problem. In our case, we may simply discard the dependencies
of previously visited nodes. After all, they only may exclude potential areas of DR

to contain neighbors, and discarding them increases the (expected) layer of the next
vertex.

This estimation does not hold the other way around. If the random walk is to
reach the center of the graph, we may not discard these dependencies as doing so
decreases the length of the random walk. Thus, one has to consider the dependencies
of previously visited nodes. This is difficult, since the influence of an earlier node
depends on its (angular) distance from the current node and its radial coordinate.
Imagine, for instance, that X1 = R/2, and X2 = 1. We would now like to sample
X3 only depending on X2. We know, however, that X3 cannot be in a large layer
like R/2. Otherwise, the node represented by X3 would likely have been connected to
the node represented by X1, and thus X2 cannot be the layer containing the largest
neighbor of the node in X1.

What makes matters even worse is that one needs to consider the conditions of
all preceding nodes, not only the last. This combination of factors makes an analysis
technically challenging. Compared to other random graph models (see Table 1),
however, it would seem highly surprising if the diameter is indeed polylogarithmic.

Furthermore, the upper bound on the diameter O((log n)
2

3−β ) in Theorem 1 increases
as β → 3; however, for β > 3, the diameter is O(log n) by Theorem 2. While such an
abrupt phase transition seems unnatural, however, it is not completely unreasonable.
The largest component in hyperbolic random graphs for 2 < β < 3 is of linear size,
whereas for β > 3 it is only of polynomial, sublinear order. The lower connectivity
might disconnect long paths and therefore decrease the diameter overall. Nevertheless,
we believe this to be unlikely and conclude this section with the following conjecture.

Conjecture 18. The diameter of the hyperbolic random graph with power law
exponent 2 < β 6 3 is O(log n) w.h.p.4

6. Logarithmic lower bound. Kiwi and Mitsche [24] provide a proof for the
existence of a path component of length Θ(log n) w.h.p. In this section, we present
a slightly simpler proof that there exists a component with diameter of Ω(log n). We
achieve this by considering Θ(log n) subsequent sectors of angle Θ( 1

n ), such that each
sector contains exactly one node in layer L1 and no further nodes. We can show that
such a sequence of sectors occurs at least once in the graph w.h.p. and that it forms
a path of length Ω(log n) without shortcuts. In the case where 2 < β < 3, we can
further show that this path component is connected to BI . This proves the intuition
that the giant component has a diameter of at least Ω(log n), which is not obvious a
priori.

Theorem 3. Let β > 2. Then, there exists a component in the hyperbolic random

graph with diameter Ω(log n) with probability 1−O(n1− β2 ). If β < 3, this is the giant
component.

4A proof for this conjecture appeared in [30] after submission of this paper.
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Proof. Let ε := ( 1
2 − 1

4α ). Observe that for α > 1
2 , we have ε > 0. Consider the

hyperbolic random graph model (not the PPP). We first show that there are no nodes
in B0(εR) w.h.p. For this, we observe that µ(B0(εR)) = Θ(1)·exp(−(α2 + 1

4 )R) = o(1)
by (4). Thus, we may apply Lemmas 5 and 7 to obtain

Pr[there are no vertices in B0(εR)] = (1− µ(B0(εR)))n

> exp
(
−Θ(1) · eR/2 · e−(α2 + 1

4 )R)
)

> 1−Θ(1) · e( 1
4−α2 )R

= 1−Θ
(
n−(α− 1

2 )
)
.

It is important to perform this computation in the hyperbolic random graph model,
as the probability that there are no nodes in B0(εR) 6= ∅ is smaller than 1 − n− 1

2

for some values of α. Thus, a direct application of the PPP will result in a useless
tail bound. Instead, we condition in the PPP on the fact that there are no nodes in
B0(εR). Then, if the same holds in the hyperbolic random graph, we again recover
the same distribution of nodes by simply applying the PPP to the area DR \B0(εR)
instead of DR. The expected number of nodes in the PPP is then

E [|Pn \B0(εR)|] = n · µ(B0(R) \B0(εR))

= n ·
(

1−Θ
(
eα(εR−R)

))
= n ·

(
1−Θ

(
e−αR( 1

2 + 1
4α )
))

= n ·
(

1−Θ
(
e−α

R
2 −R4 )

))
= n ·

(
1−Θ

(
n−(α+ 1

2 )
))

= n− o(1).

Thus, the penalty term is still equal to Θ(n
1
2 ):

Pr[|Pn \B0(εR)| = n] = (n− o(1))n exp(−n+ o(1))
1

n!

> Θ(1) · (n− o(1))n exp(−n+ o(1))n−n−
1
2 en

= Θ(n−
1
2 ) · (1− o( 1

n ))n

> Θ(n−
1
2 ).

In the following, we therefore may condition on the fact that there are no nodes in
B0(εR) and switch to the PPP. Next, we compute the probability that a shortest path
of length Ω(log n) appears in a certain area. At the end, we amplify this probability
by repeating the experiment independently multiple times to arrive at our desired
result.

To this end, similarly to Theorem 1, we now partition the disk DR into Θ(n)
sectors of equal angle ϕ := e−R/2 = Θ( 1

n ). Then, two nodes u, v ∈ L1 in neighboring

sectors have angular distance at most 2e−R/2 and are therefore by Lemma 4 connected.
On the flip side, if two nodes are at least six sectors apart, they are not connected,
since their angle is 6e−R/2 > 2e−R/2+1(1 +O(e−R)).
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L1

v1

v2

. . .

vk

u1

u2 . . .

ulogR/(1−α)

Fig. 4. Proof illustration for Theorem 3. The disk DR is partitioned into sectors of angle 1
n

.
Nodes v1, . . . , vk in neighboring sectors form a path component of length Θ(k). If α < 1, the path is
also connected via the nodes u1, . . . , u logR

1−α +c
to BI .

Consider now k consecutive sectors, where k is to be fixed later. Let p1 be the
probability that a single sector contains exactly one node in L1. Since we are in the
PPP, p1 can be computed by using the Poisson distribution,

p1 = exp(−nϕ · µ(L1)) · nϕµ(L1)

> exp(−ne−R/2f(R− 1)) · ne−R/2f(R− 1)

= e−Θ(1),

meaning it is a constant bounded away from 0. Let p2 be the probability that the
node has no further neighbors than the ones in the k sectors. Since this node is in
L1, it has a constant number of expected neighbors, and so p2 = e−Θ(1) is a constant
probability bounded away from 0 as well.

We name the nodes in the k sectors v1, . . . , vk, respectively. As argued above, k
such nodes form a shortest path of length Ω(k). We now argue that when β < 3, this
path is also connected to the core of the hyperbolic random graph by exposing a path
u1, . . . , uh to the inner band BI , where h = O(log log n). Recall that by Corollary 11,
a path that reaches BI is connected to the giant component. Figure 4 contains an
illustration of the proof.

The probability that sectors k+ 1 to k+ c+ 1 also each contain exactly one node
in L1 is again e−Θ(1) if c is constant. From here, we expose a path to the inner band
BI as follows. Assume we have a node ui ∈ Li in sector k + c + i. Assume further
ui is to the right of all previous sectors. Then, we consider the probability that ui
has a neighbor to the right in layer Li+1, while we still condition on the fact that all
nodes v1, . . . , vk have no neighbors above L1 as stated before. By Lemma 8, a node

ui+1 ∈ Li+1 is not connected to any of the nodes v1, . . . , vk if ∆ϕui+1,vk > 6e
i−R
2 .

Similarly, it is connected to ui if ∆ϕui,ui+1
6 2

ee
2i−R

2 . Since all nodes v1, . . . , vk are to
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the left of ui and there are c sectors between, ui+1 may fall into an angular range of

2
ee

2i−R
2 − 6e

i−R
2 + ce−R/2 > Θ(1) · ei−R2

if c is large enough. Therefore, the probability that node ui has a neighbor in layer
Li+1 that is not connected to v1, . . . , vk is at least

1− exp(−Θ(1) · n · e−αiei−R2 ) = 1− exp(−Θ(1) · e(1−α)i) = Θ(1).

Such a path to BI is of length logR
1−α + c = O(log log n) at most. In total, the proba-

bility that v1, . . . , vk exist as described above, and that they are connected to BI , is
thereby e−Θ(k+log logn), or just e−Θ(k) in the case where β > 3.

It remains to compute how often we can repeat this experiment independently.
Consider a node in the outermost layer v ∈ L1. Since we assumed that v1, . . . , vk have
no neighbors in layers above 1, we have exposed the area B0(R)∩ (

⋃k
i=1Bvi(R)). The

largest angular distance such a node v can have to one of its neighbors is by Lemma 4,

∆ϕ 6 2e−
εR
2 (1±O(e−εR)) 6 O(n−ε),(13)

where ε = ( 1
2 − 1

4α ) as chosen in the beginning. This holds since we condition on the
fact that there are no nodes in B0(εR).

We thus expose at most an angle of O( kn +n−ε+ log log n · 1
n (log n)1/(1−α)) of the

graph. Therefore, if k
n < n−ε, we can repeat this experiment independently Ω(nε)

times. The probability that all of them fail is at most(
1− e−Θ(k+log logn)

)Ω(nε)

6 exp
(
−e−Θ(k)Ω(nε)

)
= exp

(
−nΩ(1)

)
if k = Θ(log n) is chosen small enough. This proves the claim.

7. Conclusion. We derive a new polylogarithmic upper bound on the diameter
of hyperbolic random graphs for the case 2 < β < 3 and show that it is O(log n) if
β > 3. We further prove a logarithmic lower bound. This immediately yields lower
bounds for any broadcasting protocol that has to reach all nodes. Processes such as
bootstrap percolation or rumor spreading therefore must run at least Ω(log n) steps
until they inform all nodes in the giant component. In particular, this result stands
in contrast to the average distance of two nodes in the hyperbolic random graph,
which is of order Θ(log log n) [1, 11]. This implies the existence of a path that is
exponentially longer than the average path.

It remains an open problem to find a matching upper bound on the diameter in
the case 2 < β 6 3, but we conjecture that it is of order O(log n) as well. A natu-
ral direction to expand this research is to investigate rumor spreading on hyperbolic
random graphs. Even though there exists a significant body of research on rumor
spreading in other social network models, hyperbolic random graphs are largely un-
explored in this context. The only work known to us in this direction is by Candellero
and Fountoulakis [12], who study bootstrap percolation in this model. An interesting
question in this context is whether the constant clustering of this model affects ru-
mor spreading protocols in a positive or negative way. Previously inspected scale-free
graph models have subconstant clustering.
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