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Abstract. We consider extension variants of some edge optimization
problems in graphs containing the classical Edge Cover, Matching,
and Edge Dominating Set problems. Given a graph G = (V,E) and
an edge set U ⊆ E, it is asked whether there exists an inclusion-wise
minimal (resp., maximal) feasible solution E′ which satisfies a given
property, for instance, being an edge dominating set (resp., a matching)
and containing the forced edge set U (resp., avoiding any edges from the
forbidden edge set E\U). We present hardness results for these problems,
for restricted instances such as bipartite or planar graphs. We counter-
balance these negative results with parameterized complexity results.
We also consider the price of extension, a natural optimization problem
variant of extension problems, leading to some approximation results.
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1 Introduction

We consider extension problems related to several classical edge optimization
problems in graphs, namely Edge Cover, Maximum Matching and Edge
Dominating Set. Informally, in an extension version of an edge optimization
problem, one is given a graph G = (V,E) as well as a subset of edges U ⊆ E,
and the goal is to extend U to a minimal (or maximal) solution (if possible).

Such variants of problems are interesting for efficient enumeration algorithms
or branching algorithms (see more examples of applications in [11]).

Related work Extension versions have been studied for classical optimization
problems, for example, the minimal extension of 3-Hitting Set [9], minimal
Dominating Set [2, 8] or Vertex Cover [1]. Extensions show up quite natu-
rally in quite a number of situations. For instance, when running a search tree
algorithm, usually parts of the constructed solution are fixed. It is highly desir-
able to be able to prune branches of the search tree as early as possible. Hence,
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it would be very nice to tell efficiently if such a solution part can be extended
to a valid (minimal) solution. When trying to enumerate all minimal solutions,
the same type of problem arises and has known applications in so-called flash-
light algorithms [24]. Another type of area where extension problems show up is
linked to Latin squares [13] (and similar combinatorial questions), or also color-
ing extensions in graphs [7]. In a recent paper, we investigated the complexity
of extension versions of Vertex Cover and Independent Set, i.e., classical
vertex graph problems [12], and we give a first systematic study of this type of
problems in [11], providing quite a number of different examples of extension
problems. For extension variants of automata-related problems, see [17].

Organization of the paper After giving some definitions in Section 2, we prove
that generalization of these problems remain NP-complete, even in bipartite
graphs of bounded degree and with some constraints on the forced set of edges.
Having a planar embedding does not help much either, as we show in Section 4
that these problems remain hard on subcubic bipartite planar graphs. Motivated
by these negative results, we study the parameterized complexity of these prob-
lems in Section 5 and the approximability of a natural optimization version in
Section 6. Due to lack of space the proofs of statements marked with (∗) are
deferred to the full version of the paper.

2 Definitions

Graph definitions We consider simple undirected graphs only, to which we refer
to as graphs. Let G = (V,E) be a graph and S ⊆ V ; NG(S) = {v ∈ V : ∃u ∈
S, vu ∈ E} denotes the neighborhood of S in G and NG[S] = S∪NG(S) denotes
the closed neighborhood of S. For singleton sets S = {s}, we simply write NG(s)
or NG[s], even omitting G if clear from context. The cardinality of NG(s) is
called degree of s, denoted dG(s). If 3 upper-bounds the degree of all vertices,
we speak of subcubic graphs. For a subset of edges S, V (S) denotes the vertices
incident to S. A vertex set S induces the graph G[S] with vertex set S and
e ∈ E being an edge in G[S] iff both endpoints of e are in S. If S ⊆ E is an edge
set, then S = E \ S, edge set S induces the graph G[V (S)], while GS = (V, S)
denotes the partial graph induced by S; in particular, GS = (V,E \ S).
A vertex set S is independent if S is a set of pairwise non-adjacent vertices.
An edge set S is called an edge cover if the partial graph GS is spanning and
it is a matching if S is a set of pairwise non-adjacent edges. An edge set S is
minimal (resp., maximal) with respect to a graph property if S satisfies the graph
property and any proper subset S′ ⊂ S of S (resp., any proper superset S′ ⊃ S
of S) does not satisfy the graph property. A graph G = (L ∪ R,E) is called
bipartite if its vertex set decomposes into two independent sets L and R. The
line graph L(G) = (V ′, E′) of a graph G = (V,E) is a simple graph where each
vertex of L(G) represents an edge of G and two vertices of L(G) are adjacent if
and only if their corresponding edges share a common vertex in G. Hence, it is
exactly the intersection graph of the edges of G. It is well known the class of line
graphs is a subclass of claw-free graphs (i.e., without K1,3 as induced subgraph).
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Problem definitions Let G = (V,E) be a graph where the minimum degree is at
least r ≥ 1. We assume r is a fixed constant (but all results given here hold even
if r depends on the graph). An r-degree constrained partial subgraph is defined
as an edge subset S ⊆ E such that none of the vertices in V is incident to more
than r edges in S. The problem of finding such a set S of size at least k is termed
r-DCPS. An r-degree edge-cover is defined as a subset of edges such that each
vertex of G is incident to at least r ≥ 1 distinct edges e ∈ S, leading to the
decision problem r-EC, determining if such a set of size at most k exists. For
the particular cases of r = 1, 1-DCPS corresponds to the famous Matching
problem and 1-EC is also known as the Edge Cover problem.

The optimization problem associated to r-DCPS, denoted Max r-DCPS,
consists of finding an edge subset E′ of maximum cardinality that is a solution
to r-DCPS. Max r-DCPS is known to be solvable in polynomial time even for
the edge weighted version (here, we want to maximize the weight of E′) [19].
When additionally the constraint r is not uniform and depends on each vertex
(i.e., at most b(v) = rv edges incident to vertex v), Max r-DCPS is usually
known as Simple b-Matching and remains solvable in polynomial time even
for the edge-weighted version (Theorem 33.4, Chapter 33 of Volume A in [27]).

A well-studied optimization version of a generalization of r-EC, known as
the Min lower-upper-cover problem (MinLUCP), is the following. Given
a graph G = (V,E) and two functions a, b : V → N such that for all v ∈ V ,
0 ≤ a(v) ≤ b(v) ≤ dG(v), find a subset M ⊆ E such that the partial graph
GM = (V,M) induced by M satisfies a(v) ≤ dGM

(v) ≤ b(v) (such a solution will
be called a lower-upper-cover), minimizing its cardinality |M | among all such
solutions (if any). Hence, an r-EC solution corresponds to a lower-upper-cover
with a(v) = r and b(v) = dG(v) for every v ∈ V . MinLUCP is known to be
solvable in polynomial time even for edge-weighted graphs (Theorem 35.2 in
Chapter 35 of Volume A in [27]).

We are considering the following extension problems associated to r-DCPS
and r-EC.

Ext r-DCPS
Input: A graph G = (V,E) and U ⊆ E.
Question: Does there exist an edge set S ⊆ E with S ⊆ U such that the
partial graph GS has maximum degree at most r and is maximal in G?

Ext r-EC
Input: A graph G = (V,E) and U ⊆ E.
Question: Does there exist an edge set S ⊆ E with S ⊇ U such that the
partial graph GS has minimum degree at least r and is minimal in G?

An r-edge dominating set S ⊆ E of a simple graph G = (V,E) is a set S
of edges such that for any edge e ∈ E of G, at least r edges of S are incident
to e (by definition, an edge dominates itself one time). The Minimum r-Edge
Dominating Set problem (Min r-EDS for short) consists in finding an r-edge
dominating set of minimum size. Notice that there is a feasible solution if and
only if r ≤ minxy∈E(dG(x)+dG(y)−1). Obviously, 1-EDS is the classical Edge
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Dominating Set problem (EDS), which is NP-hard in general graphs (problem
[GT2] in [20]). The generalization to r-EDS has been studied in [3, 4] (under the
name b-EDS) from an approximation point of view. However, to the best of our
knowledge, r-EDS for every r ≥ 2 was not proved NP-hard so far. As associated
extension problem, we formally study the following problem.

Ext r-EDS
Input: Given a simple graph G = (V,E) and U ⊆ E.
Question: Is there a subset S ⊆ E such that U ⊆ S and S is a minimal
r-edge dominating set?

For an edge extension problem π, extπ(G,U) denotes the set of extremal
extensions of U (i.e., minimal or maximal depending on the context). For a
minimal version, U corresponds to a subset of forced edges (i.e., each min-
imal solution has to contain U) while for a maximal version, E \ U corre-
sponds to a subset of forbidden edges (i.e., each maximal solution has to con-
tain no edges from E \ U). Sometimes, the set extπ(G,U) is empty, which
makes the question of the existence of such extensions interesting. Hence, for
π ∈ {Ext r-DCPS,Ext r-EC,Ext r-EDS}, the extension problems ask if
extπ(G,U) 6= ∅. We call |U | the standard parameter when considering these
problems as parameterized. We may drop the subscript π if clear from context.

3 Complexity results

The results given in this section are based on a reduction from 2-balanced
3-SAT, (3, B2)-SAT for short. An instance (C,X ) of (3, B2)-SAT is a set C of
CNF clauses defined over a set X of Boolean variables such that each clause has
exactly 3 literals and each variable appears exactly twice as a negative and twice
as a positive literal in C. The bipartite graph associated to (C,X ) is BP = (C ∪
X,E(BP )), with C = {c1, . . . , cm}, X = {x1, . . . , xn} and E(BP ) = {cjxi : xi
or ¬xi is a literal of cj}. (3, B2)-SAT is NP-hard by [5, Theorem 1].

Theorem 1. (∗) For every fixed r ≥ 1, Ext r-DCPS is NP-complete in bipar-
tite graphs with maximum degree max{3, r+1}, even if U is an induced matching
for r ≥ 2 or an induced collection of paths of length at most 2 for r = 1.

Proof. Let r = 1. For the technical details for the case r > 1, we refer to the
long version of this paper. Consider an instance of (3, B2)-sat with clauses
C = {c1, . . . , cm} and variables X = {x1, . . . , xn}. We build a bipartite graph
G = (V,E) of maximum degree 3 as follows:

• For each clause c = x∨ y ∨ z, where x, y, z are literals, introduce a subgraph
H(c) = (Vc, Ec) with 8 vertices and 9 edges. Vc contains three specified
vertices xc, yc and zc corresponding to literals of the clause c. Moreover,
U c = {xc1c, yc2c, zc3c} is a set of three forbidden edges included in H(c).
The gadget H(c) is illustrated in the left part of Fig. 1.
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H(c) for c = x ∨ y ∨ z

xc yc zc

1c 2c 3c

H(x)

1x

1c1
x 1c2

x

xc1 xc2

2x

2c3
x 2c4

x

¬xc3 ¬xc4

3x

4x

ex e¬x

Fig. 1. The Gadgets H(c) and H(x). Edges not in U are drawn as thicker lines.

• For each variable x, introduce 12 new vertices. They induce the subgraph
H(x) = (Vx, Ex) illustrated in Fig. 1. The vertex set Vx contains four special
vertices xc1 , xc2 , ¬xc3 and ¬xc4 , where it is implicitly assumed that variable x
appears as a positive literal in clauses c1, c2 and as a negative literal in
clauses c3, c4. Finally, there are two sets of free edges (non-forbidden edges):
Fx = {ex} ∪ {2c3x ¬xc3 , 2c4x ¬xc4} and F¬x = {e¬x} ∪ {1c1x xc1 , 1c2x xc2}. Hence,
the forbidden edges Ux in H(x) are given by Ux = Ex \ (Fx ∪ F¬x).

• We interconnect H(x) and H(c), where x is a literal of clause c, by adding
edge xcx

c if x appears as a positive literal and edge xc¬xc if x appears as a
negative literal. We call these edges crossing edges.

We set U = E \
(
(
⋃
c∈C U c) ∪ (

⋃
x∈X Ux)

)
. This construction is computable

within polynomial time and G is a bipartite graph of maximum degree 3. We
claim that there is a truth assignment of I which satisfies all clauses iff there is
a maximal matching S ⊆ U of G.

If T is a truth assignment of I which satisfies all clauses, then we add the
set of edges xcx

c and Fx if T (x) = true; otherwise, we add the edge xc¬xc and
all edges in F¬x. For each clause c, we choose one literal lc which satisfies the
clause; then, we add 2 edges saturating vertices 1c, 2c and 3c and which are not
incident to the edge of U c saturating lc. For instance, assume it is y; then, we
add two edges saturating vertices 1c and 3c and the white vertices in H(c). The
resulting matching S is maximal with S ∩ U = ∅.

Conversely, assume the existence of a maximal matching S with S ⊆ U .
Hence, for each variable x ∈ X exactly one edge between ex and e¬x is in S (in
order to block edge 3x4x). If it is ex ∈ S (resp., e¬x ∈ S), then Fx ⊂ S (resp.,
F¬x ⊂ S). Hence, S does not contain any crossing edges saturating ¬xc (resp.,
xc). Now for each clause c = x∨ y ∨ z, at least one vertex among xc, yc, zc must
be adjacent to a crossing edge of S. In conclusion, by setting T (x) = true if at
least one vertex xc1 or xc2 of H(x) is saturated by S and T (x) = false otherwise,
we get a valid assignment T satisfying all clauses. ut

In Theorem 1, we showed that, for every fixed r ≥ 2, Ext r-DCPS is hard
even when the set of forbidden edges E \ U is an induced matching. In the
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following, we prove the same result does not hold when r = 1, by reducing this
problem to the problem of finding a maximum matching in a bipartite graph.

Proposition 2. (∗) Ext 1-DCPS is polynomial-time decidable when the for-
bidden edges U = E \ U form an induced matching.

Remark 3. Proposition 2 can be extended to the case where U is a matching and
GU does not contain an alternating path of length at least 5. The complexity of

Ext 1-DCPS when U is a matching remains unsettled.

In [12], several results are proposed for the extension of the independent set
problem (Ext IS for short) in bipartite graphs, planar graphs, chordal graphs,
etc. Here, we deduce a new result for a subclass of claw-free graphs.

Corollary 4. Ext IS is NP-complete restricted to line graphs of bipartite graphs
of maximum degree 3.

Proof. Let G = (V,E) be a bipartite graph of maximum degree 3 and L(G) =
(V ′, E′) its line graph. It is well known that any matching S of G corresponds
to an independent set S′ = L(S) of G′ and vice versa. In particular, S is a
maximal matching of G iff L(S) is a maximal independent set. Hence, (G,U)
is a yes-instance of Ext 1-DCPS iff (L(G), L(U)) is a yes-instance of Ext IS.
Theorem 1 with r = 1 concludes the proof. ut

A reduction from (3, B2)-SAT can also be used to show the following.

Theorem 5. (∗) For every fixed r ≥ 1, Ext r-EC is NP-complete in bipartite
graphs with maximum degree r + 2, even if the forced edge set U is a matching.

4 Planar graphs

All reductions given in this section are from 4-Bounded Planar 3-Connected
SAT (4P3C3SAT for short), the restriction of exact 3-satisfiability4 to
clauses in C over variables in X , where each variable occurs in at most four
clauses (at least one time but at most two times negated) and the associated
bipartite graph BP (explained in Section 3) is planar of maximum degree 4.
This restriction is also NP-complete [23]; in the following, we always assume
that the planar graph comes with an embedding in the plane. This gives us a
planar variable-clause-graph G, corresponding to the original SAT instance I.
The additional technical difficulties come with the embeddings that need to be
preserved. Suppose that a variable xi appears in at most four clauses c1, c2, c3, c4
of I such that in the induced (embedded) subgraph Gi = G[{xi, c1, c2, c3, c4}],
c1xi, c2xi, c3xi, c4xi is an anti-clockwise ordering of edges around xi. By looking
at Gi and considering how variable xi appears as a negative or positive literal
in the four clauses c1, c2, c3, c4 in I, the construction should handle the three
following cases: (1): xi ∈ c1, c2 and ¬xi ∈ c3, c4; (2): xi ∈ c1, c3 and ¬xi ∈ c2, c4;
(3): xi ∈ c1, c2, c3 and ¬xi ∈ c4. All other cases are included in these cases by
rotations and / or interchanging xi with ¬xi.
4 addressing the problem to decide whether there is a truth assignment setting exactly

one literal in each clause to true
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p3i

r3i

m3
i

l3i

f2
i

p4i

r4i

m4
i

l4i

H(c1) H(c2) H(c3) H(c4)

case (2)

t1i

p1i

p2i

p3i

p4i

l2i

l1i

t2i

p5i

p6i

p7i

p8i

r2i

r1i

m1
i

m2
i

fi

H(c2) H(c3) H(c1)H(c4)

case (3)

Fig. 2. Variable gadgets H(xi) of Theorem 6. Cases (1), (2), (3) are corresponding
to H(xi), depending on how xi appears (as a negative or positive literal) in the four
clauses (here, case 3 is rotated). Bold edges denote elements of Uxi . Crossing edges are
marked by dashed lines.

Theorem 6. For any r ≥ 1, Ext r-EDS is NP-complete for planar bipartite
graphs of maximum degree r + 2.

Proof. Consider first r = 1, corresponding to Ext EDS. Given an instance I of
4P3C3SAT with clause set C = {c1, . . . , cm} and variable set X = {x1, . . . , xn},
we build a planar bipartite graph H = (VH , EH) with maximum degree 3 to-
gether with a set U ⊆ EH of forced edges as an instance of Ext EDS.

For each variable xi we introduce a corresponding gadget H(xi) as depicted in

Fig. 2, the forced edge set Uxi
contains {miri, ripi} for case (1), {pji r

j
i , r

j
im

j
i : 1 ≤

j ≤ 4} for case (2) and {p1i p2i , p2i p3i , p5i p6i , p6i p7i ,m2
i fi} for case (3).

For each clause cj ∈ C, we construct a clause gadget
H(cj) as depicted on the right, and a forced edge set
Ucj , each clause gadget H(cj) contains 8 vertices and 7
edges where |Ucj | = 2. Edges in U are drawn in bold.

H(c) for clause c = `1 ∨ `2 ∨ `3

1′c

2′c

1c

2c

3c4c5c6c

Moreover, we interconnect with some crossing edges the subgraphs H(xi)
and H(cj) by linking xi (or ¬xi) to cj according to how it appears in the clause.
More precisely, each clause gadget H(cj) is connected to the rest of the graph
via two (resp., one) crossing edges incident to 2′cj (resp., 1′cj ). We also set the

forced edge set U = (
⋃
xi∈X Uxi) ∪ (

⋃
cj∈C Ucj ). This construction is built in

polynomial time, giving a planar bipartite graph of maximum degree 3.

Note that by minimality, for any edge of U , there exist at least one private
edge to dominate. So, let S be a minimal edge dominating set with S ⊇ U , then
for each clause gadget H(c), at least one of the crossing edges incident to it is
in S. Further, for each variable x, let cxt (resp., cxf ) be the set of crossing edges
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incident to ti (resp., fi), {t1i , t2i } (resp., {f1i , f2i }), and {t1i , t2i } (resp., fi) for the
case 1, 2 and 3 of H(x) respectively, then by minimality of S, at most one of
(S∩cxt ) or (S∩cxf ) is non-empty. Therefore, it can be easily checked that I has a
satisfying assignment T iff H has a minimal edge dominating set containing U .

For r ≥ 2, we start with the instance I = (H,U) given in
the above construction for r = 1. RecallH = (VH , EH) is
a bipartite graph with bipartition VH = L∪R, while U ⊆
EH is a subset of forced edges. Now, for each vertex v of
the left part L, we add the gadget Br(v) depicted to the
right. Denote by H ′ the resulting bipartite graph and
consider I ′ = (H ′, U) as an instance of Ext r-EDS.

Br(v)

v

...

...

...

...

r − 1

r − 1

Let B =
⋃
v∈LBr(v) be the added edges from H to H ′. Note that any r-EDS

S′ of H ′ must contain B. Moreover, S′ is a minimal r-EDS of H ′ iff S′ \B is a
minimal EDS of H. ut

Remark 7. Reconsidering the previous construction that reduces the case when
r > 1 to the case when r = 1, and using the NP-hardness of EDS in bipartite
graphs [6, 31], we deduce NP-hardness of r-EDS for all r ≥ 1.

In [22], several results are proposed for the enumeration of minimal dominating
sets in line-graphs. Here, we strengthen these results by showing that extending
a given vertex set to a minimal dominating set (a problem we call Ext DS) in
line graphs of a planar bipartite subcubic graphs is already a hard problem.

Corollary 8. Ext DS is NP-complete, even when restricted to line graphs of
planar bipartite subcubic graphs.

Proof. Let G = (V,E) be a bipartite graph of maximum degree 3 and L(G) =
(V ′, E′) its line graph. It is well known that any edge dominating set S of G
corresponds to a dominating set S′ = L(S) of G′ and vice versa. In particular,
S is a minimal edge dominating set of G iff L(S) is a minimal dominating set.
Hence, (G,U) is a yes-instance of Ext EDS iff (L(G), L(U)) is a yes-instance
of Ext DS. Theorem 6 with r = 1 concludes the proof. ut

The two next statements appear to be only strengthening Theorems 1 and 5
in the particular case of r = 1, but the details behind can be different indeed.

Theorem 9. (∗) Ext 1-EC is NP-complete for planar bipartite subcubic graphs.

Theorem 10. (∗) Ext 1-DCPS is NP-complete even for planar bipartite sub-
cubic graphs.

5 Parameterized perspective

The next result is quite simple and characterizes the yes-instances of Ext r-EC.

Lemma 11. (∗) ext(G,U) 6= ∅ iff there is an r-EC solution G′ = (V,E′) where
E′ ⊇ U such that SG′ = {v ∈ V (U) : dG′(v) > r} is an independent set of GU .
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This structural property can be used to design an FPT-algorithm for Ext
r-EC. More precisely, our proposed algorithm lists all 3|U | many independent
sets of G[U ] included in V (U) from an instance I = (G,U) of Ext r-EC. In
each case, we produce an equivalent instance of MinLUCP that can be solved
in polynomial time which gives the following result.

Theorem 12. (∗) Ext r-EC, with standard parameter, is in FPT.

For Ext r-DCPS, we can also exploit structural properties of yes-instances
and use the polynomial solvability of Simple b-Matching to show the following.

Theorem 13. (∗) Ext r-DCPS, parameterized by the number of forbidden
edges U , is in FPT.

When bounding the degree of the graphs, we can consider an even smaller
parameter and obtain feasibility results.

Proposition 14. (∗) For graphs with maximum degree r + 1, Ext r-DCPS is
polynomial-time decidable when r = 1 and is in FPT with respect to the number
of isolated edges in U for r ≥ 2.

Remark 15. For graphs with maximum degree r + 1, Ext r-DCPS with r ≥ 2
is parameterized equivalent to SAT with respect to the number of isolated edges
in E \ U and variables, respectively.

v1 v2

v3v4

v5 v6 v5 v1 v2 v6

v3v4

x1 y1 z1

x2 y2 z2

Fig. 3. (G,U) as an instance of Ext VC is shown on the left, with V1 = {v2, v4, v5}
and V2 = {v1, v3, v6} and U = {v2}. The constructed instance (G′, U ′) of Ext EDS is
shown on the right. The vertices and edges of U and U ′ are in marked with bold lines.

Theorem 16. For any r ≥ 1, Ext r-EDS (with standard parameter) is W [1]-
hard, even when restricted to bipartite graphs.

Proof. We only consider r = 1. For r ≥ 2, we can use the gadget Br(v) as
in Theorem 6. The hardness result comes from a reduction from Ext VC on
bipartite graphs, the extension version of Vertex Cover; see [12]. Let I =
(G,U) be an instance of Ext VC, where G = (V,E) is a bipartite graph with



10 Casel et al.

partition (V1, V2) of V and U ⊆ V , the question of Vertex Cover is to decide
if G has a minimal vertex cover S with U ⊆ S. We build an instance I ′ = (G′, U ′)
of Ext EDS as follows. Let us first construct a new graph G′ = (V ′, E′) with
V ′ = V ∪ {xi, yi, zi : i = 1, 2} and

E′ = E ∪
⋃
i=1,2

(
{xiyi, yizi} ∪ {vxi : v ∈ Vi}

)
.

G′ is bipartite with partition into V ′1 = V1∪{x2, y1, z2} and V ′2 = V2∪{x1, y2, z1}.
Set U ′ = {ux1 : u ∈ U ∩V1}∪{ux2 : u ∈ U ∩V2}∪{x1y1, x2y2} so, |U ′| = |U |+2.
This construction is illustrated in Fig. 3. We claim that (G′, U ′) is a yes-instance
of Ext EDS if and only if (G,U) is a yes-instance of Ext VC.

Suppose (G,U) is a yes-instance for Ext VC; so there exists a minimal
vertex cover S for G with U ⊆ S. The set S′ = {vx1 : v ∈ V1 ∩ S} ∪ {vx2 : v ∈
V2∩S}∪{x1y1, x2y2} is an edge dominating set of G′ which includes U ′ because
S contains U . Since S is minimal, S′ is minimal, too; observe that private edges
of a vertex v ∈ S∩V1 (i.e. an edge vu with u /∈ S∩V1) translate to private edges
of vx1 ∈ S′, analogously for x ∈ S ∩ V2. By construction, yizi is a private edge
for xiyi, i = 1, 2.

Conversely, suppose S′ is a minimal edge dominating set of G′ containing U ′.
Since S′ is minimal, then for each e ∈ S′ there is a private edge set Se ⊆ E′,
Se 6= ∅, which is dominated only by e. Moreover, we have, for i ∈ {1, 2}:

∀v ∈ Vi ((vxi ∈ S′) ⇐⇒ (∀u ∈ V3−i(vu /∈ S′ ∩ E))

since S′ is minimal and {x1y1, x2y2} ⊆ U ′. We now show how to safely modify S′

such that S′∩E = ∅. If it is not already the case, there is some edge, w.l.o.g., e =
uv ∈ S′ ∩ E with u ∈ V1 and v ∈ V2. In particular from the above observations,
we deduce u /∈ U , v /∈ U and Se ⊆ E. Modify S′ by the following procedure.

• If the private solution set Se \ {e} contains some edges incident to u and
some edges incident to v, then e ∈ S′ will be replaced by ux1 and vx2;

• if every edge in the private solution Se is adjacent to u, replace e in S′

by ux1, otherwise if every edge in the private solution Se is adjacent to v,
replace e in S′ by vx2.

The case distinction is necessary to guarantee that S′ stays a minimal edge
dominating set after each modification step. We repeat this procedure until S′∩
E = ∅. At the end of the process, every vertex v ∈ V covers the same set of edges
as vx1 or vx2 dominates. Hence, by setting S = {v ∈ V : vx1 ∈ S′ or vx2 ∈ S′},
we build a minimal vertex cover of G containing U . ut

Remark 17. Note that the procedure of local modifications given in Theorem 16
does not preserve optimality, but only inclusion-wise minimality.

6 Price of extension

Considering the possibility that some set U might not be extensible to any min-
imal solution, one might ask how far U is from an extensible set. This concept,
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introduced in [11], is called Price of Extension (PoE). A similar approach has al-
ready been studied in the past called the Price of Connectivity in [10] in the con-
text of connectivity. This notion has been introduced in [10] for Min VC which
is defined as the maximum ratio between the connected vertex cover number
and the vertex cover number. Here, the goal of studying PoE is to measure how
far efficiently computable extensible subsets of the given presolution U are to U
or to the largest possible extensible subsets of U . To formalize this, we define
optimization problems corresponding to Ext r-EC and Ext r-EDS. Actually,
since we mainly propose negative results, we only focus on r = 1 considering the
problems:

Max Ext EC
Input: A connected graph G = (V,E) and a set of edges U ⊆ E.
Solution: Minimal edge cover S of G.
Output: Maximize |S ∩ U |.

Max Ext EDS
Input: A graph G = (V,E) and a set of edges U ⊆ E.
Solution: Minimal edge dominating set S of G.
Output: Maximize |S ∩ U |.

For Π = Max Ext EC or Π = Max Ext EDS, we denote the value of an
optimal solution by optΠ(G,U). Since for all of them optΠ(G,U) ≤ |U | with
equality iff (G,U) is a yes-instance of the extension variant, we deduce from our
previous results that Max Ext EC and Max Ext EDS are NP-hard. In the
particular case U = E, Max Ext EDS is exactly the problem called Upper
EDS where the goal is to find the largest minimal edge dominating set; Upper
EDS can be also viewed as Upper DS in line graphs. In [25], it is shown that
Upper EDS is NP-hard in bipartite graphs. Very recently, an NP-hardness proof
for planar graphs of bounded degree, an APX-completeness for graphs of max
degree 6 and a tight Ω

(
nε−1/2

)
-inapproximation for general graphs and for any

constant ε ∈ (0, 12 ), are given in [18].
The price of extension PoE is defined exactly as the ratio of approximation,

i.e., apxopt . We say that Π admits a polynomial ρ-PoE if for every instance (G,U),

we can compute a solution S of G in polynomial time which satisfies PoE(S) ≥ ρ.

Theorem 18. For any constant ε ∈ (0, 12 ) and any ρ ∈ Ω
(
∆ε−1) and ρ ∈

Ω
(
nε−

1
2

)
, Max Ext EC does not admit a polynomial ρ-PoE for general graphs

of n vertices and maximum degree ∆, unless P = NP.

Proof. The proof is based on a reduction from the maximum independent set
problem (Max IS for short). Given a graph G = (V,E) with n vertices and m
edges where V = {v1, . . . , vn}, as an instance of Max IS, we build a connected
bipartite graph H = (VH , EH) as follows: for each vi ∈ V , add a P3 with edge
set {viv′i, v′iv′′i }, and for each edge e = vivj ∈ E with i < j, add a middle vertex
vi,j and connect vi to vj via vi,j . Consider I = (H,U) as instance of Max EXT
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v1 v2

v3v4

v1

v′1 v′′1

v1,2 v2
v′2

v′′2v2,3

v3

v′3v′′3

v3,4v4
v′4

v′′4 v1,4
v2,4

Fig. 4. On the left side, an instance of Max IS and on the right side, the corresponding
instance of Max Ext EC. Bold edges of H are the set of forced edges U .

EC, where the forced edge subset is given by U = {viv′i : 1 ≤ i ≤ n}. Clearly, H
is a bipartite graph with |VH | = 3n + m vertices, |EH | = 2(m + n) edges and
∆(H) = ∆(G) + 1. An example of this construction is illustrated in Figure 4.

We claim that there is a solution of size k for Max Ext EC on (H,U) iff G
has an independent set of size k. Suppose that S is a maximal independent set
of G of size k. For each e ∈ E, let ve ∈ V \S be a vertex which covers e. Clearly,
S′ = {vi,jve : e = vivj ∈ E} ∪ {v′iv′′i : vi ∈ V } ∪ {viv′i : vi ∈ S} is a minimal edge
cover of H with |S′ ∩ U | = k. Conversely, suppose S′ is a minimal edge cover of
H such that |S′ ∩ U | = k. {v′iv′′i : vi ∈ V } is a part of every edge cover since, v′′i
for vi ∈ V are leaves of H. Moreover, for each e = vivj ∈ E with i < j, at least
one edge between vivij or vjvi,j belongs to any edge cover of H. Furthermore, if
vivi,j ∈ S, by minimality we deduce that viv

′
i /∈ S′. Hence, for each vivj ∈ E, at

most one of viv
′
i, vjv

′
j can be in S′. Hence, S = {vi : viv

′
i ∈ S′} is an independent

set of G with size k.
Using the strong inapproximability results for Max IS given in [28, 32], ob-

serving ∆(H) = ∆(G) + 1 and |VH | ≤ 2|V |2, we obtain the claimed result. ut

Using result given in [18], an Ω
(
nε−1/2

)
-inapproximation can be immedi-

ately deduced for Max Ext EDS. The next result is obtained by a simple
approximation preserving reduction from Max EXT VC to Max Ext EDS.

Theorem 19. (∗) For any constant ε ∈ (0, 1) and any ρ ∈ Ω
(
nε−1

)
, Max Ext

EDS does not admit a polynomial ρ-PoE for general graphs of n vertices, unless
P = NP.

In contrast to the last hardness result, we give a simple approximation de-
pending on the maximum degree ∆(G).

Theorem 20. Max Ext EDS is 1
∆(GU )+1 -approximable for instance (G,U) of

maximum degree ∆.

Proof. Let (G = (V,E), U) be an instance of Max Ext EDS, where the maxi-
mum degree of partial subgraph GU induced by U is bounded by ∆. Compute a
maximum matching M of GU and transform it into a maximal matching M ′ of
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G containing M . It is well known that any maximal matching is an edge domi-
nating set. Obviously, (∆(GU ) + 1)|M | ≥ |U | ≥ optMax Ext EDS(G,U) since GU
is (∆(GU ) + 1)-edge colorable. ut

Considering Ext 1-DCPS, we need to adapt the notion of the price of ex-
tension because we have to consider subset of forbidden edges (i.e., U); more
precisely, we want to increase |U | as few as possible. Hence, the optimization
problem called Min Ext 1-DCPS is defined as follows:

Min Ext 1-DCPS
Input: A graph G = (V,E) and a set of edges U ⊆ E.
Solution: Maximal matching S of G.
Output: Minimize |U ∪ S|.

Recall that PoE is meant to measure how far efficiently computable extensible
subsets are from the given presolution U or to the largest possible extensible
subsets of U . We say that Min Ext 1-DCPS admits a polynomial ρ-PoE if for
every instance (G,U), we can compute a solution S of G in polynomial time
which satisfies PoE(S) = apx

opt ≤ ρ. In the particular case U = ∅, Min Ext 1-
DCPS is exactly the well known problem Minimum Maximal Matching where
the goal is to find the smallest maximal matching. In [14, 15], it is shown that
Minimum Maximal Matching is hard to approximate with a factor better
than 2 and 1.18, assuming Unique Games Conjecture (UGC) and P 6= NP,
respectively. We complement this bound by showing the following.

Theorem 21. (∗) A 2-approximation for Min Ext 1-DCPS can be computed
in polynomial time.

7 Conclusions

We have undertaken some study on several complexity aspects of extension vari-
ants of edge graph problems. Our results should be useful in particular to the
(input-sensitive) enumeration algorithms community that has so far not put
that much attention on edge graph problems; we are only aware of [21] in this
direction. Conversely, output-sensitive enumeration algorithms, e.g., for match-
ings have been around for more than twenty years [29]. Some thoughts on edge
cover enumeration can be found in [30]. Our research might also inspire to re-
visit exact and / or parameterized algorithms on Edge Domination; previous
papers like [16] or [26] did not focus on special graph classes, where we see some
potentials for future research.
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7. Miklós Biró, Mihály Hujter, and Zsolt Tuza. Precoloring extension. I. Interval
graphs. Disc. Math., 100(1-3):267–279, 1992.

8. Marthe Bonamy, Oscar Defrain, Marc Heinrich, and Jean-Florent Raymond. Enu-
merating Minimal Dominating Sets in Triangle-Free Graphs. In Rolf Niedermeier
and Christophe Paul, editors, STACS, volume 126 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 16:1–16:12, Dagstuhl, Germany, 2019. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

9. Endre Boros, Vdimir Gurvich, and Peter L. Hammer. Dual subimplicants of posi-
tive Boolean functions. Optim. Meth. Softw., 10(2):147–156, 1998.

10. Jean Cardinal and Eythan Levy. Connected vertex covers in dense graphs. Theor.
Comput. Sci., 411(26-28):2581–2590, 2010.

11. Katrin Casel, Henning Fernau, Mehdi Khosravian Ghadikoei, Jérôme Monnot, and
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