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Abstract
In most major cities and urban areas, residents form
homogeneous neighborhoods along ethnic or so-
cioeconomic lines. This phenomenon is widely
known as residential segregation and has been stud-
ied extensively. Fifty years ago, Schelling proposed
a landmark model that explains residential segre-
gation in an elegant agent-based way. A recent
stream of papers analyzed Schelling’s model us-
ing game-theoretic approaches. However, all these
works considered models with a given number of
discrete types modeling different ethnic groups.
We focus on segregation caused by non-categorical
attributes, such as household income or position in
a political left-right spectrum. For this, we consider
agent types that can be represented as real numbers.
This opens up a great variety of reasonable mod-
els and, as a proof of concept, we focus on sev-
eral natural candidates. In particular, we consider
agents that evaluate their location by the average
type-difference or the maximum type-difference to
their neighbors, or by having a certain tolerance
range for type-values of neighboring agents. We
study the existence and computation of equilibria
and provide bounds on the Price of Anarchy and
Stability. Also, we present simulation results that
compare our models and shed light on the obtained
equilibria for our variants.

1 Introduction
”Birds of a feather flock together” is an often used proverb
to describe homophily [McPherson et al., 2001], i.e., the phe-
nomenon that homogeneous groups are prevalent in society.
The group members might be similar in terms of, for exam-
ple, their ethnic group, their socioeconomic status, or their
political orientation. Within a city, such groups typically clus-
ter together, which then leads to segregated neighborhoods,
called residential segregation [Massey and Denton, 1988].

Segregated neighborhoods have a strong impact on the so-
cioeconomic prospects [Massey and Denton, 2019] and on
the health of its inhabitants [Acevedo-Garcia and Lochner,
2003; Williams and Collins, 2016]. This explains why res-
idential segregation is widely studied. Typical models are

agent-based and they assume that the agents are partitioned
into a given fixed set of types, which can be understood as an
ethnic group, a trait, or an affiliation. The landmark model
of this kind was proposed by Schelling [1969] roughly fifty
years ago. There, agents of two types are placed on the line
or a grid and it is assumed that an agent is content with her
current location, if at least a τ -fraction of all neighbors are of
her type, for some τ ∈ [0, 1]. Discontent agents try to relo-
cate. As a result, large homogeneous neighborhoods eventu-
ally form, even if all the agents are tolerant, i.e., if τ ≤ 1

2 .
However, real-world agents show more complex behavior

than predicted by Schelling’s two-type model. For exam-
ple, people might not care about the ethnic group, but they
might compare themselves with their neighbors along non-
categorical aspects like age, household income, or position
in a political left-right spectrum. Given these more com-
plex preferences, the agents cannot be assumed to simply
classify their neighbors into friends and enemies. In con-
trast, the utility of an agent should depend on the respective
non-categorical type-values of her neighbors. This is in line
with recent economics research which reveals that individ-
uals’ happiness is relative to a particular peer group. E.g.,
the reference income hypothesis [Clark and Oswald, 1996;
Clark et al., 2008] states that people compare their income
with a reference value, e.g., the mean or median income of
their neighborhood [Luttmer, 2005; Clark et al., 2009].

With this paper, we initiate the study of agent-based mod-
els for residential segregation that use non-categorical type-
values for the agents. This allows for modeling more real-
istic agent preferences. Using arbitrary type-values in [0, 1]
unlocks an entirely new class of game-theoretic models, that
we call Schelling Games with Continuous Types. As the first
steps, we consider three natural behavioral models: agents
compare their type-value with the most different or the av-
erage type-value in their neighborhood, or they have a toler-
ance range for the accepted type-value difference. All three
variants of the cost function are motivated by plausible real-
world behavior. Comparing with the maximum-difference
type-value is motivated by considering types as positions in
a political left-to-right spectrum, comparing with the aver-
age type-value is suggested by the setting where types are
household incomes, and the model with a tolerance range is
inspired by types being the age of the agents, where agents
consider other agents as similar if they are roughly their age.
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(a) random initial strategy profile (b) SE for the MDG (c) SE for the ADG (d) SE for the CG with λ = 1
5

Figure 1: Sample swap equilibria (SE) in different Schelling Games with Continuous Types obtained from the same initial random state (a),
in an 8-regular toroidal grid graph of size 50 × 50. (b), (c), and (d) show SE for our models reached from (a) via improving swaps. Each
pixel represents a node with an agent. Colors represent type-values ranging from white (type-value 0) to black (type-value 1).

As Figure 1 shows, our models yield very different resi-
dential patterns in equilibrium.

1.1 Model
Given an undirected graph G = (V,E) and a node v ∈ V , we
denote the degree of v in G as deg(v) = |{u ∈ V : {v, u} ∈
E}|. If every node in G has the same degree ∆, we say that
G is ∆-regular. For x ∈ N+, let [x] = {1, . . . , x}.

A Schelling Game with Continuous Types is defined by an
undirected connected graph G, n strategic agents and a type
function t : [n] → [0, 1] mapping agent i ∈ [n] to her type
t(i) ∈ [0, 1]. Unless stated otherwise, we assume wlog that
t(i) ≤ t(j) for i, j ∈ [n] and i ≤ j. The type-distance
d : [n]2 → [0, 1] between two agents i and j is defined as
d(i, j) = |t(i)− t(j)|.

An agent’s strategy is her location on the graph, i.e., a
node of G. A strategy profile σ is an n-dimensional vector
whose i-th entry corresponds to the strategy of the i-th agent
and where all strategies are pairwise disjoint. Let σ−1 be
its inverse function, mapping a node v ∈ V to the agent i
choosing v as her strategy, with the assumption that σ−1 is
equal to ø if v is empty, i.e., no agent chooses v as her strat-
egy. We denote the set of empty nodes in σ as E(σ) =
{v ∈ V : σ−1(v) = ø}. Let |E(σ)| = e. For an agent
i ∈ [n], let the neighborhood of i be the set Ni(σ) = {j ∈
[n] : {σ(i), σ(j)} ∈ E} of agents living in the neighborhood
of σ(i) in G. If Ni(σ) = ∅, we say that i is isolated.

In Swap Schelling Games with Continuous Types, every
node is occupied by exactly one agent, so n = |V |. Agents
can change their strategies only by swapping their location
with another agent. A swap by agents i and j in σ yields
a new strategy profile σij , which is identical to σ with ex-
changed i-th and j-th entries. As agents are rational, we only
consider profitable swaps that strictly decrease the individ-
ual cost of both involved agents. A strategy profile is a swap
equilibrium (SE) if it does not admit any profitable swaps.

In Jump Schelling Games with Continuous Types, empty
nodes exist, i.e., n < |V |, and for every strategy profile σ
we have e = |V | − n. An agent can change her strategy by
jumping to any empty node. Consider agent i on node σ(i).
A jump of agent i to an empty node v ∈ E(σ) yields a new
strategy profile σi, which is identical to σ with the i-th en-

try changed to v. Agents only perform profitable jumps that
strictly decrease their cost. A strategy profile is a jump equi-
librium (JE) if it does not admit any profitable jumps.

We consider the following three cost models. In Aver-
age Type-Distance Games (ADGs), the cost of agent i in σ
is defined as the average distance towards her neighbors,

i.e., costi(σ) =
∑

j∈Ni(σ) d(i,j)

|Ni(σ)| . In Maximum Type-Distance
Games (MDGs), the cost of agent i in σ is defined as the
maximum distance towards her neighbors, i.e., costi(σ) =
maxj∈Ni(σ) d(i, j). In Cutoff Games (CGs), given a cut-
off parameter λ ∈ [0, 1], let N+

i (σ) = {j ∈ Ni(σ) :
d(i, j) ≤ λ} be the set of friends of agent i in σ and
N−

i (σ) = Ni(σ) \ N+
i (σ) be the set of enemies. The cost

i in σ is the fraction of enemies in the neighborhood of i, i.e.,

costi(σ) =
|N−

i (σ)|
|Ni(σ)| . The model of CGs is closer to the orig-

inal Schelling model, i.e., neighbors whose type difference is
within the cutoff are considered as friends; however, in con-
trast to previous models, friendship is not transitive.

For all cost models, we consider two possible variants de-
pending on how we define the cost of an isolated agent. Under
the unhappy-in-isolation (UIS) variant, this cost is set to 1;
under the happy-in-isolation (HIS) variant, it is set to 0. Since
we are considering connected graphs, an agent can never be
isolated in swap games, so the two variants create a different
model only for jump games. In summary, we obtain nine
different games that we denote as X-Y-Z, where X∈{J,S}
stands for the deviation model, either jump (J) or swap (S),
Z∈{ADG,MDG,CG} stands for cost model and, when X = J,
Y∈{UIS,HIS} states which cost is paid in isolation.

We measure the quality of a strategy profile σ by its social
cost cost(σ) =

∑
i∈[n] costi(σ) and denote by σ∗ a social

optimum, i.e., a strategy profile minimizing the social cost1.
The quality of equilibria is measured by the price of anarchy
(PoA) and the price of stability (PoS). The PoA of a game
G is obtained by comparing the equilibrium with the largest
social cost with the social optimum, while the PoS refers to
the equilibrium with the lowest social cost. The PoA (resp.

1The social cost can be considered as a segregation measure,
since a low social cost in our models means that many agent neigh-
borhoods are very homogeneous, i.e., are strongly segregated.
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PoS) of a class of games C is obtained by taking the worst-
case PoA (resp. PoS) over all games in the class. Formally,
PoA(C) = supG∈C PoA(G) and PoS(C) = supG∈C PoS(G).

A game has the finite improvement property (FIP) if any
sequence of improving moves must be finite. For showing
this, we employ ordinal potential functions, since the FIP
is equivalent to the existence of an ordinal potential func-
tion [Monderer and Shapley, 1996].

1.2 Related Work
Given the breadth of the research on residential segregation,
we focus on recent work from the Artificial Intelligence and
Algorithmic Game Theory communities.

Schelling’s seminal residential segregation model was for-
mulated as a strategic game by Chauhan et al. [2018]. In
their model, agents of two types have a threshold-based util-
ity function and an agent gets maximum utility if for this
agent the fraction of same-type neighbors is at least τ . Later,
Echzell et al. [2019] extended this model to more than two
types and showed that the convergence behavior of improv-
ing response dynamics strongly depends on τ . Agarwal et
al. [2021] focused on the case with τ = 1 and proved that
equilibrium existence on trees is not guaranteed and that com-
puting socially optimal strategy profiles or equilibria with
high social welfare is NP-hard. Also, the authors introduced
a new welfare measure that counts the number of agents that
have an other-type neighbor, called the degree of integration.
For τ = 1 also the influence of the underlying graph and of
locality was studied [Bilò et al., 2022b] and welfare guaran-
tees have been investigated [Bullinger et al., 2021].

A variant where the agent itself is counted in the fraction
of same-type neighbors has been introduced in [Kanellopou-
los et al., 2021]. Moreover, recently also agents with non-
monotone utility functions, in particular, with single-peaked
utilities, have been considered in [Bilò et al., 2022a].

Closest to our work is another very recent variant, called
Tolerance Schelling Games, introduced by Kanellopoulos et
al. [2022]. In this model agents have a discrete type and all k
types are ordered according to a given total ordering ≻, i.e.,
T1 ≻ T2 ≻ · · · ≻ Tk. Agents have tolerance values to agents
of other types depending on the number of types in between
the two in the given ordering. Specifically, the model uses
a tolerance vector t = (t0, . . . , tk−1) and the tolerance be-
tween agents of type Ti and type Tj is equal to t|i−j|. In their
work, they specifically analyze balanced tolerance Schelling
games in which every type has the same number of agents
and only consider the jump variant of the game. The authors
show that for every tolerance vector with t1 < 1 there are
graphs that do not admit equilibria. Furthermore, they look
at α-binary Tolerance Schelling Games where agents tolerate
all other agents of types with at most α − 1 other types in
between in the ordering. For specific values of α and k this
game admits at least one equilibrium on trees and grid graphs
and they provide algorithms to find such states. Also, they
prove high tight asymptotic bounds on the PoA and the PoS.

1.3 Our Contribution
We introduce very general strategic residential segregation
models with the decisive new feature that non-categorical

types are possible. This allows for modeling more complex
and arguably also more realistic agent behavior. Moreover,
the power of our models can be seen by noting that they
generalize several existing variants. For example, the k-type
model by Agarwal et al. [2021] with k = 2 can be captured
by both the ADG and the CG, by setting one type to value 0
and the other to value 1 (and λ < 1). Also, the k-type model
by Echzell et al. [2019] for τ = 1 can be modeled via the
CG with suitable type-values and low enough λ. Moreover,
also the α-binary Tolerance Schelling Game by Kanellopou-
los et al. [2022] is captured by the CG, with equally spaced
type-values and a suitably chosen cutoff λ2.

Besides generalizing several known models, our results go
beyond what was known for the special cases. In particu-
lar, we demonstrate with the MDG, that our model allows
for drastically different games that behave very differently,
compared to previously considered variants. For the S-MDG,
not only do equilibria always exist, independently of the un-
derlying graph, but we are also able to construct these states
very efficiently. The same holds for the J-HIS-MDG, the
ADG, and the CG on specific graph classes. Also, the HIS-
assumption has not been studied before. See Table 1 for an
overview over our equilibrium existence results.

Besides equilibrium existence, we also studied the com-
putational complexity of computing the social optimum and
of finding states that minimize the maximum type-difference
of neighbors. Both problems are NP-hard, see [Bilò et al.,
2023]. Moreover, we provide extensive results on the Price of
Anarchy and the Price of Stability. In essence, the PoA is ex-
tremely high for all variants but the PoS is very low on paths
or regular graphs. See Section 3 for a high-level overview
and [Bilò et al., 2023] for all the details. Finally, to shed light
on the equilibrium structure and properties of our game vari-
ants, we present simulation experiments in Section 4. We find
that the MDG and the ADG yield strongly segregated equilib-
ria, while the CG produces more integrated equilibria.

All omitted details can be found in [Bilò et al., 2023].

2 Existence and Construction of Equilibria
First of all, we observe that whenever the type function t is
such that t(0) = 1, t(1) = 1 and t(i) ∈ {0, 1} for each
i ∈ [n], ADGs and CGs boil down to classical Swap or Jump
Schelling games with two types considered in [Agarwal et al.,
2021] for which non-existence of equilibria is known in gen-
eral graphs. Hence, we immediately get the following result.

Proposition 1. S-ADGs, S-CGs, J-UIS-ADGs, and J-UIS-
CGs may not have equilibria when played on general graphs.

2.1 Swap Games
Despite the negative result from Proposition 1, we show that
a SE always exists when considering S-MDGs and it can even
be efficiently computed.

2In the other direction, the J-UIS-ADG can be represented as a
Tolerance Schelling Game by using enough types, with the tolerance
of two types x, y ∈ [0, 1] being 1−|r−s|. However, irrational type-
values cannot be translated.
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Equilibrium
existence

MDG ADG CG

path regular general path regular general path regular general

Swap ✓✓ (Thm. 1) ✓✓ (Thm. 1) ✓✓ (Thm. 1) ✓✓ ([Bilò et al., 2023]) ✓ (Prop. 3) × (Prop. 1) ✓✓ (Thm. 2) ✓✓ (Thm. 2) × (Prop. 1)
Jump (×) (Prop. 6) (×) (Prop. 6) × (Prop. 6) × (Prop. 1) × (Prop. 1)
Jump HIS ✓✓(Thm. 5) (✓)✓ (Prop. 5) (✓)✓(Prop. 5) ✓✓ (Thm. 6) ✓✓ (Thm. 6)

Table 1: Results overview. The symbol ”✓” means that equilibria are guaranteed to exist, the symbol ”✓✓” means an equilibrium always
exists and can be computed efficiently, the symbol ”(✓)✓” means that an equilibrium always exists and it can be computed efficiently in
some specific cases, the symbol ”×” means that equilibria are not guaranteed to exist, and the symbol (×) means that, although equilibria
are not guaranteed to exist in general, there are some families of instances for which they do exist. This is the case for the J-UIS-MDG on
general graphs, which has the FIP when the number e of empty nodes is strictly smaller than the minimum degree of the graph (Prop. 5). A
JE for the J-HIS-MDG can be computed in polynomial time in any graph that contains K2,e as a subgraph (Thm. 3). As a byproduct, for the
J-HIS-MDG, we can compute a JE in polynomial time when e ∈ {1, 2} (Cor. 1 and Thm. 4) or when the graph is dense (Cor. 2).

Maximum Type-Distance Game
The following lemma states that an improving swap never
hurts those agents who end up paying a sufficiently large cost
after the swap.

Lemma 1. Let agents i, j ∈ [n] perform a profitable swap
in a S-MDG and let k be an agent with costk(σij) ≥
max{costi(σ), costj(σ)}. Then, costk(σ) ≥ costk(σij).

Proof. Assume the cost of agent k increases. Since the cost
of k changes, agent i or j must belong to Nk(σij) and must
be crucial for the new cost of k. Assume wlog that agent i
is responsible for the increased cost, so costk(σij) = d(k, i).
Since i ∈ Nk(σij), we get costi(σij) ≥ d(k, i). Thus, we
obtain costi(σij) ≥ costk(σij) ≥ costi(σ) which contradicts
the assumption that agent i performs a profitable swap.

We show that SE exist for S-MDGs since the FIP holds.

Proposition 2. The S-MDG has the FIP.

Proof. By Lemma 1, the lexicographical order of the n-
dimensional vector which sorts the agents’ costs in a non-
increasing way decreases after each improving swap.

Proposition 2 implies that any sequence of improving
swaps converges to a SE. However, as there is no guaran-
tee of polynomial-time convergence, this result does not yield
a polynomial-time algorithm for computing a SE. The fol-
lowing result shows how to efficiently construct a SE. To
this end, we need some additional notation. Given a strat-
egy profile σ and an agent i, we define the leftmost neigh-
bor of i the agent lσ(i) = minj∈Ni(σ) j of smallest index
among the neighbors of i in σ and the rightmost neighbor
of i the agent rσ(i) = maxj∈Ni(σ) j of largest index among
the neighbors of i in σ. As G is connected, σ is injec-
tive, and there are |V | agents, the leftmost and rightmost
neighbors always exist. Moreover, by definition, we have
costi(σ) = max{d(i, lσ(i)), d(rσ(i), i)}.

Theorem 1. A SE for the S-MDG can be computed in O(|E|).

Proof. For a given graph G defining an S-MDG, let τ be an
arbitrary node of G and let T be a breadth-first search (BFS)
tree of G rooted at τ . This tree exists as G is connected.
Number the nodes of T from 1 to n in a natural way, that is,
in increasing order of levels and proceedings from left to right

within the same level. Let σ be the strategy profile such that,
for every i ∈ [n], the i-th agent is assigned to the i-th node.

A BFS tree of a connected graph can be computed in
O(|E|). So, σ can be computed in O(|E|+n) = O(|E|). For
a node u, let p(u) denote u’s parent in T . It is well known that
a BFS tree satisfies the following properties: (1) every non-
tree edge of G only connects nodes of the same level or nodes
of two consecutive levels; (2) there cannot be a non-tree edge
connecting a node u to a node at the left of p(u). Exploit-
ing these claims, we immediately obtain that σ satisfies the
following property (p1): for every agent i not assigned to τ ,
lσ(i) = σ−1(p(σ(i))), i.e., the leftmost agent of i is the agent
assigned to the parent of the node to which i is assigned; so,
for every 1 < i < j, we have lσ(i) ≤ lσ(j).

We now show that σ is a SE. To this end, we prove that for
any i ∈ [n], agent i has no incentive in swapping her position
with agent j, for every j > i.

Let us first consider agent 1 which is assigned to τ . In this
case, we have cost1(σ) = d(rσ(1), 1) = d(deg(τ) + 1, 1).
Agent 1 will be interested in swapping with j > 1 only if j
is surrounded by agents of index smaller than deg(τ) + 1,
which holds only if σ(j) is adjacent to nodes belonging to ei-
ther level 0 or level 1 of T , i.e., only if σ(j) is either a child
or a nephew of τ in T , with no edges (either tree and non-tree
ones) towards nodes of level ℓ ≥ 2. If σ(j) is a child of τ ,
the leftmost neighbor of j does not change after the swap (it
is 1), while, as σ(j) is not adjacent to nodes of a level larger
than 1, the rightmost neighbor of j does not decrease, which
prevents j from swapping. So, σ(j) can only be a nephew
of τ . In this case, as σ(j) can only be adjacent to nodes of
level 1, the leftmost neighbor of j does not increase after the
swap, while the rightmost one does not decrease, again pre-
venting j from swapping. So, agent 1 is not interested in
swapping with any other agent.

Now, consider a swap between agent i > 1 and agent j > i.
As, by property (p1), lσ(j) ≥ lσ(i), in order for j to be will-
ing to swap, rσ(j) must be such that costj(σ) = d(rσ(j), j)
and d(rσ(j), j) > d(j, lσ(i)). Now, as d(rσ(j), j) >
d(j, lσ(i)) implies that d(rσ(j), i) > d(i, lσ(i)), in order for i
to be willing to swap, rσ(i) must be such that costi(σ) =
d(rσ(i), i) and rσ(i) > rσ(j). But this implies that, after the
swap, j pays at least d(rσ(i), j) > d(rσ(j), j) = costj(σ)
preventing j from swapping. So, agent i is not interested in
swapping with any other subsequent agent.
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Average Type-Distance Games and Cutoff Games
As stated by Proposition 1, equilibria are not guaranteed to
exist for these games in general topologies. For games played
on ∆-regular graphs, however, convergence to equilibria is
recovered as shown in the following theorems.
Proposition 3. The S-ADG on ∆-regular graphs has the FIP.

Proof Sketch. We show this proposition using a more gen-
eral version of the ordinal potential function introduced by
Chauhan et al. [2018]. Let G be a ∆-regular graph. We de-
fine our ordinal potential function as the sum of distances over
all edges in the graph according to a given strategy profile σ:

Φ(σ) =
∑

{u,v}∈E

d(σ−1(u), σ−1(v)) = 2 · cost(σ).

This is an ordinal potential function.

A graph G is almost ∆-regular if every of its nodes has
degree in {∆,∆ + 1}. We show that polynomial-time con-
vergence for S-CG is also guaranteed on almost ∆-regular
graphs. Note that paths are almost 2-regular graphs.
Proposition 4. The S-CG on almost ∆-regular graphs has
the FIP.

Proof Sketch. Let G be an almost ∆-regular graph. Consider
the function Φ(σ) = |{u, v} ∈ E : σ−1(u) ∈ N+

σ−1(v)(σ)}|
which counts the number of monochromatic edges, i.e., all
edges whose endpoints are occupied by agents who are
friends. We prove the claim by showing that Φ is an ordi-
nal potential function. See [Bilò et al., 2023] for details.

Theorem 2. The convergence time for the S-CG on almost
∆-regular graphs is O(∆n).

Proof. In the proof of Proposition 4 we showed that the func-
tion Φ(σ) = |{u, v} ∈ E : σ−1(u) ∈ N+

σ−1(v)(σ)}| is an
ordinal potential function that maps strategy profiles to in-
teger values from 0 to at most (∆ + 1)n. As the potential
function increases with every improving swap, there can be
at most O(∆n) improving swaps to any equilibrium.

2.2 Jump Games
For jump games, stability is harder to achieve and we can
prove positive results mostly only under the HIS variant.

Maximum Type-Distance Games
For these games, the happy-in-isolation assumption makes a
huge difference. Using it enables the existence of JE.
Proposition 5. The J-HIS-MDG and the J-UIS-MDG when e
is smaller than the minimum degree of G have the FIP.

Proof. The same ordinal potential function as in Proposi-
tion 2 works. Note that if an agent i ∈ [n] performs an im-
proving jump from σ, every former neighbor of i does not
increase her cost unless we are in the UIS variant and the
agent becomes isolated. But this can never happen under the
claimed premises. By the arguments presented in the proof
of Lemma 1, no new neighbor of i can increase her cost to be
at least costi(σ). Because agent i’s cost strictly decreases, the
potential function lexicographically decreases.

We improve the negative result from Proposition 1 and also
complement the above theorem by showing that JE for J-
UIS-MDGs may not exist even when considering ∆-regular
graphs and the number of empty nodes is equal to ∆.

Proposition 6. J-UIS-MDGs and J-UIS-ADGs on ∆-regular
graphs may not have JE when e ≥ ∆.

Proof. The following instance works for both J-UIS-MDGs
and J-UIS-ADGs. Consider a 5-node ring and three agents
of types t1 = 0, t2 = 1/3 and t3 = 1, respectively; so, we
have ∆ = e = 2. Consider a strategy profile σ. If agent 3 is
isolated in σ, then she can jump on the empty spot adjacent to
agent 2 and improve her cost. So, agent 3 cannot be isolated
in σ. Let i be an agent adjacent to agent 3 in σ. This agent can
jump to an empty spot where she is the only neighbor of agent
j /∈ {i, 3}, thus decreasing her cost. So, no JE exists.

For the rest of the section, we shall focus on J-HIS-MDGs.
We first observe that a JE can be efficiently computed when
the input graph satisfies a topological property.

Theorem 3. A JE for the J-HIS-MDG can be computed in
O(|V |k+1) time in any graph having K2,e as a subgraph,
where k = min{2, e}.

Proof. Let G be a graph having K2,e as a subgraph. So, there
are two nodes u and v that are both adjacent to all nodes of a
set of nodes S such that |S| = e and S∩{u, v} = ∅. Let σ be
any strategy profile assigning agent 1 to u, agent n to v and
leaving empty all nodes in S. Observe that σ is a JE. This is
because by jumping to any node in S, an agent would be ad-
jacent to both agents 1 and n paying her largest possible cost.
Nodes u and v can be discovered in O(|V |k+1) time by guess-
ing all k-tuples of nodes in V and checking in O(|V |) whether
their neighborhoods satisfy the required property.

This yields an efficient algorithm for the following cases.

Corollary 1. A JE for the J-HIS-MDG can be computed in
O(|V |2) time when there is only one empty node.

Proof. Since every connected graph with at least 3 nodes ad-
mits a node of degree at least 2, i.e., it contains K2,1, the
claim follows by Theorem 3.

Corollary 2. A JE for the J-HIS-MDG on graphs with |V |
nodes and ω(|V |3/2) edges can be computed in O(|V |3) time.

Proof. Kővári et al. [1954] proved that the densest graph
on |V | nodes that does not contain Ks,t as a subgraph has size
O(|V |2−1/s). So, every graph with ω(|V |3/2) edges contains
K2,e as a subgraph. The claim follows by Theorem 3.

With additional work, we can obtain efficient computation
of a JE also for the case of e = 2.

Theorem 4. A JE for the J-HIS-MDG can be computed in
O(|V |3) when there are only two empty nodes.

Proof. Let G be the graph defining the game. By Theorem 3,
the claim follows when G contains the cycle C4. We addi-
tionally show that a JE can be computed in O(|V |3) time if G
admits a path of five nodes. One can easily find a path of 5
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nodes in G or say that such a path does not exist in O(|V |3)
time. Indeed, for every two distinct nodes u and v of G each
having at least two neighbors not in {u, v}, there is a path of 5
nodes using u and v as its second and fourth node, respec-
tively, if and only if (i) u and v have a neighbor in common
(the third node of the path), (ii) either one of the two nodes
has at least 3 neighbors not in {u, v} or the two nodes share
only one common neighbor that is not in {u, v}.

Let π = ⟨u1, . . . , u5⟩ be a five-node path in G. We assume
wlog that nodes are numbered in such a way that the number
of neighbors of u1 not in π is not larger than the number of
neighbors of u5 not in π. Define tM = (t(1)+ t(n))/2 as the
middle point between the two extreme types. Let A− = {i ∈
[n] : ti ≤ tM} and A+ = {i ∈ [n] : ti ≥ tM}. We construct
a JE, depending on which of these sets is larger.

Assume that |A+| ≥ |A−|. Let σ be the strategy profile
defined as follows: agent n is assigned to u1, agent 1 to u3

and agent n−1 to u5; u2 and u4 are left empty; all remaining
neighbors of u1 are filled with agents from |A+| (this is al-
ways possible as |A+| ≥ |A−| and u1 has less neighbors than
u5 outside π); the remaining agents are randomly placed. We
claim that σ is a JE. Clearly, no agent is interested in jump-
ing to u2 as this would yield the largest possible cost. So,
an agent i may only be interested in jumping to u4. In this
case, i would be adjacent to agents 1 and n − 1. So, to have
an improving jump, it must be tn−1 < tn, i must be adjacent
to u1 in σ, and i ∈ A−, but this never happens in σ.

If |A+| < |A−|, it suffices swapping agents 1 and n, as-
signing agent 2 to u3 and filling all remaining neighbors of u1

with agents from |A−|.
If G does not contain C4, then either (i) it is a tree or (ii) it

contains only cycles of length three.
If G is a tree, as it cannot have a five-node path, either G

is a star or G is a star with one of its leaves being, in turn,
the center of a star. In both cases, the assignment in which all
agents are isolated is a JE.

If G contains two disjoint cycles of length three, as G is
connected, these cycles need to be connected, thus creating a
five-node path. If the two cycles are not disjoint, then they
may have one or two nodes in common. In the first case, a
five-node path arises, in the second one, C4 arises. So, G has
exactly one cycle of length three. If two nodes of this cycle
have neighbors outside the cycle, then a five-node path arises.
So, G can only be a star in which two leaves are adjacent.
Leaving empty the center of the star and one of these leaves
results in a JE as all agents are isolated.

We show how to efficiently compute equilibria for paths.

Theorem 5. A JE for the J-HIS-MDG on paths can be com-
puted in O(n log n) time.

Proof. Clearly, if the number e of empty nodes satisfies e ≥
n − 1, a strategy profile of social cost equal to zero can be
obtained by making every agent isolated. Such a profile is
trivially a JE and a social optimum. So, assume that e < n−1.

Let S be a set of e pairs of consecutive agents yielding the
largest intervals occurring between the types of two consecu-
tive agents, and let σ be the strategy profile obtained by plac-
ing the agents in increasing order along the path and leaving

an empty spot between any two agents in S. Clearly, σ can
be computed in O(n log n) time. We claim that σ is a JE.

To see this, let us consider an agent i who is willing to jump
to an empty node u. By construction, both nodes adjacent to
u are occupied by two consecutive agents. Let k and k + 1
be these agents. As i improves by jumping, i is not isolated
in σ, and so we have costi(σ) = |t(i) − t(j)|, for some j ∈
{i − 1, i + 1}. Assume that j = i − 1. Since i improves by
jumping to u, the types of agents k and k + 1 are closer than
t(j) = t(i− 1) to t(i). So, it must be max{k, k+1} ≥ i+1
(observe that it may be k = i). We derive costi(σ) = t(i) −
t(i−1) > t(k+1)−t(i) ≥ t(k+1)−t(k), (k, k+1) ∈ S and
(i−1, i) /∈ S, which implies t(i)−t(i−1) ≤ t(k+1)−t(k),
a contradiction. The case j = i+ 1 is analogous.

Average Type-Distance Games and Cutoff Games
We show that the JE for J-HIS-MDGs on paths returned by
the algorithm defined in the proof of Theorem 5 remains sta-
ble also when considering J-HIS-ADGs and J-HIS-CGs.

Theorem 6. A JE for both J-HIS-ADGs and J-HIS-CGs on
paths can be computed in O(n log n) time.

3 Quality of Equilibria
In this section, we provide an overview of our results for the
PoA and PoS of the considered games. For the former, in par-
ticular, we were able to provide a full characterization, while,
for the latter, we give results for games played on specific
topologies. More details can be found in [Bilò et al., 2023].

Price of Anarchy. Under a worst-case view, we can prove
that there can be equilibria of positive social cost while a so-
cial optimum with social cost zero exists, yielding an un-
bounded PoA. The only exceptions are S-MDGs and S-
ADGs having a PoA in Θ(n) and Θ(n∆), respectively, where
∆ is the maximum degree of the underlying graph.

Price of Stability. For characterizing the PoS, usually, ei-
ther the FIP or the existence of algorithms computing equilib-
ria with provable approximation guarantees are required. As
we have seen in Section 2, this may be either impossible or re-
quire quite an effort; nevertheless, these difficulties are com-
mon also in previous models of Schelling games. For games
played on paths, we derive a bound of 1 in S-ADGs and an
upper bound of 2 in S-MDGs, S-CGs and J-HIS-MDGs. On
regular graphs, a bound of 1 holds for both S-ADGs and S-
CGs. Finally, for games played on unrestricted topologies,
we show that the PoS is in Θ(n) for both S-MDGs and J-
HIS-MDGs and even unbounded for J-UIS-MDGs.

4 Simulation Experiments
We present simulation results to highlight some properties of
the obtained equilibria for our model variants.

For our simulations, we consider 8-regular toroidal grid
graphs of size 50 × 50 with a total of 2500 nodes and 10000
edges as a residential area. Agent types and starting locations
are chosen uniformly at random and are the same if we com-
pare different variants. For simulations of the jump versions,
we use 2% uniformly random chosen empty nodes. From the
starting location, random improving moves are chosen until
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an equilibrium is reached. The shown equilibria are repre-
sentative for all runs. For the jump game, we used the UIS
variant, thus, we had no convergence guarantee. However,
the simulations always found a JE.

Visualizations of Equilibria. Figure 1 depicts representa-
tive sample equilibria for our variants of the swap game. The
differences in the equilibria are remarkable. While the SE
for the MDG looks very smooth, the SE of the other variants
show hard color borders, i.e., they have neighboring agents
with large type-difference. This indicates that the segregation
strength in the MDG seems to be higher than in the other ver-
sions, with the CG having the lowest segregation. We further
investigated the equilibria of the CG, in particular the influ-
ence of ∆ and λ on the obtained equilibria. See [Bilò et al.,
2023]. Representative sample equilibria for all our variants
of the Jump Game are depicted in Figure 2. Here, a marked
difference to the Swap Game becomes apparent: the equilib-
ria seem to be less strongly segregated, than their respective
counterpart in the Swap Game. This may be due to agents
having fewer options to improve since at any time only a few
empty cells are available. Moreover, note that in the equi-
libria the empty cells typically have neighboring agents with
large type-difference, rendering these cells less attractive.

Quality Measures. We now focus on different quality mea-
sures to compare the obtained equilibria. For this, we use:

• ADGSC: the social cost of the ADG

• MDGSC: the social cost of the MDG

• # ≤ 1
2 : the number of pairs of neighboring agents with

type-difference at most 1
2 ;

• max d: the maximum neighbor type-difference;

• Steps: the number of steps until convergence.

The results, averaged over 100 runs from randomly chosen
initial states, are shown in Table 2. They confirm that the S-
MDG produces the most segregated equilibria, followed by
the S-ADG. Especially the S-MDG yields the lowest cost
values in every cost function and on average has 99.79%
of edges between agents with type-distance at most 1

2 . The
MDG is also the only model where the maximum type dif-
ference between neighbors is significantly below 1. Also, our
data indicate that equilibria in swap games are more segre-
gated than the equilibria in jump games.

(a) 8-regular Maxi-
mum Distance Game

(b) 8-regular Aver-
age Distance Game

(c) 8-regular Cutoff
Game

Figure 2: Equilibria in different Jump Games from an initially ran-
dom starting strategy profile on 8-regular 50 × 50 toroidal grid
graphs. 2% of nodes are left empty and shown as green.

Model ADGSC MDGSC # ≤ 1
2 max d Steps

S-MDG 148 280 9979 0.75 16510
S-ADG 150 408 9779 0.97 9928
S-CG, 0.1 285 765 9340 0.98 2245
S-CG, 0.2 321 758 9446 0.99 1914

J-UIS-MDG 498 1010 9178 0.86 5059
J-UIS-ADG 281 647 9518 0.95 5498
J-UIS-CG, 0.1 227 592 9215 0.97 5451
J-UIS-CG, 0.2 284 638 9385 0.98 4470

Table 2: Comparison of equilibria of our models. All values are
averaged and rounded over 100 runs each.

Discussion. Our experiments shed light on the structural
properties of the obtained equilibria. On the one hand, they
reveal that the specific choice of cost function can have a
strong impact on the obtained states, e.g., that the CG yields
very different outcomes compared to the MDG or the ADG,
which is not obvious a priori. On the other hand, they also
indicate that our model is rather robust with regard to cer-
tain kinds of cost functions, i.e., the similar structural results
for the MDG and the ADG hint at the fact that varying the
involved distance measures might not change the qualitative
behavior much. Also, the experiments reveal that more struc-
tural properties might be analyzed in future work. E.g., the
appearance of “hard borders”, i.e., the existence of many pairs
of neighboring agents with large type-value difference. Last
but not least, such experiments also shed light on the prefer-
ences of real-world agents: while all our cost functions model
homophily, our plots for the MDG and the ADG resemble
segregation patterns that have been observed by sociologists,
while the patterns of the CG are different. This reveals what
kind of homophilic behavior might be more realistic.

5 Conclusion

In this work, we study game-theoretic models for residential
segregation with non-categorical agent types. This allows us
to generalize existing models but also to derive novel results.

As a proof of concept, we have considered three very natu-
ral variants for the agents’ behavior and focused on the most
fundamental question: the existence of equilibria. For this,
we present many positive results, in particular, we prove that
SE in the S-MDG always exist and can be efficiently con-
structed on all graphs. We complete the picture by providing
additional computational hardness results and many tight or
almost tight bounds on the PoA and the PoS. Some interesting
problems are left open, for example, settling the following:

Conjecture 1. For any Swap Game played on a path, a SE
which is also a social optimum can be efficiently computed.

We emphasize that we have just explored a few of the many
possible models using continuous type values. Future work
could focus on different agent behavior, e.g., employing dif-
ferent norms to compare with. Also, as indicated by our simu-
lations, exploring the relationship between the agents’ behav-
ior and the obtained segregation strength seems promising.
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Döring, Pascal Lenzner, Louise Molitor, and Jonas
Schmidt. Schelling games with continuous types. Tech-
nical Report 2305.06819, arXiv, 2023. Full version of this
paper.

[Bullinger et al., 2021] Martin Bullinger, Warut Suksom-
pong, and Alexandros A. Voudouris. Welfare guarantees
in schelling segregation. J. Artif. Intell. Res., 71:143–174,
2021.

[Chauhan et al., 2018] Ankit Chauhan, Pascal Lenzner, and
Louise Molitor. Schelling segregation with strategic
agents. In SAGT 2018, pages 137–149, 2018.

[Clark and Oswald, 1996] Andrew E Clark and Andrew J
Oswald. Satisfaction and comparison income. Journal
of public economics, 61(3):359–381, 1996.

[Clark et al., 2008] Andrew E Clark, Paul Frijters, and
Michael A Shields. Relative income, happiness, and util-
ity: An explanation for the easterlin paradox and other
puzzles. Journal of Economic literature, 46(1):95–144,
2008.

[Clark et al., 2009] Andrew E Clark, Niels Westergård-
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