
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 27, NO. 6, DECEMBER 2023 1809

Evolutionary Minimization of Traffic Congestion
Maximilian Böther, Leon Schiller, Philipp Fischbeck , Louise Molitor ,

Martin S. Krejca , and Tobias Friedrich

Abstract—Traffic congestion is a major issue that can be solved
by suggesting drivers alternative routes they are willing to take.
This concept has been formalized as a strategic routing problem
in which a single alternative route is suggested to an existing one.
We extend this formalization and introduce the multiple-routes
(MRs) problem, which is given a start and destination and aims
at finding up to n different routes that the drivers strategically
disperse over, minimizing the overall travel time of the system.
Due to the NP-hard nature of the problem, we introduce the MRs
evolutionary algorithm (MREA) as a heuristic solver. We study
several mutation and crossover operators and evaluate them on
real-world data of Berlin, Germany. We find that a combination
of all operators yields the best result, reducing the overall travel
time by a factor between 1.8 and 3, in the median, compared
to all drivers taking the fastest route. For the base case n = 2,
we compare our MREA to the highly tailored optimal solver by
Bläsius et al. (2020), and show that, in the median, our approach
finds solutions of quality at least 99.69% of an optimal solution
while only requiring 40% of the time.

Index Terms—Evolutionary algorithm, optimization, strategic
routing, traffic congestion.

I. INTRODUCTION

TRAFFIC congestion is an increasing problem for urban
areas across the world [3]. A solution is to route drivers

by proposing them routes that reduce the overall travel time
of the system, e.g., by navigation systems. Generally, propos-
ing the same route to all drivers is not reasonable, as this
rather causes traffic congestion if the number of drivers is too
high. Instead, drivers need to disperse over different routes,
with some of them taking suboptimal options into consider-
ation [4]—a cost that some drivers are willing to take [5].
We refer to this setting as strategic routing. A well-studied
domain that meets some of these requirements is route plan-
ning [6]. Most results consider a time component of each
route, e.g., by considering flow over time [7] or predicted con-
gestion [8], [9], [10], [11], or they consider multiple routes,
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where the alternative route needs to be substantially differ-
ent [12], [13]. However, none of these results take the overall
travel time of the system or psychological factors of the drivers
into account.

A problem that does consider road capacities and psycho-
logical models for route choices by drivers is the recently intro-
duced single-alternative-path (SAP) problem [2], a strategic-
routing problem that aims to find an optimal alternative route
to a given route for a group of drivers. Still, the SAP problem
is restricted to a single alternative route and requires one
route to be given as an input. In this article, we naturally
extend the SAP problem to the more general multiple-routes
(MRs) problem, which aims to minimize the overall travel
time of all drivers in a system by proposing a set of routes
to them, with the number of routes being controlled by a
parameter. In order to account for bounded rationality and
differing preferences by the drivers [14], we assume they
form a user equilibrium (UE) on the given routes, i.e., a state
in which no single driver can improve their travel time by
choosing a different route. Since the MR problem is NP-
hard, we introduce the MRs evolutionary algorithm (MREA)
to heuristically solve it. The MREA belongs to the class of
evolutionary algorithms—nature-inspired metaheuristics that
have been applied to great success to hard problems in various
domains [15], [16], including nonstrategic routing problems,
e.g., the VEHICLE ROUTING PROBLEM [17], [18]. The MREA
has a population size of μ, uses four different mutation oper-
ators (changing a single solution), and employs crossover
(combining different solutions) to find good solutions to the
MR problem.

Using real-world data for the city of Berlin, Germany, pro-
vided by TomTom Germany, we evaluate all operators of the
MREA for different route scenarios and compare them to the
naive solution of all drivers taking the fastest route. Our results
(Table I) show that using more mutation operators and a larger
population size yields better solutions. All three crossover
operators that we suggest perform almost equally well, such
that one can choose the fastest. Depending on the route sce-
nario, a best configuration of the MREA reduces the overall
travel time of the system by factors between 1.8 and 3, in
the median. Even using a single mutation operator (a popu-
lation size of 1 and no crossover) improves the solution by
factors between 1.5 and 2.8. We adapt the MREA to the SAP
problem and compare its solution quality to the determinis-
tic, highly problem-specific exact solver of Bläsius et al. [2].
We find (Fig. 8) that the best configuration of the MREA, in
the median, achieves a solution quality of at least 99.69% in
only 40% of the runtime. Overall, our results suggest that
the MREA is a heuristic well-suited for solving the MR
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TABLE I
MEDIAN BEST FITNESS (LOWER IS BETTER) OF THE 75 RUNS (SECTION IV-B) FOR EACH OF THE SETTINGS FROM SECTIONS IV-C–IV-E FOR ALL

11 SCENARIOS. THE COLUMN k-DIJKSTRA STATES THE BEST POSSIBLE FITNESS IF ALL DRIVERS CHOOSE THE FASTEST ROUTES, ACCOUNTING FOR

DELAYS CAUSED BY ALL DRIVERS USING THE SAME STREET, USING DIJKSTRA’S ALGORITHM. THIS FITNESS IS BEATEN BY ANY OF THE MREA
CONFIGURATIONS. ALREADY THE FITNESS VALUES OF THE WEAKEST CONFIGURATION RPONLY ARE BETWEEN 35% AND 63% OF THOSE OF

k-DIJKSTRA. IN GENERAL, THE FITNESS IMPROVES WITH BETTER CONFIGURATIONS (THAT IS, WITH ENTRIES FURTHER TO THE RIGHT, FOR THE

COLUMNS MUTATION OPERATORS AND POPULATION SIZE). THE COLUMN CROSSOVER OPERATORS SHOW THAT THE CHOICE OF THE CROSSOVER

OPERATOR HAS ALMOST NO IMPACT ON THE MEDIAN. NOTE THAT THE COLUMN WEXSEG IS THE SAME AS μ = 1 AND THAT μ = 4 IS THE SAME AS

NO_HEUR DUE TO HOW WE CONDUCT THE EXPERIMENTS. BOLD NUMBERS INDICATE A SIGNIFICANT CHANGE TO THE PREVIOUS COLUMN

(IGNORING THE DETERMINISTIC k-DIJKSTRA), USING THE MANN–WHITNEY U TEST [31] WITH A p-VALUE OF 0.05

problem and, thus, reducing traffic congestion in strategic
scenarios.

In Section II, we formalize the MR problem, and we intro-
duce the MREA in Section III. In Section IV, we analyze
the performance of the MREA and the effect of its opera-
tors and population size. In Section V, we apply the MREA
to the SAP problem and compare it against the algorithm of
Bläsius et al. [2]. We conclude our work in Section VI. For
supplementary material, we refer to our repository [19].

II. MULTIPLE-ROUTES PROBLEM

Given a route network graph G = (V, E) and a continuous
flow of k ∈ R≥0 drivers per unit of time between an origin
s ∈ V and a destination t ∈ V , we consider routing this flow
among n ∈ N+ routes, where we assume that drivers distribute
among these n routes such that no driver in this flow can
choose a quicker route as long as no other driver cooperatively
changes their route. We call such a state an n-restricted UE
(n-UE). The MRs problem aims to find an optimal set of n
routes such that the overall travel time of drivers in an n-UE
is minimized.

In the following, we describe how we model the MR
problem (Section II-A), prove that it is NP-hard (Section II-B),
and go into detail about the UE (Section II-C).

A. Problem Modeling

We follow the formalization by Roughgarden and
Tardos [20] but add the constraint of n routes. Let G = (V, E)

be a directed graph, s ∈ V , t ∈ V , k ∈ R≥0, and n ∈ N+.
Further, let Ps,t denote the set of all routes from s to t.
A traffic flow f : Ps,t → R≥0 is a mapping that assigns to
each P ∈ Ps,t a value representing the amount of drivers on

each edge of P per unit of time. Note that this value may
not be an integer. We call a traffic flow valid if and only if
|{P ∈ Ps,t | f (P) > 0}| ≤ n and if

∑
P∈Ps,t

f (P) = k. Further,
if and only if f is an n-UE (Section II-C), we call the traf-
fic flow stable. The travel time of drivers on an edge e ∈ E
is determined by a latency function τe : R≥0 → R≥0 ∪ {∞}.
That is, for all x ∈ R≥0, τe(x) defines the time a single driver
needs to travel along e assuming there are x agents entering e
per unit of time.1 We assume τe to be monotonically increas-
ing and continuous. For a traffic flow f , the flow fe over e is
then

∑
P∈Ps,t : e∈P f (P), and the overall travel time of drivers

on route P ∈ Ps,t is τP(f ) =∑
e∈P τe(fe).

Last, for each traffic flow f , we associate a cost C(f ) that
denotes the overall travel time of all drivers. Formally

C(f ) =
∑

P∈Ps,t

f (P) · τP(f ). (1)

The MR problem aims to find a valid and stable traffic flow
with minimum cost among all valid and stable traffic flows.

B. NP-Hardness of Multiple-Routes

In the following, we show the NP-hardness of the MUL-
TIPLE-ROUTES problem. To this end, we define a decision
problem variant of MULTIPLE-ROUTES which adds a com-
parison factor C to the instances.

Definition 1: An instance (G, s, t, k, n, C), where G sub-
sumes a graph and the associated latency functions, is in
MULTIPLE-ROUTES if and only if there is an n-UE flow that
distributes k drivers over a set of n routes on G from s to t
such that the overall travel time is at most C.

1The latency function can also be used to model road capacities by setting
it to infinity if too many drivers access a road.
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We show that this decision problem is NP-complete via
a reduction from the NP-complete 2 DIRECTED DISJOINT

PATHS (2DDP) problem [21]. This problem decides, given
a directed graph G = (V, E) and four nodes s1, s2, t1, t2 ∈ V ,
whether there is an s1–t1 path P1 and an s2–t2 path P2 such
that P1 and P2 are edge disjoint.

Theorem 1: MULTIPLE-ROUTES is NP-complete.
Proof: MULTIPLE-ROUTES is in NP, as the graph can be

traversed nondeterministically starting at s and constructing n
paths from s to t. The resulting flow and its overall travel time
can be calculated in polynomial time. It remains to show that
MULTIPLE-ROUTES is NP-hard.

Given a 2DDP instance, the reduction adds two nodes s and
t and four edges es−s1 ,es−s2 ,et1−t and et2−t to the graph G.
Furthermore, for the two edges es−s1 and et1−t, the latency
functions for all x are defined as follows:

τes−s1
(x) = τet1−t(x) =

{
0, if x ≤ 1
x− 1, else.

For the remaining edges e, we define for all x

τe(x) =
{

0, if x ≤ 2
x− 2, else.

Assume an instance with n = 2 routes, k = 3 different drivers
who have to be routed from s to t with overall costs of C = 0.
We now show that there are two disjoint paths P1 and P2 if
and only if we are able to solve MULTIPLE-ROUTES on the
modified graph with the latency functions defined above.

Assume that there are two disjoint paths P1 and P2. If we
construct two new paths P′1 = (es−s1 , P1, et1−t) and P′2 =
(es−s2 , P2, et2−t), the UE flow on this route set assigns one
driver to path P′1 and two drivers to path P′2. This is a n-UE
since all used paths have a latency of 0 under this distribution.
Thus, the overall travel time is 0 and the constructed instance
is in MULTIPLE-ROUTES.

For the opposite direction of the reduction, let there be a
valid n-UE flow with an overall travel time of 0 on the graph G.
By construction, there must be a path from s over s1 and t1
to t used by 1 agent and another path from s over s2 and
t2 to t used by two agents, as we would have nonzero costs
otherwise. Moreover, these two paths may not share an edge,
as there would be nonzero costs otherwise. We have, thus,
found two disjoint paths P1 from s1 to t1 and P2 from s2
to t2. As the reduction is polynomial time, this concludes the
proof.

C. User Equilibrium

In routing games, a UE, also known as Wardrop equilib-
rium [22], is a game state where no player has anything to gain
by changing only their own strategy [23]. This state occurs
when all drivers act selfishly and choose their route such
that they aim to minimize their travel time, given that other
drivers also occupy roads [20]. In the MR problem, we con-
sider n-UEs, where no driver can improve their travel time by
unilaterally changing their route while the traffic flow stays
valid. Given (G, s, t, k), a UE always exists [20], [24], [25].
However, in contrast to UEs, an n-UE is a traffic flow with
a route set of maximum size n where drivers are not allowed

to choose a new route if this exceeds the number of n differ-
ent routes in total. In particular, an n-UE does not have to be
unique, as it highly depends on n. Nonetheless, each valid UE
is also an n-UE.

We approximate an n-UE by computing a UE under the
constraint of using at most n routes. To this end, we model
the UE as a convex problem [24], which we approximately
solve with the FRANK–WOLFE algorithm [26], adjusted such
that it makes sure to satisfy the constraint of at most n routes.

In the following, we overview the Frank–Wolfe algorithm
as well as its step-size, which is a crucial parameter.

1) Frank–Wolfe Algorithm for User Equilibria: In the fol-
lowing, we provide a more formal definition of the UE and
some background on how to calculate it. To this end, we
first introduce the following function that redistributes flow
between paths.

Definition 2: Let G = (V, E) be a graph, f a route flow,
and (s, t) ∈ V2. For P1, P2, P ∈ Ps−t, and δ ∈ [0, f (P1)], we
define the flow redistribution function as follows:

f̃ (P1,P2)
δ (P) :=

⎧
⎨

⎩

f (P1)− δ, if P = P1
f (P2)+ δ, if P = P2
f (P), otherwise.

Definition 3 (UE, [20]): Let G = (V, E) be a graph with
latency functions for the edges, f a route flow, and (s, t) ∈ V2.
Then, f is in a UE if and only if for all P1, P2 ∈ Ps−t, δ ∈
(0, f (P1)], τP1(f ) ≤ τP2 (̃f

(P1,P2)
δ ).

The MREA (Algorithm 2) calculates the UE of the
MR problem by optimizing a convex program via the
FRANK–WOLFE algorithm [26]. In order to apply this
algorithm, the function to be optimized as well as the
set of possible solutions need to be convex. Following
Patriksson [27], the FRANK–WOLFE Algorithm works as
described in Algorithm 1. In each step, it solves a linear pro-
gram that approximates the convex program and then moves
toward the minimizer of this program. The optimal step size
is chosen according to the objective function via a line search.

The UE can be expressed as a convex program [24]. For
a flow u, let z(u) = ∑

e∈E

∫ u(e)
0 τe(x) dx. For (s, t) ∈ V2, the

flow u corresponding to the UE is the minimum of z, subject
to

∑
P∈P u(P) = k and ∀P ∈ Ps,t : u(P) ≥ 0. We show

that the solution set of this convex program is convex. To this
end, we introduce a new concept called flow vectors, allowing
interpolation between flows. For every flow f , we derive a flow
vector f . Every s–t path maps to one index in the flow vector.
The vector element at the according index is equivalent to the
amount of traffic flow f (P) assigned to the corresponding route
P ∈ P . Similar to flow functions, we use f (P) for the amount
of traffic flow assigned to route P by the flow vector f . Similar
to route flows, flow vectors induce edge flow vectors.

Lemma 1: For a graph G = (V, E), let s, t ∈ V and k be
the traffic flow traveling from s to t. Let D be the set of flow
vectors between s and t. Then, D is a convex set.

Proof: Let u and u′ be two flow vectors between s and t.
Furthermore, let γ ∈ [0, 1]. We now prove that the interpolated
vector u′′ = γ ·u′ + (1−γ ) ·u is a flow vector between s and t
as well. Therefore, we already showed that the demand k is
exactly fulfilled, i.e.,

∑
P∈P u′′(P) = k, and that for all P ∈ P ,
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u′′(P) ≥ 0. Since u and u′ are flow vectors, for all P ∈ P ,
u(P), u′(P) ≥ 0. With 0 ≤ γ ≤ 1 and the definition of u′′ we
get, for all P ∈ P , u′′(P) ≥ 0.

We now show that
∑

P∈P u′′(P) = k holds. Note that∑
P∈P u(P) =∑

P∈P u′(P) = k since u and u′ are flow vectors
that fulfill the demand k exactly
∑

P∈P
u′′(P) =

∑

P∈P

(
(1− γ ) · u(P)+ γ · u′(P)

)

= (1− γ )
∑

P∈P
u(P)+ γ

∑

P∈P
u′(P)

= (1− γ ) · k + γ · k = k.

As described in Algorithm 1 the FRANK–WOLFE algorithm
solves a linear program in each iteration. For calculating user
equilibria, we substantiate the abstract term pT

q∇z(xq) by cal-
culating the gradient of z and simplifying to pT

q∇z(xq) =∑
e∈E τe(xq(e)) · pq(e), subject to

∑
P∈P pq(P) = k and

∀P ∈ P : pq(P) ≥ 0. Furthermore, the constraint pq ∈ D
is equivalent to pq being a flow vector. Hence, this linear pro-
gram needs to be solved in every iteration in order to obtain
pq based on the current flow vector xq.

We show that solving this linear program is equivalent to
assigning all drivers to the shortest route in a graph where
each edge e has a fixed cost of τe(xq(e)).

Lemma 2: When calculating a UE on a graph G = (V, E)

for (s, t) ∈ V2 using the FRANK–WOLFE algorithm, in
iteration q, the solution pq to the linear program is the flow
vector x that assigns all k drivers to the shortest s–t path of an
adjusted graph G′ where every edge e has a cost of τe(xq(e)).

Proof: Let P be the shortest path from s to t. Assume the
contrary, i.e., that the optimal assignment x′ assigns flow to
another path P′ such that x′(P′) > 0. As all edges have con-
stant costs and P is the shortest path, τP(xq) < τP′(xq). Hence,
according to the definition of the system cost C, assigning all
drivers using P′ to P yields another feasible assignment with
lower overall costs which is a contradiction to x′ being the
optimal assignment.

In the case of the MULTIPLE-ROUTES problem, we are only
allowed to assign drivers to a fixed set of routes, as discussed
in Section II-C. In order to approximate a UE, the drivers are
assigned to the shortest route in the set instead of the graph. This
may break the convergence of the FRANK–WOLFE algorithm
but allows to approximate the UE on the routes quite well.

2) Step Size Determination: There are various approaches
for choosing the factor γ ∈ [0, 1] used for interpolating
between xq and pq. We employ a line search, i.e., we find
γ ∈ [0, 1] minimizing z̃(γ ) = z(xq+γ (pq−xq)), as this is the
best step toward the global minimum of z that can be made
from one iteration to the next. To this end, we consider the
derivatives with respect to γ

z̃′(γ ) =
∑

e∈E

τe
(
xq(e)+ γ

(
pq(e)− xq(e)

)) · (pq(e)− xq(e)
)

z̃′′(γ ) =
∑

e∈E

τ ′e
(
xq(e)+ γ

(
pq(e)− xq(e)

)) · (pq(e)− xq(e)
)2

.

Since the cost functions τe are monotonically increasing, for
all γ ∈ [0, 1], z′′(γ ) ≥ 0. For a concrete edge latency
function τe, we now set the first derivative to zero in order

Algorithm 1: FRANK–WOLFE Algorithm [26] for
Optimizing a Convex Program

Input: Convex set D, f : D→ R convex, differentiable
function, x0 ∈ D

Output: x ∈ D s.t. f (x) is minimal
1 q← 0;
2 while not converged do
3 Find pq minimizing the following linear program

minimize pT
q∇f (xq)

subject to pq ∈ D;
4 γ ← Line-Search Determination of step size;
5 xq+1 ← xq + γ (pq − xq);
6 q← q+ 1;

7 return xq;

to calculate the minimum. For the U.S. Traffic Model we
introduce in Section IV, we obtain

z̃′(γ ) =
∑

e∈E

(
ae ·

(
xq(e)+ γ

(
pq(e)− xq(e)

)2 + be

)
· (pq(e)− xq(e)

)

=
∑

e∈E

ae
(
pq(e)− xq(e)

)3 · γ 2 + 2aexq(e)
(
pq(e)− xq(e)

)2 · γ

+
(

aexq(e)
2 + be

)(
pq(e)− xq(e)

)

which is a second-order polynomial whose roots can be
calculated efficiently.

III. MULTIPLE-ROUTES EA

The MREA (Algorithm 2) is an elitist EA for optimizing the
MR problem. Given an MR instance (G, s, t, k, n), it maintains
a population of μ route sets (the individuals), each of which
consists of exactly n (not necessarily different) routes from s
to t. Each individual is scored via a value (the fitness), which
is determined by first approximating the n-UE, as described in
Section II-C, and then scoring the resulting traffic flow via (1).
Individuals are compared via their fitness, and a lower fitness
is considered better.

The MREA generates offspring in two different (and exclu-
sive) ways: by 1) via a crossover operation (lines 8–11) and
2) by employing a random number of mutation operators to
a copy of each individual (lines 12–20). Then, the MREA
reduces the population size to μ via truncation selection,
breaking ties uniformly at random (line 23). Note that to avoid
a single good individual being copied via crossover and then
taking over the entire population, the offspring generated by
crossover is only considered for selection if there is an indi-
vidual in the offspring population, that is, strictly better than
the best individual in the parent generation (lines 21 and 22).
The algorithm stops after a user-defined termination criterion.
Although the MREA operates on sets of routes, many oper-
ators also perform changes to single routes. To this end, the
subroutine RandDijkstra (RD) is used, which finds a shortest
path on G with randomly perturbed edge weights.

In the following, we explain the RD subroutine
(Section III-A) and then go into detail about the muta-
tion (Section III-B) and crossover (Section III-C) operators
of the MREA.
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Algorithm 2: MULTIPLE-ROUTES EA. Note That We Use
Set Notation, Even Though the Sets Are Multisets

Input: MR instance (G, s, t, k, n), population size μ,
crossover strategy cStra, termination criterion

Output: Set of n routes from s to t
1 P← ∅;
2 repeat μ times
3 ind← new individual;
4 repeat n times
5 add route RANDDIJKSTRA(s, t, k) to ind;

6 P← P ∪ {ind};
7 while termination criterion not met do
8 C← ∅;
9 repeat

√
μ2 − μ/2 times

10 ind1, ind2 ← chosen u.a.r. from P;
11 C← C ∪ {cStra(ind1, ind2)};
12 P′ ← copy of P;
13 for every individual ind in P′ do
14 mutations← max(1, Pois(1.5));
15 ops← ∅;
16 repeat mutations times
17 ops← ops ∪ {

randomly weighted selected
operator in {NewRoute, RandomP, LinkWP,

ExSegment}};

18 if ops contains ExSegment then
19 ops← {ExSegment};
20 apply operators in ops to ind;

21 if no individual in C is strictly better than the best in
P then

22 C← ∅;
23 P← the μ best individuals in C ∪ P′ ∪ P;

24 return the best individual in P;

A. RandDijkstra

The RD is a randomized variant of Dijkstra’s shortest-path
algorithm [28]. Given two nodes s and t, it returns a ran-
dom, yet still short route from s to t. RD works like Dijkstra’s
algorithm, but whenever relaxing an edge e, its weight w is
perturbed such that w ∼ N(τe(x), 0.8 · τe(x)), where τe is the
latency of e and where x is the traffic flow routed from s to t
and where 0.8 was determined a good value in preliminary
tests. Due to its extensive use, RD contributes the most to the
runtime of the MREA. Hence, we consider in the following
possible speed-up techniques.

Acceleration of RANDDIJKSTRA: The acceleration of
shortest path algorithms is subject of intensive research [6].
Well-known speed-up techniques for Dijkstra’s algorithm, like
SHARC [29], often require preprocessing of the graph. In
the case of RD, we cannot employ acceleration techniques
that require preprocessing due to the randomness of the edge
weights. Hence, most modern shortest-path variants cannot be
used in the MULTIPLE-ROUTES EA.

We use the approach of Aviram and Shavitt [30], which does
not use preprocessing. It employs a priority queue that utilizes
the invariant of Dijkstra’s algorithm that once a node of value x
has been popped from the queue, no node with a distance less
than x is pushed into it again. This invariant also holds for the
RD. The approach represents the queue as an array allowing
for O(1) insertion and decrease-key operations. The entry at
index i is a linked list of all nodes pushed into the queue with
weight i, required to be integer values. Thus, the randomly
determined floating-point weights of RD are rounded in the
insertion operation. The queue maintains a pointer to the last
index from which an element was removed. Due to the invari-
ant, this pointer never decreases. Hence, when pointing to a
nonempty cell, the pop operation that gives us the minimal
element also is in O(1). Whenever the pointer points toward
an empty cell, it increases until it finds a nonempty cell or the
queue is empty. Hence, if w is the maximum weight of a node
pushed to the queue, the runtime of Dijkstra’s algorithm using
this priority queue is O(|E| + w). Note that this is not a real
priority queue anymore, as it does not support the insertion of
nodes with weight lower than the current pointer.

One important factor that determines the real-world runtime
of this approach is the size of the array during initialization.
If the array is too small, it needs to be resized whenever a
large weight gets pushed into the queue. If the array is too
big, the initial memory allocation takes much time. As an
estimation, we set the initial queue size to 30% of the largest
weight encountered during the initialization of the population,
but at least 65 565. In experiments, this has shown to be a good
estimation for our traffic model and scenarios. For details of
the implementation, we refer to the original paper [30].

B. Mutation Operators

In total, the MREA has four mutation operators:
1) NewRoute; 2) RandomP; 3) LinkWP; and 4) ExSegment,
each with its own weight. When mutating an individual, the
MREA first decides how many mutations to execute consec-
utively. This number is determined by a Poisson distribution
with an expected value of 1.5, but at least one mutation is per-
formed (line 14 in Algorithm 2). Afterward, for each mutation
to apply, a mutation operator is chosen randomly proportion-
ally to its weight (line 17). If ExSegment is chosen, then
all other operators are discarded for this mutation (lines 18
and 19). Last, all chosen operators are applied to the indi-
vidual (line 20). In the following, we detail all four mutation
operators.

1) NewRoute: Chooses a single route randomly propor-
tionally to its inverse traffic flow and replaces this chosen
route with one computed by RD. The weight of NewRoute is
determined dynamically. In order to have a good exploration–
exploitation tradeoff, it is 30 for the first ten iterations, and
then lowered linearly such that it reaches 1 in iteration 200.

2) RandomP: Replaces subsegments of a randomly
selected subset of routes via RD. The routes to be modified
are chosen proportionally to their inverse traffic flow. For
each such route, r denoting its length, RandomP chooses
a start node uniformly at random and a destination node
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by advancing a number of steps according to the Gaussian
distribution N(0.25r, 0.5r). Then, RD replaces the route
segment between these two nodes. In order to find a different
subsegment between these two nodes, RD increases the costs
of the edges of the current route. Last, all cycles that may
occur in the route after the replacement are deleted, i.e., if
a route visits a vertex v twice, the edges between the two
visits form a cycle and are removed. RandomP has a constant
weight of 60.

3) LinkWP: Is identical to RandomP except for the choice
of delimiting nodes of the subsegment to replace. For each
node v on a chosen route, LinkWP calculates a metric that
describes how likely it is for a meaningful subroute to occur
at v. The metric is defined as the sum of the capacities of all
outgoing edges of v except for the edge currently used in the
route. The start node is chosen randomly proportionally to this
metric. The destination node is chosen randomly by selecting
one of the nodes on the original route that comes after the
start node, proportionally to the same metric.

LinkWP has a constant weight of 30. Note that this weight
is lower than the one of RandomP in order to not introduce a
too heavy problem-specific bias into the mutation step.

4) ExSegment: Swaps subsegments between two routes of
the same individual. First, it chooses a pair of different routes
uniformly at random and removes their cycles. Then, it deter-
mines the nodes occurring in both routes, which we call shared
points. Among the shared points, let the divergence points be
the nodes whose successor is different in both routes, and let
the goto points be those whose predecessor differs. ExSegment
chooses one divergence point vs uniformly at random and a
node vt uniformly at random from the set of all goto points
that appear after vs. If such nodes exist, the route segments
between vs and vt from both chosen routes are then swapped. If
not, nothing happens (see Fig. 1 in the supplementary material
for more details).

The weight of ExSegment is determined dynamically. If
ExSegment was applied within the last six iterations, its weight
is 0, as this operator is expensive and a too rapid succession
of uses is unlikely to change much. If ExSegment was applied
more than six iterations ago, its weight is determined as fol-
lows. It starts at 15 and is increased linearly to 30, depending
on the iterations without improvement. The point in time when
it reaches exactly 30 depends on the used convergence criterion
(see Section IV for more details).

C. Crossover Operators

We consider three different binary crossover operators. We
recall that, in contrast to the mutation operators, the MREA
only uses a single crossover operator. This is due to there
being a large tradeoff between runtime cost and improvement
in solution quality when considering different operators and
due to the operators all being versions of the same idea.

Regardless of the operator chosen, the MREA creates√
μ2 − μ/2 offspring in each iteration. Note that this num-

ber is the square root of all possible
(
μ
2

)
2-combinations

of μ individuals. By the birthday paradox, the possibility of a
combination of two individuals being chosen at least twice

becomes over 50% once in the order of this value. Thus,
when creating

√
μ2 − μ/2 offspring, we aim to create as many

individuals as possible without getting many doubles.
All of our proposed operators consider a diversity score D

that reflects how similar the routes of an individual are. The
assumption is that a more disjoint route set usually leads to
a lower overall travel time, due to less congestion on single
roads. For an individual S and an edge e ∈ E, let cS

e denote
the count how often the edge appears in S. The score D of S
is defined such that larger values are worse

D(S) =
∑

e∈{e∈E|cS
e>1}

(
cS

e

)2

max
(

1,
∑

e∈{e∈E|cS
e=1} cS

e

) .

In the following, we explain how each crossover oper-
ator constructs a new solution. In addition, Fig. 2 in the
supplementary material provides further details.

1) Exhaustive Crossover: Considers all
(2n

n

)
route sets pos-

sible from the routes of the two parents, and returns the
combination with the lowest diversity score.

2) Greedy Crossover: Greedily constructs a new route set,
guided by D. It randomly chooses one of the 2n routes of
the parents, proportionally to their inverse traffic flow. The
remaining n−1 routes of the new solution are chosen greedily
among the remaining routes of both parents, always choosing
the first (new) route such that the current diversity score is
minimized.

3) Randomized Greedy Crossover: Takes the same
approach as Greedy Crossover, but instead of greedily choos-
ing the route maximizing the diversity score of the route set,
it randomly selects one of the 2n routes, with replacement,
proportionally to the inverse of its diversity score. That is,
the more diverse the route set with that route is, the more
likely the route is to be chosen.

IV. PARAMETER EVALUATION

We empirically analyze the utility of the operators of
the MREA on the street network of Berlin, Germany. For
each operator, we investigate how much the solution qual-
ity of the MREA changes when it is added to the algorithm.
In Section IV-C, we begin by evaluating the mutation oper-
ators, excluding crossover. In Section IV-D, we analyze the
impact of the population size μ. In Section IV-E, we add
crossover to the MREA, and we compare the quality achieved
by the three different crossover operators with each other. Last,
in Section IV-F, we compare the elitist selection strategy of
the MREA to tournament selection. Our evaluations show that
using more mutation operators, a larger population size, and
crossover are all beneficial for improving the best fitness of the
MREA. The largest improvement is made by adding the opera-
tors RandomP and NewRoute. Further, adding more operators
generally decreases the spread of the results, in addition to
improving them. Table I summarizes the median best fitness
of all our parameter settings.

A. Implementation Details

We implemented the MREA in C++ 17 and embedded it
into the routing framework of Bläsius et al. [2], which allows
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for compatibility with the standard MATSim traffic simula-
tor [32]. The source code is in our repository [19]. With
exception of a priority queue, we use data structures from
the C++ STL, rely on OpenMP for parallelization [33], and
on the GNU Scientific Library [34].

B. Experimental Setup

We consider MR instances with the graph G being the street
network of Berlin,2 Germany, provided by TomTom Germany,
and with k = 3000, which is a reasonable choice [2]. We
choose n = 2 in order to model proposing a driver with a
small choice of fast routes. Choosing larger values makes this
choice more troublesome for the driver, and it makes it also
more unlikely to find that many different and fast routes. We
choose the following 11 highly diverse scenarios.

0) Babelsberg – Lichterfelde not inner city; country road,
nonobvious deviation.

1) Griebnitzsee – Ahrensfelde very long; fastest route uses
express highway (EH), the second fastest route goes
through the inner city.

2) KaDeWe – East Side Gallery short, inner city; many
possible detours.

3) Lichterfelde – Prenzlauer Berg long, south to north; EH
and inner-city side streets.

4) Lichterfelde – Steglitz very short, inner city; direct route
uses. Side streets, but highway and EH are nearby.

5) Moabit – Birkenwerder long, start in the city center;
choice for highway or EH.

6) Olympiastadion – Rotes Rathaus long, inner city; pos-
sible almost entirely on a highway.

7) Potsdamer Platz – Pergamonmuseum short, inner city;
different highways or side streets. That are reasonable,
in a Manhattan-like layout.

8) Potsdamer Platz – Tempelhofer Feld medium long, inner
city; bottleneck at a bridge, but opportunity to split up
onto two highways.

9) Teltow – Hoppegarten long, south-west to east; either
long detour using EH or a more direct inner-city high-
way.

10) Wannsee – Schönefeld the k-Dijkstra shortest route
detours to use EH.

For the latency functions, we follow the recommendation
of the U.S. Bureau of Public Roads [35], that is, we choose
τe(x) = (�e/se) · 1.15(x/ce)

2 where se, ce, and �e denote free-
flow speed, capacity, and length of e, respectively, [2].

For the experiments, we consider various settings. For each,
the termination criterion of the MREA is to stop after 150
iterations. The weight of ExSegment (Section III-B4) is chosen
such that it reaches a value of 30 if there was no improvement
in the last 20% ·150 = 30 iterations. We start 75 independent
runs of the MREA on all 11 scenarios per setting.

1) Boxplots: The box denotes the mid-50% of the 75 runs,
and the whiskers denote the mid-90%. All remaining
data points are depicted as diamonds.

2) Solution Space Size: Our results indicate that many runs
with different settings have equal fitness. This suggests

2This graph has 158 864 vertices and 342 778 edges.

that the solution space is small, highlighting the impact
of adding a new operator.

C. Analysis of the Mutation Operators

We analyze the utility of the MREA’s four mutation oper-
ators (Section III-B) by considering how well each operator
performs on its own (Section IV-C1), how well different com-
binations of operators perform (Section IV-C2), as well as
how quickly the algorithm finds a solution that it does not
improve anymore (Section IV-C3). To this end, we do not
employ crossover, and we choose a population size of μ = 1
in order to see how much a single solution can be improved
by solely mutation.

In Section IV-C1, we consider the operators individually,
except for ExSegment (Section III-B4), as it only modifies
existing routes with existing segments and does not explore
new road segments. The configurations of the MREA that each
use a single operator are named as follows.

1) rponly only uses RandomP.
2) wponly only uses LinkWP.
3) nronly only uses NewRoute.
In Sections IV-C1 and IV-C2, we consider four different

algorithm configurations, starting with a single operator and
then adding more operators.

1) The MREA has only access to RandomP (rponly).
2) rponly but adding NewRoute (wnewroute).
3) wnewroute but adding LinkWP (wlinkp).
4) Using all four operators (wexseg).

We note that the wall clock time for all configurations during
these experiments was very similar, with the fitness function
evaluation being the most costly operation.

1) Single Best Operator: We study the impact of each con-
figuration on the best fitness achieved after our termination
criterion of 150 iterations. The results are depicted in Fig. 1.

For most scenarios, rponly performs best with respect to
the mean best fitness and the top 75%. Between wponly and
nronly, there is no clear distinction which of both it better in
terms of median best fitness. For some scenarios, wponly is
better, for others, nronly. More interestlingly, if rponly is
outperformed, then by wponly. Since both respective muta-
tion operators are similar, with the difference that LinkWP
uses more specific information than RandomP, this suggests
that it is typically initially better to start with more random
choices (as in RandomP). This is also the case why rponly
is our first configuration in the following experiments.

2) Operator Combinations: We study the impact of the
combined configurations on the best fitness achieved after our
termination criterion of 150 iterations. Our results are depicted
in Fig. 2.

Adding NewRoute yields the largest improvement, with a
statistical significance for all scenarios, except for scenario 2.
This could be due to it being very short. Thus, RandomP
and NewRoute become very similar operations. Averaged over
all 11 scenarios, 84% of the wnewroute runs are better and
87% are better or equal to the median of the rponly runs.
For scenarios 4 and 8, all runs of wnewroute are better than
the median of rponly. This is likely a result of scenarios 4
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Fig. 1. Boxplots (Section IV-B) of the normalized best fitness of the MREA with μ = 1 after 150 iterations for all 11 scenarios, with 75 runs per scenario.
Each of the three colors, from left to right, represents the MREA using exactly one mutation operator from Section III-B. Per scenario, the fitness is normalized
to the median of rponly. In general, rponly performs best. Please refer to Section IV-C1 for more details.

Fig. 2. Boxplots (Section IV-B) of the normalized best fitness of the MREA with μ = 1 after 150 iterations for all 11 scenarios, with 75 runs per scenario.
Each of the four colors, from left to right, represents one of the algorithm configurations explained in Section IV-C. Per scenario, the fitness is normalized to
the median of rponly. In general, configurations with more mutation operators (more to the right per scenario) result in a better final fitness. Please refer
to Section IV-C2 for more details.

and 8 requiring two almost disjoint routes, which are more
easily found by NewRoute, whereas other scenarios require
two nearly identical routes.

Interestingly, in scenarios 3 and 5, LinkWP and ExSegment
increase the median best fitness. For LinkWP, recall that it
prefers edges with a high capacity. If the best routes do not
use such edges, LinkWP has no benefit. Nonetheless, averaged
over all scenarios, 84% of the wlinkp runs are better and
88% are better or equal to the median of the rponly runs. For
ExSegment, recall that it swaps segments locally optimally,
with respect to the segments randomly chosen. Escaping from
such a local optimum can prove hard in certain scenarios,
especially, since we only consider a population size of 1. Still,
on average, 38% of the wexseg runs are better and 56% are
better or equal to the median of the wlinkp runs, showing a
general benefit of ExSegment.

a) Evaluation of the fitness improvement per iteration:
We analyze rponly and wexseg configurations by consid-
ering the respective fitness curves. Fig. 3 depicts the develop-
ment of the average fitness as well as the standard deviation
throughout the 150 iterations for scenario 1.

We observe that the additional operators heavily reduce the
spread of the fitness, not only in the final iteration but through-
out the entire execution of the MREA. The mean fitness in the
wexseg setting is lower than in the rponly setting. Last,

the curve of the wexseg setting shows that in most runs,
the iteration budget of 150 is sufficient as most runs have
converged around iteration 75.

3) Speed of Convergence: In order to analyze how quickly
the MREA reaches a local optimum from which it cannot
escape within its budget of 150 iterations, we consider the
last iteration in which the MREA changed the fitness of its
best individual. The results are depicted in Fig. 4. Note that
this analysis does not consider the fitness of each run, only
whether it changed in subsequent iterations or not. For a
more complete picture, please also refer to the results from
Section IV-C2, which show that, on average, configurations
with more operators have a better median performance.

The speed of convergence depends on the scenario, and
there is no clear trend among the four configurations. The mid-
90% are generally close to the extreme values of 0 and 150.
Runs close to 0 show that the scenarios are hard, as the
MREA gets stuck very quickly. In contrast, runs close to 150
show that the budget of 150 iterations was insufficient for
convergence.

Conclusion: Averaged over all scenarios, more mutation
operators lead to a better performance. However, this effect is
not very well pronounced for the addition of LinkWP, indicat-
ing that it should possibly be merged with the similar operator
RandomP. Still, using both operators is overall better than just
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Fig. 3. Fitness curves of the mean absolute fitness (bold line) as well as the standard deviation (colored band) per iteration, for scenario 1. The left plot
shows the rponly setting, the right plot shows the wexseg configuration (see also Section IV-C1).

Fig. 4. Boxplots (Section IV-B) of the last of, in total, 150 iterations in which the MREA with μ = 1 improved its best fitness, for all 11 scenarios. Each
of the four colors, from left to right, represents one of the algorithm configurations explained in Section IV-C, and each configuration was run 75 times per
scenario. Regardless of the scenario, there is a large spread between runs that get stuck quickly and runs that do not converge within 150 iterations. Please
refer to Section IV-C3 for more details.

using RandomP. Further, the large spread in the speed of con-
vergence among all configurations and scenarios suggests that
the initialization has a large impact on how easy it is to find
improvements, more or less regardless of what configuration
is run. This indicates that a larger population size may be
beneficial, as it increases the initial diversity.

D. Analysis of the Population Size

We analyze to what extent the MREA benefits from having
a population size larger than 1. Since Section IV-C suggests
that local optima pose a problem for the MREA, a larger pop-
ulation size may help to have alternative solutions to those
stuck in local optima. We do not employ crossover but use all
four mutation operators, that is, we use the wexseg config-
uration. Our results are depicted in Fig. 5. Note that a higher
population size also means more fitness evaluations, as we let
each configuration run for 150 iterations. This likely explains
the high significances between different configurations.

A larger number of individuals improves the median best
fitness and reduces the spread. Our results suggest that the
improvement for μ = 2 and μ = 4 provide a large improve-
ment over μ = 1. For μ = 8, the improvement in comparison
to μ = 1 in median and spread is somewhat smaller.
Throughout all scenarios, 61% of the runs with μ = 2 are
better and 77% are better or equal to the median of μ = 1.

For the runs with μ = 4, these numbers increase to 80% and
93%, respectively. For μ = 8, the increase from μ = 4 is
smaller, reaching 88% better and 98% better or equal runs.
When comparing to the configuration with μ = 2, 40% of the
runs with μ = 4 are better than the median and 85% of the
runs are better or equal. For μ = 8, these numbers increase
to 49% and 96%.

Conclusion: Using a larger population size improves the
quality of the best fitness and decreases the spread among
the different runs per scenario. However, the computation
cost increases with the population size, and the quality gain
in fitness from larger populations varies among the different
configurations. Our experiments suggest the sweet spot μ = 4.

E. Analysis of the Crossover Operators

We analyze the utility of the MREA’s three crossover opera-
tors (Section III-C), measuring the overall best fitness for each
operator. To this end, we use all mutation operators, choose
μ = 4, and consider the following configurations using.

1) no crossover (no_heur).
2) Exhaustive Crossover (heur-all).
3) Greedy Crossover (heur-greed).
4) Randomized Greedy Crossover (heur-greed-rand).

Our results are depicted in Fig. 6. The advantage of crossover
strongly depends on the scenario and none are significant.
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Fig. 5. Boxplots (Section IV-B) of the normalized best fitness of the MREA after 150 iterations for the 11 scenarios, with 75 runs per scenario. Each of the
four colors, from left to right, represents a different population size μ. Per scenario, the fitness is normalized to the median of μ = 1. In general, a higher
population size seems more beneficial, but the gain is diminishing. Please refer to Section IV-D for more details.

Fig. 6. Boxplots (Section IV-B) of the normalized best fitness of the MREA after 150 iterations for the 11 scenarios, with 75 runs per scenario. Each of
the four colors, from left to right, represents one different crossover operator (including no crossover). Per scenario, the fitness is normalized to the median
of no_heur. The configuration heur-all performs best, but only slightly. There is no clear difference between heur-greed and heur-greed-rand.
In general, using crossover reduces the spread of the results. Please refer to Section IV-E for more details.

However, averaged over all 11 scenarios, the median best
fitness as well as the spread is always reduced when using
a crossover operator in comparison to using no crossover.
This is also true for the minimum and maximum normalized
fitness, highlighting the reduction of outliers. Interestingly,
heur-all does not have a large benefit over the two
greedy operators. Considering the two greedy strategies, on
average, 19% of the heur-greed runs are better and
72% are better or equal to the median of no_heur;
for heur-greed-rand, we get 18% and 74%, respec-
tively. There is no clear tendency whether heur-greed or
heur-greed-rand performs better.

Conclusion: In general, crossover improves the result qual-
ity of the MREA and reduces its spread. Among the different
crossover operators, Exhaustive Crossover performs best but
only slightly. Considering its high computation cost compared
to the other two operators, it should not be chosen. Greedy
Crossover and Randomized Greedy Crossover provide very
good alternatives, each performing roughly equally well.

F. Analysis of the Selection Strategy

The MREA uses an elitist selection strategy, known as trun-
cation selection (line 23). Such strategies get trapped in local

optima, from which it can be hard to escape. In order to
prevent this, a nonelitist strategy could be better. Thus, we
exchange the elitist selection of the MREA (line 23) with a
nonelitist strategy. To this end, we consider binary tourna-
ment selection with a tournament size of 2. This means that,
instead of selecting the μ best individuals from the popula-
tion consisting of parent individuals as well as offspring from
mutation and potentially crossover, we repeat the following
steps μ times, each time selecting an individual for the par-
ent population of the next iteration: Choose two individuals
uniformly at random (with replacement) and select the one
with the better (that is, smaller) fitness. Note that the random
selection of individuals does not guarantee that the best indi-
viduals are going to be part of the parent generation of the
next iteration.

The results are depicted in Fig. 7. We note that the exper-
iments return in both cases the best fitness found in any of
the 150 iterations. For the elitist selection, an individual of
this fitness is in the final population. However, for the tourna-
ment selection, such an individual could have been removed in
a previous iteration, as the strategy is nonelitist. Still, the elitist
selection outperforms the tournament selection with respect to
both the mean fitness and the spread, except for scenarios 1
and 8, where they are tied. Interestingly, scenario 10 is also
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Fig. 7. Boxplots (Section IV-B) of the normalized best fitness of the MREA after 150 iterations for the 11 scenarios, with 75 runs per scenario. The MREA
employs all mutation operators (Section III-B), the heur-greed crossover (Section III-C), and a population size of μ = 4. For each scenario, the left box
(in blue) refers to the MREA with (standard) elitist truncation selection (Algorithm 2), and the right box (orange) refers to the MREA using binary tournament
selection. For both selection strategies, the best overall fitness is returned. Per scenario, the fitness is normalized to the median. The elitist selection is never
worse than the tournament selection and usually clearly outperforms it. Please refer to Section IV-F for more details.

easily solved with the elitist selection, but the tournament
selection struggles a lot and always returns the same (bad) fit-
ness. This might indicate that, for this scenario, there is a local
optimum which can be escaped via the mutation and crossover
operators but only given sufficient time. The elitist selection
strategy guarantees that there is always a currently best solu-
tion available to improve. For the tournament selection, such
a solution can be removed, making it harder to overcome the
local optimum via mutation and crossover.

Conclusion: The elitist selection of the MREA appears to
be a reasonable choice that might be even well suited to escape
local optima.

V. APPLICATION TO THE SAP PROBLEM

We apply the MREA to the SAP problem [2] and empiri-
cally investigate its performance in terms of solution quality
and runtime (Section V-B). The SAP problem is a special case
of the MR problem that fixes a route between s and t and aims
to find a single alternative route such that the overall travel
time is minimized. Although the problem remains NP-hard,
Bläsius et al. [2] proposed a highly specialized algorithm that
solves it optimally—the SAP baseline (SAP-B), which we
compare the MREA against.

As the SAP problem is a special case of the MR
problem, the complexity of the MREA reduces in certain
aspects. Further, we adjust the MREA using the insights from
Section IV. We call the resulting algorithm the SAP-EA
(Section V-A).

A. SAP-EA

The SAP-EA is a specialization of the MREA for the SAP
problem with some modifications to its mutation operators.
Since the SAP problem aims to find a single alternative route,
an individual in the SAP-EA corresponds to a single route.
Further, since determining a UE for the SAP problem sim-
plifies to equalizing the cost functions of the given and the
alternative route, which results in solving a quadratic equation,
the SAP-EA does not use the FRANK–WOLFE algorithm for
fitness evaluation.

Regarding the operators from Sections III-B and III-C,
the SAP-EA does not employ crossover, as these opera-
tors exchange existing routes, which is pointless for a single
route. For the same reason, ExSegment is not used. Out of
the remaining operators, NewRoute is used unmodified, and
RandomP and LinkWP are combined into the new operator
RandomPwD. This is due to our results from Section IV-C
showing that LinkWP only provides a small benefit when
added but still has its merits for certain scenarios. Last,
the SAP-EA always performs exactly one mutation on each
individual, using a parameter p ∈ (0, 1) instead of oper-
ator weights. With probability p, NewRoute is performed,
otherwise RandomPwD.

In the following, we explain the new operator RandomPwD
and then compare the SAP-EA to the SAP-B.

1) RandomPwD: Similar to RandomP, given a route R of
length m, RandomPwD replaces a segment of R between two
nodes a and b that are k apart via RD. RandomPwD uses a
parameter δ ∈ [0, 1]. It determines k ∼ N(δ · m, (0.05 · m)2),
rounding to the closest whole number, chooses a uniformly at
random, and chooses b such that it is k nodes after a. If there
are fewer than k nodes after a, then b = t.

RandomPwD adjusts δ according to two parameters α ∈
[0, 1] and β ∈ N>0 in the following way: whenever the SAP-
EA does not improve for β iterations, we update δ← α · δ.

2) Comparison to the SAP-B: Although the SAP-EA is
specialized for the SAP problem, it is still a general heuris-
tic applicable to different fitness functions. In contrast, the
SAP-B is explicitly tailored to solving the SAP problem with
monotone cost functions per edge, such as the flow of traffic,
as in our setting. Thus, the SAP-B fails for other costs, for
example, when optimizing for overall low CO2 emissions of
strategic drivers in a street network. In such a setting, the
SAP-EA is still applicable without change.

B. Empirical Investigations

We compare the SAP-EA to the SAP-B on the street
network of Berlin, Germany, with respect to best fitness as well
as runtime. Recall that the SAP-B is an optimal algorithm.
Thus, the SAP-EA cannot achieve a better best fitness.

Authorized licensed use limited to: Universitaet Potsdam. Downloaded on December 04,2023 at 12:07:46 UTC from IEEE Xplore.  Restrictions apply. 



1820 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 27, NO. 6, DECEMBER 2023

Fig. 8. Ratio of the best fitness (left) and the runtime (right) of the SAP-EA
with μ = 1, α = 0.4, and β = 35, and different values of p compared to
the SAP-B. The runtimes of SAP-B range from 0.3 s to 30 min, with better
time ratios for higher SAP-B runtimes. Each boxplot contains the data of
all 20 runs per value of k and per each of the 25 scenarios, totaling to 2000
points per box. The orange line depicts the median, the box the mid-50% of
the data, and the whiskers the mid 95A higher value of p, i.e., an increased
use of RandomPwD, yields generally better solutions and a smaller spread
but also increases the runtime. A sweet spot seems to be around p = 0.05.
Please also refer to Section V-B2.

In the following, we explain the setup and the evaluation of
the experiments we carried out.

1) Experimental Setup: We use the same setup as in
Section IV-B, with the following differences. We consider 25
scenarios chosen uniformly at random from the set of clus-
ter centers of s–t pairs, computed by the BIRCH [36]
algorithm. The clustering is based on real-world traffic den-
sity data provided by TomTom Germany. Per scenario, we
choose k ∈ {500, 1000, 1500, 2000} and p ∈ {0.0, 0.01, 0.05,

0.1, 0.2, 0.3, 0.4}, and we perform 20 runs per value of k
and p. For the SAP-EA, we choose μ = 1, and we termi-
nate it after 1000 iterations or whenever it does not improve
for 100 iterations. We used a machine with two Intel Xeon
Gold 5118 CPUs and 64 GiB of memory.

2) Experimental Evaluation: Our results are depicted in
Fig. 8. The maximum of all medians in the fitness ratio
is 1.009, for p = 0, which is already very close to an
optimal fitness. The median decreases up to p = 0.2 and
increases afterward. Further, the spread is smallest for p = 0.2,
making this configuration preferable. However, the runtime
ratio increases for higher values of p both in median and
spread, as RandomPwD is computationally more expensive
than NewRoute. Since the configuration with p = 0.05 is very
close to the best configuration, both in fitness and time, we
deem it the best configuration out of all.

VI. CONCLUSION

We introduced and empirically analyzed the MULTIPLE-
ROUTES EA, an evolutionary algorithm designed to suggest
alternative routes for street networks with a high flow of traffic
with the aim to reduce the overall travel time of all drivers.
To this end, we introduced the NP-hard MULTIPLE-ROUTES

problem, allowing for a precise modeling of our setting. For
the MREA, we proposed four mutation and three crossover
operators. We found that using all mutation operators yields
the best results and that each crossover operator reduces the
spread of the results. Last, we applied the MREA to a more

specific setting of finding a single alternative route to a given
route. We compared it to a highly specialized optimal algo-
rithm and found that the MREA is capable of competing with
the tailored algorithm while often being faster.

Overall, our results suggest that the MREA is well-suited for
the highly complex problem of distributing traffic. For future
work, we propose to extend the MREA to island models [37],
a parallelization method well suited for EAs [38]. Another
direction is to use data sets that measure other criteria, for
example, the emission of cars. We believe that the MREA is
well suited for such settings. Last, it would be interesting to see
what the impact of the different operators is if one considers
MULTIPLE-ROUTES with more than two routes. In this setting,
the crossover operators become more expensive but might in
turn reduce the spread in the final fitness more drastically.
Also, the complexity of single routes might increase, which
could affect the runtime of the mutation operators.
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