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Abstract

Schelling’s classical segregation model gives a coherent explanation for the wide-

spread phenomenon of residential segregation. We introduce an agent-based

saturated open-city variant, the Flip Schelling Process (FSP), in which agents,

placed on a graph, have one out of two types and, based on the predominant

type in their neighborhood, decide whether to change their types; similar to a

new agent arriving as soon as another agent leaves the vertex.

We investigate the probability that an edge {u, v} is monochrome, i.e., that

both vertices u and v have the same type in the FSP, and we provide a gen-

eral framework for analyzing the influence of the underlying graph topology on

residential segregation. In particular, for two adjacent vertices, we show that

a highly decisive common neighborhood, i.e., a common neighborhood where

the absolute value of the difference between the number of vertices with dif-

ferent types is high, supports segregation and, moreover, that large common

neighborhoods are more decisive.

As an application, we study the expected behavior of the FSP on two com-

mon random graph models with and without geometry: (1) For random geomet-

ric graphs, we show that the existence of an edge {u, v} makes a highly decisive
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common neighborhood for u and v more likely. Based on this, we prove the

existence of a constant c > 0 such that the expected fraction of monochrome

edges after the FSP is at least 1/2 + c. (2) For Erdős–Rényi graphs we show

that large common neighborhoods are unlikely and that the expected fraction

of monochrome edges after the FSP is at most 1/2 + o (1). Our results indicate

that the cluster structure of the underlying graph has a significant impact on

the obtained segregation strength.

Keywords: Agent-based Model, Schelling Segregation, Spin System

1. Introduction

Residential segregation is a well-known sociological phenomenon [1] where

different groups of people tend to separate into largely homogeneous neigh-

borhoods. Studies, e.g., [2], show that individual preferences are the driving

force behind present residential patterns and bear much to the explanatory5

weight. Local choices therefore lead to a global phenomenon [3]. A simple

model for analyzing residential segregation was introduced by Schelling [4, 3] in

the 1970s. In his model, two types of agents, placed on a grid, act according

to the following threshold behavior, with τ ∈ (0, 1) as the intolerance thresh-

old : agents are content with their current position on the grid if at least a10

τ -fraction of neighbors is of their own type. Otherwise they are discontent and

want to move, either via swapping with another random discontent agent or

via jumping to a vacant position. Schelling demonstrated via simulations that,

starting from a uniform random distribution, the described process drifts to-

wards strong segregation, even if agents are tolerant and agree to live in mixed15

neighborhoods, i.e., if τ ≤ 1
2 . Many empirical studies have been conducted

to investigate the influence of various parameters on the obtained segregation,

see [5, 6, 7, 8, 9]. On the theoretical side, Schelling’s model started recently

gaining traction within the algorithmic game theory and artificial intelligence

communities [10, 11, 12, 13, 14, 15, 16], with focus on core game theoretic ques-20

tions, where agents strategically select locations. Henry et al. [17] described a
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simple model of graph clustering motivated by Schelling where they showed that

segregated graphs always emerge. Variants of the random Schelling segregation

process were analyzed by a line of work that showed that residential segregation

occurs with high probability [18, 19, 20, 21, 22, 23].25

We initiate the study of an agent-based model, called the Flip Schelling

Process (FSP), which can be understood as the Schelling model in a saturated

open city. In contrast to closed cities [19, 21, 22, 23], which require fixed pop-

ulations, open cities [24, 18, 20, 25] allow resident to move away. In saturated

city models, also known as voter models [26, 27, 28], vertices are not allowed30

to be unoccupied, hence, a new agent enters as soon as one agent vacates a

vertex. In general, in voter models, two types of agents are placed on a graph.

Agents examine their neighbors and, if a certain threshold is of another type,

they change their types. Also in this model, segregation is visible. There is a line

of work, mainly in physics, that studies the voting dynamics on several types of35

graphs [29, 30, 31, 32, 33]. Related to voter models, Granovetter [34] proposed

another threshold model treating binary decisions and spurred a number of re-

search, which studied and motivated variants of the model, see [35, 36, 37, 38].

In the FSP, agents have binary types. An agent is content if the fraction

of agents in its neighborhood with the same type is larger than 1
2 . Otherwise,40

if the fraction is smaller than 1
2 , an agent is discontent and is willing to flip

its type to become content. If the fraction of same type agents in its neigh-

borhood is exactly 1
2 , an agent flips its type with probability 1

2 . Starting from

an initial configuration where the type of each agent is chosen uniformly at

random, we investigate a simultaneous-move, one-shot process and bound the45

number of monochrome edges, which is a popular measurement for segregation

strength [39, 40].

Close to our model is the work by Omidvar and Franceschetti [41, 42], who

initiated an analysis of the size of monochrome regions in the so called Schelling

Spin Systems. Agents of two different types are placed on a grid [41] and a geo-50

metric graph [42], respectively. Then independent and identical Poisson clocks

are assigned to all agents and, every time a clock rings, the state of the corre-
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Figure 1: The fraction of monochrome edges after the Flip Schelling Process (FSP) in Erdős–

Rényi graphs and random geometric graphs for different graph sizes (number of vertices n) and

different expected average degrees. Each data point shows the average over 1000 generated

graphs with one simulation of the FSP per graph. The error bars show the interquartile range,

i.e., 50% of the measurements lie between the top and bottom end of the error bar.

sponding agent is flipped if and only if the agent is discontent w.r.t. a certain

intolerance threshold τ regarding the neighborhood size. The model corresponds

to the Ising model with zero temperature with Glauber dynamics [43, 44].55

The commonly used underlying topology for modeling the residential areas

are (toroidal) grid graphs [11, 22, 41], regular graphs [11, 13, 14], paths [11, 16],

cycles [24, 45, 19, 21, 23] and trees [10, 11, 15, 16]. Considering the influence of

the given topology that models the residential area regarding, e.g., the existence

of stable states and convergence behavior leads to phenomena like non-existence60

of stable states [14, 15], non-convergence to stable states [11, 13, 14], and high-

mixing times in corresponding Markov chains [20, 46].

To avoid such undesirable characteristics, we suggest to investigate random

geometric graphs [47], like in [42]. Random geometric graphs demonstrate,

in contrast to other random graphs without geometry, such as Erdős–Rényi65

graphs [48, 49], community structures, i.e., densely connected clusters of vertices.

An effect observed by simulating the FSP is that the fraction of monochrome

edges is significantly higher in random geometric graphs compared to Erdős–

Rényi graphs, where the fraction stays almost stable around 1
2 , cf. Figure 1.
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We set out for rigorously proving this phenomenon. In particular, we prove70

for random geometric graphs with n vertices that if the expected average degree

is o (
√
n), there exists a positive constant c such that, given an edge {u, v}, the

probability that {u, v} is monochrome is lower-bounded by 1
2 +c, cf. Theorem 2.

In contrast, we show for Erdős–Rényi graphs that segregation is not likely to

occur and that the probability that {u, v} is monochrome is upper-bounded by75

1
2 + o (1), cf. Theorem 5.

We introduce a general framework to deepen the understanding of the in-

fluence of the underlying topology on residential segregation. To this end, we

first show that a highly decisive common neighborhood supports segregation,

cf. Section 3.1. In particular, we provide a lower bound on the probability80

that an edge {u, v} is monochrome based on the probability that the difference

between the majority and the minority regarding both types in the common

neighborhood, i.e., the number of agents which are adjacent to u and v, is

larger than their exclusive neighborhoods, i.e., the number of agents which are

adjacent to either u or v. Next, we show that large sets of agents are more85

decisive, cf. Section 3.2. This implies that a large common neighborhood, com-

pared to the exclusive neighborhood, is likely to be more decisive, i.e., makes

it more likely that the absolute value of the difference between the number of

different types in the common neighborhood is larger than in the exclusive ones.

These considerations hold for arbitrary graphs. Hence, we reduce the question90

concerning a lower bound for the fraction of monochrome edges in the FSP to

the probability that, given {u, v}, the common neighborhood is larger than the

exclusive neighborhoods of u and v, respectively.

For random geometric graphs, we prove that a large geometric region, i.e.,

the intersecting region that is formed by intersecting disks, leads to a large95

vertex set, cf. Section 3.3, and that random geometric graphs have enough

edges that have sufficiently large intersecting regions, cf. Section 3.4, such that

segregation is likely to occur. In contrast, for Erdős–Rényi graphs, we show that

the common neighborhood between two vertices u and v is with high probability

empty and therefore segregation is not likely to occur, cf. Section 4.100
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In Section 5, we complement our theoretical results with empirical investi-

gations that consider multiple iterations of the FSP. We find that for random

geometric graphs, the segregation strength increases with every further iteration,

while Erdős–Rényi graphs become single-colored over time. However, our results

also show that random geometric graphs with n vertices become single-colored105

with non-vanishing probability once their average degree is Θ (
√
n), suggesting

that our theoretical results, which hold up to average degrees of o (
√
n), are

close to tight.

Overall, we shed light on the influence of the structure of the underlying

graph and discovered the significant impact of the community structure as an110

important factor on the obtained segregation strength. We reveal for random

geometric graphs that already after one round a provable tendency is apparent

and a strong segregation occurs.

2. Model and Preliminaries

Let G = (V,E) be an unweighted and undirected graph, with vertex set V115

and edge set E. For any vertex v ∈ V , we denote the neighborhood of v in G by

Nv = {u ∈ V : {u, v} ∈ E} and the degree of v in G by δv = |Nv|. We consider

random geometric graphs and Erdős–Rényi graphs with a total of n ∈ N+

vertices and an expected average degree δ > 0.

For a given r ∈ R+, a random geometric graph G ∼ G(n, r) is obtained by120

distributing n vertices uniformly at random in some geometric ground space

and connecting vertices u and v if and only if dist(u, v) ≤ r. We use a two-

dimensional toroidal Euclidean space with total area 1 as ground space. More

formally, each vertex v is assigned to a point (v1, v2) ∈ [0, 1]2 and the distance

between u = (u1, u2) and v is dist(u, v) =
√

|u1 − v1|2◦ + |u2 − v2|2◦ for |ui −125

vi|◦ = min{|ui − vi|, 1 − |ui − vi|}. We note that using a torus instead of, e.g.,

a unit square, has the advantage that we do not have to consider edge cases,

for vertices that are close to the boundary. In fact, a disk of radius r around

any point has the same area πr2. Since we consider a ground space with total
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area 1, r ≤ 1√
2
. As every vertex v is connected to all vertices in the disk of130

radius r around it, its expected average degree is δ = (n− 1)πr2.

For a given p ∈ [0, 1], let G(n, p) denote an Erdős–Rényi graph. Each edge

{u, v} is included with probability p, independently from every other edge. It

holds that δ = (n− 1)p.

Consider two different vertices u and v. Let Nu∩v := |Nu ∩ Nv| be the135

number of vertices in the common neighborhood, let Nu\v := |Nu \ Nv| be the

number of vertices in the exclusive neighborhood of u, and let Nv\u := |Nv \Nu|

be the number of vertices in the exclusive neighborhood of v. Furthermore,

with Nu∪v := |V \ (Nu∪Nv)|, we denote the number of vertices that are neither

adjacent to u nor to v.140

Let G be a graph where each vertex represents an agent of type t+ or t−.

The type of each agent is chosen independently and uniformly at random. An

edge {u, v} is monochrome if and only if u and v are of the same type. The Flip

Schelling Process (FSP) is defined as follows: an agent v whose type is aligned

with the type of more than δv/2 of its neighbors keeps its type. If more than145

δv/2 neighbors have a different type, then agent v changes its type. In case of

a tie, i.e., if exactly δv/2 neighbors have a different type, then v changes its

type with probability 1
2 . FSP is a simultaneous-move, one-shot process, i.e., all

agents make their decision at the same time and, moreover, only once.

For x, y ∈ N, we define [x..y] = [x, y] ∩ N and for x ∈ N+, we define150

[x] = [1..x]. Last, we write X ∼ Bin(n, p) to denote that X follows the binomial

distribution with n independent Bernoulli trials and success probability p for

each of these n trials.

2.1. Useful Technical Lemmas

In this section, we state several lemmas that we will use in order to prove155

our results in the next sections.

Lemma 1. Let X ∼ Bin(n, p) and Y ∼ Bin(n, q) with p ≥ q be independent.

Then Pr [X ≥ Y ] ≥ 1
2 .
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Proof. Let Y1, . . . , Yn be the individual Bernoulli trials for Y , i.e., Y =
∑

i∈[n] Yi.

Define new random variables Y ′
1 , . . . , Y

′
n such that Yi = 1 implies Y ′

i = 1 and160

if Yi = 0, then Y ′
i = 1 with probability (p − q)/(1 − q) and Y ′

i = 0 other-

wise. Note that for each individual Y ′
i , we have Y ′

i = 1 with probability p, i.e.,

Y ′ =
∑

i∈[n] Y
′
i ∼ Bin(n, p). Moreover, as Y ′ ≥ Y for every outcome, we have

Pr [X ≥ Y ] ≥ Pr [X ≥ Y ′]. It remains to show that Pr [X ≥ Y ′] ≥ 1
2 .

As X and Y ′ are equally distributed, we have Pr [X ≥ Y ′] = Pr [X ≤ Y ′].165

Moreover, as one of the two inequalities holds in any event, we get Pr [X ≥ Y ′]+

Pr [X ≤ Y ′] ≥ 1, and thus equivalently 2Pr [X ≥ Y ′] ≥ 1, which proves the

claim.

Lemma 2 ([50]). Let n ∈ N+, p ∈ [0, 1), and let X ∼ Bin(n, p). Then, for all

i ∈ [0..n], it holds that Pr [X = i] ≤ Pr [X = ⌊p(n + 1)⌋].170

Proof. We interpret the distribution of X as a finite series and consider the sign

of the differences b : [0, n − 1] → R of two neighboring terms. That is, for all

d ∈ [0, n− 1] ∩N, it holds that

b(d) = Pr [X = d + 1] − Pr [X = d]

=

(
n

d + 1

)
pd+1(1 − p)n−d−1 −

(
n

d

)
pd(1 − p)n−d.

We are interested in the sign of b, as a local maximum of the distribution of X

is located at the position at which b switches from positive to negative. In more

detail, for any d ∈ [0, n− 2] ∩N, if sgn
(
b(d)

)
≥ 0 and sgn

(
b(d + 1)

)
≤ 0, then

d + 1 is a local maximum. If the sign is always negative, then there is a global

maximum in the distribution of X at position 0.175

In order to determine the sign of b, for all i ∈ [0..n− 1], we rewrite

b(i) =
n!

i!(n− i− 1)!
pi(1 − p)n−i−1 p

i + 1
− n!

i!(n− i− 1)!
pi(1 − p)n−i−1 1 − p

n− i

=
n!

i!(n− i− 1)!
pi(1 − p)n−i−1

(
p

i + 1
− 1 − p

n− i

)
.

Since the term n!pi(1− p)n−i−1 is always non-negative, the sign of b(i) is deter-

mined by the sign of p/(i + 1) − (1 − p)/(n− i).
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Solving for i, we get that

p

i + 1
− 1 − p

n− i
≥ 0 ⇔ i ≤ p(n + 1) − 1.

Note that p(n + 1) − 1 is not necessarily an integer. Further note that the

distribution of X is unimodal, as the sign of b changes at most once. Thus, each

local maximum is also a global maximum. As discussed above, the largest value180

d ∈ [0, n − 2] ∩N such that sgn
(
b(d)

)
≥ 0 and sgn

(
b(d + 1)

)
≤ 0 then results

in a global maximum at position d + 1. Since d needs to be integer, the largest

value that satisfies this constraint is ⌊p(n + 1) − 1⌋. If the sign of b is always

negative (p ≤ 1/(n+1)), then the distribution of X has a global maximum at 0,

which is also satisfied by ⌊p(n + 1) − 1⌋ + 1, which concludes the proof.185

Theorem 1 (Stirling’s Formula [51, page 54]). For all n ∈ N+, it holds that

√
2πnn+1/2 e−n · e(12n+1)−1

< n! <
√

2πnn+1/2 e−n · e(12n)
−1

.

Corollary 1. For all n ≥ 2 with n ∈ N, it holds that

n! >
√

2πnn+1/2 e−n and (1)

n! < enn+1/2 e−n . (2)

Proof. For both inequalities, we aim at using Theorem 1.

eq. (1): Note that e(12n+1)−1

> 1, since 1
12n+1 > 0. Hence,

√
2πnn+1/2 e−n <

√
2πnn+1/2 e−n · e(12n+1)−1

.

eq. (2): We prove this case by showing that

√
2π e(12n)

−1

< e . (3)

Note, that e(12n)
−1

is strictly decreasing. Hence, we only have to check whether

eq. (3) holds for n = 2.

√
2π e(12n)

−1

≤
√

2π e
1
24 < 2.7 < e .

Lemma 3. Let A, B, and C be random variables such that Pr [A > C ∧B > C] >

0 and Pr [A > C ∧B ≤ C] > 0. Then Pr [A > B ∧A > C] ≥ Pr [A > B] ·

Pr [A > C].
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Proof. Using the definition of conditional probability, we obtain

Pr [A > B ∧A > C] = Pr [A > B | A > C ] · Pr [A > C] .

Hence, we are left with bounding Pr [A > B | A > C ] ≥ Pr [A > B]. Partition-

ing the sample space into the two events B > C and B ≤ C and using the law

of total probability, we obtain

Pr [A > B | A > C] = Pr [B > C | A > C ] · Pr [A > B | A > C ∧B > C]

+ Pr [B ≤ C | A > C ] · Pr [A > B | A > C ∧B ≤ C] .

Note that the condition A > C ∧ B ≤ C already implies A > B and thus

the last probability equals to 1. Moreover, using the definition of conditional

probability, we obtain

Pr [A > B | A > C] = Pr [B > C | A > C ] · Pr [A > B ∧A > C ∧B > C]

Pr [A > C ∧B > C]

+ Pr [B ≤ C | A > C ] .

Using that Pr [B > C | A > C ] ≥ Pr [A > C ∧B > C], that A > B ∧ B > C

already implies A > C, that Pr [B ≤ C | A > C ] ≥ Pr [A > B ∧B ≤ C], and

finally the law of total probability, we obtain

Pr [A > B | A > C] ≥ Pr [A > B ∧A > C ∧B > C] + Pr [B ≤ C | A > C ]

= Pr [A > B ∧B > C] + Pr [B ≤ C | A > C ]

≥ Pr [A > B ∧B > C] + Pr [A > B ∧B ≤ C]

= Pr [A > B] .

3. Monochrome Edges in Geometric Random Graphs190

In this section, we prove the following main theorem.

Theorem 2. Let G ∼ G(n, r) be a random geometric graph with expected av-

erage degree δ = o (
√
n). The expected fraction of monochrome edges after the

FSP is at least

1

2
+

9

800
·

1

2
− 1√

2π⌊δ/2⌋

2

·
(

1 − e−δ/2

(
1 +

δ

2

))
· (1 − o (1)).
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Note that the bound in Theorem 2 is bounded away from 1
2 for all δ ≥ 2.

Moreover, the two factors depending on δ go to 1
2 and 1, respectively, for a

growing δ.

Given an edge {u, v}, we prove the above lower bound on the probability195

that {u, v} is monochrome in the following four steps.

(1) For a vertex set, we introduce the concept of decisiveness that measures

how much the majority is ahead of the minority in the FSP. With this, we

give a lower bound on the probability that {u, v} is monochrome based on

the probability that the common neighborhood of u and v is more decisive200

than their exclusive neighborhoods.

(2) We show that large neighborhoods are likely to be more decisive than small

neighborhoods. To this end, we give bounds on the likelihood that two

similar random walks behave differently. This step reduces the question

of whether the common neighborhood is more decisive than the exclusive205

neighborhoods to whether the former is larger than the latter.

(3) Turning to geometric random graphs, we show that the common neigh-

borhood is sufficiently likely to be larger than the exclusive neighborhoods

if the geometric region corresponding to the former is sufficiently large.

We do this by first showing that the actual distribution of the neighbor-210

hood sizes is well approximated by independent binomial random vari-

ables. Then, we give the desired bounds for these random variables.

(4) We show that the existence of the edge {u, v} in the geometric random

graph makes it sufficiently likely that the geometric region hosting the

common neighborhood of u and v is sufficiently large.215

3.1. Monochrome Edges via Decisive Neighborhoods

Let {u, v} be an edge of a given graph. To formally define the above men-

tioned decisiveness, let N+
u∩v and N−

u∩v be the number of vertices in the common
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neighborhood of u and v that are occupied by agents of type t+ and t−, respec-

tively. Then Du∩v := |N+
u∩v − N−

u∩v| is the decisiveness of the common neigh-220

borhood of u and v. Analogously, we define Du\v and Dv\u for the exclusive

neighborhoods of u and v, respectively.

The following theorem bounds the probability for {u, v} to be monochrome

based on the probability that the common neighborhood is more decisive than

each of the exclusive ones.225

Theorem 3. In the FSP, let {u, v} ∈ E be an edge and let D be the event

{Du∩v > Du\v ∧Du∩v > Dv\u}. Then {u, v} is monochrome with probability at

least 1/2 + Pr [D] /2.

Proof. If D occurs, then the types of u and v after the FSP coincide with the

predominant type before the FSP in the shared neighborhood. Thus, {u, v} is230

monochrome.

Otherwise, assuming D, w.l.o.g., let Du∩v ≤ Du\v and assume further the

type of v has already been determined. If Du∩v = Du\v, then u chooses a type

uniformly at random, which coincides with the type of v with probability 1
2 .

Otherwise, Du∩v < Du\v and thus u takes the type that is predominant in u’s235

exclusive neighborhood, which is t+ and t− with probability 1
2 , each. Moreover,

this is independent from the type of v as v’s neighborhood is disjoint to u’s

exclusive neighborhood.

Thus, for the event M that {u, v} is monochrome, we get Pr [M | D] = 1

and Pr
[
M | D

]
= 1

2 . Hence, we get Pr [M ] ≥ Pr [D] + 1
2 (1 − Pr [D]) = 1

2 +240

Pr [D] /2.

3.2. Large Neighborhoods are More Decisive

The goal of this section is to reduce the question of how decisive a neighbor-

hood is to the question of how large it is. To be more precise, assume we have

a set of vertices of size a and give each vertex the type t+ and t−, respectively,245

each with probability 1
2 . Let Ai for i ∈ [a] be the random variable that takes

the value +1 and −1 if the i-th vertex in this set has type t+ and t−, respec-

tively. Then, for A =
∑

i∈[a] Ai, the decisiveness of the vertex set is |A|. In

12



the following, we study the decisiveness |A| depending on the size a of the set.

Note that this can be viewed as a random walk on the integer line: Starting at250

0, in each step, it moves one unit either to the left or to the right with equal

probabilities. We are interested in the distance from 0 after a steps.

Assume for the vertices u and v that we know that b vertices lie in the

common neighborhood and a vertices lie in the exclusive neighborhood of u.

Moreover, let A and B be the positions of the above random walk after a and b255

steps, respectively. Then the event Du∩v > Du\v is equivalent to |B| > |A|.

Motivated by this, we study the probability of |B| > |A|, assuming b ≥ a. The

core difficulty here comes from the fact that we require |B| to be strictly larger

than |A|. Also note that a+b corresponds to the degree of u in the graph. Thus,

we have to study the random walks also for small numbers of a and b. We note260

that all results in this section are independent from the specific application to

the FSP, and thus might be of independent interest.

Before we give a lower bound on the probability that |B| > |A|, we need the

following technical lemma. It states that doing more steps in the random walk

only makes it more likely to deviate further from the starting position.265

Lemma 4. For i ∈ [a] and j ∈ [b] with 0 ≤ a ≤ b, let Ai and Bj be independent

random variables that are −1 and 1 each with probability 1
2 . Let A =

∑
i∈[a] Ai

and B =
∑

j∈[b] Bj. Then Pr [|A| < |B|] ≥ Pr [|A| > |B|].

Proof. Let ∆k be the event that |B| − |A| = k. First note that

Pr [|A| < |B|] =
∑
k∈[b]

Pr [∆k] and Pr [|A| > |B|] =
∑
k∈[a]

Pr [∆−k] .

To prove the statement of the lemma, it thus suffices to prove the following

claim.270

Claim 1. For k ≥ 0, Pr [∆k] ≥ Pr [∆−k].

We prove this claim via induction on b−a. For the base case a = b, A and B

are equally distributed and thus Claim 1 clearly holds.

13



For the induction step, let B+ be the random variable that takes the values

B + 1 and B − 1 with probability 1
2 each. Note that B+ represents the same

type of random walk as A and B but with b+ 1 steps. Moreover B+ is coupled

with B to make the same decisions in the first b steps. Let ∆+
k be the event

that |B+| − |A| = k. It remains to show that Claim 1 holds for these ∆+
k . For

this, first note that the claim trivially holds for k = 0. For k ≥ 1, we can use

the definition of ∆+
k and the induction hypothesis to obtain

Pr
[
∆+

k

]
=

Pr [∆k−1]

2
+

Pr [∆k+1]

2

≥ Pr [∆−k+1]

2
+

Pr [∆−k−1]

2
= Pr

[
∆+

−k

]
.

Using Lemma 4, we now prove the following general bound for the probability

that |A| < |B|, depending on certain probabilities for binomially distributed275

variables.

Lemma 5. For i ∈ [a] and j ∈ [b] with 0 ≤ a ≤ b, let Ai and Bj be independent

random variables that are −1 and 1 each with probability 1
2 . Let A =

∑
i∈[a] Ai

and B =
∑

j∈[b] Bj. Moreover, let X ∼ Bin(a, 1
2 ), Y ∼ Bin(b, 1

2 ), and Z ∼

Bin(a + b, 1
2 ). Then

Pr [|A| < |B|] ≥ 1

2
− Pr

[
Z =

a + b

2

]
+

Pr
[
X = a

2

]
· Pr

[
Y = b

2

]
2

.

Proof. Using that Pr [|A| < |B|] ≥ Pr [|A| > |B|] (see Lemma 4), we obtain

Pr [|A| < |B|] + Pr [|A| > |B|] + Pr [|A| = |B|] = 1

⇒ 2Pr [|A| < |B|] + Pr [|A| = |B|] ≥ 1

⇔ Pr [|A| < |B|] ≥ 1

2
− Pr [|A| = |B|]

2
. (4)

Thus, it remains to give an upper bound for Pr [|A| = |B|].

Using the inclusion–exclusion principle and the fact that B is symmetric

around 0, i.e., Pr [B = x] = Pr [B = −x] for any x, we obtain

Pr [|A| = |B|] = Pr [A = B ∨A = −B]

= Pr [A = B] + Pr [A = −B] − Pr [A = B = 0]

= 2Pr [A = −B] − Pr [A = B = 0] . (5)

14



We estimate Pr [A = −B] and Pr [A = B = 0] using bounds for binomially dis-

tributed variables. To this end, define new random variables Xi = Ai+1
2 for

i ∈ [a] and let X =
∑

i∈[a] Xi. Note that the Xi are independent and take

values 0 and 1, each with probability 1
2 . Thus, X ∼ Bin(a, 1

2 ). Moreover,

A = 2X − a. Analogously, we define Y with Y ∼ Bin(b, 1
2 ) and B = 2Y − b.

Note that X and Y are independent and thus Z = X +Y ∼ Bin(a+ b, 1
2 ). With

this, we get

Pr [A = −B] = Pr [2X − a = −2Y + b] = Pr

[
Z =

a + b

2

]
, and

Pr [A = B = 0] = Pr [A = 0] · Pr [B = 0] = Pr
[
X =

a

2

]
· Pr

[
Y =

b

2

]
.

This, together with Equations (4) and (5) yield the claim.

The bound in Lemma 5 becomes worse for smaller values of a and b. Con-

sidering this worst case, we obtain the following specific bound.280

Theorem 4. For i ∈ [a] and j ∈ [b] with 0 ≤ a ≤ b, let Ai and Bj be independent

random variables that are −1 and 1 each with probability 1
2 . Let A =

∑
i∈[a] Ai

and B =
∑

j∈[b] Bj. If a = b = 0 or a = b = 1, then Pr [|A| < |B|] = 0.

Otherwise Pr [|A| < |B|] ≥ 3
16 .

Proof. Clearly, if a = b = 0, then A = B = 0 and thus Pr [|A| < |B|] = 0.285

Similarly, if a = b = 1, then |A| = |B| = 1 and thus Pr [|A| < |B|] = 0. For

the remainder, assume that neither a = b = 0 nor a = b = 1, and let X,

Y , and Z be defined as in Lemma 5, i.e., X ∼ Bin(a, 1
2 ), Y ∼ Bin(b, 1

2 ), and

Z ∼ Bin(a + b, 1
2 ).

If a + b is odd, then Pr
[
Z = a+b

2

]
= 0. Thus, by Lemma 5, we have

Pr [|A| < |B|] ≥ 1
2 . If a + b is even and a + b ≥ 6, then

Pr

[
Z =

a + b

2

]
=

(
a + b
a+b
2

)(
1

2

)a+b

≤
(

6

3

)(
1

2

)6

=
5

16
.

Hence, by Lemma 5, we have Pr [|A| < |B|] ≥ 1
2 − 5

16 = 3
16 .290

If a+b < 6 (and a+b is even), there are four cases: a = 0, b = 2; a = 0, b = 4;

a = 1, b = 3; a = 2, b = 2. If a = 0 and b = 2, then A = 0 with probability 1

15



Ru∩v

Ru\v Rv\u
u v

Figure 2: The geometric regions corresponding to the common and exclusive neighborhoods,

respectively, with yellow illustrating Ru∩v and blue illustrating Ru\v and Rv\u.

and |B| = 2 with probability 1
2 . Thus, Pr [|A| < |B|] = 1

2 . If a = 0 and

b = 4, then |A| < |B| unless B = 0. As Pr [B = 0] =
(
4
2

)
· ( 1

2 )4 = 3
8 , we

get Pr [|A| < |B|] = 1 − 3
8 = 5

8 . If a = 1 and b = 3, then |A| = 1 with295

probability 1 and |B| = 3 with probability 1
4 (either B1 = B2 = B3 = 1 or

B1 = B2 = B3 = −1). Thus, Pr [|A| < |B|] = 1
4 . If a = b = 2, then |A| = 0

with probability 1
2 and |B| = 2 with probability 1

2 . Thus Pr [|A| < |B|] = 1
4 .

We note that the bound of Pr [|A| < |B|] = 3
16 is tight for a = b = 3.

3.3. Large Common Regions Yield Large Common Neighborhoods300

To be able to apply Theorem 4 to an edge {u, v}, we need to make sure that

the size of their common neighborhood (corresponding to b in the theorem) is at

least the size of the exclusive neighborhoods (corresponding to a in the theorem).

In the following, we give bounds for the probability that this happens. Note

that this is the first time we actually take the graph into account. Thus, all305

above considerations hold for arbitrary graphs.

Recall that we consider random geometric graphs G(n, r) and u and v are

each connected to all vertices that lie within a disk of radius r around them.

As u and v are adjacent, their disks intersect, which separates the ground space

into four regions; cf. Figure 2. Let Ru∩v be the intersection of the two disks.310

Let Ru\v be the set of points that lie in the disk of u but not in the disk of v,

and analogously, let Rv\u be the disk of v minus the disk of u. Finally, let

Ru∪v be the set of points outside both disks. Then, each of the n− 2 remaining

vertices ends up in exactly one of these regions with a probability equal to
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the corresponding measure. Let µ(·) be the area of the respective region and315

p = µ(Ru∩v) and q = µ(Ru\v) = µ(Rv\u) be the probabilities for a vertex to lie

in the common and exclusive regions, respectively. The probability for Ru∪v is

then 1 − p− 2q.

We are now interested in the sizes Nu∩v, Nu\v, and Nv\u of the common

and the exclusive neighborhoods, respectively. As each of the n − 2 remaining320

vertices ends up in Nu∩v with probability p, we have Nu∩v ∼ Bin(n− 2, p). For

Nu\v and Nv\u, we already know that v is a neighbor of u and vice versa. Thus,

(Nu\v − 1) ∼ Bin(n− 2, q) and (Nv\u − 1) ∼ Bin(n− 2, q). Moreover, the three

random variables are not independent, as each vertex lies in only exactly one

of the four neighborhoods, i.e., Nu∩v, (Nu\v − 1), (Nv\u − 1), and the number325

of vertices in neither neighborhood together follow a multinomial distribution

Multi(n− 2,p) with p = (p, q, q, 1 − p− 2q).

The following lemma shows that these dependencies are small if p and q are

sufficiently small. This lets us assume that Nu∩v, (Nu\v − 1), (Nv\u − 1) are

independent random variables following binomial distributions if the expected330

average degree is not too large.

Lemma 6. Let X = (X1, X2, X3, X4) ∼ Multi (n,p) with p = (p, q, q, 1 − p− 2q).

Then there exist independent random variables Y1 ∼ Bin (n, p), Y2 ∼ Bin (n, q),

and Y3 ∼ Bin (n, q) such that Pr [(X1, X2, X3) = (Y1, Y2, Y3)] ≥ 1−3n·max(p, q)2.

Proof. Let Y1 ∼ Bin (n, p), and Y2, Y3 ∼ Bin (n, q) be independent random335

variables. We define the event B to hold, if each of the n individual trials

increments at most one of the random variables Y1, Y2, or Y3. More formally,

for i ∈ [3] and j ∈ [n], let Yi,j be the individual Bernoulli trials of Yi, i.e.,

Yi =
∑

j∈[n] Yi,j . For j ∈ [n], we define the event Bj to be Y1,j +Y2,j +Y3,j ≤ 1,

and the event B =
⋂

j∈[n] Bj .340

Based on this, we now define the random variables X1, X2, X3, and X4 as

follows. If B holds, we set Xi = Yi for i ∈ [3] and X4 = n − X1 − X2 − X3.

Otherwise, if B, we draw X = (X1, X2, X3, X4) ∼ Multi (n,p) independently

from Y1, Y2, and Y3 with p = (p, q, q, 1 − p − 2q). Note that X clearly follows
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Multi (n,p) if B. Moreover, conditioned on B, each individual trial increments345

exactly one of the variables X1, X2, X3, or X4 with probabilities p, q, q, and

1 − p− 2q, respectively, i.e., X ∼ Multi (n,p).

Thus, we end up with X ∼ Multi (n,p). Additionally, we have three indepen-

dent random variables Y1 ∼ Bin (n, p), and Y2, Y3 ∼ Bin (n, q) with (X1, X2, X3) =

(Y1, Y2, Y3) if B holds. Thus, to prove the lemma, it remains to show that

Pr [B] ≥ 1 − 3nmax(p, q)2. For j ∈ [n], the probability that the jth trial goes

wrong is

Pr
[
Bj

]
= 1 −

(
(1 − p)(1 − q)2

)
−
(
p(1 − q)2

)
− 2 (q(1 − p)(1 − q))

= 2pq − 2pq2 + q2 ≤ 2pq + q2 ≤ 3 · max(p, q)2.

Using the union bound it follows that Pr
[
B
]
≤
∑

j∈[n] Pr
[
Bj

]
≤ 3n·max(p, q)2.

As mentioned before, we are interested in the event Nu∩v ≥ Nu\v (and likewise350

Nu∩v ≥ Nv\u), in order to apply Theorem 4. Moreover, due to Lemma 6, we

know that Nu∩v and (Nu\v−1) almost behave like independent random variables

that follow Bin(n − 2, p) and Bin(n − 2, q), respectively. The following lemma

helps to bound the probability for Nu∩v ≥ Nu\v. Note that it gives a bound for

the probability of achieving strict inequality (instead of just ≥), which accounts355

for the fact that (Nu\v − 1) and not Nu\v itself follows a binomial distribution.

Lemma 7. Let n ∈ N with n ≥ 2, and let p ≥ q > 0. Further, let X ∼ Bin(n, p)

and Y ∼ Bin(n, q) be independent, let d = ⌊p(n + 1)⌋, and assume d = o (
√
n),

then Pr [X > Y ] ≥
(
1
2 − 1/

√
2πd

)
(1 − o (1)).

Proof. By Lemma 1, we get Pr [X ≥ Y ] ≥ 1
2 , and we bound

Pr [X > Y ] = Pr [X ≥ Y ] − Pr [X = Y ] ≥ 1

2
− Pr [X = Y ] ,

leaving us to bound Pr [X = Y ] from above. By independence of X and Y , we

get

Pr [X = Y ] =
∑
i∈[n]

Pr [X = i] · Pr [Y = i] . (6)
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Note that, by Lemma 2, for all i ∈ [0..n], it holds that Pr [X = i] ≤ Pr [X = d].

Assume that we have a bound B such that Pr [X = d] ≤ B. Substituting this

into Equation (6) yields

Pr [X = Y ] ≤ B
∑
i∈[n]

Pr [Y = i] = B,

resulting in Pr [X > Y ] ≥ 1
2 − B. Thus, we now derive such a bound for B,360

noting that Pr [X = d] is increasing as long as d− np ≥ 0, and by applying the

inequality that for all x ∈ R, it holds that 1 + x ≤ ex, as well as Equation (1).

We get

Pr [X = d] =

(
n

d

)
pd(1 − p)n−d ≤ nd

d!

(
d

n

)d(
1 − d

n

)n(
1 − d

n

)−d

≤ dd

d!
e−d

(
1 − d

n

)−d

≤ dd√
2πdd+1/2e−d

e−d

(
1 − d

n

)−d

=
1√
2πd

1

(1 − d/n)d
. (7)

By Bernoulli’s inequality, we bound (1 − d/n)d ≥ 1 − d2/n = 1 − o (1) by the

assumption d = o (
√
n). Substituting this back into Equation (7) concludes the365

proof.

Finally, in order to apply Theorem 4, we have to make sure not to end up in

the special case where a = b ≤ 1, i.e., we have to make sure that the common

neighborhood includes at least two vertices. The probability for this to happen

is given by the following lemma.370

Lemma 8. Let X ∼ Bin(n, p) and let c = np ∈ o (n). Then it holds that

Pr [X > 1] ≥ (1 − e−c (1 + c)) (1 − o (1)).

Proof. As X > 1 holds if and only if X ̸= 0 and X ̸= 1, we get

Pr [X > 1] = 1 − Pr [X = 0] − Pr [X = 1] = 1 − (1 − p)n − n · p · (1 − p)n−1.
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Using that for all x ∈ R it holds that 1 − x ≤ e−x, we get

Pr [X > 1] ≥ 1 − e−pn − n · p · e−p(n−1)

= 1 − e−c − c · ec/n · e−c

= 1 − e−c
(

1 + c · ec/n
)
.

As ec/n goes to 1 for n → ∞, we get the claimed bound.

3.4. Many Edges Have Large Common Regions

In Section 3.3, we derived a lower bound on the probability that Nu∩v ≥375

Nu\v provided that the probability for a vertex to end up in the shared region

Ru∩v is sufficiently large compared to Ru\v. In the following, we estimate the

measures of these regions depending on the distance between u and v. Then,

we give a lower bound on the probability that µ(Ru∩v) ≥ µ(Ru\v).

Lemma 9. Let G ∼ G(n, r) be a random geometric graph with expected average

degree δ, let {u, v} ∈ E be an edge, and let τ := dist(u,v)
r . Then,

µ(Ru∩v) =
δ

(n− 1)π

(
2 arccos

(τ
2

)
− sin

(
2 arccos

(τ
2

)))
(8)

and

µ(Ru\v) = µ(Rv\u) =
δ

n− 1
− µ(Ru∩v). (9)

Proof. We start with proving Equation (8). Let i and j be the two intersection

points of the disks of u and v, let α be the central angle enclosed by i and j,

and let x be the corresponding circular sector, cf. Figure 3a. Moreover, let the

triangle y be a subarea of x determined by α and the radical axis ℓ, cf. Figure 3b.

Let h denote the height of the triangle y, cf. Figure 3c. For our calculations,

we restrict the length of ℓ by the intersection points i and j. Since we consider

the intersection between disks and thus ℓ divides the area µ(Ru∩v) into two

subareas of equal sizes, it holds that µ(Ru∩v) = 2 (µ(x) − µ(y)). Considering

the two areas µ(x) and µ(y), it holds that

µ(x) =
α

2
r2 and µ(y) = h · ℓ

2
= cos

(α
2

)
r · sin

(α
2

)
r =

sin(α)

2
r2. (10)
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(a) Let α be the

central angle deter-

mined by the intersec-

tion points i and j,

and let x be the corre-

sponding circular sec-

tor (illustrated in yel-

low).
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`

(b) Let y be a triangle

in the intersection (il-

lustrated in green) de-

termined by the radi-

cal axis ℓ and the cen-

tral angle α, cf. Fig-

ure 3a.
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`
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(c) The height h di-

vides the area µ(y)

(illustrated in green)

of the triangle y, cf.

Figure 3b, into two

subareas of equal size,

since adjacent and op-

posite legs have the

same length r.

Figure 3: The neighborhood of two adjacent vertices u and v in a random geometric graph.

For the central angle α we know cos (α/2) = h/r = τ/2 and therefore α =

2 arccos
(
τ
2

)
. Together with eq. (10), we obtain

µ(Ru∩v) = 2 (µ(x) − µ(y))

= 2

(
2 arccos

(
τ
2

)
2

r2 −
sin
(
2 arccos

(
τ
2

))
2

r2

)
. (11)

The area of a general circle is equal to πr2. Since we consider a ground space380

with total area 1, the area of one disk in the random geometric graph equals

δ
n−1 , i.e., r2 = δ

(n−1)π . Together with eq. (11), we obtain eq. (8).

Equation (9): We get the claimed equality by noting that µ(Ru∩v)+µ(Ru\v) =

πr2.

385

Lemma 10. Let G ∼ G(n, r) be a random geometric graph, and let {u, v} ∈ E

be an edge. Then Pr
[
µ(Ru∩v) ≥ µ(Ru\v)

]
≥
(
4
5

)2
.

Proof. Let τ = dist(u,v)
r . By Lemma 9 with µ(Ru∩v) ≥ µ(Rv\u), we get(
2 arccos

(τ
2

)
− sin

(
2 arccos

(τ
2

)))
≥ π

2
,
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which is true for τ ≥ 4
5 . The area of a disk of radius 4

5r is
(
π( 4

5r)2
)
/
(
πr2
)

=(
4
5

)2
times the area of a disk of radius r. Hence, the fraction of edges with

distance at most 4
5r is at least

(
4
5

)2
, concluding the proof.390

3.5. Proof of Theorem 2

By Theorem 3, the probability that a random edge {u, v} is monochrome is

at least 1
2 + Pr [D] /2, where D is the event that the common neighborhood of u

and v is more decisive than each exclusive neighborhood. It remains to bound

Pr [D].395

Existence of an edge yields a large shared region. Let R be the

event that µ(Ru∩v) ≥ µ(Ru\v). Note that this also implies µ(Ru∩v) ≥ µ(Rv\u)

as µ(Ru\v) = µ(Rv\u). Due to the law of total probability, we have

Pr [D] ≥ Pr [R] · Pr [D | R] .

Due to Lemma 10, we have Pr [R] ≥
(
4
5

)2
. Recall that the area of one disk

in the random geometric graph equals δ
n−1 , where δ is the expected average

degree. By conditioning on R in the following, since µ(Ru∩v) +µ(Ru\v) = δ
n−1 ,

it holds that µ(Ru∩v) ≥ δ
2(n−1) ≥ µ(Ru\v) = µ(Rv\u).

Neighborhood sizes are roughly binomially distributed. The next400

step is to go from the size of the regions to the number of vertices in these

regions. Each of the remaining n′ = n− 2 vertices is sampled independently to

lie in one of the regions Ru∩v, Ru\v, Rv\u, or Ru∪v. Denote the resulting num-

bers of vertices with X1, X2, X3, and X4, respectively. Then (X1, X2, X3, X4)

follows a multinomial distribution with parameter p = (p, q, q, 1 − p− 2q) for405

p = µ(Ru∩v) and q = µ(Ru\v) = µ(Rv\u). Note that Nu∩v = X1, Nu\v = X2+1,

and Nv\u = X3 + 1 holds for the sizes of the common and exclusive neighbor-

hoods, where the +1 comes from the fact that v is always a neighbor of u and

vice versa.

We apply Lemma 6 to obtain independent binomially distributed random

variables Y1, Y2, and Y3 that are likely to coincide with X1 = Nu∩v, X2 = Nu\v−
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1, and X3 = Nv\u − 1, respectively. Let B denote the event that (Nu∩v, Nu\v −

1, Nv\u − 1) = (Y1, Y2, Y3). Again, using the law of total probabilities and due

to the fact that R and B are independent, we get

Pr [D | R] ≥ Pr [B | R] · Pr [D | R ∩B] = Pr [B] · Pr [D | R ∩B] .

Note that p, q ≤ δ
n′ for the expected average degree δ. Thus, Lemma 6 implies410

that Pr [B] ≥
(

1 − 3δ
2
/n′
)

. Conditioning on B makes it correct to assume

that Nu∩v ∼ Bin(n′, p), (Nu\v − 1) ∼ Bin(n′, q), (Nv\u − 1) ∼ Bin(n′, q) are

independently distributed. Additionally conditioning on R gives us p ≥ δ
2n′ ≥ q.

A large shared region yields a large shared neighborhood. In the

next step, we consider an event that makes sure that the number Nu∩v of

vertices in the shared neighborhood is sufficiently large. Let N1, N2, and N3 be

the events that Nu∩v ≥ Nu\v, Nu∩v ≥ Nv\u, and Nu∩v > 1, respectively. Let N

be the intersection of N1, N2, and N3. We obtain

Pr [D | R ∩B]

≥ Pr [N | R ∩B] · Pr [D | R ∩B ∩N ]

≥ Pr [N1 | R ∩B] · Pr [N2 | R ∩B] · Pr [N3 | R ∩B] · Pr [D | R ∩B ∩N ] ,

where the last step follows from Lemma 3 as the inequalities in N1, N2, and

N3 all go in the same direction. Note that Nu∩v ≥ Nu\v is equivalent to

Nu∩v > Nu\v−1. Due to the condition on B, Nu∩v and Nu\v−1 are independent

random variables following Bin(n′, p) and Bin(n′, q), respectively, with p ≥ q due

to the condition on R. Thus, we can apply Lemma 7, to obtain

Pr [N1 | R ∩B] = Pr [N2 | R ∩B] ≥

1

2
− 1√

2π⌊δ/2⌋

 (1 − o (1)),

and Lemma 8 gives the bound

Pr [N3 | R ∩B] ≥
(

1 − e−δ/2

(
1 +

δ

2

))
(1 − o (1)).

Note that both of these probabilities are bounded away from 0 for δ ≥ 2.

Conditioning on N lets us assume that the shared neighborhood of u and v415
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contains at least two vertices and that it is at least as big as each of the exclusive

neighborhoods.

A large shared neighborhood yields high decisiveness. The last

step is to actually bound the remaining probability Pr [D | R ∩B ∩N ]. Note

that, once we know the number of vertices in the shared and exclusive neigh-420

borhoods, the decisiveness no longer depends on R or B, i.e., we can bound

Pr [D | N ] instead. For this, let D1 and D2 be the events that Du∩v > Du\v

and Du∩v > Dv\u, respectively. Note that D is their intersection. Moreover,

due to Lemma 3, we have Pr [D | N ] ≥ Pr [D1 | N ] · Pr [D2 | N ]. To bound

Pr [D1 | N ] = Pr [D2 | N ], we use Theorem 4. Note that the b and a in Theo-425

rem 4 correspond to Nu∩v and Nu\v +1 (the +1 coming from the fact that Nu\v

does not count the vertex v). Moreover conditioning on N implies that a ≤ b

and b > 1. Thus, Theorem 4 implies Pr [D1 | N ] ≥ 3
16 .

Conclusion. The above arguments give us that the fraction of monochrome

edges is

1

2
+

Pr [D]

2

≥ 1

2
+

1

2
· Pr [R]︸ ︷︷ ︸
≥( 4

5 )
2

·Pr [B]︸ ︷︷ ︸
1−o(1)

·
(

Pr [N1 | R ∩B]︸ ︷︷ ︸
≥ 1

2−
1√

2π⌊δ/2⌋

)2 · Pr [N3 | R ∩B]︸ ︷︷ ︸
≥1−e−δ/2

(
1+ δ

2

) ·
(

Pr [D1 | N ]︸ ︷︷ ︸
≥ 3

16

)2
,

where we omitted the o (1) terms for Pr [N1 | R ∩B] and Pr [N3 | R ∩B], as

they are already covered by the 1 − o (1) coming from Pr [B]. This yields the

bound stated in Theorem 2:

1

2
+

9

800
·

1

2
− 1√

2π⌊δ/2⌋

2

·
(

1 − e−δ/2

(
1 +

δ

2

))
· (1 − o (1)).

4. Monochrome Edges in Erdős–Rényi Graphs

In the following, we are interested in the probability that an edge {u, v} is430

monochrome after the FSP on Erdős–Rényi graphs. In contrast to geometric

24



random graphs, we prove an upper bound. To this end, we show that it is likely

that the common neighborhood is empty and therefore u and v choose their

types to be the predominant type in their exclusive neighborhood, which is t+

and t− with probability 1
2 , each.435

Theorem 5. Let G ∼ G(n, p) be an Erdős–Rényi graph with expected average

degree δ = o (
√
n). The expected fraction of monochrome edges after the FSP is

at most 1
2 + o (1).

Proof. Given an edge {u, v}, let M be the event that {u, v} is monochrome. We

first split M into disjoint sets with respect to the size of the common neighbor-

hood and apply the law of total probability and get Pr [M ]

= Pr [M | Nu∩v = 0] · Pr [Nu∩v = 0] + Pr [M | Nu∩v > 0 ] · Pr [Nu∩v > 0]

≤ Pr [M | Nu∩v = 0] · 1 + 1 · Pr [Nu∩v > 0] .

We bound each of the summands separately. For estimating Pr [M | Nu∩v = 0],

we note that the types of u and v are determined by the predominant type in440

disjoint vertex sets. By definition of the FSP this implies that the probability

of a monochrome edge is equal to 1
2 .

We are left with bounding Pr [Nu∩v > 0]. Let n′ = n − 2 be the number

of the remaining vertices. Note that Nu∩v ∼ Bin
(
n′, p2

)
. Thus, by Bernoulli’s

inequality we get Pr [Nu∩v > 0] = 1 − Pr [Nu∩v = 0] = 1 −
(
1 − p2

)n′

≤ n′p2.445

Noting that n′p2 = o (1) holds due to our assumption on δ, concludes the

proof.

5. Empirical Comparison for more Iterations

Our theoretical analyses in the previous sections focused on the segregation

strength after the first iteration. In this section, we complement these results450

with empirical results for multiple iterations. That is, agents make their decision

whether to change their color several times, based on the state after the previous

iteration.
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In Section 5.2, we analyze by how much the fraction of monochrome edges

changes in each iteration. On the one hand, for random geometric graphs,455

we observe that the fraction of monochrome edges converges to a value larger

than 1/2, with the first iteration contributing considerably to this change. On

the other hand, for Erdős–Rényi graphs, the fraction of monochrome edges first

stays close to 1/2 before reaching 1, depending on the average degree and the

number of iterations.460

The behavior of Erdős–Rényi graphs reaching fully monochrome edge sets

leads to the question about how evenly the two colors are distributed among

the agents, which we consider in Section 5.3. We find that the average degree

of Erdős–Rényi graphs plays an important role in whether the two colors are

roughly equally distributed or whether one color takes over the entire graph.465

In contrast, for random geometric graphs, the two colors are basically equally

distributed over multiple iterations. This shows that random geometric graphs

evince a more stable behavior while Erdős–Rényi graphs show a more degener-

ated one.

Last, based on the observations of the behavior of Erdős–Rényi graphs, we470

investigate in Section 5.4 if and at which average degree the FSP on random

geometric graphs results in a single color taking over all agents. We find that

this is the case for some average degree in Θ (
√
n), suggesting that our regime

for the average degree of o (
√
n) in Theorem 2 is close to tight.

In the following, we explain our experimental setup in Section 5.1 and then475

go into detail about the observations mentioned above.

5.1. Experimental Setup

We consider random geometric and Erdős–Rényi graphs. Recall that we use

for the random geometric graphs a two-dimensional toroidal Euclidean space as

the ground space. We note that we ran our experiments, in addition to what we480

present here, also on the (non-toroidal) unit square as ground space but could

not notice any qualitative difference in our observations. For the Erdős–Rényi

graphs, we used the G(n, p) model. We consider graph sizes from 5 000 up
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Figure 4: The fraction of monochrome edges for the first six iterations of the FSP on a

random geometric graph with 500 vertices and average degree 16 on the torus. The top part

of the figure depicts the state of the FSP after each iteration. The blue and orange edges are

monochrome edges between two adjacent blue and orange agents, respectively, while a gray

edge depicts an edge between an orange and blue agent.

to 25 000 nodes, expected average degrees between 2 and 32 as well as 0.5
√
n

and 3.5
√
n, respectively. Moreover, we consider up to 200 iterations and run485

our experiments 1 000 times to measure the fraction of monochrome edges, the

fraction of vertices changing their color, and the fraction of vertices belonging

to the minority. For reproducibility purposes, our code is publicly available on

GitHub [52].

5.2. Changes to the colors of agents490

We are interested in how often agents change their color. To this end, we

look at only the number of monochrome edges (Section 5.2.1) as well as the

number of agents that change color (Section 5.2.2).

5.2.1. Changes to the fraction of monochrome edges

Figure 4 shows exemplary the first six iterations of the FSP for a random495

geometric graph. As seen in Figure 5, we observe that in random geometric

graphs, the fraction of monochrome edges increases with every iteration. How-

ever, while in the first iterations the fraction of monochrome edges is strongly

rising, in particular the strongest increase happens in the first iteration, it sta-
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Figure 5: The fraction of monochrome edges over the first 30 iterations of the FSP on Erdős–

Rényi graphs and random geometric graphs with 25 000 vertices for different average degrees.

Each point denotes the mean of 1 000 runs. The lines around each point depict the standard

deviation. In general, the segregation strength increases with the number of iterations. Please

refer to Section 5.2.1 for more details.

bilizes quickly, and, from then on, only small changes are visible. Hence, this500

shows that the first iteration plays a large role since we see a clear difference

in the fraction of monochrome edges which is not the case after 30 iterations,

where only very small changes can be observed. Moreover, note that Figure 5

shows only a very low variance so the overall behavior does not depend on the

specific graph.505

Turning to Erdős–Rényi graphs in the first iterations the process acts in an

expected manner: approximately half of the edges are monochrome, cf. Figure 5.

However, there is a turning point from which on the number of monochrome

edges increases until (almost) all edges are monochrome. This is a surprising

behavior since the FSP behaves differently in the subsequent iterations com-510

pared to the first ones. In Section 5.3, we see that this is due to one color taking

over the entire graph. The turning point where the graph becomes monocol-

ored depends on the specific graph, which leads to the high variance in the plot.

Furthermore, the plot suggests that the turning point appears earlier for higher

average degrees.515
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Figure 6: The fraction of vertices changing their color over the first 30 iterations of the FSP on

Erdős–Rényi graphs and random geometric graphs with 25 000 vertices for different average

degrees. Each point denotes the mean of 1 000 runs. The lines around each point depict the

standard deviation. In general, except for very small average degrees, the process reaches a

stable state. Please refer to Section 5.2.2 for more details.

5.2.2. Number of agents changing color

For random geometric graphs, Figure 6 shows that for small average degrees,

a substantial fraction of the agents keeps on changing their color although Fig-

ure 5 indicates convergence in the number of monochrome edges. For higher

average degrees only a very small number of agents changes their color after520

30 iterations, which suggest almost stable states. Thus, while the number of

monochrome edges seems to always converge, the convergence of the FSP itself

with respect to the colors of the agents is more dependent on the average degree.

In particular, this shows that a big part of the graph is stable while there are

areas in which the agents switch between strongly segregated configurations.525

We note that such oscillating behavior has been observed before in the litera-

ture. This happens heavily in regular structures commonly used for modeling

residential areas, like grid graphs, regular graphs, paths, cycles, and trees. In

contrast, random geometric graphs exhibit irregularities, which leads to stronger

local minima with respect to the number of monochrome edges and, hence, to530

a more stable behavior. This effect is not as strong for low expected average
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Figure 7: The fraction of vertices belonging to the minority over the first 30 iterations of the

FSP on Erdős–Rényi graphs and random geometric graphs with 25 000 vertices for different

average degrees. Each point is based on 1 000 runs. The lines around each point depict

the standard deviation. In general, Erdős–Rényi graphs end up single-colored while random

geometric graphs stay bi-colored. Please refer to Section 5.3 for more details.

degrees as it is for large ones. We believe this to be an indicator for the benefit

of using random geometric graphs instead of completely random structures as

underlying topology.

5.3. The size of the minority535

We consider the number of agents of the color that has fewer agents (the

minority), shedding light on whether the FSP results in a graph that consists

of agents of only a single color.

In Figure 7, we see that for random geometric graphs, the fraction of the

minority is very close to 1/2 and stays there over many iterations. Thus, both540

colors contribute roughly equally to the number of monochrome edges. However,

for Erdős–Rényi graphs, the behavior is quite different. While the fraction of

the minority stays close to 1/2 for low average degrees (at least for the first 30

iterations), it goes to 0 for higher average degrees, and it does so more quickly the

higher the average degree. Note that we see in Figure 7 that also for low average545

degrees the fraction of the minority starts to move away from 1/2 towards 0.

The high variance indicates that the graph structure has some impact on when
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Figure 8: The probability that one color takes completely over after 200 iterations in the

FSP on a random geometric graph depending on the average degree for different numbers of

vertices n. For each value of n, the average degrees range from 0.5
√
n to 3.5

√
n in steps of

0.3
√
n. Each point is based on 1 000 runs. In general, the higher the expected average degree

the more likely the FSP ends up in a single-colored graph. Please refer to Section 5.3 for more

details.

this change takes place, but all agents eventually have the same color for higher

average degrees. Hence, although the probability of each color remains 1/2

for each node, there are dependencies and the FSP has a reinforcing effect on550

an already slight imbalance. This also explains the increase of the fraction of

monochrome edges, as discussed in Section 5.2.1, and the convergence of agents

changing color, as discussed in Section 5.2.2.

5.4. Degeneracies in random geometric graphs for higher average degrees

The behavior of the Erdős–Rényi graphs discussed in Section 5.3 raises the555

question for random geometric graphs if and, if so, at which average degree the

FSP ends in a graph where all agents have the same color.

Figure 8 depicts the fractions of FSPs that resulted in all agents having the

same color after 200 iterations with respect to the average degree, for multiple

graph sizes. We see that increasing the average degree leads to a drastically560
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increased probability of the FSP converging to a single color of agents, although

its probability seems to be a constant bounded away from 1. For all graph sizes

considered, the transition from a probability of almost 0 to a positive probability

happens for average degrees of Θ (
√
n). This is in line with our main theoretical

result, Theorem 2, which states that the FSP on random geometric graphs, after565

the first iteration, has a fraction of monochrome edges that is higher than 1/2

by a constant as long as the average degree is in o (
√
n), suggesting that the

behavior of the FSP is rather different for higher average degrees. Hence, both

our theoretical result as well as our empirical studies indicate that something

changes decisively for average degrees of Θ (
√
n). This calls for a theoretical570

investigation of this threshold behavior. Moreover, we suspect that there is

another threshold where the probability for becoming monochromatic switches

from a constant bounded away from 1 to 1.

6. Conclusion

We introduced the Flip Schelling Process (FSP), a version of Schelling’s575

segregation model where agents choose their type based on the majority in their

neighborhood. We analyzed it theoretically for a single iteration and empirically

for multiple iterations. This leaves the theoretical analysis of multiple iterations

open. Note that our empirical analysis shows that one should expect oscillating

behavior in the FSP for low average degrees (Figure 6). Thus, beyond studying580

the number of monochromatic edges in an equilibrium, one additionally has to

understand this oscillating behavior, e.g., by showing that there is an average

degree beyond which the FSP reaches a stable state.

In this article, we assumed that agents choose their type based on their

neighborhood, regardless of their own type. However, a natural behavior of the585

agents is that the type of the considered agent itself affects the agent’s choice.

Preliminary experiments show that the behavior of the FSP is different if we

do not break ties fairly—i.e., if exactly half of the agents in the neighborhood

have a different type, they choose each type with probability 1
2—but agents
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keep their type instead. This tie-breaking rule increases the likelihood that590

agents have monochromatic edges since each agent influences their neighbors

with their own type, which they keep (instead of choosing a random type for

the next iteration). This introduces an imbalance of colors with respect to an

agents own type in case of a draw in the neighborhood. Hence, we observe higher

fractions of monochrome edges after the FSP in both, random geometric and595

Erdős–Rényi graphs. The smaller the average degree, the greater the impact of

this effect seems to be, as this increases the likelihood of ties in a neighborhood.

Last, our results are based on the assumption that the type of each agent

is chosen independently and uniformly at random. Hence, roughly half of the

agents are of type t+ and the other half are of type t−. It remains open to600

investigate a more general model where agents are of type t+ with an arbitrary

probability p+ and of type t− with probability p− = 1−p+. Since we saw in our

empirical results that the FSP has a reinforcing effect on even slight imbalances,

we conjecture that for Erdős–Rényi graphs, already in the first iterations, the

number of monochrome edges increases until one color takes over completely.605

For random geometric graphs, we conjecture that if the average degree is low

enough and if p+ is constant, the fraction of vertices of type t+ remains roughly

around its initial value.
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