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ABSTRACT
Diffusion of information in networks is at the core of many prob-

lems in AI. Common examples include the spread of ideas and

rumors as well as marketing campaigns. Typically, information

diffuses at a non-linear rate, for example, if markets become satu-

rated or if users of social networks reinforce each other’s opinions.

Despite these characteristics, this area has seen little research, com-

pared to the vast amount of results for linear models, which exhibit

less complex dynamics. Especially, when considering the possibility

of re-infection, no fully rigorous guarantees exist so far.

We address this shortcoming by studying a very general non-

linear diffusion model that captures saturation as well as reinforce-

ment. More precisely, we consider a variant of the SIS model in

which vertices get infected at a rate that scales polynomially in

the number of their infected neighbors, weighted by an infection

coefficient _. We give the first fully rigorous results for thresholds

of _ at which the expected survival time becomes super-polynomial.

For cliques we show that when the infection rate scales sub-linearly,

the threshold only shifts by a poly-logarithmic factor, compared to

the standard SIS model. In contrast, super-linear scaling changes

the process considerably and shifts the threshold by a polynomial

term. For stars, sub-linear and super-linear scaling behave similar

and both shift the threshold by a polynomial factor. Our bounds are

almost tight, as they are only apart by at most a poly-logarithmic

factor from the lower thresholds, at which the expected survival

time is logarithmic.
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1 INTRODUCTION
Information diffusion processes on graphs are widely studied in the

area of AI [11, 12, 15, 25, 28–30] and in other domains, modeling

various graph processes, such as spread of infections [16, 24] and

computer viruses [2, 3], social influence and the spread of ideas [14],

and viral marketing campaigns [1].

Commonly, information diffusion processes are modeled as epi-

demiological models over networks (see [24] for an extensive sur-

vey). In these models, each vertex of the host network is in a state,

such as susceptible or infected, and transitions between these states

at variable rates that depend on the states of all vertices in the net-

work. A very prominently studied epidemiological model is the SIS
model. In this model, each susceptible vertex becomes infected by

each of its infected neighbors independently with a system-wide in-

fection rate of _ ∈ R>0, and each infected vertex turns susceptible

independently with a normalized rate of 1.

The SIS-model includes the possibility for vertices to re-infect

after recovering from the infection. That accounts, for example, for

infections that do not grant immunity [23] or for bloggers that can

post the same message multiple times [17]. Therefore, it is possible

for the infection to stay active for a very long time by infecting

the same vertices over and over again. The quantity that measures

how long the process contains infected vertices is known as the

survival time and marks an important property for networks in the

SIS model.

Due to its relevance, the survival time of the standard SIS model

has been studied extensively for decades both empirically [24] as

well as mathematically rigorously, for the latter on infinite [e.g.,

8, 18, 22] and on finite graphs [e.g., 2, 3, 7]. Combined, these results

show for a large variety of different finite graph classes a sharp

transition, with respect to the infection rate _, from a survival time



Table 1: Our threshold results for the infection coefficient 𝝀 in the
modified SIS process with infection rate 𝝀𝑰 1+𝜶 , where 𝑰 is the num-
ber of infected neighbors of a vertex. The table gives regimes for 𝝀
depending on the host graph structure, the number of vertices 𝒏 and
the infection exponent 𝜶 , in which the expected survival time is
logarithmic or super-polynomial in 𝒏 respectively. The case 𝜶 = 0
corresponds to the known results for the standard SIS model.

𝑇 ∈ O(log(𝑛)) 𝑇 ≥ 2
𝑛Ω(1)

Clique
𝛼 < 0 _ ∈ O
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logarithmic in the graph size to one that is super-polynomial. The

regime of _ where this change occurs is known as the epidemic
threshold. This regime is mostly independent of the starting config-

uration of the process as long as at least one vertex starts infected.

In the majority of the epidemiology models studied, vertices

get infected at a rate that scales linearly with the number of their

infected neighbors. However, experiments have shown that there

are processes that cannot be modeled with such simple assump-

tions [10, 21]. For example, when behavior is spread over social

networks, there is a social reinforcement effect that leads to much

higher adoption rates when the number of infected neighbors

is high [4]. Similar effects can be observed for biological conta-

gions [27]. In some cases the opposite effect happens, for example,

during market saturation, when trying to convince customers to

buy a product [15].

As non-linear infection rates are prominent in natural processes,

it is important to study how they alter the insights that have been

gained for linear processes. To this end, we consider an altered

version of the standard SIS model, parameterized by an infection
exponent 𝛼 ∈ R>−1. In this version, susceptible vertices do not get

infected by their neighbors independently but, instead, a susceptible

vertex with 𝑖 infected neighbors is infected with a rate of _𝑖1+𝛼 .
Note that we call _ the infection coefficient, and for𝛼 = 0, it coincides

with the infection rate of the standard SIS model.

This model as well as generalizations and variants thereof have

already been theoretically studied [9, 19, 26, 31]. These works use

mean-field theory, simplifying the original process by making ap-

proximation assumptions. In these works the host graph is assumed

to be a clique in order to derive differential equations that model

the dynamics of the process. This results in a threshold for the

infection coefficient at which the simplified process changes from

having the all-susceptible state as unique global equilibrium to

having two equilibria from which one is not the all-susceptible

state and is globally stable. This threshold gives an estimate for the

epidemic threshold on cliques. To the best of our knowledge, no

fully rigorous results on the epidemic threshold exist so far.

Our Contribution. We analyze the epidemic threshold of a SIS

variant with non-linear infection rates in a rigorous mathematical

manner. To the best of our knowledge, these are the first results

that study the process in the non-linear setting without any simpli-

fications. We prove both upper and lower bounds for the epidemic

threshold for cliques (Corollaries 7 and 10, assuming one initially

infected vertex) and for stars (Corollary 16, assuming the center

to be initially infected). Further, our results encompass settings

with sub-linear as well as super-linear infection rates in case of a

constant infection exponent 𝛼 . In all cases, our upper and lower

bounds of the epidemic threshold are almost tight, i.e. different by

at most poly-logarithmic factors. Our results are summarized in

Table 1. Note that in this setting the survival time increases mono-

tonically when adding extra vertices and edges, hence our lower

bounds carry over to graphs with large clique or star subgraphs.

For cliques of size 𝑛, we see a clear difference between the sub-

linear and the super-linear setting. For sub-linear infection rates

(Corollary 7, 𝛼 ∈ (−1, 0)), the epidemic threshold remains similar

to the linear setting [7, Section V.C] and increases from 1/𝑛 to

ω(log(𝑛)−𝛼/𝑛).
For the super-linear setting for cliques of size𝑛 (see Corollary 10),

the infection exponent 𝛼 of the model also has an impact on the

power of 𝑛. The infection survives already, in expectation, a time

exponential in𝑛 once _ ∈ ω
(
𝑛−1−𝛼 log(𝑛)𝛼

)
, decreasing the thresh-

old from the linear setting by a factor in the order of log(𝑛)/𝑛𝛼 .
However, the survival time has a very high variance, in the sense

that the process survives exponentially long with a probability at

most super-polynomial in −𝑛 (see Lemma 8). This long survival

time occurs once the process hits a critical mass of infected vertices.

In contrast, the process in the linear model survives exponentially

long, already with a probability linear in 𝑛−1.
For stars with 𝑛 leaves, we provide a unified bound for the sub-

and super-linear setting (see Corollary 16). In both cases, the epi-

demic threshold deviates roughly by a factor of 𝑛−𝛼/(2(2+𝛼 ) ) from
the linear threshold of 𝑛−1/2 [7, Theorems 5.1 and 5.2]. This shows

that the effect of changing the infection rate is also well pronounced

when deviating from the linear setting.

Overall, on stars, changing the infection rate has a strong impact

on the epidemic threshold in all settings. On cliques, the impact is

strong when the infection rate scales super-linearly, but the effect

is far less prominent in a sub-linear scaling.

2 PRELIMINARIES
We consider a variation of the SIS model in which the rate at which

vertices get infected scales non-linearly in the number of its infected

neighbors. The process is defined as follows.

Let 𝐺 = (𝑉 , 𝐸) be a finite, undirected graph with vertex set 𝑉

and edge set 𝐸. Further let _ ∈ R>0 and 𝛼 ∈ R>−1. A contact

process 𝐶 with infection coefficient _ and infection exponent 𝛼

on 𝐺 is a continuous-time Markov process over partitions of 𝑉

into susceptible vertices and infected vertices. The transition of the

process is decided by Poisson point processes on the vertices, which

we call Poisson clocks. Each infected vertex has a Poisson clock with

rate 1which when it triggers heals it and moves it to the susceptible

set. Each susceptible vertex has a Poisson clock with a variable rate.

For every vertex 𝑣 ∈ 𝑉 and time 𝑡 ∈ R≥0, let 𝑁𝑡,𝑣 be the number

of infected neighbors of 𝑣 . Each susceptible vertex 𝑣 has a Poisson

clock that infects it at rate _𝑁 1+𝛼
𝑡,𝑣 . Note that we restrict 𝛼 to be

larger than −1 as otherwise the clock rate is either not defined or



strictly positive for susceptible vertices with no infected neighbors.

We also assume 𝛼 to be constant in the number of vertices.

We aim to calculate the survival time of the contact process, the
first point in time at which the process reaches the only absorbing

state, which is the the state in which all vertices are susceptible.

In our proofs we sometimes consider the discrete version of that

process in which one step is exactly one trigger of a clock. That

means that in one step exactly one vertex heals or one vertex gets

infected. We use the fact that while at least one vertex is infected all

clocks together trigger at a rate of at least 1 and at most polynomial

to transfer the bounds from the discrete version to the continuous

process.

We use stochastic domination to transfer results from one ran-

dom variable to another. We say that a random variable (𝑋𝑡 )𝑡 ∈R
dominates another random variable (𝑌𝑡 )𝑡 ∈R if and only if there

exists a coupling (𝑋 ′
𝑡 , 𝑌

′
𝑡 )𝑡 ∈R in a way such that for all 𝑡 ∈ R≥0 we

have 𝑋 ′
𝑡 ≥ 𝑌 ′

𝑡 . For example for two contact processes𝐶 and𝐶′
that

only differ in the fact that 𝐶 has a higher infection coefficient, the

number of infected vertices in 𝐶 dominates the number of infected

vertices in 𝐶′
as the processes can be coupled in a way such that

all healing clocks trigger at the same time and infections in 𝐶′
im-

ply infections in 𝐶 at the same time. The domination then directly

implies that the survival time of 𝐶 dominates the survival time of

𝐶′
, so the survival time in our model increases monotonically with

the infection coefficient.

When we say that some event happens asymptotically almost

surely (a.a.s.) that means that for increasing number of vertices

in the considered graph the event happens with a probability of

1 − o(1).
Some of the processes that we analyze are very similar to the

well-known gambler’s ruin problem, as they increase and decrease

by one with certain probabilities until they reach a limit in either

direction. We consider the following version of the gambler’s ruin

problem.

Theorem 1 (Gambler’s ruin [5, page 345]). Let (𝑃𝑡 )𝑡 ∈N be the
amount of money that a player has in a gambler’s ruin game that has
a probability of 𝑝 ≠ 1/2 for them to win in each step. Let 𝑞 = 1 − 𝑝 .
The game ends at time 𝑇 when the player either reaches the lower
bound 𝑙 or the upper bound 𝑢 of money. Then

(1) Pr[𝑃𝑇 = 𝑙] = 1−(𝑝/𝑞)𝑢−𝑃
0

1−(𝑝/𝑞)𝑢−𝑙 ;

(2) Pr[𝑃𝑇 = 𝑢] = 1−(𝑞/𝑝 )𝑃0−𝑙
1−(𝑞/𝑝 )𝑢−𝑙 .

Wald’s equation helps us calculate the survival time by parti-

tioning the process into phases and then bounding the number and

length of those phases.

Theorem 2 (Wald’s eqation [20, page 346]). Let 𝑋1, 𝑋2, ... be
nonnegative, independent, identically distributed random variables
with distribution 𝑋 . Let 𝑇 be a stopping time for this sequence. If 𝑇
and 𝑋 have bounded expectation, then

E

[
𝑇∑︁
𝑖=1

𝑋𝑖

]
= E[𝑇 ] ·E[𝑋 ] .

The following theorem bounds the expected value of the maxi-

mum of 𝑛 exponentially distributed random variables which helps

as bounding the time until all vertices heal at least once.

Theorem 3 ([20, page 33]). Let 𝑛 ∈ N>0, and let {𝑋𝑖 }𝑖∈[𝑛] be
independent random variables that are each exponentially distributed
with parameter _ ∈ R>0. Let𝑚 = max𝑖∈[𝑛] 𝑋𝑖 , and let 𝐻𝑛 be the
𝑛-th harmonic number. Then

E[𝑚] = 𝐻𝑛

_
<

1 + ln(𝑛 + 1)
_

.

We use Chernoff bounds to bound the value of binomially dis-

tributed random variables.

Theorem 4 ([20, Theorem 4.4, Theorem 4.5]). Let 𝑋1, ..., 𝑋𝑛 be
independent Poisson trials, 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 , ` = E[𝑋 ] and 𝛿 ∈ (0, 1).

Then
(1) Pr[𝑋 ≥ (1 + 𝛿)`] ≤ 𝑒−`𝛿

2/3,
(2) Pr[𝑋 ≤ (1 − 𝛿)`] ≤ 𝑒−`𝛿

2/2.

3 THRESHOLDS ON CLIQUES
In the standard SIS process on a clique there exists a number of

infected vertices at which vertices heal and get infected at the

same rate, called the equilibrium point. For the contact process

with nonlinear infection rate, depending on whether the scaling

is sub- or super-linear, this equilibrium is attracting or repelling,

respectively. A sub-linear scaling leads to an attracting equilibrium,

which yields a threshold close to 1/𝑛 (see Corollary 7). A super-

linear scaling leads to a repelling equilibrium which makes it very

unlikely to reach it. Hence, the infection always dies out fast a.a.s. as

shown in Lemma 8. However, there still is a threshold above which

the expected survival time is super-polynomial as if the infection

crosses the equilibrium, the survival time becomes extremely large.

The threshold is roughly 𝑛−1−𝛼 (see Corollary 10) which is different

to the sub-linear case.

3.1 Sub-Linear Scaling
When the infection rate scales sub-linearly, there is an equilibrium

that is attracting. Also, when being in a state with a number of

infected vertices that is a constant factor away from the equilibrium,

it is already twice as likely to go towards the equilibrium than going

away from it in each step. That means that the survival time is

exponential in the equilibrium value. Hence, we get a threshold at

the point where this exponential becomes super-polynomial in 𝑛.

We first show the lower bound on the expected survival time.

Theorem 5. Let 𝐺 be a clique with 𝑛 ∈ N>0 vertices. Further,
let 𝐶 be a contact process with infection coefficient _ ∈ R>0 and
infection exponent 𝛼 ∈ (−1, 0) on 𝐺 that starts with exactly one
infected vertex. Let 𝑇 be the survival time of 𝐶 . If (_𝑛)−1/𝛼 ≤ 𝑛/2
and (_𝑛/4)−1/𝛼 ≥ 2, then E[𝑇 ] ∈ Ω

(
2
(_𝑛)−1/𝛼 /𝑛

)
.

Proof. We show that while there are at most (_𝑛/4)−1/𝛼 in-

fected vertices, the probability of infecting a new vertex is at least

twice as high as the probability to heal one in the next step. There-

fore the process dominates a gambler’s ruin instance with a biased

coin of probability 2/3, which has an expected exponential time to

reach its lower bound.



Let 𝑐 ∈ R≥1. Consider a state with 𝐼 = (_𝑛/𝑐)−1/𝛼 infected

vertices. From this state, vertices heal at a rate of 𝐼 and because

(_𝑛)−1/𝛼 ≤ 𝑛/2, new vertices get infected at a rate of

_𝐼1+𝛼 (𝑛 − 𝐼 ) ≥ _𝐼1+𝛼𝑛/2

= _𝐼 (_𝑛/𝑐)−𝛼/𝛼𝑛/2

=
𝑐

2

𝐼 .

Note that for 𝑐 ≥ 4, the rate at which new vertices get infected is

at least twice as high as the rate at which vertices heal. Hence, while

there are at most 𝐼 = (_𝑛/4)−1/𝛼 infected vertices, the discrete

version of the contact process dominates a gambler’s ruin instance

𝐴 with a biased coin with probability 2/3.
For all 𝑖 ∈ N, 𝑖 < 𝐼 , let 𝑝𝑖 be the probability that starting with 𝑖

infected vertices, the infection dies out before reaching 𝐼 infected

vertices. We get using Theorem 1

𝑝1 ≤ 1 − 2
𝐼−1

1 − 2
𝐼

=
2
𝐼−1 − 1

2
𝐼 − 1

≤ 1

2

and

𝑝𝐼−1 ≤ 1 − 2
1

1 − 2
𝐼

=
1

2
𝐼 − 1

.

Starting with one infected vertex, the probability to reach 𝐼

infected vertices before the infection dies out is 1 − 𝑝1 ≥ 1/2.
From that point on, the number of times that the infection reaches 𝐼

infected vertices again from below dominates a geometric random

variable𝑋 with success probability 𝑝𝐼−1 ≤ 1

2
𝐼 −1 . Note that between

each of those times, a vertex has to heal, which happens at a rate of

at most 𝑛. That means that the expected time between two of those

events is at least 1/𝑛. Together with Wald’s Equation (Theorem 2),

that gives us E[𝑇 ] ≥ 1/2 ·E[𝑋 ]/𝑛. Plugging in the expected value

of 𝑋 concludes the proof. □

We get a very similar result for the upper bound by upper bound-

ing the probability to increase the number of infected vertices in

the next step instead of lower bounding it. The detailed proof can

be found in the full version of the paper [6].

Theorem 6. Let 𝐺 be a clique with 𝑛 ∈ N>0 vertices. Further,
let 𝐶 be a contact process with infection coefficient _ ∈ R>0 and
infection exponent 𝛼 ∈ (−1, 0) on 𝐺 that starts with exactly one
infected vertex. Let 𝑇 be the survival time of 𝐶 . If _𝑛 ≥ 2, then

E[𝑇 ] ∈ O

(
(_𝑛) (_𝑛)−1/𝛼

)
.

Using those two results, we can pinpoint the threshold relatively

precisely.

Corollary 7. Let𝐺 be a clique with 𝑛 ∈ N>0 vertices. Further, let𝐶
be a contact process with infection coefficient _ ∈ R>0 and infection

exponent 𝛼 ∈ (−1, 0) on𝐺 that starts with exactly one infected vertex.
Let 𝑇 be the survival time of 𝐶 .

(1) If _ ∈ ω(log(𝑛)−𝛼/𝑛) then E[𝑇 ] is super-polynomial in 𝑛.
(2) If _ ∈ O(1/𝑛) then E[𝑇 ] is constant in 𝑛.

3.2 Super-Linear Scaling
When the infection rate scales super-linearly, the equilibrium point

becomes repellent. When being a constant factor away from that

equilibrium, there is a constant drift away from the equilibrium.

Therefore, the process is very unlikely to reach this equilibrium, but

when it does, the infection might infect all vertices and stay above

the equilibrium for a very long time. The expected survival time

is therefore decided by the product of the probability of reaching

the equilibrium and the expected time the process stays above the

equilibrium.

We bound the probability of reaching the equilibrium first. Then

we calculate the expected survival time after reaching the equilib-

rium. Putting those two results together gives us the lower and

upper bound for the expected survival time. Note that for the upper

bound on the survival time we do not need the second lemma as in

the regime we consider the equilibrium value is above the number

of vertices and can therefore never be reached.

The following lemma bounds the probability to reach the equi-

librium from both sides.

Lemma 8. Let 𝐺 be a clique with 𝑛 ∈ N>0 vertices. Further, let 𝐶
be a contact process with infection coefficient _ ∈ R>0 and infection
exponent 𝛼 ∈ R>0 on 𝐺 that starts with exactly one infected ver-
tex. Let 𝑝 be the probability that the infection reaches a state with
(_𝑛/2)−1/𝛼 infected vertices. If 1 ≤ (_𝑛/2)−1/𝛼 ≤ 𝑛/2, then

2
1−(2_𝑛)−1/𝛼 ≥ 𝑝 ≥ (_𝑛/2) (_𝑛/2)

−1/𝛼
.

Proof. We bound the process below (_𝑛/2)−1/𝛼 infected ver-

tices with one gambler’s ruin instance each for the upper and lower

bound by upper and lower bounding the probability to infect a new

vertex in the next step.

Let 𝑐 ∈ R≥1/2. Consider a state with 𝐼 = (𝑐_𝑛)−1/𝛼 infected

vertices. From this state, vertices heal at a rate of 𝐼 and because

(_𝑛/2)−1/𝛼 ≤ 𝑛/2, new vertices get infected at a rate of

_𝐼1+𝛼 (𝑛 − 𝐼 ) ≤ _𝐼1+𝛼𝑛

= _𝐼 (𝑐_𝑛)−𝛼/𝛼𝑛
= 𝐼/𝑐 (1)

and

_𝐼1+𝛼 (𝑛 − 𝐼 ) ≥ _𝐼1+𝛼𝑛/2

= _𝐼 (𝑐_𝑛)−𝛼/𝛼𝑛/2

=
1

2𝑐
𝐼 . (2)

Note that these bounds are exactly the same bounds we got for

negative 𝛼 . However, now that 𝛼 is positive, a higher 𝑐 actually

decreases 𝐼 instead of increasing it. That means that for 𝐼 below

(_𝑛)−1/𝛼 , it is more likely to heal vertices than to infect new ones.



Let 𝑝1 be the probability that the infection reaches a state with

(2_𝑛)−1/𝛼 infected vertices. As (2_𝑛)−1/𝛼 ≤ (_𝑛/2)−1/𝛼 it holds

𝑝1 ≥ 𝑝 . Choosing 𝑐 = 2 in Equation (1) implies that below (2_𝑛)−1/𝛼
infected vertices, the probability to infect a new vertex in the next

step is at most half as high as the probability to heal one. Therefore

the number of infected vertices in the discrete version of 𝐶 domi-

nates a gambler’s ruin instance 𝐴1 with a biased coin of probability

1/3 which gives us using Theorem 1 that

𝑝1 ≤ 1 − 2
1

1 − 2
(2_𝑛)−1/𝛼

=
1

2
(2_𝑛)−1/𝛼 − 1

≤ 2
1−(2_𝑛)−1/𝛼 .

For the lower bound on 𝑝 note that the probability to infect a

vertex in the next step is minimized when the number of infected

vertices is 1. That corresponds to 𝑐 = (_𝑛)−1 in Equation (2), which

gives us that as long as the infection did not die out, the probability

to infect a vertex in the next step is at least
_𝑛/2

_𝑛/2+1 . Therefore the
number of infected vertices of the discrete version of𝐶 is dominated

by a gambler’s ruin instance 𝐴2 with a biased coin of probability

_𝑛/2
_𝑛/2+1 which gives us

𝑝 ≥ 1 − (_𝑛/2)−1

1 − (_𝑛/2)−(_𝑛/2)−1/𝛼

=
(_𝑛/2)−1 − 1

(_𝑛/2)−(_𝑛/2)−1/𝛼 − 1

≥ (_𝑛/2) (_𝑛/2)
−1/𝛼

. □

The following lemma lower bounds the time we stay above the

equilibrium. Its proof is very similar to Theorem 5 and uses that

while we are a constant factor above the equilibrium, the probability

to infect a new vertex is at least twice as high as the probability to

heal one in the next step. That gives us an exponential survival time.

The detailed proof can be found in the full version of the paper [6].

Lemma 9. Let 𝐺 be a clique with 𝑛 ∈ N>0 vertices. Further, let 𝐶
be a contact process with infection coefficient _ ∈ R>0 and infection
exponent 𝛼 ∈ R>0 on𝐺 that starts with (_𝑛/2)−1/𝛼 infected vertices.
Let 𝑇 be the survival time of 𝐶 . If (_𝑛/2)−1/𝛼 ∈ o(𝑛), then E[𝑇 ] ≥
2
Θ(𝑛) .

Putting those two results together gives us the following thresh-

old.

Corollary 10. Let𝐺 be a clique with 𝑛 ∈ N>0 vertices. Further, let𝐶
be a contact process with infection coefficient _ ∈ R>0 and infection
exponent 𝛼 ∈ R>0 on 𝐺 that starts with exactly one infected vertex.
Let 𝑇 be the survival time of 𝐶 .

(1) If _ ∈ ω
(
𝑛−1−𝛼 log(𝑛)𝛼

)
then E[𝑇 ] is exponential in 𝑛.

(2) If _ ∈ o

(
𝑛−1−𝛼

)
then E[𝑇 ] is constant in 𝑛.

Proof. First consider _ ∈ ω
(
𝑛−1−𝛼 log(𝑛)𝛼

)
. Note that this

implies that _𝑛−1/𝛼 ∈ o(𝑛/log(𝑛)). Now consider all _ such that

_𝑛 ≥ 1. For all larger _ we get the same results using the fact that

the expected survival time scales monotonically with _. Now the

conditions for Lemma 8 and Lemma 9 are fulfilled. Let 𝐸0 be the

event that the infection reaches a state with (_𝑛/2)−1/𝛼 infected

vertices. By Lemma 8 it holds that

Pr[𝐸0] ≥ (_𝑛/2) (_𝑛/2)
−1/𝛼

≥ (_𝑛/2)o(𝑛/log(𝑛) )

≥ 2
−o(𝑛) .

By Lemma 9 it holds that E[𝑇 | 𝐸0 ] ≥ 2
Θ(𝑛)

. Together we get

E[𝑇 ] ≥ Pr[𝐸0] ·E[𝑇 | 𝐸0 ]

≥ 2
−o(𝑛) · 2Θ(𝑛)

≥ 2
Θ(𝑛) .

Now consider _ ∈ o

(
𝑛−1−𝛼

)
. Let 𝑐 ∈ R>0. Consider a state with

𝐼 = (𝑐_𝑛)−1/𝛼 infected vertices. From this state, vertices heal at a

rate of 𝐼 and new vertices get infected at a rate of

_𝐼1+𝛼 (𝑛 − 𝐼 ) ≤ _𝐼1+𝛼𝑛

= _𝐼 (𝑐_𝑛)−𝛼/𝛼𝑛
= 𝐼/𝑐.

As _ ∈ o

(
𝑛−1−𝛼

)
, it holds that (_𝑛)−1/𝛼 ∈ ω(𝑛). Therefore for

each reachable state it holds that 𝑐 ≥ 2, which means that the

probability to heal a vertex is always at least twice as high as the

probability to infect one. Therefore the process is dominated by a

biased gambler’s ruin instance with probability of 1/3 to increase

by 1. The gambler’s ruin instance has a constant expected time to

reach its lower bound and because triggers always happen at a rate

of at least 1, that also gives us a constant upper bound forE[𝑇 ]. □

4 THRESHOLDS ON STARS
For the star with 𝑛 ∈ N leaves we start by simplifying the process

by only considering the number of infected leafs 𝐼𝑡 at step 𝑡 and

whether the center is infected or not. We then get the following

transition rates

when the center is infected:

𝐼𝑡+1 = 𝐼𝑡 + 1 at rate _(𝑛 − 𝐼𝑡 ),
𝐼𝑡+1 = 𝐼𝑡 − 1 at rate 𝐼𝑡 ,

the center heals at rate 1.

when the center is healthy:

𝐼𝑡+1 = 𝐼𝑡 + 1 at rate 0,

𝐼𝑡+1 = 𝐼𝑡 − 1 at rate 𝐼𝑡 ,

the center gets infected at rate _𝐼1+𝛼𝑡 .

This time our analysis works for both positive and negative

𝛼 . We first define 𝛽 = _2𝑛(_𝑛)𝛼 because this value dictates the

survival time of the process. We now start with the upper bound

which is derived similarly to the normal setting.



Lemma 11. Let 𝐺 be a star with 𝑛 ∈ N>0 leaves. Further, let 𝐶 be
a contact process with infection coefficient _ ∈ (0, 1) and infection
exponent 𝛼 ∈ R>−1 on𝐺 that starts with infected center and suscep-

tible leaves. Let 𝑇 be the survival time of 𝐶 . If _ ∈ o

(
𝑛−𝛼/(1+𝛼 )

)
and

_ ∈ ω
(
𝑛−1

)
, then E[𝑇 ] ≤ 2

Θ(𝛽 )
log(𝑛).

Proof. We first show that the process stays at fewer than 3_𝑛

infected leaves for most of the time even if the center is permanently

infected. We then lower bound the probability for the infection to

die out in a single center-healthy phase when it starts with at most

3_𝑛 infected leaves. Bounding the expected length of center-healthy

and center-infected phases concludes the proof.

Consider the modified process 𝐶′
that behaves like 𝐶 with the

exception that it ignores all of the healing triggers of the center. The

number of infected leaves in 𝐶′
dominates the number of infected

leaves in 𝐶 . While there are 𝐼 ′ infected leaves in 𝐶′
, leaves heal at

a rate of 𝐼 ′ and new leaves get infected at a rate of _(𝑛 − 𝐼 ′) ≤ _𝑛.

Therefore, while 𝐼 ′ ≥ 2_𝑛, leaves heal at least twice as fast as

new leaves get infected. That means that between 2_𝑛 and 3_𝑛

infected leaves, the discrete version of the process is dominated by

a gambler’s ruin instance with a biased coin with success probability

1/3. As this instance takes in expectation an exponential time in _𝑛

to reach its upper limit and only a linear time to drop back to its

lower bound, the time that 𝐶′
spends above 3_𝑛 infected leaves is

negligible compared to the entire survival time 𝑇 . As 𝐶′
dominates

𝐶 , the same holds for𝐶 . Therefore, in the following we assume that

the number of infected leaves stays below 3_𝑛 without reducing

the expected survival time too much with this assumption.

Consider a state with at most 3_𝑛 infected leaves and healthy

center. Let 𝐸 be the event that the infection dies out before infecting

the center. In a state with 𝐼 infected leaves, leaves heal at a rate of 𝐼

and the center gets infected at rate _𝐼1+𝛼 . In order for 𝐸 to happen,

all of the leaves have to heal before the center gets infected. It holds

for all 𝑥 ∈ [0, 1.59] that 𝑒−𝑥 ≤ 1−𝑥/2. Note that _ ∈ o

(
𝑛−𝛼/(1+𝛼 )

)
implies _(_𝑛)𝛼 ∈ o(1). Hence, for sufficiently large 𝑛, we can use

the previous inequality with 𝑥/2 = _(_𝑛)𝛼 . With that, we bound

the probability of 𝐸 by

Pr[𝐸] ≥
3_𝑛∏
𝑖=1

𝑖

𝑖 + _𝑖1+𝛼
=

3_𝑛∏
𝑖=1

1

1 + _𝑖𝛼

=

3_𝑛∏
𝑖=1

(
1 − _𝑖𝛼

1 + _𝑖𝛼

)
≥

3_𝑛∏
𝑖=1

(
1 − _𝑖𝛼

)
≥

3_𝑛∏
𝑖=1

𝑒−2_𝑖
𝛼

= 𝑒−2_
∑

3_𝑛
𝑖=1 𝑖𝛼

= 𝑒−Θ(_ (_𝑛)1+𝛼 )

= 𝑒−Θ(𝛽 ) . (3)

The second to last step uses the Euler-Maclaurin Formula (see

[13]).

Let 𝑆 be the number of center-healthy phases of 𝐶 that start

with at most 3_𝑛 infected leaves before the infection dies out. By

Equation (3), 𝑆 is dominated by a geometric random variable with

parameter 𝑒−Θ(𝛽 )
. Each center-infected phase lasts in expectation

for 1 time unit as it ends when the center heals which happens at

rate 1. By Theorem 3, each center-healthy phase lasts at most log(𝑛)
time units in expectation as it ends the latest when the last leaf heals

which is determined by the maximum of 𝑛 exponential random

variables with mean 1. To bound 𝑇 , we also need to consider the

time 𝑇 ′
spent above 3_𝑛 infected leaves, but as we argued before,

that time is much smaller than the rest of 𝑇 . We get

E[𝑇 ] ≤ E[𝑆] · (1 + log(𝑛)) +𝑇 ′

≤ 𝑒Θ(𝛽 ) · (1 + log(𝑛)) +𝑇 ′

≤ 2
Θ(𝛽 )

log(𝑛). □

For the lower bound, the idea is to look at the process while

the number of infected vertices is in between _𝑛/8 and _𝑛/4 and
splitting this range into

√︁
𝛽 many equally sized blocks. We then use

the center-healthy phases and center-infected phases as the steps

of our process. Now in a center-healthy phase, the probability of

decreasing the number of infected vertices by more than a block is

exponentially small in

√︁
𝛽 . In a center-healthy phase, the probability

of not increasing by a block before healing the center is sub constant.

We now build a gambler’s ruin game on the

√︁
𝛽 many blocks as

states by taking as a step a full cycle between two center infections.

The probability of decreasing bymore than one block is so small that

we ignore it. The probability of increasing by a block in total is much

higher than the probability of decreasing by one (much more than

twice as much). So our process dominates a biased gambler’s ruin

on

√︁
𝛽 many states with a biased coin of probability 2/3. Therefore,

the time it takes to die out is with high probability exponential in√︁
𝛽 .

We first bound the probability of healing too many vertices in a

center-healthy phase.

Lemma 12. Let 𝐺 be a star with 𝑛 ∈ N>0 leaves. Further, let 𝐶 be
a contact process with infection coefficient _ ∈ R>0 and infection
exponent 𝛼 ∈ R>−1 on 𝐺 . Let 𝑥,𝑦 ∈ N. Further, let 𝑝𝑥𝑦 be the
probability to drop in a center-healthy phase from 𝑥 infected vertices
to at most 𝑦. Let 𝑧 = 𝑦 if 𝛼 is positive and 𝑧 = 𝑥 otherwise. If _𝑧𝛼 ≤ 1,

then 𝑝𝑥𝑦 ≤ 𝑒−(𝑥−𝑦) _𝑧𝛼
2 .

Proof. While there are 𝐼 ∈ N infected leaves, leaves heal at a

rate of 𝐼 and the center gets infected at a rate of _𝐼1+𝛼 . Hence, in the

next step a leaf heals with a probability of
𝐼

𝐼+_𝐼 1+𝛼 = 1

1+_𝐼𝛼 . Note
that this probability is monotonically decreasing or increasing in

𝐼 when 𝛼 is positive or negative respectively. For our choice of 𝑧,

that means that in the interval between 𝑦 and 𝑥 , this probability is

maximized at 𝑧. Now in order to drop from 𝑥 infected leaves to 𝑦 in

a center-healthy phase, in each state in between a leaf has to heal.

Using _𝑧𝛼 ≤ 1, we bound that probability by

𝑝𝑥𝑦 =

𝑥∏
𝑖=𝑦+1

1

1 + _𝑖𝛼
≤

(
1

1 + _𝑧𝛼

)𝑥−𝑦
=

(
1 − _𝑧𝛼

1 + _𝑧𝛼

)𝑥−𝑦
≤

(
1 − _𝑧𝛼

2

)𝑥−𝑦
≤ 𝑒−(𝑥−𝑦) _𝑧𝛼

2 . □



Nowwe lower bound the probability of infecting enough vertices

in a center-infected phase.

Lemma 13. Let 𝐺 be a star with 𝑛 ∈ N>0 leaves and let 𝑧 ∈ R>0.
Further, let 𝐶 be a contact process with infection coefficient _ ∈ (0, 1)
and infection exponent 𝛼 ∈ R>−1 on 𝐺 that starts with infected
center and at most _𝑛/4 − _𝑛

4𝑧 infected leaves. Let _𝑛 ∈ ω(1). Then if
𝑧 ∈ o(_𝑛), the probability of the event 𝐸 that the number of infected
leaves increases by at least _𝑛

4𝑧 before the center heals is at least
𝑒−Θ(1/𝑧 ) .

Proof. We first show that it is likely that there are at least
_𝑛
𝑧

steps that do not heal the center and to then lower bound the

probability that enough of these steps infect new leaves.

While the center is infected, each leaf either heals at a rate of 1

or gets infected at a rate of _ depending on whether it is infected

or not. Thus, each leaf changes its state at a rate of at least _. The

center heals at rate one. That means that each step has a probability

of at most
1

_𝑛
to heal the center. Therefore, the number of steps 𝑆

before the center heals dominates a geometric random variable 𝑋

with parameter
1

_𝑛
. We get

Pr

[
𝑆 ≥ _𝑛

𝑧

]
≥ Pr

[
𝑋 ≥ _𝑛

𝑧

]
≥

(
1 − 1

_𝑛

) _𝑛
𝑧

≥ 𝑒−
1

_𝑛
_𝑛
𝑧 ≥ 𝑒−Θ( 1

𝑧 ) .

Now when there are at least
_𝑛
𝑧 steps before the center heals,

then if at least 5/8-th of those infect new vertices that implies 𝐸.

While there are at most _𝑛/4 infected leaves, leaves heal at a rate

of at most _𝑛/4 and new vertices get infected at a rate of at least

_(𝑛 − _𝑛/4) ≥ _𝑛/2. Hence, each step has a probability of at least

2/3 to infect a leaf. That means that the number of the steps out

of the first 𝑆 steps that infect a new leaf dominates a binomial

random variable 𝐵 ∼ Bin(𝑆, 2/3). We get using Chernoff bounds

(Theorem 4)

Pr

[
𝐸

���� 𝑆 ≥ _𝑛

𝑧

]
≥ Pr

[
𝐵 ≥ 5

8

𝑆

���� 𝑆 ≥ _𝑛

𝑧

]
≥ Pr

[
𝐵 ≥ (1 − 1

16

)E[𝐵]
���� 𝑆 ≥ _𝑛

𝑧

]
≥ 1 − 𝑒

− 1

2·162 ·
_𝑛
𝑧 .

This gives us a lower bound for the probability of 𝐸 of

Pr[𝐸] ≥ Pr

[
𝑆 ≥ _𝑛

𝑧

]
· Pr

[
𝐸

���� 𝑆 ≥ _𝑛

𝑧

]
≥ 𝑒−Θ( 1

𝑧 ) · (1 − 𝑒
− 1

2·162 ·
_𝑛
𝑧 )

≥ 𝑒−Θ( 1

𝑧 ) . □

Putting those results together gives us the following lower bound.

Theorem 14. Let 𝐺 be a star with 𝑛 ∈ N>0 leaves. Further, let 𝐶
be a contact process with infection coefficient _ ∈ (0, 1) and infection
exponent 𝛼 ∈ R>−1 on𝐺 that starts with infected center and at least

_𝑛/4 infected leaves. Let 𝑇 be the survival time of 𝐶 . If _(_𝑛)𝛼 ≤ 1

and 𝛽 ∈ ω(1), then a.a.s. it holds 𝑇 ≥ 2

Θ
(√

𝛽

)
.

Proof. We look at the process while the number of infected

vertices is in between _𝑛/8 and _𝑛/4 and split this interval into√︁
𝛽 many equally sized blocks. We then only consider in which

of those blocks the number of infected vertices is each time the

center gets infected. We show that the resulting process with high

probability dominates a gambler’s ruin instance with a biased coin

of probability 2/3 which gives us the desired bound.

We define the process 𝑋 that is coupled to𝐶 as follows. 𝑋 transi-

tions to different values at exactly the times at which the center gets

infected in 𝐶 . It takes as values the number of infected leaves in 𝐶

divided by
_𝑛

8

√
𝛽
rounded down to an integer. To bound the survival

time 𝑇 , we consider the process until one of two events happens:

Either 𝑋 decreases by more than 1 in a step or it reaches

√︁
𝛽 . We

only consider 𝐶 below _𝑛/4 infected vertices. Every time when a

center gets infected while more leaves are infected we ignore it.

In order for 𝑋 to reduce by more than 1 in a step, either the

center-infected phase or the center-healthy phase has to reduce

the number of infected leaves by at least
_𝑛

16

√
𝛽
. While below _𝑛/4

infected leaves, center-infected phases heal vertices at least twice

as fast as they heal leaves which makes it exponentially unlikely to

reduce the number of infected leaves by too much. For the center-

healthy phases, by Lemma 12 the probability to reduce the number

of infected leaves in a center-healthy phase by
_𝑛

16

√
𝛽
while the

number of infected leaves is between _𝑛/8 and _𝑛/4 is at most

𝑒
−Θ

(
_𝑛√
𝛽
·_ (_𝑛)𝛼

)
= 𝑒

−Θ
(√

𝛽

)
. That means that the time until that

event happens is at least geometrically distributed with probability

𝑒
−Θ

(√
𝛽

)
which means that it takes a.a.s. 𝑒

Θ
(√

𝛽

)
until then.

Now assume that 𝑋 never reduces by more than 1 in a step. By

Lemma 13, the probability that 𝑋 increases by at least 1 in a step is

at least 𝑒
−Θ

(
1/
√
𝛽

)
which is at least 2/3 for sufficiently large 𝑛 as

𝛽 ∈ ω(1). That means that 𝑋 dominates a gambler’s ruin instance

with a biased coin of probability 2/3 in the range between

√︁
𝛽 and

2

√︁
𝛽 . This gambler’s ruin instance has a.a.s. a time of 2

Θ
(√

𝛽

)
until

it reaches its lower bound.

Now the infection cannot die out before𝑋 reaches

√︁
𝛽 .We argued

that this does not happen before either 𝑋 reduces by more than

1 in a step or the gambler’s ruin instance reaches

√︁
𝛽 . As shown

before, both of those events take a.a.s. 2

Θ
(√

𝛽

)
time. As each phase

considered in 𝑋 needs the center to heal and then infect which

takes at least 1 time unit in expectation, this gives us the desired

bound for 𝑇 . □

We now show that starting with only the center infected, we

reach a state with _𝑛/4 infected leaves with high probability.

Lemma 15. Let 𝐺 be a star with 𝑛 ∈ N>0 leaves. Further, let 𝐶 be
a contact process with infection coefficient _ ∈ (0, 1) and infection
exponent 𝛼 ∈ R>−1 on 𝐺 that starts with infected center and sus-
ceptible leaves. If _(_𝑛)𝛼 ≤ 1 and 𝛽 ∈ ω

(
log(𝑛)4

)
, 𝐶 reaches a state

with _𝑛/4 infected leaves asymptotically almost surely.



Proof. We show that asymptotically almost surely we reach

a state from which we need a super-constant amount of center-

healthy phases for the infection to die out. We then show that each

center-infected phase has a constant probability to reach _𝑛/4 in-
fected leaves. That makes it very unlikely not to reach _𝑛/4 infected
leaves before the infection dies out.

By Lemma 13, the probability that the process reaches a state

with at least
_𝑛

𝛽
1

2(1+𝛼 )
infected leaves is at least 𝑒

−Θ
(
1/𝛽

1

2(1+𝛼 )
)
. Now

consider phases of the process that start and end with the center

infecting or the infection dying out. By Lemma 12 between
_𝑛

2𝛽
1

2(1+𝛼 )

and
_𝑛

𝛽
1

2(1+𝛼 )
infected leaves, the probability 𝑝 to heal more than

_𝑛

𝛽
1

2(1+𝛼 ) · 4
√
𝛽

is at most

𝑝 ≤ 𝑒

− _𝑛

𝛽

1

2(1+𝛼 ) · 4
√
𝛽

·_ ( _𝑛

2𝛽

1

(1+𝛼 )
)𝛼

≤ 𝑒

− 𝛽

𝛽

1+𝛼
2(1+𝛼 ) 4

√
𝛽 ≤ 𝑒−

4

√
𝛽 .

As 𝛽 ∈ ω
(
log(𝑛)4

)
, that means that asymptotically almost surely,

there are at least
4

√︁
𝛽 many of those phases before the infection dies

out. By Lemma 13, each of those phases has a constant probability

to infect _𝑛/4 many leaves. Therefore we reach a state with _𝑛/4
infected leaves before the infection dies out asymptotically almost

surely. □

Plugging in the values for _ and combining the previous lemmas

gives us the following bounds

Corollary 16. Let 𝐺 be a star with 𝑛 ∈ N>0 leaves. Further, let 𝐶
be a contact process with infection coefficient _ ∈ R>0 and infec-
tion exponent 𝛼 ∈ R>−1 on 𝐺 that starts with infected center and
susceptible leaves. Let 𝑇 be the survival time of 𝐶 .

(1) If _ ∈ ω
(
𝑛
−1/2− 𝛼

2(2+𝛼 )
log(𝑛)4/(2+𝛼 )

)
then 𝑇 is a.a.s. super-

polynomial in 𝑛.

(2) If _ ∈ O

(
𝑛
−1/2− 𝛼

2(2+𝛼 )
)
then E[𝑇 ] is at most logarithmic in 𝑛.

Proof. First consider _ ∈ ω
(
𝑛
−1/2− 𝛼

2(2+𝛼 )
log(𝑛)4/(2+𝛼 )

)
. We

show the survival time lower bound for _ ∈ o

(
𝑛−𝛼/(1+𝛼 )

)
and

_ ∈ o(1) as it also holds for all larger _ then because of the mono-

tonicity of the survival time. Note that such a _ always exists

as −1/2 − 𝛼
2(2+𝛼 ) < −𝛼/(1 + 𝛼) and −1/2 − 𝛼

2(2+𝛼 ) < 0 for all

𝛼 ∈ R \ [−2,−1]. Now _ ∈ o

(
𝑛−𝛼/(1+𝛼 )

)
and _ ∈ o(1) imply

both _ ≤ 1 and _(_𝑛)𝛼 ≤ 1 for sufficiently large 𝑛. The fact that

_ ∈ ω
(
𝑛
−1/2− 𝛼

2(2+𝛼 )
log(𝑛)4/(2+𝛼 )

)
implies that 𝛽 ∈ ω

(
log(𝑛)4

)
.

Hence, both Theorem 14 and Lemma 15 are applicable.

By Lemma 15, 𝐶 reaches a state with _𝑛/4 a.a.s and by The-

orem 14 it then survives a.a.s. for a time of at least 2

Θ
(√

𝛽

)
. As

𝛽 ∈ ω
(
log(𝑛)4

)
, this time is super-polynomial in 𝑛 which con-

cludes the proof for the first case.

Now consider _ ∈ O

(
𝑛
−1/2− 𝛼

2(2+𝛼 )
)
. We show the survival time

upper bound for _ ∈ Θ
(
𝑛
−1/2− 𝛼

2(2+𝛼 )
)
and it follows for smaller _

because of the linearity of the survival time. Note that for 𝛼 > −2

it holds −1/2 − 𝛼
2(2+𝛼 ) > −1 and hence _ ∈ ω

(
𝑛−1

)
. Also for

all 𝛼 ∈ R \ [−2,−1] it holds −1/2 − 𝛼
2(2+𝛼 ) < −𝛼/(1 + 𝛼) and

−1/2 − 𝛼
2(2+𝛼 ) < 0 which imply _ ∈ o

(
𝑛−𝛼/(1+𝛼 )

)
and _ < 1 for

sufficiently large 𝑛. Hence Lemma 11 is applicable which gives us

that E[𝑇 ] ≤ 2
Θ(𝛽 )

log(𝑛). Noting that for _ ∈ Θ
(
𝑛
−1/2− 𝛼

2(2+𝛼 )
)
,

𝛽 ∈ Θ(1), concludes the proof. □

5 CONCLUSION AND OUTLOOK
We conducted the first fully rigorous analysis of the SIS model

with non-linear infection rates in the number of infected neigh-

bors. Our results provide almost-tight lower and upper bounds on

the epidemic threshold for both star and clique graphs. Those are

important graph classes because they provide insights for the two

extremes of very little connectivity and full connectivity, respec-

tively. Moreover, since we consider the SIS process, survival time

lower bounds also carry over to graphs that contain those classes

as sub graphs. Hence, our lower bounds carry over to graphs with

very high degree vertices.

On cliques with sub-linear scaling, the process behaves very

similar to the normal SIS process and the threshold only shifts by a

poly-logarithmic factor. When the infection scales super-linearly,

the process completely changes as at the threshold, there exists

an equilibrium point that is repellent. That means that the process

dies out very fast asymptotically almost surely but if it reaches the

equilibrium, it survives so long that the overall expected survival

time is still exponential. The threshold in this setting is by a poly-

nomial factor smaller than in the sub-linear case. On stars, we show

that sub-linear and super-linear scaling do not differ that much and

the threshold changes by a polynomial factor that depends on the

scaling of the infection.

As a next step it is very interesting to see to which extend these

results carry over to larger graph classes or even real-world graphs.

A starting point for that could be running experiments on such

graphs. For further theoretical results, we believe that expansion is

the most promising property to analyze. That would give results

for a lot of graph classes like Erdős–Rényi graph. High expansion

results in a very good bound on the number of edges between

susceptible and infected vertices. In the standard SIS model, this

translates to a bound on the rate at which vertices get infected.

However, in our model, this is not immediate, as the rate at which

vertices get infected also depends on how their edges are distributed.

It makes a difference whether all susceptible vertices have roughly

the same number of infected neighbors or whether some of them

have many more than others. This makes our model harder to

analyze than the standard model.

Another direction would be to look at more advanced infection

models like the SIRS model, which adds temporary immunity to the

process, and adjust those in the same way to non-linear infection

rates. That gives a better understanding into under which condi-

tions the adjusted scaling makes a difference and how much of a

difference it is.

The adjusted infection function can model infections that scale

polynomially with the number of infected neighbors. It would be



interesting to also look into other functions like for example thresh-

old functions that stay at 0 until a specific threshold is reached and

only then start increasing.
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