
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 1

Run Time Analysis for Random Local Search
on Generalized Majority Functions

Carola Doerr and Martin S. Krejca

Abstract—Run time analysis of evolutionary algorithms recently
makes significant progress in linking algorithm performance to
algorithm parameters. However, settings that study the impact
of problem parameters are rare. The recently proposed W-model
provides a good framework for such analyses, generating pseudo-
Boolean optimization problems with tunable properties.

We initiate theoretical research of the W-model by studying
how one of its properties—neutrality—influences the run time
of random local search. Neutrality creates plateaus in the search
space by first performing a majority vote for subsets of the
solution candidate and then evaluating the smaller-dimensional
string via a low-level fitness function.

We prove upper bounds for the expected run time of random
local search on this MAJORITY problem for its entire parameter
spectrum. To this end, we provide a theorem, applicable to many
optimization algorithms, that links the run time of MAJORITY
with its symmetric version HASMAJORITY, where a sufficient
majority is needed to optimize the subset. We also introduce
a generalized version of classic drift theorems as well as a
generalized version of Wald’s equation, both of which we believe
to be of independent interest.

Index Terms—evolutionary computation; run time analysis;
plateau; neutrality; majority

I. INTRODUCTION

Randomized search heuristics, such as evolutionary algo-
rithms (EAs), have been applied with great success to real-
world optimization problems for which the user is faced with
limited information about the problem or limited resources to
solve it. This is an impressive feat, since such problems are
typically hard due to a combination of different challenging
features. In order to better understand the reasons behind
why EAs perform so well in such settings, theoretical results
analyze benchmark functions that encapsulate specific features
assumed to be also present in real-world problems. At present,
these functions are typically unrelated to each other, and
it is difficult to derive how they interact with one another.
This makes it hard to translate such theoretical results to
more realistic problems. An alternative approach for deriving
theoretical results is to consider a class of different functions
that can be combined in well-defined ways, allowing to provide
guarantees for more complex problems. The recently introduced
W-model [1] provides such function classes. Given a pseudo-
Boolean function f , the W-model proposes a sequence of four

C. Doerr is with Sorbonne Université, CNRS, LIP6, Paris, France
Martin S. Krejca is with LIX, CNRS, Ecole Polytechnique, Institut

Polytechnique de Paris, Palaiseau, France.
This work was financially supported by the Paris Île-de-France Region via

the DIM RFSI AlgoSelect project and via the European Union’s Horizon 2020
research and innovation program under the Marie Skłodowska-Curie grant
agreement No. 945298-ParisRegionFP.

1 1 . . . 1 1

𝑘

0 1 . . . 1

𝑘

. . . 1 . . .

𝑘

1 . . .

0 0 0 0

0 0
1 2 𝑛

𝑓 ′ :

𝑓 :

Fig. 1: Given a pseudo-Boolean function f defined over
bit strings of length n ∈ N>0 and a parameter k ∈ N>0,
neutrality creates a function f ′ defined over bit strings of
length nk, consisting of n blocks of length k each. When
evaluating f ′, first, for each of the k blocks, the majority of
its bits is determined. Then, f is evaluated on the resulting bit
string of length n of the majority outcomes.

independent steps that each change a different feature of f .
The degree by which each feature is changed is regulated by
parameters specific to each step. Thus, overall, the W-model
allows to create a diverse set of functions, all based on f , that
showcases various features in different intensities.

In this article, we initiate the run time analysis of the W-
model. To this end, we focus on one of its features called
neutrality. Given a function f defined over bit strings of
length n as well as an integer parameter k, neutrality substitutes
each bit of a length-n bit string by k bits. When evaluating
a new bit string of length nk, each of the subsequent blocks
of k bits is reduced to the majority among its bit values, and
the resulting bit string of length n is evaluated by f (see
Figure 1). Overall, neutrality introduces a two-stage process
into the optimization of f . On a high level, f is optimized.
On a low level, the correct majority value of each block is
determined. Assuming that the different blocks are independent,
analyzing the run times of the two stages separately and then
combining these results leads to a run time result for f .

Doerr et al. [2] analyzed the high-level approach of the
aforementioned two-stage process diligently for the class of
separable functions, where a function is separable if its value
is the sum of the values of n independent sub-functions. The
authors show that the run time of random local search (RLS)
and of the (1 + 1) EA is, in expectation, bounded from above
by the slowest expected run time of a sub-function times
ln(n). The logarithmic overhead is a result of the classical
coupon collector problem that accounts for optimizing all n
sub-functions correctly.

The second stage of the two-stage optimization process
sketched above concerns analyzing the run time of a majority

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 2

function. Since the value returned by such a function only
changes if the majority of the bits in its input changes, this
leads to analyzing the behavior of an algorithm in a landscape
of equal fitness, called a plateau. Changing the number of bits
to the optimal majority requires an EA to perform a random
walk on the plateau until finding the optimal majority, at which
point in time the block is optimized. We refer to this search
behavior as crossing the plateau.

In order to better understand the impact of the plateau size
on the optimization process, we extend the notion of majority
for the W-model. To this end, we introduce the function
HASMAJORITYr, defined over bit strings of length n ∈ N+

(where n is even1), having a parameter r ∈ [0, n/2] ∩ N
how strong the majority has to be in order to be counted.
HASMAJORITYr takes the two values 0 and 1. A bit string
has a HASMAJORITYr-value of 1 if its number of 0s or its
number of 1s is at least n/2+r, and it has a value of 0 otherwise.
We also introduce the asymmetric version MAJORITYr, where
a bit string only has a function value of 1 if it has at least
n/2 + r 1s (and it is 0 otherwise).

a) Our results: We analyze RLS, which iteratively con-
structs new solutions by flipping exactly one bit, chosen
uniformly at random, in its currently best solution. We bound
the expected run time of RLS, that is, the number of iterations
until an optimal solution is found for the first time, on
HASMAJORITY and MAJORITY from above for the entire
range of r. Using the results by Doerr et al. [2], this implies run
time bounds for ONEMAX with added neutrality (Corollary 13).
We first analyze the symmetric case of HASMAJORITY (similar
to the result by Bian et al. [3]) and show with Theorem 6 the
complex dependency of the run time of RLS on the parameter r,
resulting in multiple different regimes (Figure 2). For values
of r constant in n, the run time is constant, and it grows
quadratically in r until r = O(

√
n). For r = ω(

√
n) ∩ o(n),

the expected run time is mainly given by an exponential in
r2/n. For the remaining regime of r, the expected run time
is at least exponential. The behavior for MAJORITY is similar,
as Theorem 7 shows. The main difference is an overhead of
n ln(r), which is caused by the larger size of the plateau. For
the special case r = n/2− 1, the MAJORITY function reduces
to the well-known NEEDLE function, for which the run time
of RLS, the (1+1) EA (EA), and a number of generalizations
are very well understood [4], [5].

Our result for MAJORITY is based on a restart argument
applied to HASMAJORITY. Since such restart arguments are
not specific to the context of EAs or even optimization, we
analyze the situation in a general setting (Theorem 8). Our
result applies to any assortment of interleaved stopping times.
We prove Theorem 8 via a generalized version of Wald’s
equation (Theorem 5), which we could not find in this detail and
generality in the literature. We prove the generalized version
of Wald’s equation via a new general basic drift theorem
(Theorem 4), which relates the expected progress of a random
process more explicitly to the values at the start and at the end
of the process than traditional drift theorems. As all of these

1Note that, in contrast to Figure 1, we denote the dimension of
HASMAJORITYr (defined over a block) now by n and not anymore by k.

r

H
a
sM

a
jo

r
it
y
r

n/2− s n/2

O(r2)

O(
√
n)

neO(r2/n)

o(n)

(s+ 1)eO
(
n2/(s+1)

)

o(n)

N
e
e
d
l
e

Fig. 2: The dependency of the expected run time of RLS on
HASMAJORITYr with respect to the majority parameter r as
proven in Theorem 6. The gray boxes denote regions in which
the asymptotics switch (sharply) from O(

√
n) to ω(

√
n) and

from o(n) to Θ(n). The value s ∈ N is any value such that
there is a c ∈ Θ(1) with c < 1/2 such that s ≤ cn. The dashed
line at n/2 denotes the run time on NEEDLE.

theorems relate to scenarios commonly found in the analysis
of EAs, we are confident that they are of independent interest.

With Corollary 9, we explicitly connect the expected run
times of HASMAJORITY and MAJORITY for a large class
of EAs, providing a general framework for our setting. This
result comes with multiple conditions, due to its generality.
However, we also provide additional statements (Lemmas 10
and 11) that show that many EAs satisfy the conditions of
Corollary 9. In order to apply Corollary 9 to any EA we cover
with this framework, it then remains to provide bounds on the
expected run time of an EA on HASMAJORITY. We note that
this framework is also useful in the setting of deletion-robust
optimization, as studied by Bian et al. [3], since MAJORITY
occurs as a subproblem there.

We complement our theoretical analyses with empirical
investigations of the RLS variant RLSℓ, which flips exactly
ℓ ∈ [1, n] ∩N bits (chosen uniformly among all ℓ-cardinality
subsets), on MAJORITY. For r = ⌊√n⌋, we consider the
empirical run time for different values of ℓ, and we find that
a value around n/2 leads to the lowest run time (Figure 5),
which is by orders of magnitude lower than the empirical run
time of conventional RLS. Additional results, which look into
the trajectory of the best solution so far over time, reveal that
while instantiations of RLSℓ for different values of ℓ have
qualitatively the same random-walk behavior, the larger step
size for larger values of ℓ makes it easier to find a global
optimum (Figure 6). However, we note that there is a limit to
how many bits to flip during a single iteration makes sense,
as, for example, inverting the bit string in each iteration makes
RLSn alternate between just two solutions. Nonetheless, a high
mutation rate in the order of n seems beneficial for our setting.

b) Related work: Analyzing the performance of EAs on
plateaus by theoretical means is a well-established concept.
The arguably most studied benchmark function with a plateau
is JUMP, existing in different variants, many of which were

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 3

proposed recently [5], [6], [7], [8]. However, the problem posed
by the plateau in JUMP is typically different than from crossing
a plateau, as we discuss in the following. In its classical variant,
JUMP consists of a slope toward the unique global optimum,
which itself is surrounded by solutions with worse function
values (called the valley). The plateau is the set of points with
second-best function value. For JUMP, the behavior of an EA
on the plateau is typically not that important, but rather that
the valley is overcome, oftentimes referred to as jumping over
the valley. This is in contrast to crossing a plateau, where
the behavior of an EA on the plateau is very important. The
main importance of jumping remains true for JUMP when
shifting the global optimum [7] and/or increasing the number of
global optima to jump to [6], [8]. However, the picture changes
when considering EAs that apply crossover, that is, combining
different solutions when creating new ones. Then, the random
walk on the plateau becomes relevant for the expected run time
on JUMP [9], [10], [11]. Nonetheless, in such a setting, it is
primarily important to create diverse solutions on the plateau,
in order to leave it via crossover, instead of crossing the plateau
(by finding a better solution next to it).

One variant of JUMP, recently introduced by Antipov and
Doerr [5], which removes the valley and increases the plateau,
actually requires dealing with crossing the plateau. The authors
analyze the (1 + 1) EA on this variant and determine an exact
run time bound (up to lower-order terms) via arguments on
Markov chains. In contrast to our setting, where the set of
global optima is typically very large (in the order of

(
n

n/2+r

)
),

their function has a unique global optimum.
In another recent paper, Bian et al. [3] analyzed the (1 +

1) EA on MAJORITY as a side result when considering deletion-
robust linear optimization. Using our notion of MAJORITY,
their result holds for values of r = O

(√
n log n

)
, that is, not

for the entire range of r up to n/2. Further, their result does
not seem to be tight, as for values of r = Θ(1), their bound
is O

(
n2
)
, whereas we show a constant bound, albeit for RLS.

c) Outline: In Section II, we introduce our notation,
formalize our problem, and provide the mathematical tools
we use for our analysis. Especially, we prove Theorems 4
and 5, which we believe are of independent interest. In
Section III, we analyze RLS on HASMAJORITY (Theorem 6)
and MAJORITY (Theorem 7). Further, we provide the theorem
for decomposing stopping times (Theorem 8), show how
it can be used to relate the expected run times of EAs
on HASMAJORITY and MAJORITY (Corollary 9), and put
everything together to prove our main result, the run time
bound for RLS optimizing ONEMAX with added neutrality
from the W-model (Corollary 13). Section IV describes our
empirical results. Last, we conclude with Section V and suggest
ideas for future work.

II. PRELIMINARIES

Let N denote the set of natural numbers, including 0.
For all m,n ∈ N, let [m..n] := [m,n] ∩ N, and let
[m] := [1..m]. Further, let R denote the set of reals, and
let R = R ∪ {−∞,∞}. For the sake of conciser notations,
we define that ∞ · 0 = 0 = −∞ · 0. We say that a random

Algorithm 1: Random local search (RLS) with initial-
ization distribution D, maximizing f : {0, 1}n → R.

1 x(0) ∼ D;
2 for t ∈ N do
3 y ← flip exactly one bit in x(t), chosen uniformly

at random;
4 if f(y) ≥ f

(
x(t)

)
then x(t+1) ← y;

5 else x(t+1) ← x(t);

variable X over R is integrable if and only if E[|X|] < ∞.
Note that integrability of X implies that X is almost surely
finite. We extend this concept to random processes and say
that (Xt)t∈N is integrable if and only if for each t ∈ N, it
holds that Xt is integrable.

Let n ∈ N>0. We call each x ∈ {0, 1}n an individual and
its components bits. Further, for all b ∈ {0, 1}, let |x|b :=
|{i ∈ [n] | xi = b}|. We call any real-valued function over
individuals a fitness function.

Let n ∈ N>0 be even, and let r ∈ [0..n/2]. We consider
the two fitness functions HASMAJORITYr and MAJORITYr,
where, for all x ∈ {0, 1}n, it holds that

HASMAJORITYr(x) = 1(max{|x|0, |x|1} ≥ n/2 + r) and
MAJORITYr(x) = 1(|x|1 ≥ n/2 + r),

where 1(E) is the indicator function that evaluates to 1 if event
E occurs and that evaluates to 0 otherwise. When we drop the
index r and only mention HASMAJORITY or MAJORITY, we
mean that the respective statement holds for all r ∈ [0..n/2].

We note that HASMAJORITY and MAJORITY are special
cases of the functions mentioned in Section I with the
target string z ∈ {0, 1}n being the all-1s string. Since we
only consider algorithms that treat 0s and 1s symmetrically,
analyzing HASMAJORITY and MAJORITY as defined above
covers without loss of generality the more general function
class discussed in Section I.

We consider evolutionary algorithms (EAs) to be (possibly
random) sequences (x(t))t∈N over {0, 1}n. Typically, the
sequence of an EA A depends (among others) on a fitness
function f , and is not well-defined otherwise. We refer to
well-defined sequences by saying that A optimizes f .

A specific EA that we are interested in and that optimizes a
fitness function is random local search (RLS, Algorithm 1).
Note that for RLS to optimize f and the respective sequence to
be well-defined, in addition to f , an initialization distribution
needs to be specified. Typically, the uniform distribution is
chosen. However, since we require for some of our results
that RLS starts at a specific position in the search space, we
consider general initialization distributions.

Given an EA (x(t))t∈N optimizing a fitness function f , we
call inf{t ∈ N | f

(
x(t)

)
= max rng(f)} the run time of the

algorithm on f . Note that the set that the infimum is taken
over may be empty. To this end, we define inf ∅ =∞. Further
note that the run time can be a random variable. We refer to
the expectation of the run time as the expected run time.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 4

A. Tools

Besides basic tools from probability theory, we apply drift
analysis [12]. Most prominently, we use the additive-drift
theorem, originally introduced by He and Yao [13], as well
as the multiplicative-drift theorem, originally introduced by
Doerr et al. [14]. We state the theorems in a general fashion,
as provided by Kötzing and Krejca [15], removing some
unnecessary assumptions.

Theorem 1 (Additive drift, upper bound [15, Theorem 7]).
Let (Xt)t∈N be an integrable random processes over R≥0,
adapted to a filtration (Ft)t∈N, and let T be a stopping time
with respect to F . Assume that there is a δ ∈ R>0 such that,
for all t ∈ N, it holds that

(
Xt − E[Xt+1 | Ft]

)
· 1(t < T) ≥ δ · 1(t < T). (1)

Then E[T | F0] ≤ (X0 − E[XT | F0])/δ.

Theorem 2 (Multiplicative drift, upper bound [15, Corol-
lary 16]). Let (Xt)t∈N be an integrable random processes
over R, adapted to a filtration (Ft)t∈N, with X0 ≥ 1, and let
T = inf{t ∈ N | Xt < 1}. Assume that there is a δ ∈ R>0

such that, for all t ∈ N, it holds that
(
Xt − E[Xt+1 | Ft]

)
· 1(t < T) ≥ δ ·Xt · 1(t < T). (2)

Then E[T | F0] ≤
(
1 + ln(X0)

)
/δ.

In addition to these theorems, we apply a general version
of Wald’s equation (Theorem 5), which we prove using a new
general drift theorem (Theorem 4), as we could not find a
statement this general in the literature. We prove Theorem 4
by using the optional-stopping theorem (Theorem 3), similar
to how Kötzing and Krejca [15] derived their results.

Theorem 3 (Optional stopping [16, Theorems 4.8.4
and 4.8.5], [17, Slide 12]). Let S be a stopping time with
respect to a filtration (Fi)i∈N, and let (Xi)i∈N be a random
process over R, adapted to F .

a) If X is a non-negative supermartingale, then
E[XS | F0] ≤ X0.

b) If E[S] < ∞ and if X is a submartingale such that
there is a c ∈ R such that, for all i ∈ N, it holds that
E[|Xi −Xi+1| | Fi] ·1(i < S) ≤ c, then E[XS | F0] ≥
X0.

The basic-drift theorem below is a generalization of the
most commonly used drift theorems. However, in contrast to
those, it relates the accumulated drift to the overall change in
potential instead of explicitly solving for the first-hitting time.
It is thus more akin to the (deterministic) potential method [18,
Chapter 17.3], extending it to random variables. This allows
to estimate the accumulated cost of operations rather than only
the amount of operations.

Theorem 4 (Basic drift). Let S be a stopping time with
respect to a filtration (Fi)i∈N, and let (Xi)i∈N and (δi)i∈N
be random processes over R such that (Xi ·1(i ≤ S))i∈N and
(δi · 1(i < S))i∈N are integrable and adapted to F .

a) Assume that (Xi · 1(i ≤ S))i∈N and (δi · 1(i < S))i∈N
are non-negative and that for all i ∈ N, it holds that
(
Xi−E

[
Xi+1

∣∣ Fi

])
·1(i < S) ≥ δi·1(i < S). (DC-u)

Then

E

[∑
i∈[S]

δi−1

∣∣∣∣ F0

]
≤ X0 − E

[
XS

∣∣ F0

]
. (3)

b) Assume that E[S] <∞, and that there is a c ∈ R such
that for all i ∈ N, it holds that E[|Xi −Xi+1 − δi| | Fi]·
1(i < S) ≤ c, and that for all i ∈ N, it holds that
(
Xi−E

[
Xi+1

∣∣ Fi

])
·1(i < S) ≤ δi ·1(i < S). (DC-l)

Then

E

[∑
i∈[S]

δi−1

∣∣∣∣ F0

]
≥ X0 − E

[
XS

∣∣ F0

]
.

Proof. Let (Zi)i∈N be such that for all i ∈ N, it holds that
Zi = Xi +

∑
k∈[i] δk−1. We aim to apply Theorem 3 to the

stopped process (Yi)i∈N of Z, and to S and F . To this end,
for all i ∈ N, let

Yi = Zi · 1(i ≤ S) + ZS · 1(i > S).

Note that, all by assumption, S is a stopping time with respect
to F , and Y is integrable and adapted to F , due to (Xi ·
1(i ≤ S))i∈N and (δi · 1(i < S))i∈N having these properties.

We are left to show that Y is a super- or a submartingale
with additional properties. To this end, we first consider the
expected change of Y . Let i ∈ N. Noting that S is integer,
observe that

Yi − E[Yi+1 | Fi]

= Zi ·
=1(i=S)+1(i<S)︷ ︸︸ ︷
1(i ≤ S)+ZS · 1(i > S)

− E
[
Zi+1 ·

=1(i<S)︷ ︸︸ ︷
1(i+ 1 ≤ S)+ZS · 1(i+ 1 > S)

∣∣ Fi

]

=
(
Zi − E[Zi+1 | Fi]

)
· 1(i < S) + Zi · 1(i = S)

+ ZS · E
[

=−1(i=S)︷ ︸︸ ︷
1(i > S)− 1(i+ 1 > S)

∣∣ Fi

]

=
(
Zi − E[Zi+1 | Fi]

)
· 1(i < S)

=
(
Xi − E[Xi+1 | Fi]− δi

)
· 1(i < S). (4)

Whether Y is a super- or a submartingale is determined by the
sign of equation (4), noting that 1(i < S) ≥ 0. To this end,
we consider the two cases of Theorem 4 separately.

Case a). By inequality (DC-u), it follows that equation (4) is
greater or equal to zero. Thus, Y is a supermartingale. Further,
due to the assumptions of Theorem 4 case a), Y is non-negative.
Applying Theorem 3 case a), by the linearity of expectation
and noting that S ≥ 0, we get

E[XS | F0] + E

[∑
i∈[S]

δi−1

∣∣∣∣ F0

]
= E[YS | F0] (5)

≤ Y0 = X0.

Subtracting by E[XS | F0] proves this case.
Case b). Similar to the previous case, by inequality (DC-l),

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 5

it follows that equation (4) is less or equal to zero. Thus, Y
is a submartingale. By the assumptions of Theorem 4 case b),
it follows that Y has uniformly bounded expected differences.
Recalling that, by assumption, E[S] <∞ in this case and by
applying Theorem 3 case b), the same result as in equation (5)
follows but with the inequality sign flipped, concluding this
case and thus the proof.

An application of Theorem 4 is the generalization of Wald’s
equation below. In contrast to more common statements of
Wald’s equation, this version neither assumes that the individual
summands follow the same law nor that they are independent.
In the context of run time analysis, it is useful when aiming to
split the run time into phases. Instead of having to calculate
the entire expected run time all at once, the theorem states that
it is sufficient to calculate the expected run time of each phase
(and then add them). The latter is typically far easier, especially
since the theorem allows to choose a filtration. This result was
recently applied in the analysis of infection processes, where
it was used in order to translate statements about discrete time
to continuous time [19].

Theorem 5 (Generalized Wald’s equation). Let S be an
integrable stopping time with respect to a filtration (Fi)i∈N.
Further, let (Xi)i∈N>0

be a random process over R≥0

such that
∑

i∈[S] Xi is integrable and such that there
exists a c ∈ R such that for all i ∈ N, it holds
that E

[∣∣Xi+1 − E[Xi+1 | Fi]
∣∣ ∣∣ Fi

]
· 1(i < S) ≤ c. Then

E
[∑

i∈[S] Xi

∣∣∣ F0

]
= E

[∑
i∈[S] E[Xi | Fi−1]

∣∣∣ F0

]
.

Checking that
∑

i∈[S] Xi is integrable can prove challenging
in certain cases. However, if this sum can be expressed as a
single stopping time, Theorem 4 case a) might be used to show
that the sum is integrable.

Proof of Theorem 5. Let (Yi)i∈N be such that for all i ∈ N, it
holds that Yi = E

[∑S
j=i+1 Xj

∣∣∣ Fi

]
. Further, let (δi)i∈N be

such that for all i ∈ N, it holds that δi = E[Xi+1 | Fi]. Note
that (Yi ·1(i ≤ S))i∈N and (δi ·1(i < S))i∈N are adapted to F
due to the conditional expectation and that they are integrable
since

∑
i∈[S] Xi is integrable and X is non-negative.

We aim to apply both cases of Theorem 4 to Y and δ with S
and F . To this end, we note that for all i ∈ N, by the tower
rule and the linearity of the conditional expectation, we have
(
Yi − E[Yi+1 | Fi]

)
· 1(i < S)

=

(
E

[∑S

j=i+1
Xj

∣∣∣∣ Fi

]

− E

[
E

[∑S

j=i+2
Xj

∣∣∣∣ Fi+1

] ∣∣∣∣ Fi

])
· 1(i < S)

=

(
E

[∑S

j=i+1
Xj

∣∣∣∣ Fi

]

− E

[∑S

j=i+2
Xj

∣∣∣∣ Fi

])
· 1(i < S)

= E[Xi+1 | Fi] · 1(i < S) = δi · 1(i < S) ,

which shows that inequalities (DC-l) and (DC-u) are satisfied.
We now apply both cases of Theorem 4 separately in order to
show both directions of the equality of Theorem 5.

Case 1: Note that (Yi · 1(i ≤ S))i∈N is non-negative
because X is. By Theorem 4 case a),

E

[∑
i∈[S]

E[Xi | Fi−1]

∣∣∣∣ F0

]
= E

[∑
i∈[S]

δi−1

∣∣∣∣ F0

]

≤ Y0 − E
[
YS

∣∣ F0

]
= E

[∑
i∈[S]

Xi

∣∣∣∣ F0

]
.

Case 2: By assumption, S is integrable, and there is a c ∈ R
such that for all i ∈ N, it holds that

E[|Yi − Yi+1 − δi| | Fi] · 1(i < S)

= E

[∣∣∣∣
∑S

j=i+1
Xj −

∑S

j=i+2
Xj − E[Xi+1 | Fi]

∣∣∣∣
∣∣∣∣ Fi

]

· 1(i < S)

= E
[∣∣Xi+1 − E[Xi+1 | Fi]

∣∣ ∣∣ Fi

]
· 1(i < S) ≤ c.

By Theorem 4 case b) and the same calculations as at the
end of the previous case but with an inverted inequality sign,
we get a matching lower bound and conclude the proof.

III. THEORETICAL RESULTS FOR RLS

We analyze the expected run time of RLS on HASMAJORITY
(Theorem 6) and on MAJORITY (Theorem 7). We exploit the
similarities between both functions, deriving the result for
MAJORITY based on the result for HASMAJORITY. In fact,
we prove a very general statement (Corollary 9), which shows
how to derive the expected run time for a great range of
algorithms optimizing MAJORITY, given their expected run
time on HASMAJORITY and some additional, related expected
run times. This result is a special case of an even more general
theorem (Theorem 8), which decomposes an expected stopping
time into smaller intervals, which are easier to analyze. Thus,
overall, deriving a good bound on the expected run time on
HASMAJORITY is essential. Last, we show how our result on
MAJORITY implies run time bounds for the classical ONEMAX
when transformed by neutrality of the W-model (Corollary 13).

When RLS optimizes HASMAJORITY, before finding an
optimal solution for the first time, it performs a random walk,
as it always replaces the solution from the previous iteration
with the new solution. This random walk is biased toward
solutions with as many 0s as 1s (the center), since, in order to
create a new solution, RLS flips one bit uniformly at random
from the solution from the previous iteration and any imbalance
in the number of 0s and 1s favors flipping those bits that occur
in a higher quantity. Thus, the number of possible ways of
an individual to get to the center compared to those toward
an individual with all 1s or all 0s grows exponentially in the
distance to the center. Since the optima of HASMAJORITY
are off-center, this results in the expected run time growing
exponentially with respect to a basis that we call λ ∈ R>1,
which is not necessarily bounded away from 1 by a constant.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 6

Let n ∈ N>0 be even, and let r ∈ [n/2]. The expected run
time of RLS on HASMAJORITYr majorly depends on

λ =
3r
(
n+ 2(r − 1)

)

3r
(
n− 2(r − 1)

)
− 2n

= 1 +
2
(
n+ 6r(r − 1)

)

3r
(
n− 2(r − 1)

)
− 2n

,

(6)

which is greater than 1. We discuss this term and its impact on
the expected run time of RLS after stating our main results.

Theorem 6. Let n ∈ N>0 be even, r ∈ [n/2], let λ be as in
equation (6), and let h : {0, 1}n → R≥0 with

x 7→
{
λr − λmax{|x|0,|x|1}−n/2 : max{|x|0, |x|1} < n

2 + r,

0 : otherwise.

Let x(0) denote the (possibly random) initial individual of RLS.
The expected run time of RLS on HASMAJORITYr, conditional
on x(0), is at most 3r · h(x(0))/(λ− 1).

Theorem 7. Let n ∈ N>0 be even, r ∈ [n/2], and let λ be as
in equation (6). For sufficiently large n, the expected run time
of RLS on MAJORITYr with uniform initialization is at most
6r · (λr − 1)/(λ− 1) + n

(
1 + ln(r)

)
/2.

Theorem 6 shows that there is a drastic change in the
expected run time of RLS on HASMAJORITY with respect
to r. In order to see this, recall equation (6) and note that
h(x(0)) ≤ λr. If r = Θ(1), then λ = 1 + Θ(1), and the
expected run time is constant. If r = ω(1) ∩ O(

√
n), then

λ = 1 + O(1/r), and the expected run time is O
(
r2
)
, as

λr ≤ eO(1). Especially, if r = O(
√
n), then the expected

run time is at most linear in n. If r = ω(
√
n) ∩ o(n), then

λ = 1 + O(r/n), and the expected run time is neO(r
2/n),

which is superlinear in n and even superpolynomial in n
for r = ω

(√
n log n

)
. Last, if there is a c = Θ(1) with

c < 1/2 and an s ∈ N with s ≤ cn such that r = n/2 − s,
then λ = 1 + O

(
n/(s+ 1)

)
, and the expected run time is

(s+ 1)eO(n
2/(s+1)), which is at least exponential in n.

This drastic increase in the expected run time carries over
to Theorem 7, whose bound we compare to an empirically
determined one, as depicted in Figure 3 for n = 10 000.
Due to the steep growth of the run time in r, we only get
empirical results up to r = 170 = 1.7

√
n. Nonetheless, the

empirical expected run time suggests an exponential growth
in r. However, the growth does not seem to be as drastic as the
theoretical upper bound of Theorem 7 suggests, which is larger
than the empirical average by more than a constant factor.

A. Run Time Results on HASMAJORITY

In our proof of Theorem 6, we aim to apply the additive-
drift theorem (Theorem 1). To this end, letting x denote the
currently best individual of RLS in each iteration, we consider
the distance n/2+ r−max{|x|0, |x|1} of the majority of bits
of x to the optimum value n/2+ r of HASMAJORITYr. Since
it becomes less likely to decrease this distance the smaller
it is, we choose a potential function that scales the space
exponentially, counteracting this decline in probability.

20 21 22 23 24 25 26 27 28

100

101

102

103

104

105

106

107

108

109

r

n
u
m
b
e
r
o
f
it
e
ra

ti
o
n
s

Theorem 7
Empirical Average RLS
Empirical Average RLS2n/3

Fig. 3: The theoretical (top, orange curve) and empirical
expected run time of RLS (center, blue curve with ×) and
RLS2n/3 (bottom, purple curve with ◦) on MAJORITYr for
n = 10 000 and r ∈ {2i | i ∈ {0} ∪ [7]} ∪ {150, 170}. The
theoretical run time is the upper bound from Theorem 7. For
the empirical run times, for each value of r stated above, the
average of 1000 independent runs of RLS and of RLS2n/3

with uniform initialization is depicted. For more information
regarding RLS2n/3, please see Section IV-A; the value 2n/3
is near-optimal, as shown in Figure 5, resulting in a drastically
improved run time.

Proof of Theorem 6. For all t ∈ N, let Xt =
max{|x(t)|0, |x(t)|1}, and let (Ft)t∈N denote the natural
filtration of X . In addition, let g : [n/2..n]→ R≥0 with

m 7→
{
λr − λm−n/2 : m < n/2 + r ,

0 : otherwise.

Last, let T = inf{t ∈ N | g(Xt) = 0}, and note that T is a
stopping time with respect to F and that it denotes the first point
in time such that RLS found an optimum of HASMAJORITYr,
as XT ≥ n/2 + r. We show that g(X) satisfies inequality (1)
with F and T . Theorem 1 then yields the desired bound.

Let t ∈ N, and assume that t < T , as inequality (1) is
trivially satisfied otherwise. Note that Xt increases by 1 if a
bit that is not the strict majority in x(t) is chosen to be flipped,
which happens with probability (n−Xt)/n if Xt > n/2, and
with probability 1 if Xt = n/2. With the remaining probability,
Xt decreases by 1.

For Xt = n/2, we get

g(Xt)− E[g(Xt+1) | Ft] = λr − 1− (λr − λ) = λ− 1.
(7)

For the remaining case Xt ∈ [n/2 + 1..n/2 + r − 1], we get

g(Xt)− E[g(Xt+1) | Ft]

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 7

= λr − λXt−n/2 −
(
λr − λXt−1−n/2

)Xt

n

−
(
λr − λXt+1−n/2

)n−Xt

n

= λXt−n/2
(1

λ
· Xt

n
+ λ · n−Xt

n︸ ︷︷ ︸
=:A

−1
)
. (8)

Let b = 2(r − 1), a = 3r(n − b)(n + b)/
(
3r(n − b) − 2n

)
,

and note that λ = a/(n − b). Since λ is greater than 1, it
follows that A is decreasing in Xt and thus minimal for Xt =
n/2 + r − 1 = (n + b)/2. Substituting λ = a/(n − b), this
yields

A ≥ n− b

a
· n+ b

2n
+

a

n− b
· n− b

2n
(9)

=
(n− b)(n+ b) + a2

2an
=

n2 − b2

2an︸ ︷︷ ︸
=:B

+
a

2n
.

Noting that a = 3r(n2 − b2)/
(
3r(n− b)− 2n

)
, we get

B =
3r(n− b)− 2n

2n · 3r =
n− b

2n
− 1

3r
.

Substituting this back into inequality (9) yields

A ≥ a+ n− b

2n︸ ︷︷ ︸
=:C

− 1

3r
. (10)

Again, by substituting a = 3r(n− b)(n+ b)/(3r(n− b)− 2n),
we get

C =
1

2n

(
3r(n− b)(n+ b)

3r(n− b)− 2n
+

(n− b)
(
3r(n− b)− 2n

)

3r(n− b)− 2n

)

=
n− b

2n
· 3r(n+ b+ n− b)− 2n

3r(n− b)− 2n
=

3r(n− b)− (n− b)

3r(n− b)− 2n

= 1 +
n+ b

3r(n− b)− 2n
= 1 +

1

3r
· 3r(n+ b)

3r(n− b)− 2n

= 1 +
a

n− b
· 1
3r

.

Substituting this back into inequality (10) and recalling that
λ = a/(n− b) yields A ≥ 1 + (λ− 1)/(3r). Substituting this
bound into equation (8) ultimately yields

g(Xt)− E[g(Xt+1) | Ft] ≥ λXt−n/2 · (λ− 1) · 1
3r

. (11)

Applying Theorem 1 with δ = (λ − 1)/(3r) being
the minimum of inequalities (7) and (11) and noting that
E[g(XT) | F0] = 0 concludes the proof.

B. Run Time Results on MAJORITY

We show how to derive a run time bound of an EA A for
MAJORITY based on a run time bound for HASMAJORITY
(Corollary 9). The argument is based on the observation that
whenever A finds an optimum of HASMAJORITY, this solution
can also be an optimum of MAJORITY. If this is not the case,
that is, if the current solution has a majority of 0s, we wait
until A gets back to a solution of at least n/2 1s. Then, we wait
again until it finds an optimum of HASMAJORITY, repeating
this argument until A finds an optimum of MAJORITY.

0 𝑡

|𝒙 (𝑡) |1

𝒏/2

𝑛/2 + 𝑟

𝑛/2 − 𝑟

𝑂0 𝑅0 𝑂1 𝑅1 𝑂2 = 𝑅2

Fig. 4: A visualization of the definitions of the random
variables (Oi)i∈N and (Ri)i∈N as defined in equation (12),
needed for Corollary 9. The red wavy line depicts an example
of how the number of 1s in the best solution of an EA (given
by the sequence (x(t))t∈N) changes over time (t). For the sake
of readability, we depict this line as continuous although it is
discrete and can have jumps. The stopping times (Oi)i∈N and
(Ri)i∈N always alternate, by definition.

More formally, we define the following two interleaving
sequences of stopping times, which we also visualize in
Figure 4:

O0 = inf{t ∈ N | HASMAJORITYr(x
(t)) = 1} , (12)

as well as, for all i ∈ N,

Ri = inf{t ∈ N | t ≥ Oi ∧ |x(t)|1 ≥ n/2} , and

Oi+1 = inf{t ∈ N | t > Ri ∧ HASMAJORITYr(x
(t)) = 1}.

The sequence O denotes the points in time (interleaved by R)
where A can have found an optimum of MAJORITY, as it found
an optimum of HASMAJORITY. In the context of proving a
run time bound for MAJORITY, O denotes the points in time
from where we wait until A returns to an individual with at
least as many 1s as 0s in order to repeat our argument. The
sequence R denotes those points in time where we repeat our
argument. Theorem 5 formalizes this argument and yields a
bound on the overall expected run time on MAJORITY.

Since the idea of this argument holds for any interleaved
assortment of stopping times, we first prove a more general
theorem (Theorem 8) before we state the result specific to our
setting (Corollary 9). This theorem generalizes the idea of the
stopping times from equation (12), but it does not specify their
interpretation.

Theorem 8 (Decomposition argument). Let (Fi)i∈N be a
filtration, let S be a stopping time with respect to F , and let
(Oi)i∈N and (Ri)i∈N be stopping times with respect to F such
that for all i ∈ N, it holds that Oi ≤ Ri < Oi+1. Moreover,
let U = sup{i ∈ N | Oi ≤ S}, and assume that there is a
p0 ∈ (0, 1] such that Pr[O0 = S] = p0.

Assume that
∑

i∈[U](Oi − Oi−1) and U are integrable as
well as that there is a c ∈ R such that for all i ∈ N>0,
it holds that E

[
|Oi − E

[
Oi

∣∣ FRi−1

]
|
∣∣ FRi−1

]
≤ c and

E
[
|Ri−1 − E

[
Ri−1

∣∣ FOi−1

]
|
∣∣ FOi−1

]
≤ c.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 8

Last, let L denote the event that U ≥ 1. Then

E[S] = E[O0] + (1− p0)E
[∑

i∈[U]

(
E
[
Oi −Ri−1

∣∣ FRi−1

]

+ E
[
Ri−1 −Oi−1

∣∣ FOi−1

]) ∣∣∣L
]
,

where we interpret the second summand to be 0 if 1− p0 = 0.

Proof. We aim to express S as a sum of time intervals that
reflect the repeats as outlined at the beginning of Section III-B.
To this end, for all i ∈ N>0, let ∆i = Oi − Oi−1. Note that
this implies that S = T +

∑
i∈[U] ∆i, since T = O0, S = OU ,

and the sum is telescoping.
By the linearity of expectation, it follows that E[S] =

E[T] + E
[∑

i∈[U] ∆i

]
. Note that E

[∑
i∈[U] ∆i

∣∣ L
]

= 0

as well as Pr[L] = 1 − p0. Thus, E
[∑

i∈[U] ∆i

]
= (1 −

p0)E
[∑

i∈[U] ∆i

∣∣∣ L
]
, which is 0 if Pr[L] = 0.

Let i ∈ N>0, and note that, ∆i = Oi − Oi−1 = (Oi −
Ri−1) + (Ri−1 −Oi−1). Thus, by the linearity of expectation,

E

[∑
i∈[U]

∆i

∣∣∣∣ L
]
= E

[∑
i∈[U]

(Oi −Ri−1)

∣∣∣∣ L
]

+ E

[∑
i∈[U]

(Ri−1 −Oi−1)

∣∣∣∣ L
]
.

We aim to apply Theorem 5 to both expected values on the
right-hand side with U and a suitable filtration. To this end, let

(Mi)i∈N>0
= (Oi+1−Ri)i∈N and (Ni)i∈N>0

= (Ri−Oi)i∈N,

and note that the indices of the new sequences start at 1 whereas
they start at 0 for the old ones. Note that U is integrable by
assumption.

Considering M: Let (Gi)i∈N = (Finf{Ri,S})i∈N. Note that
(Mi · 1(i ≤ U))i∈N>0

is adapted to G, as for all i ∈ N>0, it
holds that Ri−1 ·1(i ≤ U) < Oi ·1(i ≤ U) ≤ inf{Ri, S} and
thus that Mi · 1(i ≤ U) is Gi-measurable.

Since
∑

i∈[U](Oi − Oi−1) =
∑

i∈[U] Mi +
∑

i∈[U] Ni is
integrable by assumption, and since M and N are non-negative
by the definition of O and R, it follows that

∑
i∈[U] Mi is

integrable. Further, since (1) Ri−1 is FRi−1-measurable, and
(2) by the assumption that there is a c ∈ R such that for all
i ∈ N>0, we have E

[
|Oi − E

[
Oi

∣∣ FRi−1

]
|
∣∣ FRi−1

]
≤ c,

E
[
|Mi − E

[
Mi

∣∣ FRi−1

]
|
∣∣ FRi−1

]

= E
[
|Oi −Ri−1 − E

[
Oi −Ri−1

∣∣ FRi−1

]
|
∣∣ FRi−1

]

(1)
= E

[
|Oi − E

[
Oi

∣∣ FRi−1

]
|
∣∣ FRi−1

] (2)

≤ c.

Since, for all i ∈ N>0 such that i ≤ U , it holds that Ri−1 < S,
it follows for all i ∈ N>0 that

E[|Mi − E[Mi | Gi−1]| | Gi−1] · 1(i− 1 < U) ≤ c.

Applying Theorem 5 and taking the expectations on both sides
yields E

[∑
i∈[U] Mi

∣∣∣ L
]
= E

[∑
i∈[U] E[Mi | Gi−1]

∣∣∣ L
]
.

Considering N: This case is very similar to the previ-
ous one. Let (Gi)i∈N = (Finf{Oi,S})i∈N. Note that (Ni ·
1(i ≤ U))i∈N>0 is adapted to G, as for all i ∈ N>0, it holds
that Oi−1 ·1(i ≤ U) ≤ Ri−1 ·1(i ≤ U) < inf{Oi, S}. Further,
as in the previous case, since

∑
i∈[U](Oi−Oi−1) is integrable

by assumption, so is
∑

i∈[U] Ni. Last, by the assumption that
there is a c ∈ R such that for all i ∈ N>0, it holds that
E
[
|Ri−1 − E

[
Ri−1

∣∣ FOi−1

]
|
∣∣ FOi−1

]
≤ c, and since for all

i ∈ N>0 such that i ≤ U it holds that Oi−1 < S, it follows for
all i ∈ N>0, by adding Oi−1−Oi−1 inside the expectation, that
E[|Ni − E[Ni | Gi−1]| | Gi−1] · 1(i− 1 < U) ≤ c. Applying
Theorem 5 and taking the expectations on both sides yields
E
[∑

i∈[U] Ni

∣∣∣ L
]
= E

[∑
i∈[U] E[Ni | Gi−1]

∣∣∣ L
]
.

Concluding: Taking everything together and noting that for
all i ∈ N>0 such that i ≤ U it holds that Ri−1 < S and that
Oi−1 < S concludes the proof.

With respect to our setting, utilizing the definitions from
equation (12), we get the following result.

Corollary 9 (Translating results from HASMAJORITY to
MAJORITY). Let n ∈ N>0 be even, let r ∈ [n/2], and let D
be a distribution over {0, 1}n. Consider an EA A, respresented
by the sequence (x(t))t∈N with initialization distribution D,
adapted to a filtration (Fi)i∈N.

Assume that when A optimizes HASMAJORITYr, there
is a probability p0 ∈ (0, 1] that this solution is also an
optimum of MAJORITY. Furthermore, assume the definitions
of equation (12).

Let S denote the run time of A on MAJORITYr, and let U =
sup{i ∈ N | Oi ≤ S}. Assume that

∑
i∈[U](Oi−Oi−1) and U

are integrable as well as that there is a c ∈ R such that for all
i ∈ N>0, it holds that E

[
|Oi − E

[
Oi

∣∣ FRi−1

]
|
∣∣ FRi−1

]
≤ c

and E
[
|Ri−1 − E

[
Ri−1

∣∣ FOi−1

]
|
∣∣ FOi−1

]
≤ c.

Last, let L denote the event that U ≥ 1, and let T denote
the run time of A on HASMAJORITYr. Then

E[S] = E[T] + (1− p0)E
[∑

i∈[U]

(
E
[
Oi −Ri−1

∣∣ FRi−1

]

+ E
[
Ri−1 −Oi−1

∣∣ FOi−1

]) ∣∣∣L
]
,

where we interpret the second summand to be 0 if 1− p0 = 0.

Corollary 9 states an equality for the expected run time of an
EA on MAJORITY. Although calculating the exact expectations
of the right-hand side generally seems implausible, the theorem
can still be used in order to derive upper and lower bounds for
expected run times on MAJORITY by deriving corresponding
bounds for all of the expected values in question. Using the
notation of the theorem, an easy way for getting a bound
on the expectation conditional on L is to derive worst-case
bounds for both of the conditional expectations in the sum. If
these worst-case bounds are constants, then they can be pulled
out of the expectation, and it remains to bound E[U | L],
which requires to only reason about the number of times of
attempting to find an optimum of MAJORITY when optimizing
HASMAJORITY. It is worth noting that the second of the
conditional expectations in the sum considers the run time
of A optimizing HASMAJORITY when starting with a solution
with a majority of 1s. Since this is typically very similar to
how T is defined, as only the initialization (and the history
of A) differs between both scenarios, this expectation may
already follow from a bound on E[T]. Overall, the complexity
of the run time analysis for MAJORITY is drastically reduced.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 9

Algorithm 2: The (1 + 1)-unary unbiased algo-
rithm framework with unbiased and memory-restricted
mutation operators (ϕt)t∈N over {0, 1}n and initial
distribution D, maximizing function f : {0, 1}n → R.
Note for all t ∈ N that ϕt only has access to a single
individual, resulting in a heavy memory restriction.

1 x(0) ∼ D;
2 for t ∈ N do
3 y ← ϕt(x

(t));
4 if f(y) ≥ f(x(t)) then x(t+1) ← y;
5 else x(t+1) ← x(t);

In the following, we apply the technique above in order
to derive run time bounds for RLS on MAJORITY. Note that
we already have an upper bound on the expected run time on
HASMAJORITY for arbitrary initializations, due to Theorem 6.
Thus, we are only concerned with how often the algorithms
find an optimum x of HASMAJORITY with a majority of 0s
before optimizing MAJORITY, and with how long it takes to
get from x to a solution with a majority of 1s. While the latter
question is specific to each algorithm, we answer the former
for all unbiased algorithms.

1) Number of Retries: Using the notation of Corollary 9,
we bound E[U | D] from above for (1 + 1)-unary unbiased
elitist algorithms with memory-restriction, as detailed in
Algorithm 2. Further, we require the sequence of mutation
operator (ϕt)t∈N of such an algorithm to be ONEMAX-
compliant, which means that each mutation operator satisfies
that results of individuals with many 1s are at least as likely
to have as many 1s as results of individuals with fewer 1s.
Formally, we say that ϕ is ONEMAX-compliant if and only
if, for all t1, t2 ∈ N, all y, z ∈ {0, 1}n with y = x(t1),
z = x(t2), and |y|1 ≤ |z|1, and all i ∈ [0..n], it holds
that Pr[|ϕt1(y)|1 ≥ i | y] ≤ Pr[|ϕt2(z)|1 ≥ i | z]. Note that
while typical mutation operators are ONEMAX-compliant,
operations such as the inversion of a bit string are not. This
definition leads to the following result.

Lemma 10. Assume the setting of Corollary 9 and that
R := {Oi+1 − Ri | i ∈ N ∧ Oi+1 ≤ S} is independent.
If A is an instance of Algorithm 2 with ONEMAX-compliant
mutation ϕ, then, conditional on L, it holds that U is
stochastically dominated by a geometrically distributed random
variable with expectation 2.

Proof. Note that |R| = U , and recall that U ≥ 1, as we
condition on L.

Let i ∈ N such that Mi := Oi+1 −Ri and Oi+1 ≤ S, that
is, Mi ∈ R. We call such an element a retry. We say that Mi

is a success if Oi+1 = S, and a failure otherwise. Note that U
is the number of retries until the first success and that, by
assumption, the retries are mutually independent.

It remains to show that each retry has a probability of
at least 1/2 of being a success. To this end, let i ∈ N such
that Mi is a retry. First, assume that |x(Ri)|1 = n/2. Recall that
the retry ends once A finds an optimum of HASMAJORITYr.
Since A is unbiased, each trajectory of x that ends with a

solution with a majority of 0s has a symmetric trajectory (in
the sense of swapping 0s and 1s) with equal probability that
ends with a solution with a majority of 1s. Thus, the probability
of Mi being a success is 1/2.

Now, assume that |x(Ri)|1 > n/2. Let y(0) ∈ {0, 1}n such
that |y(0)|1 = n/2, and, for all t ∈ N, let y(t+1) = ϕt(y

(t)).
Since ϕ is ONEMAX-compliant, it holds for all t ∈ N that
|x(Ri+t)|1 stochastically dominates |y(t)|1. Thus, there exists
a coupling such that for all t ∈ N, it holds that |x(Ri+t)|1 ≥
|y(t)|1 [20, Theorem 1.8.10]. Thus, the probability of Mi being
a success is at least as large as the probability of the process y
finding a solution with at least n/2 + r 1s before finding a
solution with at least that many 0s. By the first case above, the
probability of this event is 1/2. This concludes the proof.

We note that RLS uses ONEMAX-compliant mutation.
2) Integrability of the Stopping Time: An important property

to check in Corollary 9 is that
∑

i∈[U](Oi−Oi−1) is integrable.
To this end, it suffices to show that this random variable has
some finite expectation, as the sum is non-negative. We do so
by applying Theorem 1.

Lemma 11. Assume the setting of Corollary 9. Let (Ft)t∈N
denote the natural filtration of x, and assume that there is a
p ∈ (0, 1] such that, for all t ∈ N, it holds that

Pr
[
|x(t+1)|1 > |x(t)|1

∣∣ Ft

]
· 1(t < S) ≥ p·1(t < S). (13)

Then
∑

i∈[U](Oi −Oi−1) is integrable.

Proof. We aim to prove that E[S] is integrable via Theorem 1.
Since

∑
i∈[U](Oi −Oi−1) ≤ S and the terms of the sum are

non-negative, the claim then follows. Recall that we assume
that n ≥ 2.

Let (Xt)t∈N =
(
(n/p)n − (n/p)|x

(t)|1
)
, and note that X is

non-negative and adapted to F . Further note that inequality (1)
is satisfied for all t ∈ N, since, using equation (13), n ≥ 2,
and p ≤ 1, it follows that

(
Xt − E[Xt+1 | Ft]

)
· 1(t < T)

=

((
n

p

)|x(t+1)|1
−
(
n

p

)|x(t)|1
)

· Pr
[
|x(t+1)|1 < |x(t)|1

∣∣ Ft

]
· 1(t < S)

+

((
n

p

)|x(t+1)|1
−
(
n

p

)|x(t)|1
)

· Pr
[
|x(t+1)|1 > |x(t)|1

∣∣ Ft

]
· 1(t < S)

≥
(
1−

(
n

p

)|x(t)|1
)
· 1(t < S)

+

(
n

p

)|x(t)|1
·
(
n

p
− 1

)
· p · 1(t < S)

=

(
1 +

(
n

p

)|x(t)|1
·
(
n

p
− 2

))
· 1(t < S)

≥ 1(t < S).

Applying Theorem 1 with δ = 1, noting that E[XS] ≥ 0,
and then taking the expectation yields a finite bound for E[S],

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 10

concluding the proof.

3) Reaching a Majority of Ones: The only thing left in
order to apply Corollary 9 is to bound the expected time it
takes an algorithm to get from a solution with a majority of 0s
to one with a majority of 1s.

Theorem 12. Consider RLS optimizing MAJORITY0, and
assume that the initial individual x(0) has at least n/2 + 1 0s.
Then the expected run time of RLS is at most n

(
1+ln(|x(0)|0−

n/2)
)
/2.

Proof. We aim to apply Theorem 2. To this end, let (x(t))t∈N
denote the best individual of RLS after each iteration, and
let (Xt)t∈N be such that for all t ∈ N, it holds that Xt =
|x(t)|0 − n/2. Further, let F be the natural filtration of x, and
let T = inf{t | Xt < 1}. Note that T denotes the run time of
RLS on MAJORITY

(1)
0 .

Since X0 ≥ 1 by assumption, we are left to check
inequality (2). Let t ∈ N, and assume that t < T . Note
that then

Xt − E[Xt+1 | Ft] = −1 ·
n− |x(t)|0

n
+ 1 · |x

(t)|0
n

=
2|x(t)|0 − n

n
=

2

n
Xt.

Applying Theorem 2 with δ = 2/n concludes the proof.

4) Deriving the Run Time Result: By combining the results
from the previous sections, the run time bound on MAJORITY
follows straightforwardly.

Proof of Theorem 7. We aim to apply Corollary 9. To this end,
we check the assumptions of the theorem and use its notation.

Due to the uniform initialization and the symmetry of the
mutation of RLS (with respect to the number of 0s and 1s),
it holds that p0 = 1/2. By Lemma 11,

∑
i∈[U](Oi −Oi−1) is

integrable, and by Lemma 10, using that E[U] ≤ E[U | L] +
E
[
U
∣∣ L
]

and, by definition of L, that E
[
U
∣∣ L
]
= 0, it

follows that U is integrable. The last condition to check
is that there is a c ∈ R such that for all i ∈ N>0,
it holds that E

[
|Oi − E

[
Oi

∣∣ FRi−1

]
|
∣∣ FRi−1

]
≤ c and

E
[
|Ri−1 − E

[
Ri−1

∣∣ FOi−1

]
|
∣∣ FOi−1

]
≤ c. Let i ∈ N>0.

For the first inequality, we note that, by the triangle inequality
and Jensen’s inequality,

E
[
|Oi − E

[
Oi

∣∣ FRi−1

]
|
∣∣ FRi−1

]

= E
[
|Oi −Ri−1 − E

[
Oi −Ri−1

∣∣ FRi−1

]
|
∣∣ FRi−1

]

≤ 2E
[
|Oi −Ri−1|

∣∣ FRi−1

]
.

By Theorem 6, using its notation, it holds that

E
[
|Oi −Ri−1|

∣∣ FRi−1

]
≤ 3r · h

(
x(Ri−1)

)
/(λ− 1).

Since, for all x ∈ {0, 1}n, it holds that h(x) ≤ λr − 1,
it follows overall that E

[
|Oi − E

[
Oi

∣∣ FRi−1

]
|
∣∣ FRi−1

]
≤

6r · (λr − 1)/(λ− 1) =: c1. Similarly, we see that

E
[
|Ri−1 − E

[
Ri−1

∣∣ FOi−1

]
|
∣∣ FOi−1

]

= E
[
|Ri−1 −Oi−1 − E

[
Ri−1 −Oi−1

∣∣ FOi−1

]
|
∣∣ FOi−1

]

≤ 2E
[
|Ri−1 −Oi−1|

∣∣ FOi−1

]
.

By Theorem 12, it holds that

E
[
|Ri−1 −Oi−1|

∣∣ FOi−1

]
≤ n

2

(
1 + ln(|x(Oi−1)|0 − n/2)

)
.

Noting that |x(Oi−1)|0 = n/2 + r, since RLS cannot get to a
solution with strictly more than n/2+r 0s before getting exactly
n/2+r 0s, we get E

[
|Ri−1 − E

[
Ri−1

∣∣ FOi−1

]
|
∣∣ FOi−1

]
≤

n
(
1 + ln(r)

)
=: c2. Thus, choosing c = max{c1, c2} satisfies

the remaining condition of Corollary 9.
We continue with bounding E[T], noting that for all

i ∈ N>0 such that i ∈ [U], we bounded the expecta-
tions E

[
Oi −Ri−1

∣∣ FRi−1

]
and E

[
Ri−1 −Oi−1

∣∣ FOi−1

]

already above, as the differences are non-negative and the
absolute value thus does not change anything.

Let i ∈ N>0 such that i ∈ [U]. Note that Oi − Ri−1

and T have the same distribution conditional on the same
initial individual for the respective time interval, since RLS
is Markovian and since both stopping times stop once an
optimum of HASMAJORITYr is found. Thus, their conditional
expectations (on the same initial individual) are the same, and
Theorem 6 yields a bound for E[T], too.

Combining all bounds, by the tower rule for expectation,
Corollary 9 yields

E[S] ≤ 3r · λ
r − 1

λ− 1

+
1

2
E

[∑
i∈[U]

(
n
1 + ln(r)

2
+ 3r · λ

r − 1

λ− 1

) ∣∣∣∣ L
]

= 3r · λ
r − 1

λ− 1
+

1

2

(
n
1 + ln(r)

2
+ 3r · λ

r − 1

λ− 1

)
E[U | L].

Applying Lemma 10 yields E[U | L] ≤ 2, thus concluding the
proof.

C. Results for Neutrality in the W-Model

For all n ∈ N>0, all x ∈ {0, 1}n, and all S ⊆ [n], let xS

denote the bit string of length |S| that consists only of those
entries in x with an index in S, that is, xS = (xi)i∈S .

Let n ∈ N>0. Given a pseudo-Boolean function
f : {0, 1}n → R as well as k ∈ N>0, the property of
neutrality in the W-model [1] constructs a new function
f ′ : {0, 1}nk → R with

x 7→ f
(
MAJORITY1(x[(i−1)k+1..ik])i∈[n]

)
.

In other words, each bit of f is exchanged for a block of k
bits. When evaluating f ′, for each block, the majority of bits
is determined, and then f is evaluated on the string of the n
majority bits. We refer to f ′ as d with added neutrality of
degree k.

Applying the results by Doerr et al. [2], we get the following
bound for the expected run time of RLS on the pseudo-Boolean
function ONEMAX : x 7→ |x|1 with added neutrality.

Corollary 13. Let n, k ∈ N>0 such that n is even. For
sufficiently large n, the expected run time of RLS on ONEMAX
with added neutrality of degree k is at most O(nk log(n)).

Before we state the result by Doerr et al. [2] and prove
Corollary 13, we introduce some notation of their paper to the
degree that it is necessary for our result. Let n, k ∈ N>0 and

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 11

i ∈ [n], we say that a function g : {0, 1}nk → R acts only on
block i if and only if for all x ∈ {0, 1}nk, it holds that g(x) =
g(x[(i−1)k+1..ik]). We say that a function f : {0, 1}nk is a
consecutively separable function composed of n sub-functions
if and only if there exists a collection (gi)i∈[n] of n pseudo-
Boolean functions, each of dimension nk, such that for all
x ∈ {0, 1}nk, it holds that f(x) =

∑
i∈[n] gi(x), and for all

i ∈ [n], it holds that gi acts only on block i.

Theorem 14 (Simplification of [2, Theorem 2]). Let n, k ∈
N>0, and let f : {0, 1}nk → R be a consecutively separable
function composed of n sub-functions. Further, let T ∗ denote
the maximum expected run time of RLS with uniform initial-
ization over all sub-functions. Then the expected run time of
RLS with uniform initialization on f is O

(
T ∗ log(n)

)
.

Proof of Corollary 13. Note that ONEMAX with added neu-
trality of degree k is a consecutively separable function
composed of n sub-functions, each of which acts only on
a single block of length k as MAJORITY1. Thus, we aim to
apply Theorem 14 and determine T ∗ by Theorem 7, noting
that each block has the same sub-function. However, note
that Theorem 7 is not directly applicable, since it considers
MAJORITY1 to be defined over the entire search space (that is,
for all bits), whereas in the setting of Corollary 13, MAJORITY1

is a sub-function that only acts on a block of length k. Hence,
we translate the result from Theorem 7 to our setting. We do so
by only counting those mutations that change a bit in block i
and adding waiting time due to iterations that change other
(irrelevant) bits for a specific sub-function.

Formally, let i ∈ [n], and consider the MAJORITY1 sub-
function gi acting only on block i. Further, let S denote
the expected run time of RLS with uniform initialization on
MAJORITY1 defined over bit strings of length k, and let T
denote the expected run time of RLS with uniform initialization
on gi. We note that, similar to the proof of Lemma 11, T is
integrable, allowing us to reorder terms when calculating E[T].
Last, let (x(t))t∈N denote the trajectory of RLS with uniform
initialization on gi, and for all t ∈ N>0, let Mt denote the
event that x(t) is a result of a mutation that changes a bit in
block i. We couple S and T such that

∑
t∈[T]

1(Mt) = S , (14)

that is, only considering changes in block i, the optimization
behaves as if considering the optimization of MAJORITY1

defined of bit strings of length k. Further, let I = {t ∈ [T] |
1(Mt) = 1}.

Since it trivially holds that T =
∑

t∈[T](1(Mt) + 1(Mt)),
by the definition of I , it follows that T =

∑
t∈I 1(Mt) +∑

[T]∖I 1(Mt). We aim to connect the second sum to the first,
since we know how to bound the first sum by Equation (14).
To this end, for all t ∈ I , let Jt = {t′ ∈ [T] | t′ ≤ t ∧ ∀s ∈
I, s < t : s < t′}, that is, the set of all time points that are
in between the time points in I . Note that 1(MT) = 1 and,
thus, T ∈ I , since the final mutation has to change a bit in
block i. Thus, [T] =

⋃
t∈I Jt. Further note for all t ∈ I that

|Jt| follows a geometric distribution with supportN>0 and with
success probability k/(nk) = 1/n, since the mutation of RLS

chooses uniformly at random which bit to flip. In addition, the
{|Jt|}t∈I are independently and identically distributed. Let J
denote their common distribution.

Using the definitions of {|Jt|}t∈I and J as well as equa-
tion (14), we see that T =

∑
t∈I |Jt| ·1(Mt) = J ·S. Since J

and S are independent, as the mutation of RLS is independent
of any random choice besides which bit it flips, it follows that
E[J · S] = E[J] ·E[S]. By definition, it follows that E[J] = n,
and by Theorem 7, it follows that E[S] ≤ 6 + k/2. Thus,
E[T] = O(nk).

Overall, if follows that T ∗ = O(nk). Applying Theorem 14
concludes the proof.

IV. EMPIRICAL RESULTS FOR RLSℓ

We complement our theoretical results on MAJORITY with
empirical investigations on a generalization of RLS called RLSℓ,
which flips exactly ℓ bits each iteration. In more detail, RLSℓ

follows Algorithm 2 and uses a time-homogeneous mutation
operator, that is, it uses the same mutation operator in each
iteration. Let n ∈ N>0, and let x ∈ {0, 1}n. Given an ℓ ∈ [n],
for all t ∈ N, RLSℓ computes the result of ϕt(x) by first
choosing a subset I ⊆ [n] of cardinality ℓ uniformly at random
among all ℓ-size subsets of [n] and then flipping exactly the
bits at the positions in I . Note that RLS is a special case of
RLSℓ for ℓ = 1.

In our experiments, we analyze the impact of the parameter ℓ
of RLSℓ on the run time for MAJORITY when using the uniform
distribution as initialization distribution. To this end, given a
problem size of n ∈ N>0, with even n, we fix the parameter r
of MAJORITYr to ⌊√n⌋. Recalling our discussion of r after
Theorem 7, this results in an expected run time linear in n
for HASMAJORITYr, which is a lower bound for the run time
for MAJORITY (see Corollary 9). For larger values of r, the
expected run time increases drastically. Thus, r = ⌊√n⌋ results
in an easily-solvable problem that is not yet trivial. We note
though that, due to the uniform initialization, there is a constant
probability of the initial solution being already optimal.

A. Near-optimal Value of ℓ

We determine the value ℓ of RLSℓ that has the best average
empirical run time among a variety of different values of ℓ.
For each each problem size n ∈ {10i | i ∈ [2..5]} ∪ {5 ·
10i | i ∈ [2..4]}, we consider ℓ ∈ {1, 2, 3, 4, ⌊lnn⌋, ⌊√n⌋} ∪
{⌊an/12⌋ | a ∈ {3}∪[6..10]}. For each parameter combination
of n and ℓ, we start 1000 independent runs of RLSℓ (on
MAJORITY⌊

√
n⌋) and store its empirical run time, that is, the

number of iterations t from Algorithm 2 until an optimal
solution was found for the first time. Afterward, we compute
the average, median, and the 25th as well as 75th percentile.
Figure 5 shows the results for n ∈ {100, 50 000, 100 000}.

The results for our values of n look qualitatively similarly,
that is, the run time drastically decreases by several orders
of magnitude with increasing ℓ until ℓ ∈ Θ(n). The median
is always below the mean, and the area between the 25th
percentile and the mean is larger than the one between the mean
and the 75th percentile. This is likely due to the initialization
creating an optimal solution or one that is close to an optimal

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 12

100 101 102

101

102

103

ℓ

n
u
m
b
e
r
o
f
it
e
ra

ti
o
n
s

RLSℓ

(a) n = 100

100 101 102 103 104

101

102

103

104

105

ℓ

n
u
m
b
e
r
o
f
it
e
ra

ti
o
n
s

RLSℓ

(b) n = 50 000

100 101 102 103 104 105

101

102

103

104

105

106

ℓ

n
u
m
b
e
r
o
f
it
e
ra

ti
o
n
s

RLSℓ

(c) n = 100 000

Fig. 5: The empirical run time (number of iterations until an optimum was found) of RLSℓ on MAJORITY⌊
√
n⌋ for n ∈

{100, 50 000, 100 000}, each with varying values of ℓ, as discussed at the beginning of Section IV-A. Note the doubly logarithmic
scale. For each combination of n and ℓ, 1000 independent runs with uniform initialization were started. The solid black line
(points represented by ×) depicts the average of the runs. The solid blue line (points represented by ◦) depicts the median of
the runs, and the surrounding shaded area depicts the range from the 25th percentile to the 75th percentile.

one with respect to its number of 1s. Such runs result in a low
run time. The mean being larger than the median suggests that
initial solutions that are further away from optimal solutions
in terms of their number of 1s result in a far larger run time.

In the regime of ℓ ∈ {⌊an/12⌋ | a ∈ {3} ∪ [6..10]}, the
minimum average empirical run time is always taken for one
of the values ℓ ∈ {⌊an/12⌋ | a ∈ [6..9]}. For these values of ℓ,
the difference of the smallest average to the second smallest
is typically less than 1. This suggests that, in this regime, the
run time of RLSℓ does not dependent heavily on ℓ. However,
overall, a linear dependence of ℓ on n seems best.

B. Trajectories for Different Values of ℓ
The results in Figure 5 show that the value of ℓ has a drastic

impact on the run time of RLSℓ on MAJORITY⌊
√
n⌋. Since ℓ

only influences how largely the mutation changes the current
solution but does not influence the selection of which solution
to use for the next iteration, we compare the trajectories of
RLSℓ for different values of ℓ. We choose n = 10 000 and
ℓ ∈ {1, ⌊lnn⌋, ⌊n/2⌋}, and we log at each iteration the number
of 1s of the currently best solution (the fitness level). Note that
all optimal solutions are at fitness levels at least 5100.

Figure 6 depicts our results. Note that there is a huge
difference in run time between ℓ = 1 and ℓ = ⌊lnn⌋, which
is most likely due to the former starting with a solution of
more than 5000 = n/2 1s, whereas the latter starts at a
position almost at n/2−√n. This highlights the impact of the
initialization on the run time. Interestingly, the case ℓ = ⌊n/2⌋
also starts with a rather bad solution of about n/2−√n/2 1s but
manages to quickly find an optimum. In fact, the last mutation
increases the number of 1s by about 200. This suggests that
RLSℓ has far better capabilities of exploring the plateau with
ℓ ∈ Θ(n) than with smaller values of ℓ.

V. CONCLUSION

We analyzed the expected run time that RLS, started on a
plateau, requires until it leaves the plateau for the first time. We

considered a symmetric (HASMAJORITY) and an asymmetric
(MAJORITY) setting, and we showed, for general EAs, how to
derive a result for MAJORITY from a result on HASMAJORITY
(Corollary 9), based on a more general result for a random
process to reach a certain offset (Theorem 8). A fair amount
of conditions of Corollary 9 follow directly from Lemmas 10
and 11, which apply to many EAs. Lemma 11 is so general
that it holds for any EA that has, for each individual, a positive
probability generating it. And although Lemma 10 is not as
easy to check, we note that it holds for the (1 + 1) EA [21,
Lemma 6.1].

Theorem 8 provides a tool for analyzing general plateaus
by considering phases in which the algorithm tries to cross
the plateau. In order to bound the expected number of restarts,
one determines the probability of crossing the plateau and not
returning to its start. This can be done by defining a drift
potential that decreases toward the end of the plateau (as done
in the proof of Theorem 6) but is also 0 at the start. The
optional-stopping theorem allows then to determine the desired
probability. However, we note that simply using the potential
from the proof of Theorem 6 is typically a too coarse estimate
since the bound always assumes the worst case of crossing
the plateau. It remains an interesting open problem to derive
tighter bounds for such a setting.

Further possible future work includes deriving a lower
bound for RLS on HASMAJORITY, as well as analyzing the
expected run time of more algorithms on HASMAJORITY,
such as the (1 + 1) EA, RLSℓ, or non-elitist EAs. Any such
bound translates almost directly into a bound for MAJORITY.
Similarly, combining our results with those of Doerr et al. [2]
on separable functions provides good bounds for RLS and the
(1+1) EA on ONEMAX functions with any degree of neutrality
from the W-model. Extending the results of Doerr et al. [2] to
other algorithms or to functions other than ONEMAX also helps
extend the picture about how well EAs cope with neutrality.
Last, the current definitions of HASMAJORITY and MAJORITY
let the algorithm either start on a plateau or in a global optimum.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, AUTHOR-PREPARED MANUSCRIPT 13

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

4,900

4,950

5,000

5,050

5,100

5,150

iteration

fi
tn

e
ss

le
v
e
l

RLS

(a) ℓ = 1

0 1,000 2,000 3,000 4,000 5,000 6,000

4,900

4,950

5,000

5,050

5,100

5,150

iteration

fi
tn

e
ss

le
v
e
l

RLSlnn

(b) ℓ = ⌊lnn⌋

0 10 20 30 40 50 60 70

4,900

4,950

5,000

5,050

5,100

5,150

iteration

fi
tn

e
ss

le
v
e
l

RLSn/2

(c) ℓ = ⌊n/2⌋

Fig. 6: The number of 1s (fitness level) of the best solution of RLSℓ on MAJORITY⌊
√
n⌋ for n = 10 000 and for different

values of ℓ. Each plot depicts a single run that was stopped once an optimal solution was found (fitness level of at least 5100).
Note that we show runs that started from a non-optimal solution, chosen uniformly at random among all possible 2n solutions.

A potential generalization is to place the plateau somewhere
else in the search space and introduce an easy slope toward the
plateau. This follows the same idea as the function PLATEAU
by Antipov and Doerr [5] but generalizing it even further such
that the function has more than a single optimum.

Our long-term objective is to analyze the impact of the
other components of the W-model problem generator proposed
by Weise et al. [1] and extended by Doerr et al. [22]—first
individually for each module (as done here for neutrality)
and then for combinations of the four layers (neutrality,
dummy variables, epistasis, and ruggedness). We see this as
an important step towards run time results that more explicitly
link algorithms’ performance to problem characteristics.

REFERENCES

[1] T. Weise, Y. Chen, X. Li, and Z. Wu, “Selecting a diverse set of
benchmark instances from a tunable model problem for black-box discrete
optimization algorithms,” Applied Soft Computing, vol. 92, p. 106269,
2020.

[2] B. Doerr, D. Sudholt, and C. Witt, “When do evolutionary algorithms
optimize separable functions in parallel?” in Proc. of FOGA’13, 2013,
pp. 51–64.

[3] C. Bian, C. Qian, K. Tang, and Y. Yu, “Running time analysis of the
(1+1)-EA for robust linear optimization,” Theoretical Computer Science,
vol. 843, pp. 57–72, 2020.

[4] J. Garnier, L. Kallel, and M. Schoenauer, “Rigorous hitting times for
binary mutations,” Evol. Comput., vol. 7, no. 2, pp. 173–203, 1999.

[5] D. Antipov and B. Doerr, “Precise runtime analysis for plateau functions,”
ACM Trans. Evol. Learn. Optim., vol. 1, pp. 13:1–13:28, 2021.

[6] H. Bambury, A. Bultel, and B. Doerr, “Generalized jump functions,” in
Proc. of GECCO’21, 2021, pp. 1124–1132.

[7] D. Antipov and S. Naumov, “The effect of non-symmetric fitness: the
analysis of crossover-based algorithms on RealJump functions,” in Proc.
of FOGA’21, 2021, pp. 10:1–10:15.

[8] C. Witt, “On crossing fitness valleys with majority-vote crossover and
estimation-of-distribution algorithms,” in Proc. of FOGA’21, 2021, pp.
2:1–2:15.

[9] D.-C. Dang, T. Friedrich, T. Kötzing, M. S. Krejca, P. K. Lehre, P. S.
Oliveto, D. Sudholt, and A. M. Sutton, “Escaping local optima with
diversity mechanisms and crossover,” in Proc. of GECCO’16, 2016, pp.
645–652.

[10] ——, “Escaping local optima using crossover with emergent diversity,”
IEEE Transactions on Evolutionary Computation, vol. 22, no. 3, pp.
484–497, 2018.

[11] L. D. Whitley, S. Varadarajan, R. Hirsch, and A. Mukhopadhyay,
“Exploration and exploitation without mutation: Solving the jump function
in \vartheta (n) time,” in Proc. of PPSN XV, 2018, pp. 55–66.

[12] J. Lengler, “Drift analysis,” in [23]. Springer, 2020, pp. 89–131, also
available at https://arxiv.org/abs/1712.00964.

[13] J. He and X. Yao, “Drift analysis and average time complexity of
evolutionary algorithms,” Artificial Intelligence, vol. 127, pp. 57–85,
2001.

[14] B. Doerr, D. Johannsen, and C. Winzen, “Multiplicative drift analysis,”
Algorithmica, vol. 64, no. 4, pp. 673–697, 2012.

[15] T. Kötzing and M. S. Krejca, “First-hitting times under drift,” Theoretical
Computer Science, vol. 796, pp. 51–69, 2019.

[16] R. Durrett, Probability: theory and examples. Cambridge University
Press, 2019.

[17] Y. Kovchegov. Mth 664: Lectures 24 - 27. Accessed 2021-10-
28. [Online]. Available: http://sites.science.oregonstate.edu/∼kovchegy/
math664winter2013/664 lectures24-27.pdf

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. MIT Press, 2009.

[19] T. Friedrich, A. Göbel, N. Klodt, M. S. Krejca, and M. Pappik,
“Analysis of the survival time of the SIS and SIRS process on stars
and cliques,” CoRR, vol. abs/2205.02653, 2022. [Online]. Available:
http://arxiv.org/abs/2205.02653

[20] B. Doerr, “Probabilistic tools for the analysis of randomized optimization
heuristics,” in [23]. Springer, 2020, pp. 1–87, also available at https:
//arxiv.org/abs/1801.06733.

[21] C. Witt, “Tight bounds on the optimization time of a randomized search
heuristic on linear functions,” Combinatorics, Probability and Computing,
vol. 22, no. 2, pp. 294–318, 2013.

[22] C. Doerr, F. Ye, N. Horesh, H. Wang, O. M. Shir, and T. Bäck,
“Benchmarking discrete optimization heuristics with iohprofiler,” Applied
Soft Computing, vol. 88, p. 106027, 2020.

[23] B. Doerr and F. Neumann, Eds., Theory of Evolutionary Computation:
Recent Developments in Discrete Optimization, 1st ed. Springer, 2020.

Carola Doerr, formerly Winzen, is since 2013 a permanent researcher at
Sorbonne Unversité in Paris, France. Carola obtained her PhD in Computer
Science from Saarland University and the Max Planck Institute for Informatics
in 2011, and she successfully defender her habilitation (HDR) at Sorbonne
Université in 2020. She works on theoretical analysis, benchmarking, and
practical applications of black-box optimization heuristics.

Martin S. Krejca obtained his PhD from the Hasso Plattner Institute,
University of Potsdam, Germany, in 2019. Since 2022, he is an assistant
professor at Ecole Polytechnique, Palaiseau, France. His research interests are
the theoretical analysis of random processes, especially black-box optimization
heuristics.

https://arxiv.org/abs/1712.00964
http://sites.science.oregonstate.edu/~kovchegy/math664winter2013/664_lectures24-27.pdf
http://sites.science.oregonstate.edu/~kovchegy/math664winter2013/664_lectures24-27.pdf
http://arxiv.org/abs/2205.02653
https://arxiv.org/abs/1801.06733
https://arxiv.org/abs/1801.06733

	I Introduction
	II Preliminaries
	II-A Tools

	III Theoretical Results for
	III-A Run Time Results on HasMajority
	III-B Run Time Results on Majority
	III-B1 Number of Retries
	III-B2 Integrability of the Stopping Time
	III-B3 Reaching a Majority of Ones
	III-B4 Deriving the Run Time Result

	III-C Results for Neutrality in the W-Model

	IV Empirical Results for RLS_𝓁
	IV-A Near-optimal Value of l
	IV-B Trajectories for Different Values of l

	V Conclusion
	References
	Biographies
	Carola Doerr,
	Martin S. Krejca

