
Theoretical Computer Science 971 (2023) 114074
Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Bivariate estimation-of-distribution algorithms can find

an exponential number of optima ✩

Benjamin Doerr, Martin S. Krejca ∗

Laboratoire d’Informatique (LIX), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 December 2022
Received in revised form 19 June 2023
Accepted 12 July 2023
Available online 18 July 2023
Communicated by W. Banzhaf

Keywords:
Estimation-of-distribution algorithms
Probabilistic model building
Multimodal optimization

Finding a large set of optima in a multimodal optimization landscape is a challenging
task. Classical population-based evolutionary algorithms typically converge only to a single
solution. While this can be counteracted by applying niching strategies, the number of
optima is nonetheless trivially bounded by the population size. Estimation-of-distribution
algorithms (EDAs) are an alternative, maintaining a probabilistic model of the solution
space instead of a population. Such a model is able to implicitly represent a solution set
far larger than any realistic population size.
To support the study of how optimization algorithms handle large sets of optima, we
propose the test function EqualBlocksOneMax (EBOM). It has an easy fitness landscape
with exponentially many optima. We show that the bivariate EDA mutual-information-
maximizing input clustering, without any problem-specific modification, quickly generates a
model that behaves very similarly to a theoretically ideal model for EBOM, which samples
each of the exponentially many optima with the same maximal probability. We also prove
via mathematical means that no univariate model can come close to having this property:
If the probability to sample an optimum is at least inverse-polynomial, there is a Hamming
ball of logarithmic radius such that, with high probability, each sample is in this ball.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

A key feature of evolutionary algorithms (EAs) is their applicability to a wide range of optimization problems. EAs require
little problem-specific knowledge and generally provide the user with a good solution. Since many real-world optimization
problems are multimodal [1–3], it is desirable for an EA to return multiple solutions. This way, the user also gains precious
insight into their problem.

Unfortunately, classical population-based EAs tend to converge to a single solution, due to strong selection operators and
due to a long-known phenomenon called genetic drift [4]. In order to counteract this behavior, different techniques have been
introduced, commonly subsumed under the term niching [3,5,6]. These techniques maintain diversity in the population and
assist in finding and keeping multiple good solutions. While this approach is useful for increasing the number of different
solutions, it still limits the insights gained about the underlying problem, as the only information the EA returns is the
solutions themselves. As such, it only provides information about areas of the search space that it has visited and does not
propose further promising regions.

✩ This article belongs to Section C: Theory of natural computing, Edited by Lila Kari.

* Corresponding author.
E-mail address: martin.krejca@polytechnique.edu (M.S. Krejca).
https://doi.org/10.1016/j.tcs.2023.114074
0304-3975/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2023.114074
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2023.114074&domain=pdf
mailto:martin.krejca@polytechnique.edu
https://doi.org/10.1016/j.tcs.2023.114074

B. Doerr and M.S. Krejca Theoretical Computer Science 971 (2023) 114074
A different algorithmic approach that aims to additionally incorporate information about the entire search space is the
framework of estimation-of-distribution algorithms (EDAs; [7]). Instead of an explicit set of solutions, EDAs maintain a proba-
bilistic model of the search space. This model acts as a solution-generating mechanism and reflects information about which
parts of the search space seem more favorable than others. An EDA evolves its model based on samples drawn from it. This
way, the model is refined such that it generates better solutions with higher probability. In the end, an EDA returns the best
solutions found as well as its model.

EDAs are commonly classified by the power of their model [7,8]. This results in the following trade-off: an EDA with a
simple model performs an update quickly but may be badly suited to accurately represent the distribution of good solutions.
In contrast, the update of an EDA with a complex model is computationally expensive, but the model is better capable of
representing good solutions. The complexity of a model is determined by how many dependencies it can detect among dif-
ferent problem variables. For example, a univariate EDA assumes independence of all problem variables, whereas a bivariate
EDA can represent dependencies among pairs of variables. We go into detail about these types of EDAs in Section 1.1.

While increasing the complexity of an EDA’s model is useful for finding optima in a larger class of problems [9], it is not
evident that an increased model complexity is also useful for finding multiple optima or representing them adequately in
the model. In fact, EDAs have been designed specifically with the intention of being used for multimodal optimization. Peña
et al. [10] introduce the unsupervised estimation of Bayesian network algorithm (UEBNA), which uses unsupervised learning in
order to generate the Bayesian network of its model. The algorithm is tested against other EDAs and evaluated (mostly) on
bisection problems on graphs with many symmetries that only have a low number of optima (two to six). Interestingly,
for the larger problems, even UEBNA is not able to find all optima. Thus, the test functions seem to be hard, and the
experiments do not only show how many optima the algorithm can find but also how well it copes with hard problems.

A similar setting has been considered by Chuang and Hsu [11], who introduce an EDA that is also specifically tailored
toward multimodal optimization. However, they evaluate their results only on trap functions with a low number of optima
(two to four). Thus, the focus of their work is arguably also more on the hardness of the problem than on finding many
optima.

Hauschild et al. [12] consider the hierarchical Bayesian optimization algorithm and analyze how well its model reflects the
problem structure of two hard test functions. They show that the structure is best reflected during the middle of the run
and that it is then simplified toward the end. This makes sense, as the model aims to reflect best how to generate optimal
solutions. This does not need to coincide with how the entire structure can be reflected. For example, if the problem has
a single solution, it suffices to have a simple model that only generates this solution in a straightforward way. Again, the
focus of the authors is rather based on the hardness of the problem (its structure) instead of representing many optima.

Overall, to the best of our knowledge, all results dedicated to finding many different optima consider functions for which
finding an optimum at all is already a challenge. We note though that Echegoyen et al. [13] thoroughly analyze how the
probabilistic model of the EDA called estimation of Bayesian network algorithm (EBNA [14]) evolves on unimodal and on hard
problems, such as traps or MaxSat—a task related to what we set out to analyze in this article.

We introduce the test function EqualBlocksOneMax (EBOM, Section 2.3), which has an exponential number of optimal
solutions. It is easy in the sense that all local optima are also global optima. We are interested in how well the underlying
structure of the optima can be detected by an algorithm.1

Univariate EDAs apparently are not suitable to return a model that represents the exponential number of optima of
EBOM. We make this intuitive statement precise in Section 4, where we show that any univariate model with an at least
moderate probability to sample an optimum of EBOM has the property that its samples are highly concentrated in a Ham-
ming ball of only logarithmic radius (Theorem 2).

In contrast, we show that mutual-information-maximizing input clustering (MIMIC; [16]), arguably the simplest bivariate
EDA, represents the structure of EBOM well. It builds a model that behaves very similarly to an ideal model for EBOM, which
creates all optimal solutions with the maximal probability possible. Our experiments (Section 3) show that, for almost all
input sizes we consider, MIMIC samples about 1 · 104 to 4.5 · 104 optima per run and never samples an optimum twice. As
EBOM can be described by a bivariate model, our results suggest that bivariate EDAs are well suited to reasonably capture
the set of all optima for functions they can optimize.

Following, we discuss different types of EDAs in order to explain how common probabilistic models look like and why
univariate models are unsuited for representing multiple optima. In Section 2, we present MIMIC, the definition of EBOM,
and what an ideal model for EBOM is. In Section 3, we explain our test setup and discuss our results. We complement our
findings in Section 4, where we show that univariate EDAs are not capable of representing such a large number of optima.
We conclude our paper in Section 5. This paper extends our prior work [17] via the results from Section 4.

1.1. Types of EDAs

A common way of classifying EDAs is with respect to how they decompose a problem [7]. Such a decomposition is
typically based on representing a probability distribution over the search space as a product of various probabilities that
may share dependencies. One possible and commonly applied way of doing so dates back to Henrion [18], who suggested

1 Our code is available on GitHub [15].
2

B. Doerr and M.S. Krejca Theoretical Computer Science 971 (2023) 114074
to store this information compactly by a probabilistic graphical model (PGM; [19]). As the name suggests, PGMs use graphs
for storing information about probability distributions, where variables are represented as nodes and dependencies as edges.
The arguably best known type of PGM are Bayesian networks (BNs).

A BN can be represented as a directed acyclic graph. A directed edge from x to y represents that y is dependent on
(at least) x. Consequently, two nodes that cannot reach each other mutually are conditionally independent with respect to
their common predecessors. Further, each node stores a probability distribution conditional on the outcomes of all of its
predecessors. This is usually done via a probability table for each node, where the probability for each possible value is
stored for each possible combination of the outcomes of the predecessors.

A solution according to the probability distribution of a BN can be sampled by traversing the graph in a topological order,
always determining the outcome of an input variable based on the outcome of its predecessors, utilizing the probability
tables. The larger the in-degree of a node in a BN can become, the more costly it is to represent the model, as the conditional
probability distribution for each node can grow quite large. Thus, the number of dependencies in the models of EDAs are
usually restricted.

1.1.1. Univariate EDAs
The BN of a univariate EDA is an independent set. That is, each node represents a probability distribution based solely

on a single variable. Hence the name uni-variate. Examples of univariate EDAs are the compact genetic algorithm [20] and the
univariate marginal distribution algorithm [21].

When optimizing functions over bit strings, the probability of each binary input variable tends to either 0 or 1 rather
quickly [22,23], forcing the model to put its probability mass onto a single solution. Thus, univariate EDAs are ill-suited to
represent multiple solutions at once. For more theoretical investigations on this topic, please refer to a recent survey by
Krejca and Witt [24].

1.1.2. Bivariate EDAs
In a bivariate EDA, each problem variable can be dependent on at most one other variable. Examples of bivariate EDAs

are mutual-information-maximizing input clustering [16] and the bivariate marginal distribution algorithm [25].
Recently, Lehre and Nguyen [26] showed that MIMIC may have a huge advantage over univariate EDAs on deceptive

functions, but this may be a consequence of a suboptimal parameter choice [27].
Since a bivariate model can store simple dependencies, it is capable to represent multiple solutions at once. Further, the

model can still be built somewhat efficiently, as there is at most a quadratic number of possible dependencies to consider
when building the model. Thus, we focus on bivariate EDAs in this work.

1.1.3. Multivariate EDAs
This type is used as an umbrella term for any type of EDA that is able to represent some form of dependency. While the

models of such EDAs can perform well on deceptive, hard functions, creating a model can be computationally expensive,
as potentially many dependencies need to be checked. Examples of multivariate EDAs are the extended compact genetic
algorithm [28], the factorized distribution algorithm which learns a factorization [29], the aforementioned EBNA [14], as well as
the Bayesian optimization algorithm [30] and the hierarchical Bayesian optimization algorithm [31].

2. Preliminaries

In this section, we introduce some notation that we use throughout the paper as well as the algorithm and the test
function that we consider in our analysis in Section 3.

2.1. Notation

Let N denote the set of all natural numbers, including 0. For a, b ∈N, let [a..b] := [a, b] ∩N denote the set of all natural
numbers from a to b (including both bounds). As a special case of that notation, for b ∈ N, let [b] := [1..b] denote the set of
all positive natural numbers up to b. For an n ∈ N, let idn denote the identity function over [n].

For a logical proposition A, let 1{A} denote the indicator function of the truth value of A, that is, 1{A} = 1 if A is true,
and it is 0 otherwise.

We consider pseudo-Boolean optimization, that is, optimization of functions f : {0, 1}n → R, where n ∈ N. We call such
a function fitness function. We call a bit string x ∈ {0, 1}n an individual and f (x) the fitness of x. If not stated otherwise, let f
always denote a fitness function, and let n always denote its dimension.

2.2. Mutual-Information-Maximizing Input Clustering (MIMIC)

Mutual-information-maximizing input clustering (MIMIC; [16]) is a bivariate estimation-of-distribution algorithm (EDA).
The Bayesian network of the probabilistic model of MIMIC can be represented as a directed path over n nodes, where each
of the nodes corresponds to one of the n bit positions of f . Further, MIMIC has two parameters, λ, μ ∈ N with λ ≥ μ, that
represent how many individuals are generated and selected each iteration, respectively.
3

B. Doerr and M.S. Krejca Theoretical Computer Science 971 (2023) 114074
Algorithm 1: MIMIC [16] with parameters μ and λ, μ ≤ λ, and a selection scheme selectμ , optimizing a fitness
function f : {0, 1}n →R with n ≥ 2.

1 t ← 0;
2 π(t) ← idn;
3 P (t) ← (1

2)i∈[n],b∈{0,1};
4 repeat
5 O (t) ← ∅;
6 for i ∈ [λ] do
7 x(i) ∼ sampleπ(t)

(
P (t)

)
;

8 O (t) ← O (t) ∪ {x(i)};

9 S(t) ← selectμ(O (t), f);
10 I ← [n];
11 π(t+1)(1) ← arg mini∈I h[S(t); i];
12 I ← I \ {π(t+1)(1)};

13 for b ∈ {0, 1} do P (t+1)

π(t+1)(1),b
← γ1[S(t); π(t+1)(1)];

14 for j ∈ [2..n] do
15 π(t+1)(j) ← arg mini∈I h[S(t); i | π(t+1)(j − 1)];
16 I ← I \ {π(t+1)(j)};

17 for b ∈ {0, 1} do P (t+1)

π(t+1)(j),b
← γ1b[S(t); π(t+1)(j) | π(t+1)(j − 1)];

18 restrict all values of P (t+1) to the interval [1
n , 1 − 1

n];
19 t ← t + 1;
20 until termination criterion met;

Initially, the model represents the uniform distribution. It is rebuilt each iteration in the following way: first, λ individuals
are generated according to the current model, and μ individuals are selected according to some selection mechanism. We
call the resulting (multi-)set S . A path is constructed greedily based on the entropy of the distribution of the bits at the
different positions in S .

The first node of the new path is a position with the lowest entropy, that is, a position with the largest number of 1s
or 0s. Each subsequent node is chosen with respect to the lowest entropy conditional on the distribution of the current
last node in the path. This way, the new path represents a model that best reflects the distributions of pairs of positions
observed in S . We now go into detail about our implementation of MIMIC (Algorithm 1).

2.2.1. Probabilistic model and sampling
For our implementation of MIMIC, we describe the probabilistic model via a permutation π (over [n]) and an n × 2

matrix of probabilities. Bit strings are sampled bit by bit in the order of π . For a position i ∈ [2..n] and a bit value b ∈ {0, 1},
an entry Pπ(i),b denotes the probability to sample a 1 at position π(i), given that the bit at position π(i − 1) is b. Note that
entries in P always denote the probability to sample a 1. For the position π(1) (which does not have a predecessor in π),
we set Pπ(1),0 = Pπ(1),1. Thus, either entry denotes the probability to sample a 1 without a prior.

For a bit string x ∈ {0, 1}n , we write x ∼ sampleπ (P) to denote that x is being sampled with respect to the probabilistic
model consisting of π and P . More formally the sampling procedure creates x such that, for any bit string y ∈ {0, 1}n ,

Pr[x = y] = (Pπ(1),0)
yπ(1) · (1 − Pπ(1),0)

1−yπ(1) ·
∏

i∈[2..n] :
yπ(i)=0

(1 − Pπ(i),yπ(i−1)
) ·

∏
i∈[2..n] :
yπ(i)=1

Pπ(i),yπ(i−1)
.

2.2.2. Selection
Given a population O ⊆ {0, 1}n of individuals and a fitness function f , we write selectμ(O , f) to denote a selection

mechanism that selects μ individuals from O . In this paper, we use truncation selection, that is, we sort the individuals in O
by fitness and then select the μ best individuals (breaking ties uniformly at random).

2.2.3. Building the probabilistic model
When constructing a new probabilistic model, MIMIC makes use of the unconditional and conditional (empirical) entropy

of a set of bit strings. These mathematical functions make use of the relative occurrences of bit values. To this end, for a
population S ⊆ {0, 1}n , a position i ∈ [n], and a bit value b ∈ {0, 1}, let the frequency of b at position i in S be

γb[S; i] = 1

|S|
∑
x∈S

1{xi = b}.

Further, for a population S ⊆ {0, 1}n , two positions i, j ∈ [n], and two bit values b1, b2 ∈ {0, 1}, we define the conditional
frequency of b1 at position i in O conditional on the value b2 at position j by
4

B. Doerr and M.S. Krejca Theoretical Computer Science 971 (2023) 114074
γb1b2 [S; i | j] =
{

1
2 if γb2 [S; j] = 0,

1
|S|·γb2 [S; j]

∑
x∈S 1{xi = b1 ∧ x j = b2} else.

Note that the case γb2 [S; j] = 0 means that the event we condition on has a probability of 0, which is not well defined.
In order to represent our lack of knowledge in this case, we choose 1

2 as the value for the respective probability, which
corresponds to a uniform distribution.

We now define the (empirical) entropy functions that MIMIC utilizes. To this end, we define that 0 · log2(0) = 0. For a
population S ⊆ {0, 1}n and a position i ∈ [n], the entropy at position i in S is

h[S; i] = −
∑

b∈{0,1}
γb[S; i] · log2(γb[S; i]).

Further, for a population S ⊆ {0, 1}n and two positions i, j ∈ [n], the entropy at position i in O conditional on position j is

h[S; i | j] = −
∑

(b1,b2)∈{0,1}2

γb1b2 [S; i | j] · γb2 [S; j] · log2(γb1b2 [S; i | j]).

Given these definitions and a population S ⊆ {0, 1}n of selected individuals, MIMIC builds a new model by constructing
a new permutation π ′ and updating the probabilities in P with respect to π ′ . The permutation π ′ is built in the following
iterative and greedy fashion, breaking ties uniformly at random: for the first position, an index with the lowest entropy in S
is chosen. Each subsequent position is determined by an index with the lowest entropy in S conditional on the previous
index in π ′ .

Each time that a new position i is determined for π ′ , the probabilities Pi,0 and Pi,1 are updated. If i = π ′(1), both Pi,0
and Pi,1 are set to the relative number of 1s at position i in S , that is γ1[S; i]. If i �= π ′(1), that is, there is a preceding
position j in π ′ , for a bit value b, the probability Pi,b is set to the relative number of 1s at position i in S that also have a
value of b at position j. Note that this is equivalent to setting Pi,b to γ1b[S; i | j].

In order to circumvent the model from sampling only 0s or only 1s at some position, we make sure that no probability
is 0 or 1. We enforce this after building π ′ and updating P by increasing probabilities less than 1

n to 1
n and by decreasing

probabilities greater than 1 − 1
n to 1 − 1

n . We may also say that we restrict P to the interval [1
n , 1 − 1

n].
Note that restricting the probabilities makes it necessary to define a value for the first case in the definition of γb1b2 ,

since it can happen that γb2 [S; j] = 0 in S , but the corresponding probability is not 0, as it is restricted to [1
n , 1 − 1

n]. In
such a case, it is possible to sample b2 with the new model, making it necessary to define the probability Pi,b2 .

2.3. EqualBlocksOneMax (EBOM)

Many benchmark functions test an algorithm’s capability of finding an optimal solution at all. Hence, they are commonly
composed of deceptive or otherwise hard landscapes with many dependencies. In order to reduce the probability of finding
an optimal solution by pure chance, the number of optima of such a function is usually small. For EDAs, it is not only
interesting how fast they find good solutions but also how well their probabilistic model represents the distribution of good
solutions in the search space.

To this end, we introduce the test function EBOM. It represents a fairly simple hill-climbing landscape, similar to that
of the well-known OneMax function (the sum of all bit values in an individual), but features an exponential number of
optima. Thus, finding a single optimal solution is easy, but exploiting the structure of EBOM and being able to generate a
large number of different optima is challenging.

2.3.1. Definition
Given a bit string of length n, EBOM operates on blocks of size 2 and returns the number of blocks that are either 00

or 11. Let n be even. For each j ∈ [n
2], let the pair of positions 2 j − 1 and 2 j denote block j. For an individual x ∈ {0, 1}n ,

we say that block j is correct if the bits in block j have identical values. The objective of EBOM is to maximize the number
of correct blocks. Formally, for all x ∈ {0, 1}n ,

EBOM(x) =
∑

j∈[n/2]
1{x2 j−1 = x2 j}.

Consequently, EBOM has a maximal fitness of n
2 and 2n/2 different optima, since there are two possibilities for each of

the n
2 blocks to be correct.

2.4. An ideal model of MIMIC for EBOM

We are interested in a model of MIMIC that generates each optimal solution of EBOM with the same maximal probability.
We call such a model ideal.
5

B. Doerr and M.S. Krejca Theoretical Computer Science 971 (2023) 114074
The permutation π of an ideal model is such that, for each block j ∈ [n
2] of EBOM, the positions 2 j − 1 and 2 j are

adjacent in π (but in any order). In the following, assume without loss of generality that π(2 j − 1) < π(2 j), that is,
position 2 j − 1 occurs before 2 j in π . For the probability matrix P of an ideal model, the probabilities of position 2 j − 1 are
both 1

2 , and the probabilities of position 2 j are 1 − 1
n (conditional on a prior 1) and 1

n (conditional on a prior 0). Note that,
when sampling a solution with an ideal model, the bit sampled at position 2 j is sampled conditional on the bit at position
2 j −1. Due to the choice of P , this probability is maximized. Choosing 1

2 as the value of both probabilities of position 2 j −1
further ensures two things: (1) The bit at position 2 j − 1 is sampled independently of the bit at position 2 j − 2.2 (2) Block j
is 00 or 11 with equal probability. Overall, an ideal model has maximal equal probability to sample an optimum. We now
discuss features that help in assessing whether a model is close to an ideal model or not.

In an ideal model, the probability that a generated bit string is one of the 2n/2 optima is 2n/2
(1

2 (1 − 1
n)

)n/2 = (
(1 − 1

n)n
)1/2

.
Using that limn→∞(1 − 1

n)n = 1
e , the probability of MIMIC to sample an optimal solution, given an optimal model, is roughly

1/
√

e ≈ 60.65%. However, note that the probability of 1/
√

e of sampling an optimum is, by itself, not indicative of an ideal
model. This probability is also achieved by any other model which is like an ideal model but has the following difference:
for each block j (defined as above), the probabilities at position 2 j − 1 are equal but not necessarily 1

2 . Given such a model,
the probability to sample any optimum is still 1/

√
e. However, the probability to sample a specific optimum may differ from

optimum to optimum. Consequently, we also consider a second indicator for an ideal model.
The property of an ideal model that each optimum has the same probability of being sampled makes it unlikely that such

a model creates duplicate solutions in m ∈ N+ independent tries. More formally, for an optimal model, since each optimum
is equally likely, the probability that all optima are distinct when sampling m optimal solutions is (2n/2)!/(2mn/2 ·(2n/2 −m)!),
by the birthday paradox. This probability is at least (1 − m/2n/2)m ≥ 1 − m2/2n/2, by Bernoulli’s inequality, which is close
to 1 as long as m2 = o(2n/2).

We conclude from these insights that a good model of MIMIC should sample optima with a probability of roughly 1/
√

e
and that it should not sample duplicates, with high probability.

3. Results

In this section, we show that MIMIC creates models in reasonable time that behave similarly to an ideal model for EBOM.
We first explain our setup, then we discuss our results.

3.1. Algorithm setup

We use MIMIC as seen in Algorithm 1 with truncation selection (with uniform tie-breaking) and with λ = �12n ln n� and
μ = �λ/8�. Our choice for λ is based on a grid search for the n-factor in the interval [1, 20] with a step size of 1. The
value 12 was the first with which MIMIC found an optimum in all runs of our test setup (see also Section 3.2). For μ, we
chose a constant fraction of λ, which is common for EDAs.

3.2. Test setup

We are interested in determining how well MIMIC is capable of generating a probabilistic model that implicitly captures
an exponential number of optima of EBOM. Consequently, we use our insights from Section 2.4 in order to determine how
good a model of MIMIC is. To this end, we let MIMIC run for a number of iterations I , which we explain below, and we
determine

1. the probabilistic model (that is π and P) in each iteration,
2. with what probability optimal solutions are created in each iteration, and
3. how many distinct optima are created in I iterations.

Our choice of I is as follows: let T denote the number of iterations until MIMIC samples an optimum for the first time.
Then we let the algorithm run for T more iterations, that is, I = 2T . Since MIMIC might fail finding an optimum in a
reasonable time, we abort a run if the number of iterations exceeds 50 000 iterations. However, we chose λ and μ such that
all of our tests were successful. That is, MIMIC always found an optimum, and we let the algorithm run for 2T iterations.

We consider MIMIC for values of n from 50 to 200 in steps of 10. For each value of n, we start 100 independent runs.
For each run, we record the number of iterations until the first optimum is sampled (that is, T), the set of all optima
that are found in each of the 2T total iterations (which may include duplicates), the number of optima found in each of
these iterations, as well as the probabilistic model in each iteration. Note that with this data we are able to compute the
information above we are interested in.

2 For this to hold, it suffices that both probabilities of position 2 j − 1 are the same; they do not have to be 1
2 .
6

B. Doerr and M.S. Krejca Theoretical Computer Science 971 (2023) 114074
Fig. 1. Two depictions of the run time of MIMIC optimizing EBOM. For information about the type of plot used, please refer to Section 3.2.1. For a discussion
of these plots, please refer to Section 1.

3.2.1. Visualization
We depict our results in Figs. 1 to 5 and in Tables 1 and 2. In these plots, we visualize:

1. the total number of iterations and fitness evaluations,
2. how the probabilistic model evolves during a run,
3. the number of optima found as well the number of runs that only found distinct optima,
4. the probability of sampling an optimum during an iteration, and
5. how the Kullback–Leibler divergence (KL divergence; see Section 3.3.4) evolves during a run.

For each figure, we plot the data of all 100 runs (per n) simultaneously in a concise manner: we depict the median of
the data as a point and connect the medians with a solid line. Further, we depict the mid 50% (that is, ranks 25 to 75 when
ordering the runs) as a shaded area bounded by a dotted line. We provide more information about the visualization in the
discussion of our results.

3.3. Discussion

In this section, we discuss the results depicted in Figs. 1 to 4 and in Tables 1 and 2.

3.3.1. Run time
Fig. 1 shows the run time of each of the 100 runs per n with respect to the number of iterations (Fig. 1a) and with

respect to the number of fitness function evaluations (Fig. 1b).
The number of iterations depicted is the number of iterations of each run until an optimum was found for the first time.

That is, the number of iterations corresponds to T , as explained in Section 3.2. For each change in the number of iterations
(for example, at n = 70), there is one value of n that has a high variance (the shaded area), and many runs take either the
number of iterations of the previous value of n or an extra iteration. Except for these transitions, the run time of MIMIC is
enormously consistent, with the mid 50% all taking the same number of iterations. Overall, the number of iterations slightly
increases with n.

The number of fitness function evaluations provides a better picture on how long MIMIC takes for a run. Note that the
numbers shown in Fig. 1b are the numbers from Fig. 1a times λ, as MIMIC performs λ fitness evaluations in each iteration.
The reason that the curve is not constant when the number of iterations stays the same for different values of n is that we
chose λ = �12n ln n�, which grows in n. Thus, depending on how T grows in n, the total run time of MIMIC on EBOM is at
least in the order of n ln n.
7

Fig. 2. Depicted are the maximum, mean, and minimum of the deviation of the central probabilities in P from 0.5 in iteration 2T . The numbers over the
plot with the triangles denote the number of runs (out of 100) that have a correct permutation in their model. For a discussion of this plot, please refer to
Section 3.3.2.

Fig. 3. Depicted are how the relative number of optima sampled evolves over the number of iterations for MIMIC optimizing EBOM. The horizontal line at
the top shows the value 1/

√
e ≈ 60.65 %, which is roughly the probability of sampling an optimum in a single iteration, given an ideal model of MIMIC for

EBOM (see Section 2.4). For a discussion of these plots, please refer to Section 3.3.3.

3.3.2. Probabilistic model
Fig. 2 and Tables 1 and 2 showcase information about the probabilistic model of MIMIC and its quality with respect to

an ideal model (see also Section 2.4). For a comparison to make sense, it is important that the permutation π of a model of
MIMIC is close to that of an ideal model – ideally, π would correspond to a permutation of an ideal model. To this end, we
say that a permutation π is correct if, starting from the first position, its positions occur in pairs of two such that (1) the
positions in each pair differ by exactly 1 and that (2) the maximum of the positions of each pair is an even number. Note
that the set of all correct permutations corresponds exactly to that of all ideal models.3

In Table 1, we show an excerpt of the model from one out of the 100 runs of MIMIC on EBOM in the last iteration,
that is, 2T . In total, we mention 10 entries from the model (out of 200). The first column depicts the bit positions as they
occur in the permutation π . We see that all entries occur as they would in a correct permutation, suggesting that the entire

3 Property (2) is necessary, since EBOM defines its block with respect to position 1. For example, positions 1 and 2 form a block in EBOM, but positions 2
and 3 do not.
B. Doerr and M.S. Krejca Theoretical Computer Science 971 (2023) 114074
8

B. Doerr and M.S. Krejca Theoretical Computer Science 971 (2023) 114074

Fig. 4. The number of distinct optima that MIMIC found when optimizing EBOM. An optimum is distinct if it was only sampled once during a single run.
The number over each data point states how many of the 100 runs sampled exclusively distinct optima. For a discussion of these plots, please refer to
Section 3.3.3.

Table 1
The probabilities of the first 10 positions (occurring in π) of
MIMIC optimizing EBOM for one of the runs with n = 200, at
iteration 2T . For a discussion of this table, please refer to Sec-
tion 3.3.2.

position i P i,0 Pi,1

17 0.662052 0.662052
18 0.005 0.995
90 0.636872 0.610266
89 0.005 0.995
41 0.649587 0.58435
42 0.005 0.995
49 0.68438 0.546488
50 0.005 0.995
104 0.582677 0.613208
103 0.005 0.995

.

.

.

Table 2
The probabilities of the positions 1 and 2 (occurring in π) of MIMIC optimizing EBOM for
one of the runs with n = 200, over all iterations. For a discussion of this table, please refer to
Section 3.3.2.

iteration P1,0 P1,1 P2,0 P2,1

1 0.5 0.5 0.5 0.5
2 0.533825 0.454897 0.428928 0.587039
3 0.311688 0.665446 0.542926 0.485564
4 0.51094 0.458128 0.256098 0.789337
5 0.141582 0.828571 0.535533 0.478152
6 0.474968 0.453086 0.115023 0.903664
7 0.465116 0.519018 0.0794045 0.943806
8 0.465385 0.478368 0.0381406 0.98
9 0.450299 0.486737 0.00945626 0.995
10 0.440618 0.480589 0.005 0.995
11 0.005 0.995 0.442663 0.462725
12 0.005 0.995 0.470277 0.424279
13 0.406593 0.460972 0.005 0.995
14 0.455733 0.421111 0.005 0.995
9

B. Doerr and M.S. Krejca Theoretical Computer Science 971 (2023) 114074
permutation is correct. Note that the order of the positions per pair appears randomly, which makes sense, as the order
does not matter for sampling a block in EBOM correctly.

The other two columns of Table 1 show the two probabilities of the position from the first column. We see that, for each
pair of positions (as defined above), the first position has its probabilities close to 0.5 and second one has its probabilities
at the borders of the interval [1

n , 1 − 1
n]. Further, the probabilities at the borders are at the correct end for maximizing the

probability of sampling a block in EBOM correctly. That is, the probability Pi,0 is at 1
n (making it likely to sample a 0 when

the previous position sampled at 0), and the probability Pi,1 is at 1 − 1
n . Overall, the results from Table 1 already suggest

that MIMIC builds a model close to an ideal one.
In Fig. 2, we have a closer look at how closely the model of MIMIC in iteration 2T resembles an ideal model. In order for

such a comparison to make sense, we first analyze how well the permutation of such a model deviates from the permutation
of an ideal model. Out of all of our runs, each run produced a correct permutation in iteration 2T . We depict these numbers
in Fig. 2 over the curve in the middle, with the triangles. Thus, the only way for a model of MIMIC to deviate from an ideal
model is in how largely the probabilities in P deviate from those of an ideal model.

When comparing probabilities of P to that of an ideal model, we group the probabilities into those that should be close
to 0.5 (the central probabilities) and into those that should be close to the borders (the border probabilities). We may also
use the respective adjective for a position in order to indicate that both of the probabilities are central or border. We group
the probabilities with respect to the blocks in π . In order to determine which position of each block is central and which
is border, we look at the probability with the highest deviation from 0.5 (breaking ties uniformly at random). The position
with the probability that has the highest deviation is considered border, the other position is considered central.

We then calculate the absolute distance of each probability to its ideal value. For the central probabilities, we calculate
their distance to 0.5 (regardless of whether the probability is conditional on a 0 or a 1). For the border probabilities
conditional on a 0, we calculate their distance to 1

n , and for those conditional on a 1, we calculate their distance to 1 − 1
n .

Afterward, for the two groups of central and border probabilities, we calculate, for each of the positions per run and value
of n, the maximum, mean, and minimum of the deviations of each probability.

The results of these calculations for the central probabilities are depicted in Fig. 2. The arguably most interesting result
is the maximum deviation among all positions of a single run. This value seems to decrease with increasing n. However, a
deviation of about 0.2 can still be considered rather large. We discuss in the following sections how this affects the quality
of the model.

The deviations for the border probabilities are not depicted, as the maximum over all runs and all values of n was in the
order of 10−6. This suggests that the border probabilities are always very close to the borders in iteration 2T .

Since we only looked at the model of MIMIC in iteration 2T , Table 2 provides an excerpt of how the probabilities of
the first block evolve over the iterations. We depict data from one of the runs with n = 200. From iteration 10 to 11 and
from 12 to 13, we see that the probabilities of the positions 1 and 2 change their statuses of being central or border. This
makes sense, as we already briefly discussed, as the order of the positions in a block does not matter for sampling a correct
block. Given a correct block, it is then random which position MIMIC determines to be the first in its permutation (and,
thus, central) and which it chooses next (being border). Thus, we conclude that MIMIC does not converge to a single model
that is close to an ideal model but instead switches between different models from iteration to iteration.

3.3.3. Similarity to an ideal model
Since the results so far suggest that the model of MIMIC is close to an ideal model except for the deviation of the central

probabilities (see Section 3.3.2), we now consider how well the model reflects the two properties of an ideal model that we
describe in Section 2.4. We start with the probability to sample an optimum in each iteration.

Fig. 3 shows how many of the solutions of the λ solutions sampled during each iteration are optima. We chose to depict
this ratio for the cases of n = 110 and n = 200, which are cases where all of the mid 50% of the runs used the same number
of iterations (see also Fig. 1a). This data can be interpreted as the probability of sampling an optimum in each iteration.
Following our ideas discussed in Section 2.4, we also depict the value 1/

√
e in both plots, which represents the probability

to sample an optimum, given an ideal model.
Both Figs. 3a and 3b show that the empirical ratio is surprisingly close to the ideal value. This suggests that the model

behaves similarly to an ideal model in terms of consistently sampling optima, despite the central probabilities sometimes
deviating somewhat largely from 0.5 (see Fig. 2). The fact that some data points show a ratio that is slightly higher than
the theoretical optimum is due to the variance in the randomness of the algorithm.

Fig. 4 shows how many of the optima that MIMIC found per run were distinct as well as how many runs only found
distinct optima. Note that the sudden increases in the number of optima found relate to the number of iterations depicted in
Fig. 1a. Except for the cases n = 50 and n = 60, all optima that MIMIC found per run were distinct. This result is remarkable
and suggests that MIMIC builds a very general model that is capable of sampling a huge variety of different solutions.

We now argue that it is not unlikely for the cases n = 50 and n = 60 to have runs that failed to only find distinct optima.
In Section 2.4 we derived a lower bound on how likely it is to have no duplicate in m samples. In a similar fashion, one
can derive an upper bound (using that, for a ≤ b, a!/(a − m)! � (a − m

2)m and that, for x ∈ [0, 1], (1 − x)m ≈ e−xm) of roughly
e−m2/2n/2+1

. Thus, a lower bound of having a duplicate in m tries is roughly at least 1 − e−m2/2n/2+1
. For n = 60, using that 4

out of 6 iterations are used for sampling optima and that about 1.7 · 104 solutions are created in a run (retrieved from the
10

B. Doerr and M.S. Krejca Theoretical Computer Science 971 (2023) 114074
data used for Fig. 1), we get that the probability for a run to have a duplicate optimum is about 6%, which means that we
would expect about 6 failures. For n = 70, the probability to have a duplicate optimum drops already below 1%.4

Overall, the results from Figs. 3 and 4 suggest that the model of MIMIC behaves similarly to an ideal model. We thus
consider it to actually be similar to an ideal model.

3.3.4. Similarity in the Kullback–Leibler divergence
In order to get a concise summary for how well the model of MIMIC represents an ideal model, we compute the

Kullback–Leibler divergence (KL divergence) from an ideal model to the actual model in each iteration.

KL divergence Roughly, for a measurable space (S, S), the KL divergence is a non-negative real number that, given two
probability measures μ and ν over S , determines how similar μ and ν are. We note that the KL divergence is not symmetric
(and thus not a measure), which is why it is important to state which order of μ and ν is considered. In the following, we
discuss the KL divergence from μ to ν more formally, denoted by KL(μ ‖ ν).

If ν is not absolutely continuous with respect to μ, that is, if ν assigns positive probability to events to which μ assigns
zero probability, then KL(μ ‖ ν) is defined to be positive infinity. If ν is absolutely continuous with respect to μ, then the
Radon–Nikodym derivative dμ/dν exists, and KL(μ ‖ ν) is defined as the (binary) entropy of this derivative with respect
to μ, that is,

KL(μ ‖ ν) =
∫
S

log2

(
dμ

dν

)
dμ. (1)

In other words, KL(μ ‖ ν) represents the expected difference of bits required to encode samples of μ when given a sampler
for ν .

The KL divergence for a reference measure Assume that X and Y are two random variables over a measurable space (S, S)

that induce the probability measures μ and ν , respectively. If μ and ν are absolutely continuous with respect to a reference
measure λ, then their probability density function p X and pY of X and Y (with respect to λ), respectively, exists, and, by
equation (1), it holds that KL(μ ‖ ν) = ∫

S M log2 (M/N) dλ. Especially, if X and Y are discrete random variables, then this
formula, writing KL(X ‖ Y) instead of KL(μ ‖ ν), simplifies to

KL(X ‖ Y) =
∑
s∈S

Pr[X = s] log2

(
Pr[X = s]
Pr[Y = s]

)
.

If this series is absolutely convergent, then reordering it and applying a law for logarithms yields

KL(X ‖ Y) =
∑
s∈S

Pr[X = s] log2 (Pr[X = s]) −
∑
s∈S

Pr[X = s] log2 (Pr[Y = s]) . (2)

Letting KL(X ‖ Y) = ∑
s∈S Pr[X = s] log2 (Pr[Y = s]), equation (2) turns into

KL(X ‖ Y) = KL(X ‖ X) − KL(X ‖ Y), (3)

which we use for our calculations.

The KL divergence for MIMIC distributions In our setting, X and Y are random elements from {0, 1}n , each following a model
of MIMIC (Section 2.2.1). Using this assumption and letting π denote the permutation of the MIMIC model represented
by Y , we get

KL(X ‖ Y) =
∑

x∈{0,1}n

Pr[X = x] log2 (Pr[Y = x])

=
∑

x∈{0,1}n

Pr[X = x] · log2

(
Pr[Yπ(1) = xπ(1)]

∏
i∈[2..n]

Pr[Yπ(i) = xπ(i) | Yπ(i−1) = xπ(i−1)]
)

=
∑

x∈{0,1}n

Pr[X = x] log2(Pr[Yπ(1) = xπ(1)]) +
∑

i∈[2..n]

∑
x∈{0,1}n

Pr[X = x] log2(Pr[Yπ(i) = xπ(i) | Yπ(i−1) = xπ(i−1)]).

(4)

4 This estimation makes the assumption that the model is ideal in 4 out of 6 iterations. However, data similar to that depicted in Fig. 3 suggests that it
takes at least one iteration until the model samples optima consistently.
11

B. Doerr and M.S. Krejca Theoretical Computer Science 971 (2023) 114074
We simplify the first sum of equation (4) by decomposing each sample x ∈ {0, 1}n . To this end, for a J ⊆ [n], let (xk)k∈ J =
(xk)k∈[n],k/∈ J . We decompose x into xπ(1)xπ(1) . Hence, using the definition of conditional probability (and assuming that all
relevant probabilities are positive), we get∑

x∈{0,1}n

Pr[X = x] log2(Pr[Yπ(1) = xπ(1)])

=
∑

xπ(1)∈{0,1}

∑
xπ(1)∈{0,1}n−1

Pr[Xπ(1) = xπ(1)] · Pr[Xπ(1) = xπ(1) | Xπ(1) = xπ(1)] log2(Pr[Yπ(1) = xπ(1)])

=
∑

xπ(1)∈{0,1}
Pr[Xπ(1) = xπ(1)] log2(Pr[Yπ(1) = xπ(1)]) ·

∑
xπ(1)∈{0,1}n−1

Pr[Xπ(1) = xπ(1) | Xπ(1) = xπ(1)]

=
∑

b∈{0,1}
Pr[Xπ(1) = b] log2(Pr[Yπ(1) = b]). (5)

Similarly, for each i ∈ [2..n], we simplify the second sum of (4) by decomposing each sample x ∈ {0, 1}n into
(x j) j∈{π(i−1),π(i)} and (x j) j∈{π(i−1),π(i)} . We get∑

x∈{0,1}n

Pr[X = x] log2(Pr[Yπ(i) = xπ(i) | Yπ(i−1) = xπ(i−1)])

=
∑

a,b∈{0,1}2

Pr[(Xπ(i−1), Xπ(i)) = (a,b)] log2(Pr[Yπ(i) = b | Yπ(i−1) = a])

·
∑

x̃∈{0,1}n−2

Pr[(X j) j∈{π(i−1),π(i)} = x̃ | (Xπ(i−1), Xπ(i)) = (a,b)]

=
∑

ab∈{0,1}2

Pr[(Xπ(i−1), Xπ(i)) = (a,b)] log2(Pr[Yπ(i) = b | Yπ(i−1) = a]). (6)

Substituting equations (5) and (6) into equation (4) yields

KL(X ‖ Y) =
∑

b∈{0,1}
Pr[Xπ(1) = b] log2(Pr[Yπ(1) = b]) (7)

+
∑

i∈[2..n]

∑
ab∈{0,1}2

Pr[(Xπ(i−1), Xπ(i)) = (a,b)] log2(Pr[Yπ(i) = b | Yπ(i−1) = a]).

Computing the discrete KL divergence We compute the KL divergence from equation (3), using the simplification from equa-
tion (7).

Following the notation from equation (3), we are interested in the KL divergence when X represents an ideal MIMIC
model and when Y represents a given MIMIC model (at some iteration). The KL divergence then tells us how many bits the
current model wastes in comparison to an ideal model.

By the definition of an ideal model, for X and any permutation π , it holds for b ∈ {0, 1} that Pr[Xπ(1) = b] = 1/2 as well
as, for all i ∈ [2..n] and all ab ∈ {0, 1}2 that

Pr[(Xπ(i−1), Xπ(i)) = (a,b)] =

⎧⎪⎨⎪⎩
1
2

(
1 − 1

n

)
if i − 1 and i are in the same block and a = b,

1
2

1
n if i − 1 and i are in the same block and a �= b,

1
4 else.

We note that each permutation of an optimal MIMIC model yields the same KL divergence. When computing KL(X ‖ X),
we use the identity as permutation. Further, we get, for all i ∈ [2..n] and all a, b ∈ {0, 1}, that

Pr[Xi = b | Xi−1 = a] =

⎧⎪⎨⎪⎩
1 − 1

n if i − 1 and i are in the same block and a = b,
1
n if i − 1 and i are in the same block and a �= b,
1
2 else.

When computing KL(X ‖ Y), we let the permutation πY of the model represented by Y . Letting P (Y) denote the matrix
of probabilities of the model represented by Y , we get that Pr[Yπ(1) = 1] = P (Y)

π(1),0 and Pr[Yπ(1) = 1] = 1 − P (Y)
π(1),0. For all

i ∈ [2..n] and all b ∈ {0, 1}, we have Pr[Yπ(i) = 1 | Yπ(i−1) = b] = P (Y)

π(i),b and Pr[Yπ(i) = 0 | Yπ(i−1) = b] = 1 − P (Y)

π(i),b .

Overall, we calculate equation (3) in time O (n) by iterating over the respective permutation for KL and accessing all of
the required quantities in constant time for each index of the permutation.
12

B. Doerr and M.S. Krejca Theoretical Computer Science 971 (2023) 114074
Fig. 5. The evolution of the Kullback–Leibler divergence from an ideal model of MIMIC to its actual model, for n = 150. Out of the 100 independent runs,
99 ran for 10 iterations, and 1 ran for 8 iterations. For information about the type of plot used, please refer to Section 3.2.1. For a discussion of these plots,
please refer to Section 3.3.4.

Empirical results Fig. 5 shows how the KL divergence changes over time. In general, it decreases rapidly and gets slightly
worse afterward. We note that due to our setup, MIMIC found an optimal solution for the first time after iteration 5 (except
in one case, where it did so after iteration 4). At this iteration, the KL divergence is still larger than at the end. This conforms
with Fig. 3, where the relative number of optima got close to that of an optimal model only a few iterations after finding
an optimal solution for the first time. This shows that MIMIC needs a bit of time to get close to an ideal model. Once it
does so, it remains very close to a KL divergence of 1, which indicates that the model by then very well represents an ideal
model.

Although Fig. 5 depicts the data of 100 runs, the center 50%, which we depict, are very close together, almost looking
like a single curve. This shows how consistent MIMIC is in creating its probabilistic model.

4. Theoretical analyses

We now show mathematically rigorously that all univariate EDAs perform poorly on EBOM. More specifically, we show
that a univariate model (i) has a very small probability of sampling an optimum of EBOM at all, or (ii) with very high
probability samples only in a ball of logarithmic radius. This forbids any performance close to what we showed for MIMIC.
We note that this argument holds for all univariate EDAs since it only refers to their probabilistic models, but not to the
specific algorithm. The probabilistic model of a univariate EDA A, when optimizing bit strings of length n ∈ N+ , is fully
characterized by a probability vector p ∈ [0, 1]n , commonly called the frequency vector of A. We denote the component of p
at position i ∈ [n] by pi , and we refer to it as a frequency. The EDA A creates a bit string x ∈ {0, 1}n via p by, for all i ∈ [n],
setting xi = 1 with probability pi and xi = 0 with probability 1 − pi , independently of any other random choices. Thus, for
all y ∈ {0, 1}n , it holds that

Pr[x = y] =
∏

i∈[n] :
yi=0

(1 − pi) ·
∏

i∈[n] :
yi=1

pi .

We write x ∼ sample(p) to say that x ∈ {0, 1}n is sampled according to the univariate model p.
To prove our result, we make use of a large-deviation bound due to Hoeffding [32], here given in the version of [33,

Theorems 1.10.1 and 1.10.21].

Theorem 1. Let n ∈N, δ ∈R>0 , and let X be the sum of n independent random variables, each taking values in [0, 1]. Let μ+ ≥ E[X].
Then

Pr
[

X ≥ (1 + δ)μ+] ≤ exp

(
−1

3
δμ+

)
.

For all n ∈ N+ and for all x, y ∈ {0, 1}n , let H(x, y) = |{i ∈ [n] | xi �= yi}|, that is, the Hamming distance of x and y. With
these preparations, we can formally state the main result of this section.

Theorem 2. Let n ∈ N+ with n being even, and let p be the length-n frequency vector of a univariate EDA A. Let x ∼ sample(p)

and let E denote the event that x is an optimum of EBOM. Assume that there is a k ∈ R+ such that Pr[E] ≥ n−k. Last, let z =
(�1/2 + pi�)i∈[n] . Then for all γ ≥ 4k, we have

Pr[H(x, z) ≥ γ ln(n)] ≤ n−γ /6.
13

B. Doerr and M.S. Krejca Theoretical Computer Science 971 (2023) 114074
Proof. Let X = H (x, z), and note that X follows a Poisson binomial law with n trials where trial i ∈ [n] has success proba-
bility si := max{pi, 1 − pi}. Thus, it follows that

E[X] =
∑

i∈[n] si =
∑

i∈[n] |pi − zi | = ‖p − z‖1 . (8)

We bound E[X] from above and then apply Theorem 1 to X , bounding with high probability the Hamming distance
between z and a solution generated from p. To this end, for all j ∈ [n/2], let q j = (p2 j−1 + p2 j)/2.

Recall that by the inequality of arithmetic and geometric mean, for all a, b ∈ R, it holds that ab ≤ (
(a +b)/2

)2
. Using this

inequality, the definition of E , as well as that, for all x ∈ R, it holds that 1 + x ≤ ex , we get

Pr[E] =
∏

j∈[n/2]

(
p2 j−1 p2 j + (1 − p2 j−1)(1 − p2 j)

)
≤

∏
j∈[n/2]

(
q2

j + (1 − q j)
2)

=
∏

j∈[n/2]

(
1 − 2q j(1 − q j)

)
≤ exp

(
−

∑
j∈[n/2] 2q j(1 − q j)

)
.

Further, since, for all a, b ∈R, it holds that (a + b)2/2 ≤ a2 + b2, it follows that

(a + b)

(
1 − a + b

2

)
= a + b − (a + b)2

2

≥ a + b − (a2 + b2)

= a(1 − a) + b(1 − b) .

Using this inequality and the definition of q, we further estimate

Pr[E] ≤ exp

(
−

∑
j∈[n/2]

(
p2 j−1(1 − p2 j−1) + p2 j(1 − p2 j)

))
= exp

(
−

∑
i∈[n] pi(1 − pi)

)
.

In addition, by the definition of z, for all i ∈ [n], a case distinction with respect to whether pi < 1/2 or not shows that
pi(1 − pi) ≥ |pi − zi |/2. Thus, we get the estimate

Pr[E] ≤ exp
(

−
∑

i∈[n]
|pi − zi |

2

)
= exp

(
−‖p − z‖1

2

)
.

By the assumption Pr[E] ≥ n−k and equation (8), it follows that

2k ln(n) ≥ ‖p − z‖1 = E[X] .

Last, by Theorem 1, for all δ ≥ 1, it holds that

Pr
[

X ≥ (1 + δ) · 2k ln(n)
] ≤ exp

(
−2

3
δk ln n

)
= n− 2

3 δk.

By using that 2δ ≥ (1 + δ) when δ ≥ 1 and renaming γ := 4δk, we obtain the claim Pr[X ≥ γ ln(n)] ≤ n−γ /6 for all γ ≥
4k. �

Theorem 2 provides a strong connection between the probability of the event E that a sample x is an optimum of
EBOM and the rounded frequency vector z. If it is somewhat likely for x to be optimal, that is, if there is a k = O (1)

such that Pr[E] ≥ n−k , then x differs from z, with high probability, in at most 4k ln(n) bits. Then each of the next m ∈ N+
bit strings created by p, with probability at least 1 − mn−2k/3, differs from z in at most 4k ln(n) positions. These are at
most 2k ln(n) correct blocks, leading to at most 22k ln(n) = nk ln(4) different optima, which is a polynomial independent of m.
Thus, increasing the number of samples—although this decreases the probability of this line of argument to hold—does not
14

B. Doerr and M.S. Krejca Theoretical Computer Science 971 (2023) 114074
increase the maximum number of different optima potentially created. Ultimately, the number of different optima created
over a polynomial number of iterations (in each of which p can even be chosen adversarially) with polynomially many
samples in each iteration is still only polynomial, with high probability.

For the case that there is no k such that Pr[E] ≥ n−k or for the case that there is only a k = ω(1), then the probability
to create a single optimal solution is already too small to be considered good, and the probabilistic model of the univariate
EDA does not reflect the optima of EBOM well at all.

5. Conclusion

We proposed the EBOM benchmark as a test problem to see how well EDAs can develop a probabilistic model that copes
with several different good solutions. We showed that MIMIC efficiently generates a probabilistic model that behaves very
similarly to an ideal model. Since EBOM exhibits an exponential number of optima, this suggests that MIMIC is capable
of implicitly storing a large range of different solutions in its model. Our experiments show that the model that MIMIC
generates over time

• has a permutation and border probabilities (almost) as in an ideal model, that the model
• does not create duplicate optimal solutions with increasing input size, and that it
• samples optima in each iteration with a probability that is close to the theoretical optimum of 1/

√
e.

Looking at sample data about the probabilistic model further suggests that the model is built such that it can generate an
exponential number of optima. This is impressive, since this model is generated in a reasonable amount of time. We note
that we used the plain MIMIC as found in the first paper proposing it [16] without any modifications.

In contrast, we show via mathematical means that no univariate model can come close to the advantages of these
bivariate models. Whenever a univariate model is good enough to sample an optimum of EBOM with probability at least
n−k , then with very high probability all its samples lie in a Hamming ball of radius 4k ln n. It thus has enormous difficulties
to sample most of the optima, which all lie outside this Hamming ball.

For future research, it is interesting to see if MIMIC also builds good models on more complicated functions with mul-
tiple optima, such as vertex cover on bipartite graphs. Further, since MIMIC has a very restricted type of bivariate model
(namely, a path), considering other bivariate EDAs with a greater range of models, such as the bivariate marginal distribu-
tion algorithm ([25]; working on trees), would provide insights into whether the restriction of MIMIC’s model to a path is a
hindrance or not.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

Our code is available on GitHub [15].

Acknowledgments

This work was supported by COST action CA15140, by a public grant as part of the Investissement d’avenir project,
reference ANR-11-LABX-0056-LMH, LabEx LMH, as well as by the Paris Île-de-France Region via the DIM RFSI AlgoSelect
project and via the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie
grant agreement No. 945298-ParisRegionFP.

References

[1] I. Belda, S. Madurga, T. Tarragó, X. Llorà, E. Giralt, Evolutionary computation and multimodal search: a good combination to tackle molecular diversity
in the field of peptide design, Mol. Divers. 11 (2007) 7–21, https://doi .org /10 .1007 /s11030 -006 -9053 -1.

[2] C. Hocaoǧlu, A.C. Sanderson, Multimodal function optimization using minimal representation size clustering and its application to planning multipaths,
Evol. Comput. 5 (1997) 81–104, https://doi .org /10 .1162 /evco .1997.5 .1.81.

[3] G. Singh, K. Deb, Comparison of multi-modal optimization algorithms based on evolutionary algorithms, in: Proc. of GECCO’06, 2006, pp. 1305–1312.
[4] K.A. De Jong, An analysis of the behavior of a class of genetic adaptive systems, Ph.D. thesis, University of Michigan, USA, 1975.
[5] S.W. Mahfoud, Niching methods for genetic algorithms, Ph.D. thesis, University of Illinois at Urbana-Champaign, USA, 1996.
[6] B.L. Miller, M.J. Shaw, Genetic algorithms with dynamic niche sharing for multimodal function optimization, in: Proc. of CEC’96, 1996, pp. 786–791.
[7] M. Pelikan, M. Hauschild, F.G. Lobo, Estimation of distribution algorithms, in: Springer Handbook of Computational Intelligence, Springer, 2015,

pp. 899–928.
[8] P. Larrañaga, J.A. Lozano, Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, Springer, 2002.
[9] M. Pelikan, D.E. Goldberg, Hierarchical BOA solves Ising spin glasses and MAXSAT, in: Proc. of GECCO’03, 2003, pp. 1271–1282.

[10] J. Peña, J. Lozano, P. Larrañaga, Globally multimodal problem optimization via an estimation of distribution algorithm based on unsupervised learning
of Bayesian networks, Evol. Comput. 13 (2005) 43–66, https://doi .org /10 .1162 /1063656053583432.
15

https://doi.org/10.1007/s11030-006-9053-1
https://doi.org/10.1162/evco.1997.5.1.81
http://refhub.elsevier.com/S0304-3975(23)00387-0/bibEC55420EE052FA0DD2C7A60301EE4A3Bs1
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib5B2A6B017DEDFC8CA082E67A87532223s1
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib57DE79F6DF376FA1897C764B38AF69D6s1
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib127A3DC84F4231923F2A16C7A56587AEs1
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib6CE3DE7B60EEB0BC12BED27CDA2FAC4Fs1
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib6CE3DE7B60EEB0BC12BED27CDA2FAC4Fs1
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib65AC2DB8EF5E4130C4F5C4D38EBBD845s1
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib4FC20AF6939301455A0E74145E7E3D54s1
https://doi.org/10.1162/1063656053583432

B. Doerr and M.S. Krejca Theoretical Computer Science 971 (2023) 114074
[11] C.-Y. Chuang, W.-L. Hsu, Multivariate multi-model approach for globally multimodal problems, in: Proc. of GECCO’10, 2010, pp. 311–318.
[12] M. Hauschild, M. Pelikan, C.F. Lima, K. Sastry, Analyzing probabilistic models in hierarchical BOA on traps and spin glasses, in: Proc. of GECCO’07, 2007,

pp. 523–530.
[13] C. Echegoyen, A. Mendiburu, R. Santana, J.A. Lozano, Toward understanding EDAs based on Bayesian networks through a quantitative analysis, IEEE

Trans. Evol. Comput. 16 (2012) 173–189, https://doi .org /10 .1109 /TEVC .2010 .2102037.
[14] R. Etxeberria, P. Larrañaga, Global optimization with Bayesian networks, in: Proc. of CIMAF’99, 1999, pp. 332–339.
[15] B. Doerr, M.S. Krejca, Code repository of this paper, https://github .com /TheMor /TheMor-MIMIC _Multiple _Optima, 2022.
[16] J.S.D. Bonet, C.L.I. Jr., P.A. Viola, MIMIC: finding optima by estimating probability densities, in: Proc. of NIPS’96, 1996, pp. 424–430.
[17] B. Doerr, M.S. Krejca, Bivariate estimation-of-distribution algorithms can find an exponential number of optima, in: Proc. of GECCO’20, 2020,

pp. 796–804.
[18] M. Henrion, Propagating uncertainty in Bayesian networks by probabilistic logic sampling, in: Uncertainty in Artificial Intelligence, in: Machine Intelli-

gence and Pattern Recognition, vol. 5, North-Holland, 1988, pp. 149–163.
[19] D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and Techniques, The MIT Press, 2009.
[20] G.R. Harik, F.G. Lobo, D.E. Goldberg, The compact genetic algorithm, IEEE Trans. Evol. Comput. 3 (1999) 287–297, https://doi .org /10 .1109 /4235 .797971.
[21] H. Mühlenbein, G. Paaß, From recombination of genes to the estimation of distributions I. Binary parameters, in: Proc. of PPSN IV, 1996, pp. 178–187.
[22] T. Friedrich, T. Kötzing, M.S. Krejca, EDAs cannot be balanced and stable, in: Proc. of GECCO’16, 2016, pp. 1139–1146.
[23] B. Doerr, W. Zheng, Sharp bounds for genetic drift in estimation of distribution algorithms, IEEE Trans. Evol. Comput. 24 (2020) 1140–1149, https://

doi .org /10 .1109 /TEVC .2020 .2987361.
[24] M.S. Krejca, C. Witt, Theory of estimation-of-distribution algorithms, in: Theory of Evolutionary Computation: Recent Developments in Discrete Opti-

mization, Springer International Publishing, 2020, pp. 405–442, https://arxiv.org /abs /1806 .05392.
[25] M. Pelikan, H. Mühlenbein, The bivariate marginal distribution algorithm, in: Advances in Soft Computing, Springer, 1999, pp. 521–535.
[26] P.K. Lehre, P.T.H. Nguyen, On the limitations of the univariate marginal distribution algorithm to deception and where bivariate EDAs might help, in:

Proc. of FOGA’19, 2019, pp. 154–168.
[27] B. Doerr, M.S. Krejca, The univariate marginal distribution algorithm copes well with deception and epistasis, Evol. Comput. 29 (2021) 543–563, https://

doi .org /10 .1162 /evco _a _00293.
[28] G. Harik, Linkage Learning via Probabilistic Modeling in the ECGA, Technical Report 99010, University of Illinois Urbana-Champaign, Urbana, IL, USA,

1999.
[29] H. Mühlenbein, T. Mahnig, FDA – a scalable evolutionary algorithm for the optimization of additively decomposed functions, Evol. Comput. 7 (1999)

353–376, https://doi .org /10 .1162 /evco .1999 .7.4 .353.
[30] M. Pelikan, D.E. Goldberg, E. Cantú-Paz, BOA: the Bayesian optimization algorithm, in: Proc. of GECCO’99, 1999, pp. 525–532.
[31] M. Pelikan, D.E. Goldberg, Escaping hierarchical traps with competent genetic algorithms, in: Proc. of GECCO’01, 2001, pp. 511–518.
[32] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Am. Stat. Assoc. 58 (1963) 13–30.
[33] B. Doerr, Probabilistic tools for the analysis of randomized optimization heuristics, in: Theory of Evolutionary Computation: Recent Developments in

Discrete Optimization, Springer International Publishing, 2020, pp. 1–87, https://arxiv.org /abs /1801.06733.
16

http://refhub.elsevier.com/S0304-3975(23)00387-0/bib5436B8FCDAA8DE5B271D61FDB072A647s1
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib4D9EDA74DFBF738472CD1044FB82682Ds1
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib4D9EDA74DFBF738472CD1044FB82682Ds1
https://doi.org/10.1109/TEVC.2010.2102037
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib6BAADF73BD32A1096D4129A017900E90s1
https://github.com/TheMor/TheMor-MIMIC_Multiple_Optima
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib191F2D4160A52CA6834CE6773D6EF8B4s1
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib4BA79FAF052C7A122D3736E8A25BCB97s1
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib4BA79FAF052C7A122D3736E8A25BCB97s1
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib58A885870A50A2A4F122AC7CC029996Ds1
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib58A885870A50A2A4F122AC7CC029996Ds1
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib67EBA634215D5945AEA60FC182653B45s1
https://doi.org/10.1109/4235.797971
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib82C82F7A88C88942566E52F6D928FECDs1
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib13EC0B9C5909114C56548EA35DB10DE6s1
https://doi.org/10.1109/TEVC.2020.2987361
https://doi.org/10.1109/TEVC.2020.2987361
https://arxiv.org/abs/1806.05392
http://refhub.elsevier.com/S0304-3975(23)00387-0/bibA52518D2700E85B4B5A1CACB42D254C1s1
http://refhub.elsevier.com/S0304-3975(23)00387-0/bibFA4AD8677BE8EA644D1FC1A093011AF2s1
http://refhub.elsevier.com/S0304-3975(23)00387-0/bibFA4AD8677BE8EA644D1FC1A093011AF2s1
https://doi.org/10.1162/evco_a_00293
https://doi.org/10.1162/evco_a_00293
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib3434D642D80C1EE919CD8E046381D4EDs1
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib3434D642D80C1EE919CD8E046381D4EDs1
https://doi.org/10.1162/evco.1999.7.4.353
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib840DEF464E58EEED9253107591633581s1
http://refhub.elsevier.com/S0304-3975(23)00387-0/bib312B372FE99DCA7B80DAF6C5FF9BCAFCs1
http://refhub.elsevier.com/S0304-3975(23)00387-0/bibC69A1AAF821177ECE85114C5E5B9FD8Es1
https://arxiv.org/abs/1801.06733

	Bivariate estimation-of-distribution algorithms can find an exponential number of optima
	1 Introduction
	1.1 Types of EDAs
	1.1.1 Univariate EDAs
	1.1.2 Bivariate EDAs
	1.1.3 Multivariate EDAs

	2 Preliminaries
	2.1 Notation
	2.2 Mutual-Information-Maximizing Input Clustering (MIMIC)
	2.2.1 Probabilistic model and sampling
	2.2.2 Selection
	2.2.3 Building the probabilistic model

	2.3 EqualBlocksOneMax (EBOM)
	2.3.1 Definition

	2.4 An ideal model of MIMIC for EBOM

	3 Results
	3.1 Algorithm setup
	3.2 Test setup
	3.2.1 Visualization

	3.3 Discussion
	3.3.1 Run time
	3.3.2 Probabilistic model
	3.3.3 Similarity to an ideal model
	3.3.4 Similarity in the Kullback--Leibler divergence
	KL divergence
	The KL divergence for a reference measure
	The KL divergence for MIMIC distributions
	Computing the discrete KL divergence
	Empirical results

	4 Theoretical analyses
	5 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

