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Abstract. The decomposition-based multi-objective evolutionary algo-
rithm (MOEA/D) does not directly optimize a given multi-objective
function f , but instead optimizes N + 1 single-objective subproblems
of f in a co-evolutionary manner. It maintains an archive of all non-
dominated solutions found and outputs it as approximation to the Pareto
front. Once the MOEA/D found all optima of the subproblems (the g-
optima), it may still miss Pareto optima of f . The algorithm is then
tasked to find the remaining Pareto optima directly by mutating the
g-optima.
In this work, we analyze for the first time how the MOEA/D with only
standard mutation operators computes the whole Pareto front of the
OneMinMax benchmark when the g-optima are a strict subset of the
Pareto front. For standard bit mutation, we prove an expected runtime of
O(nN logn+nn/(2N)N logn) function evaluations. Especially for the sec-
ond, more interesting phase when the algorithm start with all g-optima,
we prove an Ω(n(1/2)(n/N+1)

√
N2−n/N ) expected runtime. This runtime

is super-polynomial if N = o(n), since this leaves large gaps between the
g-optima, which require costly mutations to cover.
For power-law mutation with exponent β ∈ (1, 2), we prove an expected
runtime of O

(
nN logn+ nβ logn

)
function evaluations. The O

(
nβ logn

)
term stems from the second phase of starting with all g-optima, and it
is independent of the number of subproblems N . This leads to a huge
speedup compared to the lower bound for standard bit mutation. In
general, our overall bound for power-law suggests that the MOEA/D
performs best for N = O(nβ−1), resulting in an O(nβ logn) bound. In
contrast to standard bit mutation, smaller values of N are better for
power-law mutation, as it is capable of easily creating missing solutions.

Keywords: MOEA/D · multi-objective optimization · runtime analy-
sis · power-law mutation.

1 Introduction

Many real-world problems require the simultaneous optimization of different ob-
jectives. In this setting, known as multi-objective optimization, different solutions
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may not be comparable based on their objective values, as one solution can win
over another solution in one objective, but lose in another objective. This re-
sults in a set of incomparable optimal objective values, commonly referred to as
Pareto front. The aim in multi-objective optimization is to find the Pareto front
of a problem, or a good approximation thereof.

Due to their population-based and heuristic nature, evolutionary algorithms
lend themselves very well to multi-objective optimization, and they have been
successfully applied for decades to a plethora of hard multi-objective optimiza-
tion problems [32]. This strong interest has led to a variety of algorithms [24, 32],
following different paradigms.

From the early days of theoretical analyses of evolutionary algorithms on,
multi-objective evolutionary algorithms have been analyzed also via theoretical
means [13, 17, 21, 22]. This area saw a boost of activity in the last two years,
when the first mathematical runtime analysis of the NSGA-II [31] inspired many
deep analyses of this important algorithm and variants such as the NSGA-III or
SMS-EMOA [1–4, 10–12, 20, 23, 26–30].

A substantially different, yet also very important algorithm is the decompo-
sition-based multi-objective evolutionary algorithm (MOEA/D) [25]. It decom-
poses a multi-objective optimization problem f into various single-objective sub-
problems of f . These subproblems are optimized in parallel. While doing so, the
non-dominated solutions for f are maintained in an archive.

Despite its popularity in empirical research and good performance in real-
world problems [24, 32], the MOEA/D has not been extensively studied theo-
retically [5, 15, 16, 19]. In particular, it is currently not known how the basic
MOEA/D using only standard mutation operators as variation operators finds
Pareto optima that are not already an optimum of one of the subproblems (we
refer to Section 2 for a detailed discussion of the previous works). We recall that
the MOEA/D solves a number of single-objective subproblems essentially via
single-objective approaches. Hence, if all Pareto optima of the original problem
appear as optima of subproblems (we call these g-optima in the remainder),
this is the setting regarded, e.g., in [19], then the multi-objective aspect of the
problem vanishes and the only question is how efficiently the single-objective
approaches solve the subproblems.

Our Contribution. Naturally, in a typical application of the MOEA/D, one
cannot assume that the subproblems are sufficiently numerous and evenly dis-
tributed so that each Pareto optimum appears as g-optimum. To better un-
derstand how the MOEA/D copes with such situations, we study in this work
mathematically how the MOEA/D computes the full Pareto front when started
with a population consisting of all g-optima. In this first work on this topic, as
often in the mathematical runtime analysis, we consider the basic OneMinMax
(OMM) benchmark [14]. As in most previous works, we assume that the N + 1
subproblems are constructed in a manner that the corresponding g-optima are
spread equidistantly, with respect to the Hamming distance, across the Pareto
front. We regard the basic MOEA/D using standard bit mutation as only varia-
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tion operator. Interestingly, this is the first theoretical analysis of the MOEA/D
in this setting (apart from the case that the g-optima cover the Pareto front [19]).
Hence our results (Theorem 2), together with standard estimates on this time
to compute the g-optima (Corollary 3), also give the first estimates on the full
runtime of the MOEA/D in this setting (Corollary 1).

Since our results show that the main bottleneck for computing points on the
Pareto front that are far from all g-optima is that standard bit mutation rarely
flips many bits (due to the concentration behavior of the binomial distribution),
we also resort to the heavy-tailed mutation operator proposed by Doerr et al. [9].
Interestingly, this allows for drastic speed-ups when considering the phase of the
optimization that starts with all g-optima (Theorem 3).

In detail, our various results provide us with expected-runtime estimates for
the MOEA/D with either mutation operator to optimize OMM (Corollaries 1
and 2). These results prove, respectively, an expected number of O(nN log n +
nn/(2N)N log n) function evaluations for the MOEA/D with standard bit muta-
tion where n is the problem dimension and N + 1 is the population size, and
O
(
nN log n+ nβ log n

)
expected function evaluations for power-law mutation

with power-law exponent β ∈ R>1 being a constant. In both results, the second
term refers to the interesting phase where the algorithm is initialized with all
g-optima and is tasked to find the remaining Pareto optima of OMM.

Our overall bound for standard bit mutation yields O(n2 log n) in the best
case of N = n, matching the result by Li et al. [19, Proposition 4]. For gen-
eral N , the second term in our bound suggests that the MOEA/D performs best
if N ∈ [n2 ..n] and that the runtime is super-polynomial once N = o(n). More-
over, we prove a lower bound of Ω(n(1/2)(n/N+1)

√
N2−n/N ) for this second term

(Theorem 2), which supports this runtime characterization. However, this lower
bound is not necessarily applicable to the entire optimization of the MOEA/D
on OMM, as we only prove it for a certain phase of the optimization process.
Nonetheless, we believe that it is true for sufficiently large n. We go more into
detail about this behavior in Section 5 and especially in Section 5.1. Overall, our
bounds suggest that standard bit mutation performs better when N is large.

Our upper bound for power-law mutation is best once N = O(nβ−1), re-
sulting in a runtime bound of O(nβ log n). The bound O(nβ log n) stems from
the second phase of the optimization, where the algorithm is initialized with
all g-optima (Theorem 3). It is noteworthy that this bound does not depend
on N , as, roughly, the time to fill in the gaps between g-optima is inversely
proportional to the cost of performing N + 1 function evaluations each itera-
tions. Hence, the parameter N only influences our bound for the first phase of
finding all g-optima. Overall, this suggests that the MOEA/D performs better
when N is small, which is opposite of the behavior with standard bit mutation.
Moreover, the bound for power-law mutation is O(n2 log n) in the worst case,
matching the best case of our bound for standard bit mutation. This suggests
that power-law mutation is more preferable than standard bit mutation in our
setting, as power-law mutation exhibits a far more robust runtime behavior.
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Last, for each of the two phases we consider, we get independent results that
hold for a larger class of algorithms (Lemmas 3 and 4) or functions (Theorems 2
and 3). Moreover, we prove an anti-concentration bound for the hypergeometric
distribution close around its expected value (Lemma 2). Due to the more general
setting, we believe that these results are of independent interest.

2 Related Work

Theoretical analyses of the MOEA/D so far are scarce. Most results do not con-
sider the MOEA/D with only standard mutation operators. And those that do
make simplifying assumptions about the decomposition, using problem-specific
knowledge. We also note that we could not find any proofs for how the MO-
EA/D finds its reference point (one of its parameters), which is important in the
general scenarios. If the reference point is mentioned, it is immediately assumed
to be best-possible.

Li et al. [19] conducted the first mathematical analysis of the MOEA/D.
They study the runtime of the algorithm on the classic bi-objective OneMin-
Max (OMM) [14] and LeadingOnesTrailingZeros (LOTZ)3 benchmarks of
size n, that is, the number of objective-function evaluations until the MOEA/D
finds all Pareto optima of the problem. Both benchmarks have a Pareto front
of size n+ 1. The authors consider a decomposition of each problem into n+ 1
subproblems—matching the size of the Pareto front—, and they assume that
the MOEA/D uses standard bit mutation. The authors prove that if the sub-
problems are chosen such that the n+ 1 g-optima correspond one-to-one to the
Pareto front of the problem, then the MOEA/D optimizes OMM in O(n2 log n)
expected function evaluations, and LOTZ in O(n3). We note that this requires a
different subproblem structure for OMM and LOTZ. Moreover, the authors show
that if the MOEA/D uses the commonly used subproblem structure of OMM
for LOTZ, then the g-optima do not cover the entire Pareto front of LOTZ, for
sufficiently large n. In this case, the authors argue that optimization takes a
long time, as the missing solutions need to be found, but these arguments are
not made formal.

Huang and Zhou [15] analyze the MOEA/D when using contiguous hyper-
mutations, a non-standard mutation operator stemming from artificial immune
systems. The authors study two versions of contiguous hypermutation, and they
consider the OMM and the LOTZ benchmarks as well as a deceptive bi-objective
problem and one containing a plateau. Moreover, the authors consider a general
decomposition of each problem into N + 1 subproblems. This decomposition is
always the same and corresponds to the commonly used one, which results in ev-
enly spread g-optima on the Pareto front of OMM, also analyzed by Li et al. [19]
3 We note that the authors call OMM COCZ, and that they consider a version

of LOTZ, called LPTNO, that considers strings over {−1, 1} instead of binary
strings, effectively replacing 0s with −1s. This changes some values for certain pa-
rameters but effectively results in the same bounds, to the best of our knowledge.
Hence, we use the names OMM and LOTZ throughout this section.
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above. Huang and Zhou [15] prove that both MOEA/D variants optimize each
of the four benchmarks in O(Nn2 log n) expected function evaluations. More-
over, they prove the same runtime bounds for the 4-objective versions of OMM
and LOTZ. Overall, their results suggest that a choice of N = O(1) is more
beneficial, as the hypermutation operators are capable to cover larger distances
than standard bit mutation and can thus find Pareto optima efficiently that do
not correspond to g-optima.

Huang et al. [16] analyze a variant of the MOEA/D that employs standard
bit mutation as well as one-point crossover at a rate of 0.5. When performing
crossover, one of the parents is the best solution of the current subproblem g and
the other one is chosen uniformly at random among the non-dominated solutions
of the subproblems closest to g with respect to the Euclidean distance in one of
their parameters. The problem decomposition is always the commonly used one
with equidistant g-optima, as in the two papers discussed above. The authors
consider essentially the same four4 problems as Huang and Zhou [15] above, and
they also consider a general number of N + 1 subproblems. For LOTZ and the
plateau function, the authors proved an expected runtime of O(Nn2) function
evaluations, and an O(Nn log n) bound for OMM and the deceptive function.

Very recently, Do et al. [5] analyzed the MOEA/D on the multi-objective
minimum-weight-base problem, which is an abstraction of classical NP-hard
combinatorial problems. Their MOEA/D variant uses a decomposition based
on weight scalarization, different from the previous works above. The authors
then prove that this variant finds an approximation of the Pareto front of the
problem within expected fixed-parameter polynomial time.

3 Preliminaries

We denote the natural numbers by N, including 0, and the real numbers by R.
For a, b ∈ R, let [a..b] = [a, b] ∩ N and [a] = [1..a].

Let n ∈ N≥1. We consider bi-objective optimization problems, that is, func-
tions f : {0, 1}n → R2. We always assume that the dimension n ∈ N≥1 is given
implicitly. When using big-O notation, it refers to asymptotics in this n. In this
sense, an event occurs with high probability if its probability is at least 1− o(1).

We call a point x ∈ {0, 1}n an individual and f(x) the objective value of x.
For all i ∈ [n] and j ∈ [2], we let xi denote the i-th component of x and fj(x)
the j-th component of f(x). Moreover, let |x|0 denote the number of 0s of x, and
let |x|1 denote its number of 1s.

For all u, v ∈ R2, we say that v weakly dominates u (written v ⪰ u) if and
only if for all i ∈ [2] holds that fi(v) ≥ fi(u). We say that v strictly dominates
u if and only if one of these inequalities is strict. We extend this notation to
individuals, where a dominance holds if and only if it holds for their respective
objective values.

4 The authors actually treat LOTZ and LPTNO as two functions, but the results are
the same, which is why we count it as one problem.
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We consider the maximization of bi-objective functions f , that is, we are
interested in ⪰-maximal elements, called Pareto-optimal individuals. The set of
all objective values that are not strictly dominated, that is, the set F ∗ := {v ∈
R2 | ∃y ∈ {0, 1}n ̸ ∃x ∈ {0, 1}n : v = f(y) ∧ f(x) ≻ v}, is called the Pareto front
of f .

OneMinMax We analyze the OneMinMax (OMM) benchmark [14] prob-
lem, which returns for each individual the number of 0s as the first objective,
and the number of 1s as the second objective. Formally, OMM: x 7→ (|x|0, |x|1).

Note that each individual is Pareto optimal. The Pareto front of OneMin-
Max is {(i, n− i), i ∈ [0..n]}.

Mathematical Tools We use the well-known multiplicative drift theorem [7]
with tail bounds [6]. We present the theorem in a fashion that is sufficient for
our purposes. Throughout this article, if we write for a stopping time T and two
unary formulas P and Q that for all t ∈ N with t < T holds that P (t) ≥ Q(t),
then we mean that for all t ∈ N holds that P (t) · 1{t < T} ≥ Q(t) · 1{t < T},
where 1 denotes the indicator function.

Theorem 1 (Multiplicative drift [7], upper tail bound [6][18, Theo-
rem 2.4.5]). Let n ∈ N, let (Xt)t∈N be a random process over [0..n], and let
T = inf{t ∈ N | Xt = 0}. Moreover, assume that there is a δ ∈ R>0 such
that for all t ∈ N with t < T holds that E[Xt − Xt+1 | Xt] ≥ δXt. Then,
E[T ] ≤ 1

δ (1 + lnn), and for all r ∈ R≥0 holds that Pr[T > 1
δ (r + lnn)] ≤ e−r.

4 The MOEA/D

We analyze the decomposition-based multi-objective evolutionary algorithm (MO-
EA/D; Algorithm 1) [25] for multi-objective optimization. The MOEA/D de-
composes its objective function into a pre-specified number of single-objective
subproblems. These subproblems are optimized in parallel. The MOEA/D main-
tains an archive of the ⪰-best solutions found so far, allowing it to find Pareto-
optimal solutions for the original problem while only explicitly optimizing the
subproblems.

More formally, given, besides others, a bi-objective optimization problem f
as well as a decomposition number N ∈ [n] and a weight vector w ∈ [0, 1]N+1, the
MOEA/D optimizes f by decomposing f into N+1 single-objective subproblems
{gi : {0, 1}n × R2 → R}i∈[0..N ], weighted by w. Each of these subproblems is
subject to minimization (of an error). The MOEA/D maintains a population of
N +1 individuals (xi)i∈[0..N ] ∈ ({0, 1}n)N+1 as well as a reference point z∗ ∈ R2

such that for each i ∈ [0..N ], individual xi is the currently best solution found
for subproblem i with respect to z∗. Ideally, the reference point is a point such
that for all j ∈ [2], value z∗j is optimal for objective fj . To this end, the MO-
EA/D updates z∗ whenever it optimizes a subproblem. Moreover, the algorithm
maintains a set P ⊆ R2 (the Pareto front) of non-dominated objective values.
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Algorithm 1: The MOEA/D [25] maximizing a bi-objective problem
f : {0, 1}n → R2. See also Section 4.

Input: A decomposition number N ∈ N≥1, a weight vector w ∈ [0, 1]N+1,
subproblems {gi}i∈[0..N ], a mutation operator mut: {0, 1}n → {0, 1}n,
and a termination criterion.

1 Initialization: for each i ∈ [0..N ], choose xi uniformly at random from {0, 1}n;
set z∗1 = maxi∈[0..N ] f1(xi), z∗2 = maxi∈[0..N ] f2(xi), and iteratively add f(xi)
to P if there is no j ∈ [0..i− 1] such that xi is weakly dominated by xj ;

2 while stopping criterion is not met do
3 for each subproblem i ∈ [0..N ] do
4 Mutation: y ← mut(xi);
5 Update z∗: set z∗1 ← max(z∗1 , f1(y)), z∗2 ← max(z∗2 , f2(y));
6 Update xi: if gi(y, z∗) ≤ gi(xi, z

∗), then xi ← y;
7 Update P : remove all elements weakly dominated by f(y) from P and

add f(y) to P if it is not weakly dominated by an element of P ;

We consider subproblems that measure the maximum distance to the refer-
ence point, known as Chebyshev approach. That is, for all i ∈ [0..N ], x ∈ {0, 1}n,
and z∗ ∈ R2, it holds that

gi(x, z
∗) = max

(
wi · |z∗1 − f1(x)|, (1− wi) · |z∗2 − f2(x)|

)
. (1)

When minimizing subproblem i ∈ [0..N ], the MOEA/D picks xi as parent
and mutates it according to a given mutation operator. Afterward, it compares
the offspring of the mutation to xi and selects the better one.5

We define the runtime of the MOEA/D on f as the number of function
evaluations of f until the Pareto front P of the algorithm is equal to the Pareto
front F ∗ of f for the first time.

In this article, we consider the MOEA/D with different mutation operators.

Mutation Operators We consider both standard bit mutation as well as power-
law mutation [9]. Let x ∈ {0, 1}n be the input (the parent) of the mutation.
Both operators create a new individual (the offspring) by first copying x and
then adjusting its bit values. Standard bit mutation flips, for all i ∈ [n], bit xi

independently with probability 1/n.
Power-law mutation requires a parameter β > 1 (the power-law exponent)

as input and utilizes the power-law distribution Pow(β, n) over [n], defined as
follows. Let Cβ =

∑
i∈[n] i

−β as well as X ∼ Pow(β, n). For all i ∈ [n], it holds
that Pr[X = i] = i−β/Cβ . The power-law mutation first draws X ∼ Pow(β, n)
(the mutation strength) and then flips an X-cardinality subset of positions in x
chosen uniformly at random.
5 We note that the general MOEA/D allows to specify neighborhoods among the

subproblems, which exchange non-dominated solutions among each other. In this
article, we focus on no exchange.
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The following lemma bounds the probability to mutate an individual with at
most n

4 0s into one with at most n
2 , showing that the probability is proportional

to the distance in the number of 0s. Its proof makes use of the anti-concentration
of the hypergeometric distribution (Lemma 2) around its expectation, which we
discuss after Lemma 1. We note that, due to space restrictions, the proofs of
these results are on arXiv [8].

Lemma 1. Let x ∈ {0, 1}n with u := |x|0 ∈ [0..n4 ] and let v ∈ [u + 1..n2 − 1].
Moreover, let β ∈ R>1, and let mutβ denote the power-law mutation with power-
law exponent β. Then Pr[|mutβ(x)|0 = v] = Ω

(
(v − u)−β

)
.

Hypergeometric distribution. The hypergeometric distribution (Hyp) takes three
parameters, namely, n ∈ N, k ∈ [0..n], and r ∈ [0..n], and it has a support of
[max(0, r+k−n)..min(k, r)]. A random variable X ∼ Hyp(n, k, r) describes the
number of good balls drawn when drawing r balls uniformly at random without
replacement from a set of n balls, out of which k are good. That is, for all
i ∈ [max(0, r + k − n)..min(k, r)] holds Pr[X = i] =

(
k
i

)(
n−k
r−i

)
/
(
n
r

)
. Moreover,

E[X] = r k
n as well as Var[X] = r k

n (1 − k
n )

n−r
n−1 . In the context of power-law

mutation, n represents the number of bits, k the number of specific bits to flip
(for example, 0-bits), and r represents the mutation strength.

The following lemma shows that the hypergeometric distribution has a rea-
sonable probability of sampling values that deviate only by the standard devia-
tion from its expected value.

Lemma 2. Let n ∈ N, k ∈ [0..n2 ], and r ∈ [0.. 34n].
Moreover, let H ∼ Hyp(n, k, r). Then there exists a constant γ ∈ R>0 such

that for all x ∈ [E[H]− 2
√
Var[H],E[H] + 2

√
Var[H]] it holds that Pr[H = x] ≥

γ/
√
Var[H].

5 Runtime Analysis

We analyze the MOEA/D (Algorithm 1) on the OneMinMax (OMM) function
(of dimension n ∈ N≥1) with subproblems spread uniformly across the Pareto
front of OMM, which is the typical way to pick weights [25] and was also used
in the first mathematical analysis of the MOEA/D [19]. To this end, we make
the following assumptions about the input of the algorithm, which we refer to as
the parametrization: We consider decomposition numbers N ∈ [n], we define the
weight vector as w = (i n

N )i∈[0..N ], and we consider the subproblems as defined
in equation (1). In our calculations, we assume that N divides n, as this avoids
rounding, but we note that all results are equally valid if N does not divide n,
although the computations become more verbose, adding little merit. We note
that, due to space restrictions, some of our proofs are only on arXiv [8].

Our main results are the following, bounding the expected runtime for both
standard bit mutation and power-law mutation.
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Corollary 1. Consider the MOEA/D maximizing OMM with standard bit mu-
tation and with the parametrization specified at the beginning of Section 5. Then
its expected runtime is O(nN log n+ nn/(2N)N log n) function evaluations.

Corollary 2. Consider the MOEA/D maximizing OMM with power-law expo-
nent β ∈ R>1 and with the parametrization specified at the beginning of Section 5.
Then its expected runtime is O

(
nN log n+ nβ log n

)
function evaluations.

Both runtime results present two terms, which stem from the two phases into
which we separate our analysis. The first term in the results is an upper bound
of the first phase, which is the number of function evaluations it takes the MO-
EA/D to optimize all subproblems. We call the solutions to these subproblems
g-optima. Our bounds for either mutation operator for the first phase are the
same (Corollary 3). The optimization mainly resembles performing N +1 times
an optimization similar to that of the well-known (1+1) evolutionary algorithm
on the OneMax benchmark function. For N = n, our result for standard bit
mutation recovers the result by Li et al. [19, Proposition 4]. We go into detail
about the analysis in Section 5.1.

The second phase starts immediately after the first phase and stops once
the Pareto front of the MOEA/D covers the Pareto front of OMM. During this
analysis, we only assume that the MOEA/D found the g-optima so far. Thus,
in the worst case, it still needs to find all other Pareto-optima of OMM. To this
end, each such optimum needs to be created via mutation directly from one of
the g-optima, as the latter are not being replaced, due to them being optimal.
Depending on the gap size, that is, the number of Pareto optima between two g-
optima of neighboring subproblems, the mutation operator makes a big difference
on the expected runtime bound. We analyze both mutation operators separately
in Section 5.2.

Regarding Corollary 1, we see that the upper bound for standard bit mutation
only handles values for N ∈ [n2 ..n] without any slowdown in comparison to the
first phase. For smaller values, the upper bound is dominated by the second term
and becomes super-polynomial once N = o(n). In Theorem 2, we prove a lower
bound for the second phase that shows that the expected runtime is also at least
super-polynomial once N = o(n). However, as this lower bound only applies to
the second phase, it may be possible during the whole optimization of OMM
that the algorithm finds most of the OMM-Pareto optima already during the
first phase, although we conjecture this not to happen for sufficiently small N .

For power-law mutation (Corollary 2), the bound for the second phase is
independent of N (Theorem 3). This shows that the power-law mutation picks
up missing Pareto optima fairly quickly. In fact, even for an optimal value of
N = n for standard bit mutation, which results in a bound of O(n2 log n) for the
second phase, the bound for power-law mutation is still smaller by a factor of
nβ−2, which is less than 1 if we further assume that β ∈ (1, 2), which is a typical
range of values used for β in practice. Moreover, for the whole optimization,
the upper bound for power-law mutation is best once N = O(nβ−1), that is,
for smaller values of N . This is in contrast to the upper bound for standard bit
mutation, which gets better for larger values of N .
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Overall, our results suggest that standard bit mutation profits from having
many subproblems, as creating initially skipped solutions may be hard to create
once all subproblems are optimized. In contrast, power-law mutation is slowed
down by optimizing many subproblems in parallel. Instead, it profits from opti-
mizing fewer such subproblems and then creating initially skipped solutions.

In the following, we first analyze the first phase (Section 5.1) and then the
second phase (Section 5.2).

5.1 First Phase

Recall that the first phase considers optimization of OMM only until all sub-
problems are optimized, that is, until all g-optima are found. Our main result
is the following and shows that finding the g-optima is not challenging for the
MOEA/D, regardless of the mutation operator.

Corollary 3. Consider the MOEA/D maximizing OMM with the parametriza-
tion specified at the beginning of Section 5. Then the expected time until P con-
tains all g-optima of OMM is O(nN log n) function evaluations for both standard
bit mutation and power-law mutation with power-law exponent β ∈ R>1.

For our proof of Corollary 3, we split the first phase into two parts. The
first part considers the time until the reference point z∗ is optimal, that is, until
z∗ = (n, n). For this part, only the optimization of g0 and gN is relevant.

The second part starts with an optimal reference point and considers the
time until all g-optima are found. For this part, we consider the optimization of
an arbitrary subproblem and multiply the resulting time by roughly N logN , as
we consider N + 1 subproblems and we wait until all of them are optimized.

In order to prove results that hold for the MOEA/D with standard bit muta-
tion as well as with power-law mutation, we consider a general mutation opera-
tor, which we call general mutation. It takes one parameter p1 ∈ (0, 1] and works
as follows: It chooses to flip exactly one bit in the parent with probability p1
(and it flips any other number with probability 1− p1). Conditional on flipping
exactly one bit, it flips one of the n bits of the parent uniformly at random and
returns the result. Note that standard bit mutation is general mutation with
p1 = (1 − 1

n )
n−1 and that power-law mutation with power-law exponent β is

general mutation with p1 = 1/Cβ . Both of these values are constants.
For the first part, we get the following result.

Lemma 3. Consider the MOEA/D maximizing OMM with the parametrization
specified at the beginning of Section 5 and with general mutation with parame-
ter p1 ∈ (0, 1]. Then the expected time until z∗ = (n, n) holds is O( n

p1
N log n)

function evaluations.

Proof. Let T be the first iteration such that z∗1 = n. Without loss of generality,
we only analyze E[T ], as the analysis for z∗2 = n is identical when changing
all 1s into 0s and vice versa in the individuals in all arguments that follow.
Thus, the expected runtime that we aim to prove is at most 2E[T ] by linearity
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of expectation. Hence, we are left to show that E[T ] = O( n
p1

log n), where the
factor of N in the bound of Lemma 3 stems from the MOEA/D making N + 1
function evaluations per iteration. To this end, we only consider the optimization
of gN .

By equation (1), the choice of the weight vector w, and the definition of OMM,
it follows for all x ∈ {0, 1}n and z ∈ R2 that gN (x, z) = max(|z1 − |x|1|, 0) =
|z1 − |x|1|. In each iteration, let xN denote the best-so-far solution for gN at the
beginning of the iteration, and let y denote its offspring generated via mutation.
Note that, due to how z∗ is initialized and updated, in each iteration, it holds
that z∗1 ≥ max(f1(xN ), f1(y)) = max(|xN |1, |y|1). Thus, if |y|1 > |xN |1, then
g(y, z∗) < g(xN , z), and thus xN is updated to y at the end of the iteration.
Hence, the optimization of gN proceeds like a (1 + 1)-EA-variant with general
mutation optimizing OneMax.

More formally, let (Xt)t∈N such that for each t ∈ N, the value Xt denotes the
number of 0s in xN at the end of iteration t. Note that XT = 0. We aim to apply
the multiplicative drift theorem (Theorem 1) to X with T . By the definition of
the mutation operator, it follows for all t < T that E[Xt −Xt+1 | Xt] ≥ Xt

p1

n ,
since it is sufficient to choose to flip one bit (with probability p1) and then to
flip one of the Xt 0s of xN (at the beginning of the iteration), which are chosen
uniformly at random. Thus, by Theorem 1, it follows that E[T ] ≤ n

p1
(1 + lnn),

concluding the proof. ⊓⊔

For the second part, we get the following result.

Lemma 4. Consider the MOEA/D maximizing OMM with the parametrization
specified at the beginning of Section 5 and with z∗ = (n, n) and with general
mutation with parameter p1 ∈ (0, 1]. Then the expected time until P contains all
g-optima of OMM is O( n

p1
N log n) function evaluations.

Proof. Let i ∈ [0, N ]. We bound with high probability the time T until gi is
optimized, only counting the function evaluations for subproblem i. The result
of Lemma 4 follows then by considering the maximum runtime among all values
of i and multiplying it by N + 1, as we perform N + 1 function evaluations per
iteration and optimize all subproblems in parallel. We bound the maximum with
high probability by taking a union bound over all N+1 different values for i. If the
maximum of T over all i is at least B ∈ R≥0 with probability at most q ∈ [0, 1),
then we get the overall expected runtime by repeating our analysis 1

1−q times in
expectation, as the actual runtime is dominated by a geometric random variable
with success probability 1− q. The overall expected runtime is then O(BN 1

1−q )

Thus, it remains to show that Pr[T > n
p1

(
ln(n) + 2 ln(N + 1)

)
] ≤ (N + 1)−2,

as it then follows that q ≤ (N + 1)−1 and thus 1
1−q ≤ 2. We aim to prove this

probability bound with the multiplicative drift theorem (Theorem 1).
Let (Xt)t∈N be such that for all t ∈ N, value Xt denotes the value of gi(xi, z

∗)
at the beginning of the iteration. Note that XT = 0 and that for all t < T holds
that Xt ∈ [0..n] and that for Xt to reduce (if Xt > 0), it is sufficient to flip one
of the Xt bits that reduce the distance. Thus, by the definition of the mutation
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operator, it follows that E[Xt −Xt+1 | Xt] ≥ Xt
p1

n . Overall, by (Theorem 1), it
follows that Pr[T > n

p1

(
ln(n)+2 ln(N+1)

)
] ≤ (N+1)−2. The proof is concluded

by noting that N ≤ n and thus ln(n) + 2 ln(N + 1) = O(log n). ⊓⊔

By the linearity of expectation, the expected time of the first phase is the sum
of the expected runtimes of both parts. Moreover, since standard bit mutation
and power-law mutation are both a general mutation with p1 = Θ(1), we can
omit p1 in the asymptotic notation. Overall, we obtain Corollary 3.

5.2 Second Phase

Recall that the second phase assumes that the MOEA/D starts with the g-
optima as its solutions to the subproblems, and it lasts until all OMM-Pareto
optima are found.

For this phase, the actual objective function is not very important. All that
matters is that if the solutions (xi)i∈[0..N ] of the MOEA/D are such that for all
i ∈ [0..N ] holds that |xi|1 = i n

N , then xi is optimal for gi. We refer to such a
situation as evenly spread g-optima.

Since there is a drastic difference between the runtimes of standard bit mu-
tation and power-law mutation, we analyze these two operators separately.

Standard Bit Mutation Since the standard bit mutation is highly concen-
trated around flipping only a constant number of bits, it does not perform well
when it needs to fill in larger gaps. The following theorem is our main result,
and it proves an upper and a lower bound for the expected runtime of the second
phase. These bounds are not tight, but they show that the runtime is already
super-polynomial once N = o(n).

Theorem 2. Consider the MOEA/D maximizing a bi-objective function with
evenly spread g-optima and with standard bit mutation, using the parametrization
specified at the beginning of Section 5. Moreover, assume that n

2N is integer
and that the algorithm is initialized with (xi)i∈[0..N ] such that for all i ∈ [0..N ]
holds that |xi|1 = i · n

N . Then the expected runtime until for each j ∈ [0..n]

at least one individual with j 0s is created via mutation is O(nn/(2N)N log n) ∩
Ω(n(1/2)(n/N+1)

√
N2−n/N ) function evaluations.

Power-Law Mutation The power-law mutation allows to create individuals
at larger distance from its parent with far higher probability than standard bit
mutation. Our main result is the following theorem, which shows that the MO-
EA/D with power-law mutation optimizes the second phase of OMM efficiently.
As before, we state this theorem in a more general fashion.

Theorem 3. Consider the MOEA/D optimizing a bi-objective function with ev-
enly spread g-optima, using the parametrization specified at the beginning of Sec-
tion 5. Moreover, assume that the algorithm is initialized with {i · n

N }i∈[0..N ].
Then the expected runtime until for each j ∈ [0..n] at least one individual
with j 0s is created via mutation is O(nβ log n).
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The bound of Theorem 3 does not depend on N , in contrast to the bound on
the first phase (Corollary 3). The reason for our bound not depending on N is
roughly that the effort to fill in a gap between to g-optima is inversely propor-
tional to the cost of an iteration, namely, N+1. Thus, a smaller value of N leads
to faster iterations but more iterations spend to fill the gaps, and vice versa.

Our (omitted) proof of Theorem 3 makes use of the following lemma, which
bounds the probability to create a specific individual from any of the g-optima
in a single iteration of the MOEA/D.

Lemma 5. Consider a specific iteration during the optimization of the MO-
EA/D of a bi-objective function with evenly spread g-optima, using the parame-
trization specified at the beginning of Section 5. Moreover, assume that the algo-
rithm is initialized with {i · n

N }i∈[0..N ]. Last, let u ∈ [0..n2 ]. Then the probability
that an individual with u 0-bits is produced during mutation in this iteration is
Ω
(
N(n−β)

)
.

Proof. Let i be such that ni/N < u ≤ n(i+1)/N . Clearly, i ≤ N/2, as u ≤ n/2.
Note that are at least i/4 values of j ∈ [0..N/4] such that jn/N ≤ n/4. By
Lemma 1, each individual xj mutates into an individual with u 0-bits with
probability Ω

((
(i+1)n/N

)−β). Because there are Ω(i) such possible mutations
during an iteration, the probability of generating at least one during an iteration
is Ω

(
i1−βn−β ·Nβ

)
= Ω(N

(
N
i

)β−1
n−β) = Ω

(
Nn−β

)
, concluding the proof. ⊓⊔

6 Conclusion

We studied the impact of the decomposition number N of the MOEA/D [25] on
the classic multi-objective benchmark OneMinMax (OMM) [14] theoretically.
Our analyses considered subproblems that are evenly spread out on the Pareto
front of OMM. Especially, we studied the expected runtime when starting with
all optima of the subproblems (the g-optima) and requiring to find the remaining
Pareto optima of OMM.

One of our theoretical results (Theorem 3) shows that using power-law muta-
tion allows the MOEA/D to efficiently find the entire Pareto front of OMM even
if it is initialized only with the g-optima. Interestingly, this bound is independent
of the number of problems N and thus the number of initially missing Pareto
optima between two neighboring g-optima. Together with our general bound for
finding all g-optima (Corollary 3), this shows that the MOEA/D with power-law
mutation always optimizes OMM efficiently (Corollary 2). Depending on N , our
total-runtime bound ranges from O(n2 log n) in the worst case to O(nβ log n)
in the best case of N = O(nβ−1). This suggests that the MOEA/D is, in fact,
slowed down when using many subproblems, despite large values of N implying
that the subproblems cover the Pareto front of OMM better than smaller values.
The reason is that a large value of N roughly translates to optimizing the same
problem N times. With the power-law mutation, it is better to optimize fewer
and therefore more diverse subproblems and to then find the remaining Pareto
optima efficiently via the power-law mutation.



14 Benjamin Doerr, Martin S. Krejca, and Noé Weeks

For standard bit mutation, when starting with all g-optima, we show (Theo-
rem 2) that the MOEA/D is not capable of efficiently finding all Pareto optima
if N is sufficiently small, as our lower bound is super-polynomial for N = o(n).
Nonetheless, for N = Θ(n), the expected runtime of the MOEA/D with standard
bit mutation is polynomial in this part. This translates to an overall polynomial
expected runtime (Corollary 1) for N = Θ(n) that it is even O(n2 log n) for
N ∈ [n2 ..n], matching our worst-case bound with power-law.

Overall, our results suggest a clear benefit of power-law mutation over stan-
dard bit mutation of the MOEA/D in the setting we considered. Not only is the
power-law variant faster, it is also far more robust to the choice of N and thus
to how the problem is decomposed.

For future work, it would be interesting to improve the upper bounds or prove
matching lower bounds. A similar direction is to consider an exchange of best-
so-far solutions among the subproblems. The classic MOEA/D supports such
an exchange, which could potentially lead to finding the g-optima more quickly.
Another promising direction is the study of different problem decompositions,
for example, not-evenly spread subproblems or subproblem definitions different
from equation (1). Last, we considered the OMM setting, with a stronger gen-
eralization some of our results (Theorems 2 and 3). However, it is not clear to
what extent the benefit of power-law mutation carries over to problems with an
entirely different structure, such as LeadingOnesTrailingZeros.
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