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ABSTRACT

With apparently all research on estimation-of-distribution algo-
rithms (EDAs) concentrated on pseudo-Boolean optimization and
permutation problems, we undertake the first steps towards using
EDAs for problems in which the decision variables can take more
than two values, but which are not permutation problems. To this
aim, we propose a natural way to extend the known univariate
EDAs to such variables. Different from a naïve reduction to the
binary case, it avoids additional constraints.

Since understanding genetic drift is crucial for an optimal
parameter choice, we extend the known quantitative analysis of
genetic drift to EDAs for multi-valued variables. Roughly speaking,
when the variables take 𝑟 different values, the time for genetic drift
to become critical is 𝑟 times shorter than in the binary case. Con-
sequently, the update strength of the probabilistic model has to be
chosen 𝑟 times lower now.

To investigate how desired model updates take place in this
framework, we undertake a mathematical runtime analysis on
the 𝑟 -valued LeadingOnes problem. We prove that with the right
parameters, the multi-valued UMDA solves this problem efficiently
in 𝑂 (𝑟 log(𝑟 )2𝑛2 log(𝑛)) function evaluations.

Overall, our work shows that EDAs can be adjusted to multi-
valued problems and gives advice on how to set their parameters.
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1 INTRODUCTION

Estimation-of-distribution algorithms (EDAs [40]) are randomized
search heuristics that evolve a probabilistic model of the search
space (that is, a probability distribution over the search space). In
contrast to solution-based algorithms such as classic evolutionary
algorithms, which only have the choice between the two extreme
decisions of keeping or discarding a solution, EDAs can take into
account the information gained from a function evaluation also to
a smaller degree. This less short-sighted way of reacting to new
insights leads to several proven advantages, e.g., that EDAs can be
very robust to noise [25, 34]. Since the evolved distributions often
have a larger variance, EDAs can also be faster in exploring the
search space, in particular, when it comes to leaving local optima,
where they have been shown to significantly outperform simple
evolutionary algorithms [3, 10, 27, 48].

In contrast to classic evolutionary algorithms, which have been
extensively used for various types of search spaces, to the best of
our knowledge, EDAs so far have been only used for problems with
binary decision variables and for permutation problems.

Since this might be a lost opportunity, we undertake the first
steps towards also using EDAs for problems with decision variables
taking more than two values (but different from permutation prob-
lems). We first note that the strong dependencies that distinguish a
permutation problem from just a problem defined on {1, . . . , 𝑛}𝑛
have led to very particular EDAs for permutation problems. We
therefore did not see how to gain any insights from these results
for general multi-valued problems.

We therefore define univariate EDAs for multi-valued decision
variables from scratch, that is, without building on any related
existing work. We note that, in principle, one could transform a
multi-valued problem into a binary one by having, for each variable
taking 𝑟 different values, 𝑟 binary variables, each indicating that
the variable has the corresponding value. This would lead to a
constrained optimization problem with the additional constraints
that exactly one of these variables is one. This might be a feasible
approach, but since such constraints generally impose additional
difficulties, we propose a way that does not need an additional
treatment of constraints (in other words, we set up our EDAs in a
way that these constraints are satisfied automatically).

We defer the details to Section 4.2 and only sketch the rough idea
of our approach here. For each variable taking 𝑟 values, without
loss of generality the values {0, . . . , 𝑟 − 1}, we have 𝑟 sampling
frequencies 𝑝0, 𝑝1, . . . , 𝑝𝑟−1 that always add up to 1. When sam-
pling a value for the variable, we do this mutually exclusively, that
is, the variable takes the value 𝑖 with probability 𝑝𝑖 . This mutual
exclusion in the sampling immediately gives that the frequency
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update does not violate the property that the frequencies add up
to 1. Consequently, this appears to be a convenient (and in fact
very natural) set-up for a multi-valued EDA. We note that there are
some non-trivial technical questions to be discussed when working
with frequencies borders, such as

[ 1
𝑛 , 1 −

1
𝑛

]
in the classical binary

case, but we also come up with a simple and natural solution for
this aspect.

As a first step towards understanding this multi-valued EDA
framework, we study how prone it is to genetic drift. Genetic drift
in EDAs means that sampling frequencies not only move because
of a clear signal induced by the objective function but also due
random fluctuations in the sampling process. This has the negative
effect that even in the complete absence of a fitness signal, the EDA
develops a preference for a particular value of this decision variable.
From a long sequence of works, see Section 5 for the details, it is
well understood how the time for this genetic-drift effect to become
relevant depends on the parameters of the EDAs [20]. Consequently,
if one plans to run the EDA for a certain number of iterations, then
this quantification tells the user how to set the parameters as to
avoid genetic drift within this time period.

Since such a quantification is apparently helpful in the applica-
tion of EDAs, we first extend this quantification to multi-valued
EDAs. When looking at the relatively general tools used Doerr and
Zheng [20], this appears straightforward, but it turns out that such
a direct approach does not give the best possible result. The reason
is that for multi-valued decision variables, the martingale describ-
ing a frequency of a neutral variable over time has a lower variance
(in the relevant initial time interval). To profit from this, we use a
fairly technical martingale concentration result of McDiarmid [37],
which, to the best our our knowledge, has not been used before in
the analysis of randomized search heuristics. Thanks to this result,
we show that the time for genetic drift to become relevant is (only)
by a factor of 𝑟 lower than in the case of binary decision variables
(Theorem 5.3).

We use this result to conduct a mathematical runtime analysis
of the multi-valued univariate marginal distribution algorithm
(𝑟 -UMDA) on the 𝑟 -valued LeadingOnes problem in the regime
with low genetic drift, that is, the range of parameters where the
probability that a frequency gets close to a border goes asymptoti-
cally to zero. This problem is interesting since a typical optimization
process optimizes the variable sequentially in a fixed order. Con-
sequently, in a run of an EDA on LeadingOnes, there is typically
always one variable with undecided sampling frequency that has a
strong influence on the fitness. Hence, this problem is suitable to
study how fast an EDA reacts to a strong fitness signal.

Our runtime analysis shows that also in the multi-valued setting,
EDAs can react fast to a strong fitness signal. Since now the fre-
quencies start at the value 1

𝑟 , the time to move a frequency is a little
longer, namely Θ(𝑟 log(𝑟 )) instead of constant when the sample
size 𝜆 is by a sufficient constant factor larger than the selection
size 𝜇. This still appears to be a small price for having to deal with 𝑟
decision alternatives. This larger time also requires that the model
update has to be chosen more conservatively as to prevent genetic
drift (for this, we profit from our analysis of genetic drift), leading
to another log(𝑟 ) factor in the runtime. In summary, we prove that
the UMDA can optimize the 𝑟 -valued LeadingOnes problem in

time 𝑂 (𝑟 (log(𝑟 ))2𝑛2 log(𝑛)) (Theorem 6.1), a bound that agrees
with the one shown Doerr and Krejca [14] for the classical case
𝑟 = 2.

Overall, our work shows that 𝑟 -valued EDAs can be effective
problem solvers, and it detects no reason for the up-to-now hesita-
tion to use such EDAs in practice.

This work is organized as follows. We describe previous works in
the following section and set the notation in the subsequent section.
In Section 4, we propose our multi-valued EDA framework. Our
main technical results, the analysis of genetic drift and the runtime
analysis for the LeadingOnes problem, can be found in Sections 5
and 6. The paper ends with a short conclusion.

2 RELATEDWORK

Since the technical sections of this work contain three relatively
independent topics—the definition of multi-valued EDAs, genetic
drift, and a runtime analysis on the LeadingOnes benchmark—we
present the previous works relevant to these topics in the respective
sections. We hope that this eases the reading of this paper.

This being a theoretical work, we do not discuss in detail how
EDAs have been successfully used to solve real-worlds optimization
problems and refer to the surveys [32, 40].

Theoretically oriented works have accompanied the develop-
ment and use of EDAs for a long time, see, e.g., the early works on
genetic drift described in Section 5 or the report [4]. The first math-
ematical runtime analysis of an EDA was conducted by Droste [22].
This seminal work, showing an asymptotically tight bound for the
runtime of the compact genetic algorithm on the OneMax bench-
mark, already contains many ideas that are now frequently used in
the runtime analysis of EDAs. It also observed that EDAs optimize
problems in a very different manner, visible from the different run-
times shown on two linear functions, which contrasts the famous
analysis of how the (1 + 1) EA optimizes linear functions by Drose,
Jansen, and Wegener [23]. Interestingly, apart from the works of
one research group [5–7], Droste’s ground-breaking work [22] was
not followed up by other runtime analyses for around ten years.
Since then, starting with works like [8, 24, 31, 45], the runtime
analysis of EDAs has become very active and has, despite the tech-
nical challenges in analyzing such complex algorithms, produced
many fundamental results and a good understanding of some of
the working principles of EDAs. We refer to the recent survey [30]
for more details.

We note that there is a decent number of theoretical works on
classic evolutionary algorithm for 𝑟 -valued decision variables [11,
12, 17, 18, 29, 36, 49], however, we did not see how they would help
us with our research question.

3 PRELIMINARIES

We denote by N the set of all natural numbers, including 0, and
by R the set of all real numbers. Additionally, for 𝑎, 𝑏 ∈ N, let
[𝑎..𝑏] = [𝑎, 𝑏] ∩N, and let [𝑎] = [1..𝑎]. When we say that a random
process is a martingale and do not specify a filtration, then we mean
that the process is a martingale with respect to its natural filtration.
Further, for all 𝑛 ∈ N≥1 and 𝑝 ∈ R𝑛≥0, we denote the 1-norm of 𝑝 ,
that is, the sum of the entries of 𝑝 , by ∥𝑝 ∥1.
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Let 𝑛 ∈ N≥1 and 𝑟 ∈ N≥2. We consider the maximization of
functions of the form 𝑓 : [0..𝑟 − 1]𝑛 → R, which we call r-valued
fitness functions. Whenever wemention an 𝑟 -valued fitness function,
we implicitly assume that its dimension 𝑛 and the cardinality 𝑟 of
its domain are given. We call each 𝑥 ∈ [0..𝑟 − 1]𝑛 an individual,
and we call 𝑓 (𝑥) the fitness of 𝑥 .

We say that a random variable𝑌 stochastically dominates another
random variable 𝑋 , not necessarily defined on the same probability
space, denoted by 𝑋 ⪯ 𝑌 , if and only if for all 𝜆 ∈ R, we have
Pr[𝑋 ≤ 𝜆] ≥ Pr[𝑌 ≤ 𝜆].

4 MULTI-VALUED EDAS

In this section, we generalize the three common univariate EDAs for
binary decision variables to multi-valued decision variables. We call
these variantsmulti-valued EDAs. To this end, we briefly review the
binary case in Section 4.1 before proposing our framework in Sec-
tion 4.2. In our presentation, we concentrate on the UMDA [38] and
then briefly discuss the generalizations of the other two common
univariate EDAs.

4.1 Binary EDAs

Binary EDAs refer to EDAs for pseudo-Boolean optimization, that
is, the optimization of functions 𝑓 : {0, 1}𝑛 → R. This setting is a
special case of optimizing 𝑟 -valued fitness functions, for 𝑟 = 2. The
probabilistic model of univariate EDAs in this domain is a length-𝑛
vector 𝑝 of probabilities (the frequency vector), where the probability
(the frequency) at position 𝑖 ∈ [𝑛] denotes the probability that a
sample has a 1 at position 𝑖 , independent of the other positions.
Formally, for all solutions 𝑥 ∈ {0, 1}𝑛 constructed by the frequency
vector and all 𝑦 ∈ {0, 1}𝑛 (assuming that 00 = 1), it holds that
Pr[𝑥 = 𝑦] = ∏

𝑖∈[𝑛] (𝑝𝑖 𝑦𝑖 · (1 − 𝑝𝑖 )1−𝑦𝑖 ).
Binary EDAs commonly take at least a parameter 𝜆 ∈ N≥1 (the

population size) as well as a pseudo-Boolean fitness function 𝑓 as
input and optimize 𝑓 as follows: Initially, the frequency vector 𝑝
models the uniform distribution, that is, each frequency is 1/2.
Then, in an iterative manner, the algorithm produces 𝜆 samples
(the population) independently via 𝑝 , and it updates 𝑝 based on
these samples and their fitness. This process is repeated until a
user-defined termination criterion is met.

In order to prevent frequencies from only producing a single
value (which is the case if a frequency is 0 or 1), after the frequency
vector is updated, it is typically restricted to the interval [1/𝑛, 1 −
1/𝑛]. That is, if the frequency is less than 1/𝑛, it is set to 1/𝑛, and if
it is greater than 1 − 1/𝑛, it is set to 1 − 1/𝑛. The extreme values
of this interval are referred to as the borders, and the value 1/𝑛 is
called the margin of the algorithm.

UMDA. Algorithm 1 shows the univariate marginal distribution

algorithm (UMDA) [38], which is a well established binary EDA,
both in the empirical [40] and the theoretical [16] domain. Next
to the population size 𝜆 ∈ N≥1 and a fitness function, the UMDA
also utilizes a parameter 𝜇 ∈ [𝜆], called the selection size. In each
iteration, the UMDA selects 𝜇 out of the 𝜆 samples that have the
best fitness (breaking ties uniformly at random). Each frequency is
then set to the relative frequency of 1s at the respective position
(line 6). Afterwards, the frequencies are restricted to lie within the
frequency borders.

Algorithm 1: The UMDA [38] with parameters 𝜆 ∈ N≥1
and 𝜇 ∈ [𝜆], maximizing a pseudo-Boolean fitness func-
tion 𝑓
1 𝑡 ← 0;
2 𝑝 (0) ← ( 12 )𝑖∈[𝑛] ;
3 repeat // iteration 𝑡

4 𝑃 (𝑡 ) ← population of 𝜆 individuals, independently
sampled from 𝑝 (𝑡 ) ;

5 {𝑥 (𝑡,𝑘 ) }𝑘∈[𝜇 ] ← multiset of 𝜇 individuals from 𝑃 (𝑡 )

with the highest fitness (breaking ties uniformly at
random);

6 for 𝑖 ∈ [𝑛] do 𝑝 (𝑡+1)
𝑖

← 1
𝜇

∑
𝑘∈[𝜇 ] 𝑥

(𝑡,𝑘 )
𝑖

;
7 𝑝 (𝑡+1) ← values of 𝑝 (𝑡+1) , restricted to

[ 1
𝑛 , 1 −

1
𝑛

]
;

8 𝑡 ← 𝑡 + 1;
9 until termination criterion met;

4.2 The Multi-Valued EDA Framework

We propose a framework for EDAs for optimizing 𝑟 -valued fitness
functions. We call the resulting EDAs 𝑟 -valued EDAs. Our frame-
work closely follows the one presented in Section 4.1. That is, an
𝑟 -valued EDA starts with a probabilistic model initialized to rep-
resent the uniform distribution, and it then generates iteratively
𝜆 ∈ N≥1 samples independently, based on its model. This model is
then updated and afterwards restricted such that it does not contain
the extreme probabilities 0 and 1.

The difference to the framework for binary EDAs lies in how the
probabilistic model of 𝑟 -valued EDAs is represented and how it is
restricted from containing extreme probabilities.

The probabilistic model. The probabilistic model of an 𝑟 -
valued EDA is an 𝑛 × 𝑟 matrix (𝑝𝑖, 𝑗 ) (𝑖, 𝑗 ) ∈ [𝑛]×[0..𝑟−1] (the fre-

quency matrix), where each row 𝑖 ∈ [𝑛] forms a vector 𝑝𝑖 B
(𝑝𝑖, 𝑗 ) 𝑗∈[0..𝑟−1] (the frequency vector at position 𝑖) of probabilities
(the frequencies) that sum to 1. As in the binary case, samples from 𝑝

are created independently for each position. When creating an in-
dividual 𝑥 ∈ [0..𝑟 − 1]𝑛 , then, for all 𝑖 ∈ [𝑛] and all 𝑗 ∈ [𝑟 − 1], the
probability that 𝑥𝑖 has value 𝑗 is 𝑝𝑖, 𝑗 . Formally, for all𝑦 ∈ [0..𝑟 −1]𝑛 ,
it holds that Pr[𝑥 = 𝑦] = ∏

𝑖∈[𝑛]
∏
𝑗∈[0..𝑟−1] (𝑝𝑖, 𝑗 )1𝑦𝑖=𝑗 , where we

assume that 00 = 1.
The frequency matrix 𝑝 is initialized such that each frequency

is 1/𝑟 , representing the uniform distribution. When performing an
update to 𝑝 , it is important to make sure that each row sums to 1.

Restricting the probabilistic model. The aim of restricting
the frequency matrix 𝑝 is to clamp all frequencies, for some values
𝑎, 𝑏 ∈ [0, 1] (the lower and upper border, respectively) with 𝑎 ≤
1/𝑟 ≤ 𝑏, to [𝑎, 𝑏]. That is, if a frequency 𝑞 is less than 𝑎, it should
be 𝑎 after the restriction, and if it is greater than 𝑏, it should be 𝑏
afterwards. For such a restriction, it is important for each row
𝑖 ∈ [𝑛] that the frequency vector 𝑝𝑖 sums to 1 after the restriction.
This process is not straightforward. If 𝑞 ∉ [𝑎, 𝑏], and 𝑞 is updated to
𝑞′ ∈ [𝑎, 𝑏], then this creates a change in probability mass of 𝑞′ − 𝑞.
Hence, simply updating 𝑞 to 𝑞′ can result in all frequencies of 𝑝𝑖
summing to a value other than 1 after the restriction.
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We address the problem above as follows. To this end, let 𝑎, 𝑏 ∈
[0, 1] be the lower and upper border, respectively, with 𝑎 ≤ 1/(𝑟 −
1) − 1/(𝑟 (𝑟 − 1)) and 𝑏 = 1 − 𝑎(𝑟 − 1). Further, let 𝑖 ∈ [𝑛] be a row
of the frequency matrix we wish to restrict, let 𝑝𝑖 ∈ [0, 1]𝑛 be the
frequency vector after the update but before the restriction (with
∥𝑝𝑖 ∥1 = 1), and let 𝑝+

𝑖
∈ [𝑎, 𝑏]𝑛 be the vector 𝑝𝑖 after clamping it

to [𝑎, 𝑏] but before taking care that the frequencies sum to 1. We
define the restriction of 𝑝𝑖 to [𝑎, 𝑏], denoted by 𝑝′

𝑖
, to be the vector

where each frequency’s share above 𝑎 is reduced by the surplus
of the probability relatively to the share above 𝑎. Formally, for all
𝑗 ∈ [0..𝑟 − 1], it holds that

𝑝′𝑖, 𝑗 = (𝑝
+
𝑖, 𝑗 − 𝑎)

1 − 𝑎𝑟
∥𝑝+
𝑖
− (𝑎)𝑘∈[𝑛] ∥1

+ 𝑎. (1)

Note that 1 − 𝑎𝑟 = ∥𝑝𝑖 − (𝑎)𝑘∈[𝑛] ∥1 denotes how much probability
mass should be in the frequency vector, above 𝑎. The resulting
frequency vector 𝑝′

𝑖
sums to 1, since∑︁

𝑗∈[0..𝑟−1] 𝑝
′
𝑖, 𝑗 =

1 − 𝑎𝑟
∥𝑝+
𝑖
− (𝑎)𝑘∈[𝑛] ∥1

∑︁
𝑗∈[0..𝑟−1] (𝑝

+
𝑖, 𝑗 − 𝑎)

+
∑︁

𝑗∈[0..𝑟−1] 𝑎

= 1 − 𝑎𝑟 + 𝑎𝑟 = 1.
Further, each frequency is at least 𝑎, since this value is added at the
end of eq. (1) and since 𝑝+

𝑖, 𝑗
≥ 𝑎 by definition of 𝑝+

𝑖
. Last, since each

frequency is at least 𝑎 after restricting, the largest a frequency can
be is 1 − (𝑟 − 1)𝑎 = 𝑏.

In order to disallow the extreme frequencies 0 and 1 but to stay
close to the binary case, we propose to choose the upper border
as 1 − 1/𝑛. Following our ideas above, this implies that the lower
border is 1/((𝑟 − 1)𝑛). This is consistent with the binary case but
generalizes to the 𝑟 -valued domain.

We say that an EDA is without margins if and only if the lower
border is 0 and the upper border is 1. That is, the restriction of the
frequencies does not take place.
𝑟 -UMDA. We generalize the UMDA (Algorithm 1) to the

𝑟 -UMDA (Algorithm 2), utilizing our framework. Like the UMDA,
the 𝑟 -UMDA has three parameters, namely the population size
𝜆 ∈ N≥1, the selection size 𝜇 ∈ [𝜆], and the 𝑟 -valued fitness func-
tion 𝑓 . It also updates its frequencies analogously to the UMDA by
choosing 𝜇 best individuals from the population of size 𝜆 and then
setting each frequency at position 𝑖 ∈ [𝑛] for value 𝑗 ∈ [0..𝑟 − 1]
to the relative frequency of value 𝑗 at position 𝑖 among the 𝜇 best
individuals (line 7). We note that this results in a valid frequency
vector for each row 𝑖 ∈ [𝑛], since∑︁

𝑗∈[0..𝑟−1]
1
𝜇

∑︁
𝑘∈[𝜇 ] 1𝑥 (𝑡,𝑘 )𝑖

=𝑗

=
1
𝜇

∑︁
𝑘∈[𝜇 ]

∑︁
𝑗∈[0..𝑟−1] 1𝑥 (𝑡,𝑘 )𝑖

=𝑗
=

1
𝜇

∑︁
𝑘∈[𝜇 ] 1 = 1.

𝑟-PBIL. Another popular univariate EDA is population-based
incremental learning (PBIL [2]). It operates very similarly to the
UMDA, with the only difference being in how it performs an update.
In contrast to the UMDA, the PBIL does not set a frequency to the
relative frequency of respective values at a position but, instead,
computes the convex combination of the relative frequency with
the current frequency value in its frequency vector. To this end, it
utilizes a parameter 𝜌 ∈ [0, 1], the scaling factor.

Algorithm 2: The 𝑟 -UMDA with parameters 𝜆 ∈ N≥1 and
𝜇 ∈ [𝜆], maximizing an 𝑟 -valued fitness function 𝑓
1 𝑡 ← 0;
2 𝑝 (0) ← ( 1𝑟 ) (𝑖, 𝑗 ) ∈ [𝑛]×[0..𝑟−1] ;
3 repeat // iteration 𝑡

4 𝑃 (𝑡 ) ← population of 𝜆 individuals, independently
sampled from 𝑝 (𝑡 ) ;

5 {𝑥 (𝑡,𝑘 ) }𝑘∈[𝜇 ] ← multiset of 𝜇 individuals from 𝑃 (𝑡 )

with the highest fitness (breaking ties uniformly at
random);

6 for (𝑖, 𝑗) ∈ [𝑛] × [0..𝑟 − 1] do
7 𝑝

(𝑡+1)
𝑖, 𝑗

← 1
𝜇

∑
𝑘∈[𝜇 ] 1𝑥 (𝑡,𝑘 )

𝑖
=𝑗
;

8 𝑝 (𝑡+1) ← restriction of 𝑝 (𝑡+1) to
[

1
(𝑟−1)𝑛 , 1 −

1
𝑛

]
, as

described in eq. (1);
9 𝑡 ← 𝑡 + 1;

10 until termination criterion met;

Algorithm 3: The 𝑟 -PBIL with parameters 𝜆 ∈ N≥1,
𝜇 ∈ [𝜆], and 𝜌 ∈ [0, 1], maximizing an 𝑟 -valued fitness
function 𝑓
1 𝑡 ← 0;
2 𝑝 (0) ← ( 1𝑟 ) (𝑖, 𝑗 ) ∈ [𝑛]×[0..𝑟−1] ;
3 repeat // iteration 𝑡

4 𝑃 (𝑡 ) ← population of 𝜆 individuals, independently
sampled from 𝑝 (𝑡 ) ;

5 {𝑥 (𝑡,𝑘 ) }𝑘∈[𝜇 ] ← multiset of 𝜇 individuals from 𝑃 (𝑡 )

with the highest fitness (breaking ties uniformly at
random);

6 for (𝑖, 𝑗) ∈ [𝑛] × [0..𝑟 − 1] do
7 𝑝

(𝑡+1)
𝑖, 𝑗

← (1 − 𝜌)𝑝 (𝑡 )
𝑖, 𝑗
+ 𝜌𝜇

∑
𝑘∈[𝜇 ] 1𝑥 (𝑡,𝑘 )

𝑖
=𝑗
;

8 𝑝 (𝑡+1) ← restriction of 𝑝 (𝑡+1) to
[

1
(𝑟−1)𝑛 , 1 −

1
𝑛

]
, as

described in eq. (1);
9 𝑡 ← 𝑡 + 1;

10 until termination criterion met;

We generalize the PBIL to the 𝑟 -PBIL (Algorithm 3). Each fre-
quency vector of the 𝑟 -PBIL sums to 1 (before the restriction) be-
cause it is a convex combination of the 𝑟 -UMDA’s update (which
sums to 1) and the current frequency vector (which also sums to 1).
𝑟 -cGA. Another popular univariate EDA is the compact genetic

algorithm (cGA [26]). The cGA only has a single parameter𝐾 ∈ R>0,
the hypothetical population size, and it creates only two samples
each iteration. It ranks these two samples by fitness and then adjusts
each frequency by 1

𝐾
such that the frequency of the value of the

better sample is increased and that of the worse sample decreased.
We generalize the cGA to the 𝑟 -cGA (Algorithm 4). Each fre-

quency vector of the 𝑟 -cGA sums to 1 after the update (before the
restriction) because exactly one entry is increased by 1

𝐾
and exactly
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Algorithm 4: The 𝑟 -cGA with parameter 𝐾 ∈ R>0, maxi-
mizing an 𝑟 -valued fitness function 𝑓
1 𝑡 ← 0;
2 𝑝 (0) ← ( 1𝑟 ) (𝑖, 𝑗 ) ∈ [𝑛]×[0..𝑟−1] ;
3 repeat // iteration 𝑡

4 𝑥 (𝑡,1) , 𝑥 (𝑡,2) ← two individuals, independently sampled
from 𝑝 (𝑡 ) ;

5 𝑦 (𝑡,1) ← individual with the higher fitness from
{𝑥 (𝑡,1) , 𝑥 (𝑡,2) } (breaking ties uniformly at random);

6 𝑦 (𝑡,2) ← individual from {𝑥 (𝑡,1) , 𝑥 (𝑡,2) } \ {𝑦 (𝑡,1) };
7 for (𝑖, 𝑗) ∈ [𝑛] × [0..𝑟 − 1] do
8 𝑝

(𝑡+1)
𝑖, 𝑗

← 𝑝
(𝑡 )
𝑖, 𝑗
+

(
1
𝑦
(𝑡,1)
𝑖,𝑗

=𝑗
− 1

𝑦
(𝑡,2)
𝑖,𝑗

=𝑗

) 1
𝐾
;

9 𝑝 (𝑡+1) ← restriction of 𝑝 (𝑡+1) to
[

1
(𝑟−1)𝑛 , 1 −

1
𝑛

]
, as

described in eq. (1);
10 𝑡 ← 𝑡 + 1;
11 until termination criterion met;

one value is decreased by this amount (noting that this can be the
same frequency, in which case no change is made overall).

5 GENETIC DRIFT

We prove an upper bound on the effect of genetic drift for 𝑟 -valued
EDAs (Theorem 5.3) in a similar fashion as Doerr and Zheng [20] for
binary decision variables. This allows us to determine parameter val-
ues for EDAs that avoid the usually unwanted effect of genetic drift.
The main novelty of our result over that by Doerr and Zheng [20] is
that we use a slightly technical martingale concentration result due
to McDiarmid [37] that allows one to profit from small variances.
Such an approach is necessary. If one directly applies the methods
presented by Doerr and Zheng [20], one obtains estimates for the
genetic drift times that are by a factor of Θ(𝑟 ) lower than ours (that
is, the genetic drift effect appears 𝑟 times stronger).

In Sections 5.1 and 5.2, we first present a general introduction
to the phenomenon of genetic drift. In Section 5.3, we then prove
a concentration result on neutral positions (Theorem 5.3). Last, in
Section 5.4, we consider the setting of weak preference.

Due to space limitations, some of our proofs are omitted in this
paper. They can be found in the preprint [28].

5.1 Introduction to Genetic Drift

In EDAs, genetic drift means that a frequency does not reach or
approach one of the extreme values 0 or 1 because of a clear signal
from the objective function but due to random fluctuations from
the stochasticity of the process.

While there is no proof that genetic drift is always problematic,
the general opinion is that this effect should better be avoided. This
is supported by the following observations and results: (i) When
genetic drift is strong, many frequencies (in the binary case) ap-
proach the extreme values 0 and 1 and, consequently, the behavior
of the EDA comes close to the one of a mutation-based EA, so
the advantages of an EDA might be lost. (ii) The vast majority of

the runtime results for EDAs, especially those for harder scenar-
ios like noise [25] or multimodality [10], have only been shown
in regimes with low genetic drift. (iii) For some particular situa-
tions, a drastic performance from genetic drift was proven. For
example, the UMDA with standard selection pressure but small
population size 𝜆 ∈ Ω(log(𝑛)) ∩ 𝑜 (𝑛) has a runtime exponential
in 𝜆 on the DeceptiveLeadingBlocks problem [33]. In contrast,
when the population size is large enough to prevent genetic drift,
here 𝜆 = Ω(𝑛 log(𝑛)), then the runtime drops to 𝑂 (𝜆𝑛) with high
probability.

Genetic drift in EDAs has been studied explicitly since the
ground-breaking works of Shapiro [42–44], and it appears implicitly
in many runtime analyses such as [15, 21, 35, 45–47]. Experimental
evidences for the negative impact of genetic drift can further be
found in [20, 30, 39]. The most final answer to the genetic-drift
problem for univariate EDAs, including clear suggestions to choose
the parameters as to avoid genetic drift, was given by Doerr and
Zheng [20]. In the case of the UMDA (and binary decision vari-
ables, that is, the classic model), their work shows that a neutral
frequency (defined in Section 5.2) stays with high probability in
the middle range [0.25, 0.75] for the first 𝑇 iterations if 𝜇 = 𝜔 (𝑇 ).
This bound is tight. When regarding 𝑛 frequencies together, a value
of 𝜇 = Ω(𝑇 log(𝑛)) with implicit constant computable from [20,
Theorem 2] ensures with high probability that all frequencies stay
in the middle range for at least 𝑇 iterations. Hence these bounds
give a clear indication how to choose the selection size 𝜇 when
aiming to run the UMDA for a given number of iterations. We note
that the quantification of genetic drift can also be used to design
automated ways to choose parameters, see the work by Doerr and
Zheng [19], when no a-priori estimate on 𝑇 is available.

Given the importance of a good understanding of genetic drift,
we now analyze genetic drift for multi-valued EDAs, more specif-
ically, for the 𝑟 -UMDA. We are optimistic that, analogous to the
work by Doerr and Zheng [20], very similar arguments can be
applied for other main univariate EDAs.

5.2 Martingale Property of Neutral Positions

Genetic drift is usually studied via neutral positions of a fitness
function. Let 𝑓 be an 𝑟 -valued fitness function. We call a position
𝑖 ∈ [𝑛] (as well as, for an individual 𝑥 ∈ [0..𝑟−1]𝑛 , its corresponding
variable 𝑥𝑖 and the associated frequencies of an EDA) neutral (w.r.t.
to 𝑓 ) if and only if, for all 𝑥 ∈ [0..𝑟 − 1]𝑛 , the value 𝑥𝑖 has no
influence on the value of 𝑓 , that is, if and only if for all individuals
𝑥, 𝑥 ′ ∈ [0..𝑟 − 1]𝑛 such that for all 𝑗 ∈ [𝑛] \ {𝑖} it holds that 𝑥 𝑗 = 𝑥 ′𝑗 ,
we have 𝑓 (𝑥) = 𝑓 (𝑥 ′).

An important property of neutral variables that we capitalize on
in our analysis of genetic drift is that their frequencies in typical
EDAs without margins form martingales [20]. This observation
extends the corresponding one for EDAs for binary representations.
We make this statement precise for the 𝑟 -UMDA.

Lemma 5.1 (Neutral freqencies are martingales). Let 𝑓
be an 𝑟 -valued position, and let 𝑖 ∈ [𝑛] be a neutral position of 𝑓 .

Consider the 𝑟 -UMDA without margins optimizing 𝑓 . For each 𝑗 ∈
[0..𝑟 − 1], the frequencies (𝑝 (𝑡 )

𝑖, 𝑗
)𝑡 ∈N are a martingale.
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As in previous works on genetic drift, the martingale property of
neutral frequencies allows to use strong martingale concentration
results. Since in our setting the frequencies start at a value of 1

𝑟 , we
can only tolerate smaller deviations from this value, namely up to
1
2𝑟 in either direction. With the methods of Doerr and Zheng [20],
this reduces the time it takes a frequency to approach a border by a
factor of Θ(𝑟2). We therefore use a stronger martingale concentra-
tion result, namely [37, Theorem 3.15], which allows to exploit the
lower sampling variance present at frequencies in Θ( 1𝑟 ). We note
that we adjust the theorem by incorporating comments by McDi-
armid, especially [37, eq. (41)], mentioning that the absolute value
in eq. (41) should be around the sum, not around the maximum, as
also observed by Doerr and Zheng [20].

Theorem 5.2 (Martingale concentration result based on
the variance [37, Theorem 3.15 and eq. (41)]). Let (𝑋𝑡 )𝑡 ∈N be

a martingale with respect to a filtration (F𝑡 )𝑡 ∈N. Further, for all
𝑡 ∈ N≥1, denote the deviation by dev𝑡 B |𝑋𝑡 − 𝑋𝑡−1 |. In addition,

let 𝑏 = sup𝑡 ∈N dev𝑡 , and assume that 𝑏 is finite. Last, for all 𝑡 ∈ N,
let 𝑣𝑡 = sup

∑
𝑠∈[𝑡 ] Var[𝑋𝑠 − 𝑋𝑠−1 | F𝑠−1]. Then for all 𝑡 ∈ N and

all 𝜀 ∈ R≥0, it holds that

Pr
[
max𝑠∈[0..𝑡 ] |𝑋𝑠 −E[𝑋0] | ≥ 𝜀

]
≤ 2 exp

(
− 𝜀2

2𝑣𝑡 + 2𝑏𝜀/3

)
.

5.3 Upper Bound on the Genetic-Drift Effect of

a Neutral Position

By utilizing Theorem 5.2, we show for how long the frequencies of
the 𝑟 -UMDA at neutral positions stay concentrated around their
initial value of 1

𝑟 .

Theorem 5.3 (Neutral freqencies stay around their ini-
tial value). Let 𝑓 be an 𝑟 -valued fitness function, and let 𝑖 ∈ [𝑛]
be a neutral position of 𝑓 . Consider the 𝑟 -UMDA optimizing 𝑓 . Let

𝑇 ∈ N and 𝑗 ∈ [0..𝑟 − 1]. Then

Pr
[
max𝑠∈[0..𝑇 ]

����𝑝 (𝑠 )𝑖, 𝑗 − 1
𝑟

���� ≥ 1
2𝑟

]
≤ 2 exp

(
− 𝜇

12𝑇𝑟 + (4/3)𝑟

)
.

5.4 Upper Bound for Positions with Weak

Preference

A position is rarely neutral for a given fitness function. However,
we prove that the results on neutral positions translate to positions
where one value is better than all other values. This is referred to as
weak preference. Formally, we say that an 𝑟 -valued fitness function 𝑓
has a weak preference for a value 𝑗 ∈ [0..𝑟 − 1] at a position 𝑖 ∈ [𝑛]
if and only if, for all 𝑥1, ..., 𝑥𝑛 ∈ [0..𝑟 − 1], it holds that

𝑓 (𝑥1, .., 𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1, ..., 𝑥𝑛) ≤ 𝑓 (𝑥1, .., 𝑥𝑖−1, 𝑗, 𝑥𝑖+1, ..., 𝑥𝑛) .

We now adapt Lemma 7 by Doerr and Zheng [20] to the 𝑟 -UMDA.

Theorem 5.4 (Weak preference stochastically dominates
neutrality). Consider two r-valued fitness functions 𝑓 , 𝑔 to optimize

using the 𝑟 -UMDA, such that without loss of generality, the first

position of f weakly prefers 0 and the first position of g is neutral.

Let 𝑝 correspond to the frequencymatrix of 𝑓 and𝑞 to the frequency

matrix of 𝑔, both defined by the 𝑟 -UMDA. Then, for all 𝑡 ∈ N, it holds
that 𝑞

(𝑡 )
1,0 ⪯ 𝑝

(𝑡 )
1,0 .

We now apply Theorem 5.4 and extend Theorem 5.3 to positions
with weak preference.

Theorem 5.5 (Freqencies withweak preference do not get
too low). Let 𝑓 be an 𝑟 -valued fitness function with a weak pref-

erence for 0 at position 𝑖 ∈ [𝑛]. Consider the 𝑟 -UMDA optimizing 𝑓 .

Let 𝑇 ∈ N. Then

Pr
[
min𝑠∈[0..𝑇 ] 𝑝

(𝑠 )
𝑖,0 ≤

1
2𝑟

]
≤ 2 exp

(
− 𝜇

12𝑇𝑟 + (4/3)𝑟

)
. (2)

Proof. Let 𝑔 be an 𝑟 -valued fitness function with neutral posi-
tion 𝑖 . Let 𝑞 be the frequency matrix of the 𝑟 -UMDA optimizing 𝑔.
By Theorem 5.4, it follows for all 𝑠 ∈ N that 𝑝 (𝑠 )

𝑖,0 stochastically
dominates 𝑞 (𝑠 )

𝑖,0 . Applying Theorem 5.3 to 𝑔 for position 𝑖 , we have

Pr
[
min𝑠∈[0..𝑇 ] 𝑞

(𝑠 )
𝑖,0 ≤

1
2𝑟

]
≤ 2 exp

(
− 𝜇

12𝑇𝑟 + (4/3)𝑟

)
.

Using the stochastic domination yields the tail bound for 𝑓 . □

6 RUNTIME ANALYSIS OF THE 𝑟 -UMDA

We analyze the runtime of the 𝑟 -UMDA (Algorithm 2) on an 𝑟 -
valued variant of LeadingOnes. We start by describing the previous
runtime results of EDAs on LeadingOnes (Section 6.1), then define
the 𝑟 -LeadingOnes problem formally (Section 6.2), and finally state
and prove our main result (Theorem 6.1, Section 6.3).

6.1 Previous Runtime Analyses of EDAs on

LeadingOnes

In contrast to OneMax (another popular theory benchmark func-
tion), LeadingOnes is not that extensively studied for EDAs. This
is surprising, as LeadingOnes is interesting as a benchmark for uni-
variate EDAs, since the function introduces dependencies among
the different positions of a bit string, but the model of univariate
EDAs assumes independence. However, since LeadingOnes only
has a single local maximum, known runtime results are rather fast.

In a first mathematical runtime analysis of an EDA, however, us-
ing the unproven no-error-assumption (which essentially states that
there is no genetic drift), it was shown that the UMDA optimizes
the LeadingOnes benchmark in expected time 𝑂 (𝜆𝑛). This was
made rigorous by Chen et al. [7] with a proof that the UMDA with
population size Ω(𝑛2+𝜀 ) optimizes LeadingOnes in time 𝑂 (𝜆𝑛)
with high probability. Here the relatively large required population
stems from the, then, incomplete understanding of genetic drift.

In a remarkable work [8], Dang and Lehre prove a runtime of
𝑂 (𝑛𝜆 log(𝜆) + 𝑛2), only assuming that the sample size 𝜆 is at least
logarithmic. Hence this result applies both to regimes without
and with genetic drift. In the regime with genetic drift, however,
the dependence on 𝜆 is slightly worse than in the result by Chen
et al. [7]. This was improved by Doerr and Krejca [14], where
an 𝑂 (𝑛𝜆 log(𝜆)) upper bound was shown for the whole regime
𝜆 = Ω(𝑛 log(𝑛)) of low genetic drift. More precisely, when 𝜇 =

Ω(𝑛 log(𝑛)) and 𝜆 = Ω(𝜇), both with sufficiently large implicit
constants, then the runtime of the UMDA on LeadingOnes is
𝑂 (𝑛𝜆 log( 𝜆𝜇 )) with high probability. We note that the analysis by
Doerr and Krejca [14] is technically much simpler than the previous
ones, in particular, it avoids the complicated level-based method
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used by Dang and Lehre [8]. We note that also lower bounds [14, 34]
and runtimes in the presence of noise have been regarded. Since
we have no such results, we refer to the original works.

Besides the UMDA, LeadingOneswas considered in the analysis
of newly introduced univariate EDAs. Interestingly, each of these
algorithms optimizes LeadingOnes in 𝑂 (𝑛 log(𝑛)) with high prob-
ability. This runtime is faster by a factor of 𝑛/log(𝑛) when com-
pared to classical EAs, and it suggests that LeadingOnes is a rather
easy problem for EDAs. Friedrich, Kötzing, and Krejca [24] proved
the first of these results for their stable compact genetic algorithm

(scGA), which introduces an artificial bias into its update process
that is overcome by the LeadingOnes function. However, it was
later proven that the scGA fails on the typically easy OneMax
function [13], highlighting that the scGA is not a good EDA in
general.

The next result was proven by Doerr and Krejca [13], who in-
troduce the significance-based compact genetic algorithm (sig-cGA).
The sig-cGA saves a history of good individuals and only updates
a frequency when the number of bits in the history of that posi-
tion significantly deviates from its expectation. This algorithm also
performs well on OneMax.

Last, a result was recently proven by Ajimakin and Devi [1], who
introduce the competing genes evolutionary algorithm (cgEA). The
cgEA utilizes the Gauss–Southwell score as a quality metric for the
positions of its samples. Iteratively, it picks the position 𝑖 with the
best score and creates a new population by letting each individual
of the previous population compete against a copy of it where the
bit at position 𝑖 is flipped. Based on the best individuals created this
way, the frequency at position 𝑖 is immediately set to either 0 or 1,
whichever value turns out to be better. This approach works very
well for a variety of theory benchmarks, as proven by the authors.

6.2 The 𝑟 -LeadingOnes Benchmark

The 𝑟 -LeadingOnes function (eq. (3)) is a generalization of the
classical LeadingOnes benchmark [41] from the binary to themulti-
valued domain. Before we define the generalization, we briefly
present the LeadingOnes function.

LeadingOnes. LeadingOnes [41] is one of the most com-
monly mathematically analyzed benchmark functions, both in the
general domain of evolutionary computation [16] as well as in
the domain of EDAs [30]. For a bit string of length 𝑛 ∈ N≥1, it
returns the number of consecutive 1s, starting from the leftmost
position. Formally, LeadingOnes : {0, 1}𝑛 → [0..𝑛] is defined as
𝑥 ↦→ ∑

𝑖∈[𝑛]
∏
𝑗∈[𝑖 ] 𝑥𝑖 . The function has a single local maximum

at the all-1s string, which is also its global maximum.
𝑟 -LeadingOnes. Inspired by LeadingOnes from the binary

domain, we define 𝑟 -LeadingOnes : [0..𝑟 − 1]𝑛 → [0..𝑛] as the
function that returns the number of consecutive 0s, starting from
the leftmost position. Formally,

𝑟 -LeadingOnes : 𝑥 ↦→
∑︁

𝑖∈[𝑛]

∏
𝑗∈[𝑖 ] 1{𝑥 𝑗=0} . (3)

In contrast to the binary case, the single local optimum of
𝑟 -LeadingOnes is the all-0s string, which is also its global op-
timum.

6.3 Runtime Result

We analyze the runtime of the 𝑟 -UMDA (Algorithm 2) on the
𝑟 -LeadingOnes benchmark (eq. (3)) in the regime with low ge-
netic drift. Compared to the binary case, we get an extra factor
of order 𝑟 log(𝑟 )2 in the runtime. The factor of 𝑟 is a result of the
increased waiting time to see a certain position out of 𝑟 . The factor
of log(𝑟 )2 stems from the choice to stay in the regime with low
genetic drift as well as for the time it takes a frequency to get to
the upper border. Our result is a generalization of the binary case.

Theorem 6.1 (𝑟 -UMDA efficiently optimizes 𝑟 -LeadingOnes).
Let 𝑠 ∈ R≥1. Consider the 𝑟 -UMDA optimizing 𝑟 -LeadingOnes with

𝜆 ≥ 3𝑠𝑒𝜇, 𝜇 ≥ 24(𝑛 + 1)𝑟 ln(𝑛) (1 + log2𝑠 (𝑟 )), and 𝑛 ≥ 4𝑟 . Then with

probability at least 1 − 2
𝑛 − log2𝑠 (2𝑟 )𝑛2−0.5𝑛 C 𝑞, the frequency

vector of the value 0 is (1 − 1
𝑛 )𝑖∈[𝑛] after 𝑛 log2𝑠 (2𝑟 ) iterations.

This implies that with probability at least 𝑞, after 𝜆𝑛 log2𝑠 (2𝑟 )
fitness function evaluations, the 𝑟 -UMDA samples the optimum.

The premise for our proof is that for the entirety of the considered
iterations, frequencies of the value 0 remain above a given threshold
since 𝑟 -LeadingOnes weakly prefers 0 at all positions. We define
this threshold as 1

2𝑟 , and we show that in a sequential manner,
position by position, the frequencies of 0 are brought to 1 − 1

𝑛
within a given number of iterations until all positions are covered.

First, we provide a guarantee on the concentration of all the
probabilities during the entirety of the algorithm’s runtime, in a
way to avoid genetic drift and to remain above a minimal threshold
for all frequencies.

Lemma 6.2 (Freqencies do not get low under weak pref-
erence). Let 𝑠 ∈ R≥1. Consider the 𝑟 -UMDA with 𝜆 ≥ 𝜇 ≥
24(𝑛 + 1)𝑟 ln(𝑛) (1 + log2𝑠 (𝑟 )) optimizing a function that weakly

prefers 0 at every position. Then with a probability of at least 1 − 2
𝑛 ,

for each 𝑖 ∈ [𝑛], the frequency 𝑝 (𝑡 )
𝑖,0 remains above

1
2𝑟 for the first

𝑛(1 + log2𝑠 (𝑟 )) iterations.

Proof. By Theorem 5.5 with 𝑇 = 𝑛(1 + log2𝑠 (𝑟 )), we have for
all 𝑖 ∈ [𝑛] that

Pr
[

min
𝑘=1,...,𝑇

𝑝
(𝑘 )
𝑖,0 ≤

1
2𝑟

]
≤ 2 exp

(
− 𝜇

12𝑛(1 + log2𝑠 (𝑟 ))𝑟 + 4𝑟
3

)
.

Since 𝜇 ≥ 24(𝑛 + 1)𝑟 ln(𝑛) (1 + log2𝑠 (𝑟 )), we get

Pr
[

min
𝑘=1,...,𝑇

𝑝
(𝑘 )
𝑖,0 ≤

1
2𝑟

]
≤ 2 exp

(
−
24(𝑛 + 1)𝑟 ln(𝑛) (1 + log2𝑠 (𝑟 ))

12𝑛(1 + log2𝑠 (𝑟 ))𝑟 + 4𝑟
3

)
≤ 2 exp(−2 ln(𝑛)).

Hence, it follows that Pr[min𝑘=1,...,𝑇 𝑝
(𝑘 )
𝑖,0 ≤

1
2𝑟 ] ≤

2
𝑛2
. Applying a

union bound over all 𝑛 positions yields the result. □

In the proof of our next result, we use the following Chernoff
bound to quantify the number of iterations necessary to converge
every position 𝑖 ∈ [𝑛].

Theorem 6.3 (Chernoff bound [9, Theorem 1.10.5]). Let 𝑘 ∈
N≥1, 𝛿 ∈ [0, 1], and let 𝑋 be the sum of 𝑘 independent random

variables each taking values in [0, 1]. Then Pr[𝑋 ≤ (1 − 𝛿) E[𝑋 ]] ≤
exp(−𝛿

2 E[𝑋 ]
2 ).
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An important concept for our analysis, following the approach
by Doerr and Krejca [14], is that a position is critical. Informally, a
position is critical if and only if the frequencies corresponding to
value 0 are for all smaller positions at the upper border. Our runtime
proof relies on showing that the 𝑟 -UMDA quickly increases the
frequency of a critical position to the upper border, thus making
the next position critical. Formally, let 𝑡 ∈ N. We call a position
𝑖 ∈ [𝑛] critical for the 𝑟 -UMDA on 𝑟 -LeadingOnes in iteration 𝑡 , if
and only if for all 𝑘 ∈ [𝑖 − 1], it holds that 𝑝 (𝑡 )

𝑘,0 = 1 − 1
𝑛 , and that

𝑝
(𝑡 )
𝑖,0 < 1 − 1

𝑛 .
We now show that once a position 𝑖 ∈ [𝑛] becomes critical,

with high probability, with 𝑠 ∈ R≥1 being an appropriate value
separating 𝜆 from 𝜇 (that is, defining the selection pressure), it takes
less than 𝑛 log2𝑠 (𝑟 +1) iterations to bring the frequency of the value
0 to the upper border 1 − 1

𝑛 . We also prove that it remains there
for a sufficient number of iterations until the convergence of the
frequency matrix.

Lemma 6.4 (Critical freqencies are qickly maximized
and remain there for some time). Let 𝑠,𝑢 ∈ R≥1. Consider the
𝑟 -UMDA optimizing 𝑟 -LeadingOnes with 𝜆 ≥ 3𝑠𝑒𝜇 and 𝜇 ∈ N≥1.
Consider an iteration 𝑡 ∈ N such that position 𝑖 ∈ [𝑛] is critical, and
let𝑏 ∈ R>0 such that 𝑝 (𝑡 )𝑖,0 ≥ 𝑏 ≥

2
𝑛 . Thenwith a probability of at least

1−𝑢 log2𝑠 ( 1𝑏 ) exp
(
− 𝑠𝜇𝑏24

)
, it holds for all 𝜃 ∈

[
log2𝑠 ( 1𝑏 )..𝑢 log2𝑠 (

1
𝑏
)
]

that 𝑝
(𝑡+𝜃 )
𝑖,0 = 1 − 1

𝑛 .

Proof. We start by proving that, for all 𝜃 ∈ [0..𝑢 log2𝑠 ( 1𝑏 )], the
frequency 𝑝 (𝑡+𝜃 )

𝑖,0 multiplies by at least 2𝑠 during an update, with
high probability (and is then restricted). To this end, and let 𝑡 ′ ∈
[𝑡 ..𝑡 +𝜃 ], and assume that 𝑝 (𝑡

′ )
𝑖,0 ≥ 𝑏, and that position 𝑖 or a position

greater than 𝑖 is critical (where we assume, for convenience, that if
all frequencies for value 0 are 1 − 1

𝑛 , then position 𝑛 + 1 is critical).
Furthermore, let 𝑋 denote the number of sampled individuals in
iteration 𝑡 ′ that have at least 𝑖 leading 0s. Note that 𝑝 (𝑡 )

𝑖,0 ≥ 𝑏 by
assumption as well as that 𝑖 is critical in iteration 𝑡 . We discuss later
via induction why these assumptions also hold for iteration 𝑡 ′.

We consider the process of sampling a single individual. Since
position at least 𝑖 is critical, by definition, for all 𝑘 ∈ [𝑖 − 1], we
have 𝑝 (𝑡

′ )
𝑘,0 = 1 − 1

𝑛 . Hence, the probability that all these positions
are sampled as 0 for this individual is (1 − 1

𝑛 )
𝑖−1 ≥ (1 − 1

𝑛 )
𝑛−1 ≥

1
𝑒 . This yields E[𝑋 ] ≥ 𝜆𝑝

(𝑡 ′ )
𝑖,0
𝑒 , and since 𝜆 ≥ 3𝑠𝑒𝜇, this yields

E[𝑋 ] ≥ 3𝑠𝜇𝑝 (𝑡
′ )

𝑖,0 . By the Chernoff bound (Theorem 6.3) and by the
assumption 𝑝 (𝑡

′ )
𝑖,0 ≥ 𝑏, we get

Pr
[
𝑋 ≤ 5

2𝑠𝜇𝑝
(𝑡 ′ )
𝑖,0

]
≤ Pr

[
𝑋 ≤ 5

6 E[𝑋 ]
]
≤ exp

(
−E[𝑋 ]72

)
≤ exp

(
−
𝑠𝜇𝑝
(𝑡 ′ )
𝑖,0
24

)
≤ exp

(
−𝑠𝜇𝑏24

)
.

We consider 𝑝 (𝑡
′+1)

𝑖,0 as defined in Section 4.2, which is the up-
dated frequency before being restricted to

[ 1
(𝑟−1)𝑛 , 1 −

1
𝑛

]
. Since

𝑝
(𝑡 ′+1)
𝑖,0 ≥ min(𝑋𝜇 , 1) by the definition of the update of the 𝑟 -UMDA,

we have
Pr

[
𝑝
(𝑡 ′+1)
𝑖,0 ≤ min

(
5
2𝑠𝑝
(𝑡 ′ )
𝑖,0 , 1

)]
≤ Pr

[
𝑋 ≤ 5

2𝑠𝜇𝑝
(𝑡 ′ )
𝑖,0

]
≤ exp

(
− 𝑠𝜇𝑏24

)
.

In order to update 𝑝 (𝑡
′ )

𝑖,0 , the frequency vector 𝑝 (𝑡
′+1)

𝑖
is restricted

to the interval
[ 1
(𝑟−1)𝑛 , 1 −

1
𝑛

]
, which entails that the updated

frequency 𝑝 (𝑡
′+1)

𝑖,0 may reduce when compared to 𝑝 (𝑡
′+1)

𝑖,0 . However,
since the restriction adds at most the lower border (that is, 1

(𝑟−1)𝑛 )
to a frequency, any restriction rule adds at most a probability mass
of 1

𝑛 to the frequency vector. We assume pessimistically that, in
order for the frequencies to sum to 1, this mass is entirely subtracted
from 𝑝

(𝑡 ′+1)
𝑖,0 during the restriction (noting that this does not take

place once 𝑝 (𝑡
′+1)

𝑖,0 ≥ 1 − 1
𝑛 , as this means that it is set to the upper

border instead). Further, the assumption 𝑝 (𝑡
′ )

𝑖,0 ≥ 𝑏 ≥
2
𝑛 yields that

5
2𝑠𝑝
(𝑡 ′ )
𝑖,0 −

1
𝑛 ≥ 2𝑠𝑝 (𝑡

′ )
𝑖,0 . Hence, we get that

Pr
[
𝑝
(𝑡 ′+1)
𝑖,0 < min

(
2𝑠𝑝 (𝑡

′ )
𝑖,0 , 1 − 1

𝑛

)]
≤ Pr

[
𝑝
(𝑡 ′+1)
𝑖,0 < min

( 5
2𝑠𝑝
(𝑡 ′ )
𝑖,0 −

1
𝑛
, 1 − 1

𝑛

)]
≤ exp

(
−𝑠𝜇𝑏24

)
.

By induction on the iteration 𝑡 ′ (starting at 𝑡 ), it follows that,
with an additional failure probability of at most exp

(
− 𝑠𝜇𝑏24

)
per

iteration, the assumptions that 𝑝 (𝑡
′ )

𝑖,0 ≥ 𝑏 and that position at least 𝑖
is critical are satisfied.

Starting from iteration 𝑡 , a union bound over the next 𝑢 log2𝑠 ( 1𝑏 )
iterations yields that the frequency 𝑝𝑖,0 continues growing expo-
nentially with a factor of 2𝑠 for the next 𝑢 log2𝑠 ( 1𝑏 ) iterations with
probability at least 1 − 𝑢 log2𝑠 ( 1𝑏 ) exp

(
− 𝑠𝜇𝑏24

)
. Since, by assump-

tion, 𝑝 (𝑡 )
𝑖,0 ≥ 𝑏, it reaches 1 −

1
𝑛 after at most log2𝑠 ( 1𝑏 ) iterations

during that time, concluding the proof. □

7 CONCLUSION

We have proposed the first EDAs to optimize problems with multi-
valued decision variables. Our analysis of the genetic-drift effect and
our runtime analysis on the multi-valued version of LeadingOnes
have shown that the increase in decision values does not result in
significant difficulties. Although there may be a slightly stronger
genetic drift (requiring a more conservative model update, that is, a
higher selection size 𝜇 for the UMDA) and slightly longer runtimes,
these outcomes are to be expected given the increased complexity
of the problem. We hope that our findings will inspire researchers
and practitioners to embrace the benefits of EDAs for multi-valued
decision problems, beyond the previously limited application to
permutations and binary decision variables.

ACKNOWLEDGMENTS

Thank you to Josu Ceberio for some useful discussions. This work
also profited from many scientific discussions at the Dagstuhl Sem-
inar 22182 “Estimation-of-Distribution Algorithms: Theory and
Applications”. This work was supported by a public grant as part
of the Investissements d’avenir project, reference ANR-11-LABX-
0056-LMH, LabEx LMH.



Estimation-of-Distribution Algorithms for Multi-Valued Decision Variables GECCO ’23, July 15–19, 2023, Lisbon, Portugal

REFERENCES

[1] Adetunji David Ajimakin and V. Susheela Devi. The competing genes evolu-
tionary algorithm: Avoiding genetic drift through competition, local search, and
majority voting. IEEE Transactions on Evolutionary Computation, 2022. To appear.

[2] Shumeet Baluja. Population-based incremental learning: Amethod for integrating
genetic search based function optimization and competitive learning. Technical
report, Carnegie Mellon University, 1994.

[3] Riade Benbaki, Ziyad Benomar, and Benjamin Doerr. A rigorous runtime analysis
of the 2-MMASib on jump functions: ant colony optimizers can cope well with
local optima. In Genetic and Evolutionary Computation Conference, GECCO 2021,
pages 4–13. ACM, 2021.

[4] Josu Ceberio Uribe, Benjamin Doerr, Carsten Witt, and Vicente P. Soloviev.
Estimation-of-Distribution Algorithms: Theory and Applications (Dagstuhl Sem-
inar 22182). Dagstuhl Reports, 12:17–36, 2022.

[5] Tianshi Chen, Per Kristian Lehre, Ke Tang, and Xin Yao. When is an estimation
of distribution algorithm better than an evolutionary algorithm? In Congress on

Evolutionary Computation, CEC 2009, pages 1470–1477. IEEE, 2009.
[6] Tianshi Chen, Ke Tang, Guoliang Chen, and Xin Yao. On the analysis of aver-

age time complexity of estimation of distribution algorithms. In Congress on

Evolutionary Computation, CEC 2007, pages 453–460. IEEE, 2007.
[7] Tianshi Chen, Ke Tang, Guoliang Chen, and Xin Yao. Analysis of computa-

tional time of simple estimation of distribution algorithms. IEEE Transactions on

Evolutionary Computation, 14:1–22, 2010.
[8] Duc-Cuong Dang and Per Kristian Lehre. Simplified runtime analysis of es-

timation of distribution algorithms. In Genetic and Evolutionary Computation

Conference, GECCO 2015, pages 513–518. ACM, 2015.
[9] Benjamin Doerr. Probabilistic tools for the analysis of randomized optimization

heuristics. In BenjaminDoerr and FrankNeumann, editors, Theory of Evolutionary
Computation: Recent Developments in Discrete Optimization, pages 1–87. Springer,
2020. Also available at https://arxiv.org/abs/1801.06733.

[10] BenjaminDoerr. The runtime of the compact genetic algorithm on Jump functions.
Algorithmica, 83:3059–3107, 2021.

[11] Benjamin Doerr, Carola Doerr, and Timo Kötzing. Static and self-adjusting
mutation strengths for multi-valued decision variables. Algorithmica, 80:1732–
1768, 2018.

[12] Benjamin Doerr, Daniel Johannsen, and Martin Schmidt. Runtime analysis of
the (1+1) evolutionary algorithm on strings over finite alphabets. In Foundations

of Genetic Algorithms, FOGA 2011, pages 119–126. ACM, 2011.
[13] Benjamin Doerr and Martin S. Krejca. Significance-based estimation-of-

distribution algorithms. IEEE Transactions on Evolutionary Computation, 24:1025–
1034, 2020.

[14] Benjamin Doerr and Martin S. Krejca. A simplified run time analysis of the
univariate marginal distribution algorithm on LeadingOnes. Theoretical Computer

Science, 851:121–128, 2021.
[15] Benjamin Doerr and Martin S. Krejca. The univariate marginal distribution

algorithm copes well with deception and epistasis. Evolutionary Computation,
29:543–563, 2021.

[16] Benjamin Doerr and Frank Neumann, editors. Theory of Evolutionary

Computation—Recent Developments in Discrete Optimization. Springer, 2020.
Also available at http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr_
neumann_book.html.

[17] Benjamin Doerr and Sebastian Pohl. Run-time analysis of the (1+1) evolutionary
algorithm optimizing linear functions over a finite alphabet. In Genetic and

Evolutionary Computation Conference, GECCO 2012, pages 1317–1324. ACM, 2012.
[18] Benjamin Doerr, Dirk Sudholt, and Carsten Witt. When do evolutionary al-

gorithms optimize separable functions in parallel? In Foundations of Genetic

Algorithms, FOGA 2013, pages 48–59. ACM, 2013.
[19] Benjamin Doerr and Weijie Zheng. From understanding genetic drift to a smart-

restart parameter-less compact genetic algorithm. In Genetic and Evolutionary

Computation Conference, GECCO 2020, pages 805–813. ACM, 2020.
[20] BenjaminDoerr andWeijie Zheng. Sharp bounds for genetic drift in estimation-of-

distribution algorithms. IEEE Transactions on Evolutionary Computation, 24:1140–
1149, 2020.

[21] Stefan Droste. Not all linear functions are equally difficult for the compact genetic
algorithm. In Genetic and Evolutionary Computation Conference, GECCO 2005,
pages 679–686. ACM, 2005.

[22] Stefan Droste. A rigorous analysis of the compact genetic algorithm for linear
functions. Natural Computing, 5:257–283, 2006.

[23] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+1)
evolutionary algorithm. Theoretical Computer Science, 276:51–81, 2002.

[24] Tobias Friedrich, Timo Kötzing, and Martin S. Krejca. EDAs cannot be balanced
and stable. In Genetic and Evolutionary Computation Conference, GECCO 2016,

pages 1139–1146. ACM, 2016.
[25] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, and Andrew M. Sutton. The

compact genetic algorithm is efficient under extreme Gaussian noise. IEEE

Transactions on Evolutionary Computation, 21:477–490, 2017.
[26] Georges R. Harik, Fernando G. Lobo, and David E. Goldberg. The compact genetic

algorithm. IEEE Transactions on Evolutionary Computation, 3:287–297, 1999.
[27] Václav Hasenöhrl and Andrew M. Sutton. On the runtime dynamics of the

compact genetic algorithm on jump functions. In Genetic and Evolutionary

Computation Conference, GECCO 2018, pages 967–974. ACM, 2018.
[28] Firas Ben Jedidia, Benjamin Doerr, and Martin S. Krejca. Estimation-of-

distribution algorithms for multi-valued decision variables. CoRR, abs/2302.14420,
2023.

[29] Timo Kötzing, Andrei Lissovoi, and Carsten Witt. (1+1) EA on generalized
dynamic OneMax. In Foundations of Genetic Algorithms, FOGA 2015, pages 40–51.
ACM, 2015.

[30] Martin Krejca and Carsten Witt. Theory of estimation-of-distribution algorithms.
In Benjamin Doerr and Frank Neumann, editors, Theory of Evolutionary Compu-

tation: Recent Developments in Discrete Optimization, pages 405–442. Springer,
2020. Also available at https://arxiv.org/abs/1806.05392.

[31] Martin S. Krejca and CarstenWitt. Lower bounds on the run time of the Univariate
Marginal Distribution Algorithm on OneMax. Theoretical Computer Science,
832:143–165, 2020.

[32] Pedro Larrañaga and José Antonio Lozano, editors. Estimation of Distribution

Algorithms. Springer, 2002.
[33] Per Kristian Lehre and Phan Trung Hai Nguyen. On the limitations of the

univariate marginal distribution algorithm to deception and where bivariate
EDAs might help. In Foundations of Genetic Algorithms, FOGA 2019, pages 154–
168. ACM, 2019.

[34] Per Kristian Lehre and Phan Trung Hai Nguyen. Runtime analysis of the uni-
variate marginal distribution algorithm under low selective pressure and prior
noise. In Genetic and Evolutionary Computation Conference, GECCO 2019, pages
1497–1505. ACM, 2019.

[35] Johannes Lengler, Dirk Sudholt, and Carsten Witt. The complex parameter
landscape of the compact genetic algorithm. Algorithmica, 83:1096–1137, 2021.

[36] Andrei Lissovoi and Carsten Witt. MMAS versus population-based EA on a
family of dynamic fitness functions. Algorithmica, 75:554–576, 2016.

[37] ColinMcDiarmid. Concentration. In Probabilistic Methods for Algorithmic Discrete

Mathematics, volume 16, pages 195–248. Springer, Berlin, 1998.
[38] Heinz Mühlenbein and Gerhard Paass. From recombination of genes to the

estimation of distributions I. Binary parameters. In Parallel Problem Solving from

Nature, PPSN 1996, pages 178–187. Springer, 1996.
[39] Frank Neumann, Dirk Sudholt, and Carsten Witt. The compact genetic algorithm

struggles on Cliff functions. In Genetic and Evolutionary Computation Conference,

GECCO 2022, pages 1426–1433. ACM, 2022.
[40] Martin Pelikan,MarkHauschild, and FernandoG. Lobo. Estimation of distribution

algorithms. In Janusz Kacprzyk and Witold Pedrycz, editors, Springer Handbook
of Computational Intelligence, pages 899–928. Springer, 2015.

[41] Günter Rudolph. Convergence Properties of Evolutionary Algorithms. Verlag
Dr. Kovǎc, 1997.
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APPENDIX

We state the proofs that we omitted in the main paper, due to space
limitations.

Proof of Lemma 5.1

Let 𝑗 ∈ [0..𝑟 − 1]. Since the algorithm has no margins, in each
iteration 𝑡 ∈ N, no restriction takes place, so it holds that 𝑝 (𝑡+1)

𝑖, 𝑗
=

1
𝜇

∑
𝑘∈[𝜇 ] 1𝑥 (𝑡,𝑘 )

𝑖
=𝑗
. Since 𝑖 is neutral, the selection of the 𝜇 best

individuals is not affected by the values at position 𝑖 of the 𝜆 samples.
Consequently, for each 𝑘 ∈ [𝜇], the value 𝑥 (𝑡,𝑘 )

𝑖
follows a Bernoulli

distribution with success probability 𝑝 (𝑡 )
𝑖, 𝑗

. Hence, E[1
𝑥
(𝑡,𝑘 )
𝑖

=𝑗
|

𝑝
(𝑡 )
𝑖, 𝑗
] = 𝑝 (𝑡 )

𝑖, 𝑗
. Further, by linearity of expectation, we get

E
[
𝑝
(𝑡+1)
𝑖, 𝑗

| 𝑝 (𝑡 )
𝑖, 𝑗

]
=

1
𝜇

∑︁
𝑘∈[𝜇 ] E

[
1
𝑥
(𝑡,𝑘 )
𝑖

=𝑗

�� 𝑝 (𝑡 )
𝑖, 𝑗

]
=

1
𝜇

∑︁
𝑘∈[𝜇 ] 𝑝

(𝑡 )
𝑖, 𝑗

= 𝑝
(𝑡 )
𝑖, 𝑗
,

proving the claim.

Proof of Theorem 5.3

We apply the same proof strategy as in the proof of [20, Theorem 1].
That is, we aim to apply Theorem 5.2. Naturally, onewould apply the
theorem to the sequence of frequencies (𝑝 (𝑡 )

𝑖, 𝑗
)𝑡 ∈N. However, since

the deviation of 𝑝𝑖, 𝑗 is very large, namely 1, we consider instead a
more fine-grained process (𝑍𝑡 )𝑡 ∈N, which, roughly speaking, splits
each iteration of the 𝑟 -UMDA into 𝜇 sections, each of which denotes
that an additional sample is added to the update. Formally, for all
𝑡 ∈ N and 𝑎 ∈ [0..𝜇 − 1], let

𝑍𝑡𝜇+𝑎 = 𝑝
(𝑡 )
𝑖, 𝑗
(𝜇 − 𝑎) +

∑︁
𝑘∈[𝑎] 1𝑥 (𝑡+1,𝑘 )𝑖

=𝑗
.

Note that, for all 𝑡 ∈ N≥1, it holds that 𝑍𝑡𝜇 = 𝜇𝑝
(𝑡 )
𝑖, 𝑗

. Thus, the
natural filtration (F𝑡 )𝑡 ∈N of 𝑍 allows us to measure 𝑝𝑖, 𝑗 .

In order to apply Theorem 5.2, we check that its assumptions
are met. To this end, we first show that 𝑍 is a martingale. Since 𝑖 is
neutral, the selection of the 𝜇 best individuals is not affected by the
values at position 𝑖 of the 𝜆 samples. Consequently, for all 𝑘 ∈ [𝜇],
the random variable 𝑥 (𝑡,𝑘 )

𝑖
follows a Bernoulli distribution with

success probability 𝑝 (𝑡 )
𝑖, 𝑗

. Thus, we get for all 𝑡 ∈ N and 𝑎 ∈ [0..𝜇−2]
that
E

[
𝑍𝑡𝜇+𝑎+1 − 𝑍𝑡𝜇+𝑎 | F𝑡𝜇+𝑎

]
= −𝑝 (𝑡 )

𝑖, 𝑗
+E[1

𝑥
(𝑡,𝑎+1)
𝑖

=𝑗
| F𝑡𝜇+𝑎] = 0,

(4)

and further, by the definition of 𝑝 (𝑡+1)
𝑖, 𝑗

, that

E
[
𝑍 (𝑡+1)𝜇 − 𝑍𝑡𝜇+𝜇−1 | F𝑡𝜇+𝜇−1

]
= 𝜇E[𝑝 (𝑡+1)

𝑖, 𝑗
| F𝑡𝜇+𝜇−1] − 𝑝 (𝑡 )𝑖, 𝑗

−E
[∑︁

𝑘∈[𝜇−1] 1𝑥 (𝑡,𝑘 )𝑖
=𝑗

�� F𝑡𝜇+𝜇−1]
=

∑︁
𝑘∈[𝜇 ] E[1𝑥 (𝑡,𝑘 )𝑖

=𝑗
| F𝑡𝜇+𝜇−1]

− 𝑝 (𝑡 )
𝑖, 𝑗
−

∑︁
𝑘∈[𝜇−1] E[1𝑥 (𝑡,𝑘 )𝑖

=𝑗
| F𝑡𝜇+𝜇−1]

= E[1
𝑥
(𝑡,𝜇)
𝑖

=𝑗
| F𝑡𝜇+𝜇−1] − 𝑝 (𝑡 )𝑖, 𝑗 = 0, (5)

showing that 𝑍 is a martingale.
We take an alternative view of the event {max𝑠∈[0..𝑇 ] |𝑝

(𝑠 )
𝑖, 𝑗
−

1
𝑟 | ≥

1
2𝑟 }, whose probability we aim to bound. Note that this event

is equivalent to {∃𝑠 ∈ [0..𝑇 ] : |𝑝 (𝑠 )
𝑖, 𝑗
− 1
𝑟 | ≥

1
2𝑟 }. A superset of this

event is the event where we stop at the first iteration such that the
inequality holds. To this end, let 𝑆 = inf{𝑡 ∈ N | 𝑍𝑡 ∉ [ 𝜇2𝑟 ,

3𝜇
2𝑟 ]} be

a stopping time (with respect to F ). From now on, we consider the
stopped process 𝑍 of 𝑍 with respect to 𝑆 . That is, for all 𝑡 ∈ N, it
holds that 𝑍𝑡 = 𝑍min{𝑡,𝑆 } . Since 𝑍 is a martingale, so is 𝑍 .

Let 𝑡 ∈ N, and let 𝑌𝑡 be a Bernoulli random variable with success
probability 𝑝 ( ⌊𝑡/𝜇 ⌋ )

𝑖, 𝑗
that is F𝑡 -measurable. Note that by eqs. (4)

and (5), disregarding the expected values, by eq. (6), it holds that

𝑍𝑡+1 − 𝑍𝑡 = (𝑌𝑡 − 𝑝 ( ⌊𝑡/𝜇 ⌋ )𝑖, 𝑗
) · 1𝑡<𝑆 . (6)

Thus, the maximum deviation 𝑏 of 𝑍 is 1. Further, let 𝑣𝑡 denote the
sum of variances, as defined in Theorem 5.2. Then, since 𝑝 ( ⌊𝑡/𝜇 ⌋ )

𝑖, 𝑗

and 1𝑡<𝑆 are F𝑡 -measurable and since, due to 𝑍 being stopped, it
holds that 𝑝 ( ⌊𝑡/𝜇 ⌋ )

𝑖, 𝑗
· 1𝑡<𝑆 ∈ [ 12𝑟 ,

3
2𝑟 ], we get

Var
[
𝑍𝑡+1 − 𝑍𝑡 | F𝑡

]
= Var[𝑌𝑡 · 1𝑡<𝑆 | F𝑡 ]

= 𝑝
( ⌊𝑡/𝜇 ⌋ )
𝑖, 𝑗

(
1 − 𝑝 ( ⌊𝑡/𝜇 ⌋ )

𝑖, 𝑗

)
· 1𝑡<𝑆 ≤

3
2𝑟 .

Hence, 𝑣𝑡 ≤ 3𝑡
2𝑟 .

Let 𝑝 denote the stopped process of 𝑝𝑖, 𝑗 with respect to 𝑆 . Ap-
plying Theorem 5.2 with 𝑡 = 𝜇𝑇 and our estimates above, noting
that 𝑍0 = 𝜇

𝑟 , yields

Pr
[
max

𝑠∈[0..𝑇 ]

����𝑝𝑠 − 1
𝑟

���� ≥ 1
2𝑟

]
= Pr

[
max

𝑠∈[0..𝑇 ]
|𝑝𝑠 −E[𝑝0] | ≥

1
2𝑟

]
= Pr

[
max

𝑠∈[0..𝑇 ]
1
𝜇
|𝑍𝑠𝜇 −E[𝑍0] | ≥

1
2𝑟

]
≤ Pr

[
max

𝑠∈[0..𝑡 ]
|𝑍𝑠 −E[𝑍0] | ≥

𝜇

2𝑟

]
≤ 2 exp

(
− (𝜇/(2𝑟 ))2
2 · 3𝜇𝑇 /(2𝑟 ) + (2/3)𝜇/(2𝑟 )

)
= 2 exp

(
− 𝜇2

12𝑇𝑟 + (4/3)𝑟

)
.

Since we only need to consider the stopped process, as explained
above, and since 𝑝 is identical to 𝑝𝑖, 𝑗 until the process stops, the
result follows.

Proof of Theorem 5.4

We prove our claim by induction on the number of iterations 𝑡 . For
the base case 𝑡 = 0, all frequencies are 1/𝑟 . Hence, 𝑞 (0)1,0 ⪯ 𝑝

(0)
1,0 .

For the induction step, let 𝑡 ∈ N≥1 and let 𝑗 ∈ [0..𝑟 − 1]. Further,
let 𝑌𝑗 ∼ Bin

(
𝜇, 𝑞
(𝑡 )
0, 𝑗

)
. Since 0 is a neutral position of 𝑔, the selection

of the 𝜇 best individuals is not affected by the values at position 0 of
the 𝜆 samples. Thus,𝑞 (𝑡+1)1, 𝑗 = 1

𝜇𝑌 . Further, since 𝑓 weakly prefers 0s,

defining 𝑌 ′
𝑗
∼ Bin

(
𝜇, 𝑝
(𝑡 )
0, 𝑗

)
, it holds that 𝑝𝑡+11, 𝑗 ≳

1
𝜇𝑌
′.

Analogously to Doerr and Zheng [20], we note that since 𝑝 (𝑡 )1,0
stochastically dominates 𝑞 (𝑡 )1,0 by induction hypothesis, there exists
a coupling of the two probability spaces that describe the states



Estimation-of-Distribution Algorithms for Multi-Valued Decision Variables GECCO ’23, July 15–19, 2023, Lisbon, Portugal

of the two algorithms at iteration 𝑡 in such a way that 𝑝 (𝑡 )1,0 ≥ 𝑞
(𝑡 )
1,0

for any point𝑤 in the coupling probability space. For such a𝑤 , it
then follows that 𝑌𝑗 ⪯ 𝑌 ′𝑗 , as the success probability of the former
is bounded from above by that of the latter. Hence, 𝑞 (𝑡+1)1, 𝑗 = 1

𝜇𝑌 ⪯
1
𝜇𝑌
′ ⪯ 𝑝 (𝑡+1)1, 𝑗 , which proves the claim.

Proof of Theorem 6.1

Since 𝑟 -LeadingOnes weakly prefers 0s at all positions 𝑖 ∈ [𝑛],
by Lemma 6.2, with a probability of at least 1 − 2

𝑛 , for all 𝑖 ∈ [𝑛],
the frequency 𝑝𝑖,0 remains above 1

2𝑟 for the first 𝑛(1 + log2𝑠 (𝑟 ))
iterations.

For each position 𝑖 ∈ [𝑛], we apply Lemma 6.4 with 𝑏 = 1
2𝑟

and 𝑢 = 𝑛, noting that the assumption 𝑏 ≥ 2
𝑛 is satisfied, since

we assume 𝑛 ≥ 4𝑟 . Hence, for each 𝑖 ∈ [𝑛], with a probability
of at least 1 − log2𝑠 (2𝑟 )𝑛1−0.5𝑛 , after at most log2𝑠 (2𝑟 ) iterations,

the frequency 𝑝𝑖,0 is set to 1 − 1
𝑛 and remains there for at least

(𝑛 − 1) log2𝑠 (2𝑟 ) iterations. Further, by a union bound over all 𝑛
frequency vectors, the above holds for all frequency vectors, with
probability at least 1 − log2𝑠 (2𝑟 )𝑛2−0.5𝑛 .

Combining everything, with probability at least 1 − 2
𝑛 −

log2𝑠 (2𝑟 )𝑛2−0.5𝑛 , it holds by induction on position 𝑖 that once posi-
tion 𝑖 is critical, the frequency 𝑝𝑖,0 reaches 1− 1

𝑛 in at most log2𝑠 (2𝑟 )
iterations and remains there until at least iteration𝑛 log2𝑠 (2𝑟 ). Since
position 0 is critical in iteration 0, it follows that the frequencies
for value 0 are set, in increasing order of their position, to 1 − 1

𝑛 .
After at most 𝑛 log2𝑠 (2𝑟 ) iterations, all such frequencies are at the
upper border, which proves the first part of the claim.

For the second part, note that once 𝑝𝑛,0 = 1 − 1
𝑛 , the population

of the 𝑟 -UMDA in that iteration contains at least (1 − 1
𝑛 )𝜇 times

the optimum. Further, each iteration accounts for 𝜆 fitness function
evaluations. This proves the second claim.
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