
Theoretical Analyses of Univariate

Estimation-of-Distribution Algorithms

Martin Stefan Krejca

Publikationsbasierte Universitätsdissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium

(Dr. rer. nat.)

in der Wissenscha�sdisziplin

Theoretische Informatik

eingereicht an der

Digital-Engineering-Fakultät

der Universität Potsdam

Datum der Disputation: 29. August 2019

This work is licensed under a Creative Commons License:

A�ribution 4.0 International.

This does not apply to quoted content from other authors.

To view a copy of this license visit

http://creativecommons.org/licenses/by/4.0/

Betreuer

Prof. Dr. Tobias Friedrich

Hasso Pla�ner Institute, University of Potsdam

Gutachter

Prof. Dr. Benjamin Doerr

École Polytechnique

Prof. Dr. Carsten Wi�

Technical University of Denmark

Published online at the

Institutional Repository of the University of Potsdam:

https://doi.org/10.25932/publishup-43487
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-434870

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.25932/publishup-43487
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-434870

0Abstract

Optimization is a core part of technological advancement and is usually heavily
aided by computers. However, since many optimization problems are hard,
it is unrealistic to expect an optimal solution within reasonable time. Hence,
heuristics are employed, that is, computer programs that try to produce solutions
of high quality quickly. One special class are estimation-of-distribution algorithms
(EDAs), which are characterized by maintaining a probabilistic model over the
problem domain, which they evolve over time. In an iterative fashion, an EDA
uses its model in order to generate a set of solutions, which it then uses to re�ne
the model such that the probability of producing good solutions is increased.

In this thesis, we theoretically analyze the class of univariate EDAs over
the Boolean domain, that is, over the space of all length-n bit strings. In this
setting, the probabilistic model of a univariate EDA consists of an n-dimensional
probability vector where each component denotes the probability to sample a 1
for that position in order to generate a bit string.

My contribution follows two main directions: �rst, we analyze general in-
herent properties of univariate EDAs. Second, we determine the expected run
times of speci�c EDAs on benchmark functions from theory. In the �rst part, we
characterize when EDAs are unbiased with respect to the problem encoding. We
then consider a setting where all solutions look equally good to an EDA, and we
show that the probabilistic model of an EDA quickly evolves into an incorrect
model if it is always updated such that it does not change in expectation.

In the second part, we �rst show that the algorithms cGA and MMAS-fp are
able to e�ciently optimize a noisy version of the classical benchmark function
OneMax. We perturb the function by adding Gaussian noise with a variance
of σ 2, and we prove that the algorithms are able to generate the true optimum in
a time polynomial in σ 2 and the problem size n. For the MMAS-fp, we generalize
this result to linear functions. Further, we prove a run time of Ω

(
n log(n)

)
for the

algorithm UMDA on (unnoisy) OneMax. Last, we introduce a new algorithm
that is able to optimize the benchmark functions OneMax and LeadingOnes
both in O

(
n log(n)

)
, which is a novelty for heuristics in the domain we consider.

iii

0Zusammenfassung

Optimierung ist ein Hauptbestandteil technologischen Fortschritts und oftmals
computergestützt. Da viele Optimierungsprobleme schwer sind, ist es jedoch un-
realistisch, eine optimale Lösung in angemessener Zeit zu erwarten. Daher wer-
den Heuristiken verwendet, also Programme, die versuchen hochwertige Lösun-
gen schnell zu erzeugen. Eine konkrete Klasse sind Estimation-of-Distribution-
Algorithmen (EDAs), die sich durch das Entwickeln probabilistischer Modelle
über dem Problemraum auszeichnen. Ein solches Modell wird genutzt, um neue
Lösungen zu erzeugen und damit das Modell zu verfeinern, um im nächsten
Schritt mit erhöhter Wahrscheinlichkeit bessere Lösungen zu generieren.

In dieser Arbeit untersuchen wir die Klasse univariater EDAs in der boole-
schen Domäne, also im Raum aller Bitstrings der Länge n. Das probabilistische
Modell eines univariaten EDAs besteht dann aus einem n-dimensionalen Wahr-
scheinlichkeitsvektor, in dem jede Komponente die Wahrscheinlichkeit angibt,
eine 1 an der entsprechenden Stelle zu erzeugen.

Mein Beitrag folgt zwei Hauptrichtungen: Erst untersuchen wir allgemeine
inhärente Eigenschaften univariater EDAs. Danach bestimmen wir die erwartete
Laufzeit gewisser EDAs auf Benchmarks aus der Theorie. Im ersten Abschnitt
charakterisieren wir, wann EDAs unbefangen bezüglich der Problemcodierung
sind. Dann untersuchen wir sie in einem Szenario, in dem alle Lösungen gleich
gut sind, und zeigen, dass sich ihr Modell schnell zu einem falschen entwickelt,
falls es immer so angepasst wird, dass sich im Erwartungswert nichts ändert.

Im zweiten Abschnitt zeigen wir, dass die Algorithmen cGA und MMAS-fp eine
verrauschte Variante des klassischen Benchmarks OneMax e�zient optimieren,
bei der eine Gaussverteilung mit Varianz σ 2 hinzuaddiert wird. Wir beweisen,
dass die Algorithmen das wahre Optimum in polynomieller Zeit bezüglich σ 2

und n erzeugen. Für den MMAS-fp verallgemeinern wir dieses Ergebnis auf
lineare Funktionen. Weiterhin beweisen wir eine Laufzeit von Ω

(
n log(n)

)
für

den Algorithmus UMDA auf OneMax (ohne Rauschen). Zuletzt führen wir
einen neuen Algorithmus ein, der die Benchmarks OneMax und LeadingOnes
in O

(
n log(n)

)
optimiert, was zuvor für noch keine Heuristik gezeigt wurde.

v

0Acknowledgments

Pursuing a PhD involves far more than writing a thesis. In fact, I believe that the
experience gained beforehand is what really constitutes a PhD, with the thesis
being only the closing remarks. Looking back to the beginning of my journey,
I see that I have grown as a person over all these years, which makes me very
proud, and there are many people to thank for this achievement.

The most in�uential person in my process of becoming a scientist was Timo
Kötzing. He constantly supported me, gave me great advice and new hope when
I was stuck, and was around whenever I needed him. His lessons went far beyond
writing good papers – they considered good research at its core. His enthusiasm
for science and teaching was addicting and inspiring, he showed genuine interest
in my progress, and hosted great game nights on a weekly basis which I happily
attended. I owe you a lot, Timo, and I wholeheartedly want to say thank you for
all you have done for me.

Another very important person was Tobias Friedrich, whom I �rst met when
I was a Master’s student. We immediately got along well, and he directly o�ered
me to start a PhD under his supervision, which I am immensely grateful for. It
was a great time being part of his research group Algorithm Engineering, since
Tobias is a very permissive and lenient supervisor. He gave me a lot of freedom
to conduct research in the areas I was interested in while also making sure that
I was �nancially secure and giving me helpful advice. Thank you very much,
Tobias, for your great support.

Many thanks also to all of the other recent and former members of the en-
tire research group Algorithm Engineering, which I had the honor to be a part
of. That is, thank you to Thomas Bläsius, Katrin Casel, Ankit Chauhan, Vanja
Doskoč, Philipp Fischbeck, Andreas Göbel, Katrin Heinrich, Maximilian Katz-
mann, Anton Krohmer, Gregor Lagodzinski, Pascal Lenzner, Anna Melnichenko,
Louise Molitor, Stefan Neubert, Francesco Quinzan, Manuel Rizzo, Ralf Rothen-
berger, Martin Schirneck, Karen Seidel, Andrew Sutton, and Christopher Weyand.
You are awesome! The group was like a second home to me, and I was always
happy coming to work. I highly enjoyed the daily board game sessions and all

vii

of the other plenty group activities like playing beach volleyball or basketball.
I especially would like to thank Louise for being the best o�ce mate I could
imagine, to Andreas for the great times when we were designing new games,
to Ankit for always being cheerful and supporting everyone, to Gregor and
Martin for many inspiring scienti�c and philosophical discussions, to Philipp
and Thomas for hosting fun game nights, and to Ralf and Vanja for sharing
my joy for board games and having fun at the game club. Additionally, special
thanks to Andrew for always answering the many questions I had, to Thomas
for providing me with a template for this document, and to Andreas and Timo
for giving me valuable feedback on my thesis.

Besides the research group, I would like to thank Benjamin Doerr and Carsten
Witt for agreeing to review this thesis and for each to have o�ered me to visit
them for some weeks in order to collaborate. I had a great time and learned
a lot during my stays. Especially thank you to Carsten, who agreed to be my
mentor without even knowing me at that point in time. Further, I would like
to thank Ralf Teusner for being an awesome member of our gaming group at
Timo’s place.

Besides all of the wonderful people I met during my time as a PhD student,
there are great people outside of my scienti�c community who deserve at least
as much credit. Most important of all are my brother Matthias Krejca as well as
my mother Anne Arends-Krejca and my father Grzesiu Krejca, who support me
endlessly in everything I do and bring happiness into my life every day. I am
glad to have you. Thank you so much for everything.

Last, I would like to say thank you to Emanuel Barth, Philipp Burkhardt,
Patrick Fleischer, and Lukas Klimmasch for entertaining me during my spare
time and being there for all these years. We may not have seen each other often
lately, but it is always a great pleasure to have you around, and after every
meeting, I am looking forward to the next.

viii

0Contents

Abstract iii

Zusammenfassung v

Acknowledgments vii

Contents ix

1 Introduction 1

1.1 Scope of this Thesis . 4
1.1.1 State of the Art . 4

1.2 Contribution and Outline . 7

2 Preliminaries 11

2.1 Notation . 11
2.1.1 Fitness Functions . 12

2.2 Probability Theory . 14
2.2.1 Probability Spaces and Events 14
2.2.2 Random Variables . 15
2.2.3 Expected Values . 18
2.2.4 Filtrations, Adapted Processes, and Stopping Times . . . 23

2.3 Probabilistic Inequalities . 25

3 Dri� Theory 29

3.1 Introduction . 29
3.2 Terms and Tools . 31
3.3 Additive Drift . 33

3.3.1 A Very Formal Approach 34
3.3.2 Upper Bounds . 36
3.3.3 Lower Bound . 43

3.4 Variable Drift . 44
3.4.1 Below the Target . 45

ix

3.4.2 Hitting the Target . 47
3.5 Multiplicative Drift . 48

3.5.1 Below the Target . 49
3.5.2 Hitting the Target . 50

3.6 Drift Without Drift . 50
3.7 Negative Drift . 54

4 The n-Bernoulli-λ-EDA Framework 59

4.1 Introduction . 59
4.2 The n-Bernoulli-λ-EDA . 60

4.2.1 Special Update Schemes 62
4.2.2 Margins . 63

4.3 Classifying Existing EDAs . 64
4.3.1 PBIL . 64
4.3.2 UMDA . 65
4.3.3 λ-MMASIB . 65
4.3.4 cGA . 67

5 Unbiasedness of n-Bernoulli-λ-EDAs 69

5.1 Introduction . 69
5.2 Automorphisms of the Hypercube 71
5.3 Unbiased EDAs . 75
5.4 Decomposability . 81

5.4.1 An Unbiased Non-decomposable EDA 82
5.4.2 Unbiased Decomposable EDAs 85

5.5 Locally Updating EDAs . 87
5.6 Conclusions . 90

6 n-Bernoulli-λ-EDAs Cannot be Balanced and Stable 93

6.1 Introduction . 93
6.2 Preliminaries . 95
6.3 Balanced Versus Stable . 98
6.4 Solving LeadingOnes E�ciently 104

6.4.1 The Stable cGA . 107
6.5 Conclusions . 111

x

7 Upper Bound of the cGA on Noisy OneMax 113

7.1 Introduction . 113
7.2 Preliminaries . 115
7.3 Formal Analysis . 117
7.4 Conclusions . 130

8 Upper Bound of the MMAS-fp on Noisy Linear Functions 133

8.1 Introduction . 133
8.2 Preliminaries . 134

8.2.1 MMAS-fp . 135
8.3 Formal Analysis . 136

8.3.1 Non-Gaussian Noise . 146
8.4 Conclusions . 146

9 Lower Bound of the UMDA on OneMax 149

9.1 Introduction . 149
9.2 Preliminaries . 150

9.2.1 Selecting Individuals . 151
9.2.2 The Number of 2nd-Class Individuals 152

9.3 Lower Bound on OneMax . 160
9.3.1 Small Population Sizes 161
9.3.2 Large Population Sizes 162
9.3.3 Medium Population Sizes 168
9.3.4 Proof of the Lower Bound 189

9.4 Relaxing the Condition on the Population Size 191
9.5 Conclusions . 192

10 Upper Bounds of the sig-cGA on LeadingOnes and OneMax 195

10.1 Introduction . 195
10.2 Preliminaries . 198
10.3 The Signi�cance-based Compact Genetic Algorithm 199

10.3.1 E�cient Implementation of the sig-cGA 203
10.3.2 Run Time Results for LeadingOnes and OneMax . . . 204

10.4 Run Time Analysis for the scGA 214
10.5 Conclusions . 218

11 Conclusions & Outlook 221

xi

Bibliography 225

List of Publications 241

xii

1 Introduction

Optimization is at the core of advancing human technology. A notable example is
the strong increase in performance and memory capacity of computers over the
last decades, which has lead to their widespread use in many di�erent domains.
With this increase in computing power and its wide availability, optimization
is nowadays heavily aided by computers, making it thus also an essential �eld
of research in computer science. Unfortunately, for many real-world problems,
it seems unlikely to get an optimal solution in a reasonable amount of time, as
they are often NP-hard. Hence, heuristics are a necessity, that is, algorithms that
aim at quickly generating good (but not necessarily optimal) solutions.

Traditional heuristics are designed with a single problem in mind and revolve
around exploiting properties speci�c to that problem. For example, the algorithm
of Christo�des [Chr76] yields a 1.5-approximation for the well known NP-hard
Traveling Salesman Problem in metric spaces. And the NP-hard Maximum Cut

Problem can even be solved optimally in polynomial time when given a planar
graph [Had75].

In contrast to such problem-speci�c approaches stand metaheuristics, which
are targeted at optimizing a wider range of problems. One example is the well
known algorithm Simulated Annealing [KGV83], which optimizes a problem by
iteratively varying a current solution randomly and accepting the result with a
probability that is dependent on the quality gain or loss by that variation and
on the time passed; initially, the probability of accepting a worse solution is
high but diminishing quickly over time such that the optimization process can
converge.

The general framework for metaheuristics consists of viewing the optimization
problem as a black box and only interacting with it via some limited operations,
such as modifying an instance or determining its quality. This approach makes
metaheuristics widely applicable, especially since the problem itself does not
need to be formalized – a subroutine for assessing the quality of a solution
is already su�cient. Golovin et al. [Gol+17] even say that “Any su�ciently
complex system acts as a black box when it becomes easier to experiment with

1

Chapter 1 Introduction

than to understand”. For example, Arbonès et al. [Arb+16] optimize the energy
gain from buoys submerged into the sea, which is a highly constrained problem,
using a metaheuristic. The complexity of this problem is only communicated
indirectly to the heuristic via a subroutine that simulates the energy gain of a
given placement of buoys and thus determines its quality.

Many metaheuristics use operators inspired from real-world phenomena. For
instance, Simulated Annealing is inspired by the physical process of annealing
of metals. The �eld of evolutionary computing (EC [KP15, Part E]) considers
metaheuristics that use operators inspired from phenomena in biology. One
example are evolutionary algorithms (EAs [Sim13]), which use operators inspired
by processes seen in natural evolution, such as mutation, recombination, and
selection. These algorithms have a population of solutions (called individuals),
which they use in order to create new individuals by modifying old solutions
randomly. Figure 1.1 (a) sketches the outline of an EA.

A similar approach to EAs is taken by estimation-of-distribution algorithms
(EDAs) [HP11; LL02; PHL15; PSC06], which are the focus of this thesis. The
key feature of an EDA is its probabilistic model (instead of a population), which
acts as a compact representation of a probability distribution over the search
space. Initially, this model represents the uniform distribution. By sampling the
model, the EDA generates individuals that act as an example of how well adapted
the current model is to creating good solutions. Based on this observation, the
EDA then updates its model in order to increase the quality of the samples. By
iterating this process, the EDA evolves a model that shows how to generate good
solutions. The outline of an EDA is depicted in Figure 1.1 (b), and the comparison
between EAs and EDAs is described in Figure 1.1.

EDAs have been successfully applied to a wide range of combinatorial, high-
dimensional problems with many dependencies and often outperformed compet-
ing algorithms [PHL15]. Next to their great performance, Pelikan et al. [PHL15]
point out that another advantage of EDAs is the expressiveness of the proba-
bilistic model created in the process, which allows for insights into the problem
domain and acts as a justi�cation for the created solutions. This expressiveness
is a result of many EDAs using probabilistic graphical models (PGMs [KF09])
as their representation of a probability distribution over the problem domain,
which are easy to interpret.

A PGM is a representation of a joint probability distribution via a graph, where
each node denotes a random variable and each edge (directed or undirected) de-

2

Introduction Chapter 1

Population O�spring

Variation

Iteration

Selection

(a) The schematic view of an EA. The population �rst increases through variation (that
is, mutation or crossover) and then gets reduced by selection.

Distribution O�spring

Sampling

Iteration

Update

(b) The schematic view of an EDA. The algorithm samples o�spring from a probabilistic
model (depicted as a probability distribution) and then performs an update.

Figure 1.1: A comparison of the main di�erences between EAs and EDAs. An EA
(Figure 1.1 (a)) works with an explicit population, whereas an EDA (Figure 1.1 (b)) uses
a probabilistic model instead in order to create o�spring. Afterward, both algorithms
perform an update based on this new information.

notes a dependency among two random variables. A PGM can be generated from
a problem by �rst determining relevant parameters (so-called problem variables)
and then introducing one or more decision variables that the model should use in
order to explain dependencies among the problem variables. The expressiveness
of an EDA is then a direct result of the complexity of the underlying PGM. For
example, a directed, acyclic graph results in a Bayesian network, whereas a
directed path results in a chain. The simplest PGM is achieved if each problem
variable is modeled by a single decision variable and no edges are allowed (that is,
the graph is an independent set). Such a model is known as a univariate model,

3

Chapter 1 Introduction

since the distribution of each problem variable is a function in only that problem
variable (and no other variables).

1.1 Scope of this Thesis

I aim at the theoretical understanding of univariate EDAs. Although these algo-
rithms only consider rather simple probabilistic models, I deem their analysis as
important, as I do not think that more complicated EDAs can be well understood
otherwise. In my opinion, univariate EDAs act as the natural �rst step to better
understanding EDAs in general. Further, results for univariate EDAs are still
rather scarce and their theoretical analysis is already quite challenging. Proof of
this is that all theoretical results so far only considered univariate EDAs.

One advantage of univariate over more complex EDAs or population-based
EAs is that they use very little memory [HP11]. In turn, this allows the algorithms
to cope with bigger problem sizes and to run more iterations in a certain amount
of time. Thus, they also provide a good alternative to switch to, once independent
clusters of a problem have been found using other methods. Further, as we show
in Chapter 10, the independence assumption does not mean that univariate EDAs
cannot cope with dependencies at all.

In the following, we go into detail about some of the latest results for EDAs
that show the complexity of the underlying research and the current focus. For a
more complete picture on the research that has been conducted on EDAs, please
refer to an article that is joint work with Carsten Witt [KW18b].

1.1.1 State of the Art

The current research of univariate EDAs is heavily centered around the run time
analysis for the maximization of functions over bit strings (so-called pseudo-
Boolean functions). Run time analysis is concerned with the expected number
of function evaluations until an optimal solution is sampled for the �rst time.
That is, it considers the evaluation of the objective function to be the most costly
operation and ignores other operations that normally factor into the total run
time. The aim of this line of research for EDAs is to compare their run time
results to those of EAs, which have been studied in greater detail and also fall
into the category of EC. For this purpose, certain benchmark functions are used,
the most basic one being OneMax [Müh92], which is a common starting point

4

Scope of this Thesis Section 1.1

for run time analysis. OneMax returns the number of 1s of a bit string and thus
creates an easy slope: each bit string can be improved by changing any 0 into a 1.
The intention of analyzing the performance of an algorithm on this function is
to study its hill-climbing abilities, and a common run time for EAs is Θ

(
n log(n)

)
,

where n denotes the length of the bit strings.1
Since the �eld of run time analysis of EDAs is rather young, only a few

algorithms have been considered: most current results are concerned with the
compact genetic algorithm (cGA [HLG99]) or the univariate marginal distribution
algorithm (UMDA [MP96]) and mostly consider OneMax. For both of them,
the tight run time bound of Θ

(
n log(n)

)
has been proven (assuming optimal

parameter choices). These results are remarkable, as they show that the cGA and
the UMDA are able to optimize OneMax as e�ciently as most EAs, although for
completely di�erent reasons. EAs exhibit this run time because the potential for
improvement declines over time, as fewer 0s (which need to be changed to 1s)
occur in solutions of better quality, slowing down the optimization process. For
EDAs, the run time is a result of how fast the probabilistic model can be changed
such that it generates an optimal solution.

Sudholt and Witt [SW16a] were the �rst to prove a tight run time bound of
an EDA by analyzing how its update process slows down the run time. The
authors considered the cGA, which is a univariate EDA and thus uses a vector
of probabilities p (the frequency vector) as its probabilistic model, where each
component pi (a frequency) denotes the probability to sample 1 at position i .
In each iteration, the cGA generates two solutions (bit strings) via its current
frequency vector and ranks them by their quality. It then updates each frequency
with respect to the bias viewed between the bits of the better and the worse
solution. In more detail, let x denote the better solution and y the worse. For
each frequency pi , if xi = yi , no update is performed; if xi > yi , then pi is
increased by 1/K (the step size), where K is an algorithm-speci�c parameter; and
if xi < yi , then pi is decreased by 1/K . Usually the cGA has a margin, that is,
the frequencies are restricted to the interval [1/n, 1 − 1/n], where n is the length
of the bit strings, in order to avoid having frequencies of 0 or 1, which would
result in only sampling 0s or 1s at the respective position.

Sudholt and Witt [SW16a] proved that the cGA with a margin optimizes
OneMax in Θ

(
n log(n)

)
in expectation (assuming an optimal parameter choice).

That is, for the analysis of the cGA, it is important to understand how fast the

1 See also Table 10.1 for a detailed overview of run time results for many EAs and EDAs.

5

Chapter 1 Introduction

frequencies can get to 1 − 1/n, since this increases the probability to sample
the optimum. At a �rst glance, it may seem preferable to have a large step
size, as this allows the frequencies to be increased quickly. However, due to
the randomness in the sampling process, some frequencies may be decreased
in the update process. If the step size is large, then a frequency reaches the
wrong end of the spectrum (1/n) and it takes some time to recover from this
mistake. Sudholt and Witt [SW16a] showed that if the step size is too large (that
is, K ∈ o

(√
n log(n)

)
), too many frequencies reach 1/n, which results in a lower

bound in the order of n log(n). For smaller step sizes of K ∈ Ω
(√
n log(n)

)
, the

process is slowed down by how long it now takes a frequency to reach the correct
side of the spectrum, that is, 1 − 1/n. Hence, the run time grows in the step size,
and the overall lower bound is Ω

(
K
√
n + n log(n)

)
. The matching upper bound

of O
(
K
√
n
)

for K ∈ O
(√
n log(n)

)
was also proven by Sudholt and Witt [SW16a]

by carefully analyzing how unlikely it is for a frequency too decrease too often
if the step size is small.

As mentioned before, the other EDA with a similarly detailed analysis on
OneMax is the UMDA, which is univariate like the cGA and thus also uses a
frequency vector p. However, the way the UMDA updates its frequency vector is
rather di�erent from the cGA: the UMDA generates λ solutions every iteration
(instead of 2), where λ is an algorithm-speci�c parameter. It then ranks all
solutions by their quality and chooses the best µ, where µ is another algorithm-
speci�c parameter. Each frequency pi is then set to the relative number of 1s
at position i among the µ best individuals. Thus, similarly to the cGA, the
frequencies of the UMDA can only take discrete values which are multiples of
1/µ. However, a strong di�erence to the cGA is that the UMDA does not use
the old frequency value when performing an update. Since all solutions are
generated independently, the change of a frequency during a single iteration
tends to concentrate around its expected value though, since too large jumps are
very unlikely. As for the cGA, the UMDA is usually considered with a margin,
that is, its frequencies are restricted to [1/n, 1 − 1/n].

Although the update process of the UMDA works di�erently from that of
the cGA, the expected run time of the UMDA on OneMax was proven to be in
Θ

(
n log(n)

)
too (assuming optimal parameter choices), where the upper bound

has been proven independently by Lehre and Nguyen [LN17] and Witt [Wit17].2
The results for the cGA and the UMDA coincide even so far that the lower

2 The lower bound is part of Chapter 9 and joint work with Carsten Witt.

6

Contribution and Outline Section 1.2

and upper bounds of both algorithms take the same form (when assuming that
K = λ), considering di�erent parameter restrictions.3 It is important to note
though that this run time considers the expected number of function evaluations,
not iterations. Since the UMDA performs λ function evaluations in each iteration,
it takes only a λ-fraction of iterations when compared to the cGA but performs
larger steps in expectation (assuming K = λ).

The analysis by Witt [Wit17] for the upper bound of the UMDA shows that
the (optimal) run time of Θ

(
n log(n)

)
is achieved for the two di�erent parameter

settings of λ ∈ Θ
(
log(n)

)
and λ ∈ Θ

(√
n log(n)

)
(always assuming that µ ∈ Θ(λ)).

In comparison, for the cGA, Sudholt and Witt [SW16a] proved an upper bound of
Θ

(
n log(n)

)
only for the single parameter choice of K ∈ Θ

(√
n log(n)

)
. This begs

the question of whether the regime of K ∈ Θ
(
log(n)

)
for the cGA is also optimal.

Although this question remains still unanswered, recent results by Lengler et
al. [LSW18] suggest a bimodal behavior in the run time of both the cGA and the
UMDA between the two parameter settings mentioned above, as they proved
that the cGA has an expected run time of Ω

(
K1/3n + n log(n)

)
on OneMax for

K ∈ O
(√
n/log(n)2

)
. Note that this lower bound is strictly worse thanΘ

(
n log(n)

)
for K ∈ ω

(
log(n)3

)
, which leads to the assumed bimodal behavior in run time

(supposing that the cGA actually has a run time ofΘ
(
n log(n)

)
forK ∈ Θ

(
log(n)

)
).

1.2 Contribution and Outline

With this thesis, I contribute to the understanding of univariate EDAs and to the
state-of-the-art results in two major ways: �rst, I investigate general, intrinsic
properties of these algorithms. This shows certain possibilities and limits of
EDAs, and it also provides insights that carry over to analyses with a di�erent
focus, such as run time analysis. Second, I analyze the run time behavior of
certain EDAs on standard benchmark functions, while also using the insights
about the intrinsic properties from the �rst part. These analyses complement
the existing run time results and add to the bigger picture of EDAs. Additionally,
all of the results use various tools for coping with random processes, and this
thesis thus also serves as a demonstration of how to analyze EDAs theoretically.

Most of the chapters are based on joint work with di�erent co-authors. If this
is the case, it is mentioned at the beginning of the respective chapter. We now
give an overview of all of the following chapters.

3 Please refer to Table 10.1 for more details on the parameter restrictions.

7

Chapter 1 Introduction

Chapter 2 is concerned with the mathematical background for all of the
analyses. We introduce important notation, the domain of our optimization
problems, as well as the stochastic tools we use. As this thesis is focused on the
analysis of randomized processes, we place emphasis on topics from probability
theory that we consider more advanced, such as expected values conditional on
a σ -algebra.

In Chapter 3, we go into detail about drift theory, which is a collection of useful
theorems that provide bounds on the expected �rst-hitting times of processes by
only bounding their local expected progress (the drift). Since these theorems are
easy to use and widely applicable, they are a fundamental tool in the theory of EC,
especially for run time analysis. We discuss the foundation of drift theory and
prove drift theorems for di�erent regimes in the up-to-date most general form.
Overall, this chapter provides an overview about state-of-art drift theorems and
educates the reader about their background.

In Chapter 4, we introduce the n-Bernoulli-λ-EDA (Algorithm 1) – a frame-
work for univariate EDAs, which acts as a foundation for most of our results. An
n-Bernoulli-λ-EDA is any univariate EDA that has a vector of probabilities (the
frequency vector ; each component being a frequency) that is updated iteratively
only using the λ samples from the current iteration. In Chapters 5 and 6, we ana-
lyze general properties of the class of n-Bernoulli-λ-EDAs, and in the remaining
chapters (besides Chapter 10), the algorithms we consider are special instances
of the framework. Further, we show how the most commonly theoretically ana-
lyzed EDAs are all n-Bernoulli-λ-EDAs, and we give an overview about known
results for these algorithms.

In Chapter 5, we consider the concept of unbiasedness introduced by Lehre
and Witt [LW12], which has only been used in the context of EAs before, and
we prove an alternative characterization for n-Bernoulli-λ-EDAs. An algorithm
is said to be unbiased if an only if it performs the same when optimizing a
perturbed objective function as when optimizing the unperturbed function,
where a perturbation is any isometric automorphism of the discrete hypercube.
Our characterization extends this notion to automorphisms of the continuous
hypercube and shows how the invariance property of the original de�nition
carries over to the frequency vector of n-Bernoulli-λ-EDAs. We then prove that
almost all of the algorithms we consider in this thesis are unbiased. This result
generalizes all time results for functions to closures of these functions under

8

Contribution and Outline Section 1.2

isometric automorphisms. In our case, all of our run time results hold for a class
of functions instead of a single function, due to our results from Chapter 5.

In Chapter 6, we consider the update process of an n-Bernoulli-λ-EDA under
a constant function, which models a setting in that the algorithm does not get
any information on which parts of the search space are more bene�cial. We
say that the algorithm is balanced if and only if a frequency does not change
in expectation after an update (that is, it is a martingale), and we say that the
algorithm is t-stable if and only if the frequency only takes constant values for t
iterations with high probability. Both properties are desirable in our considered
setting, as we do not want the algorithm to introduce a bias into the update
process (which would violate balanced), and we do not want a frequency to take
values subconstantly close to 0 or 1 (which would violate stable), as it is hard
to escape from these and the decision would be arbitrary. We prove that all
commonly analyzed n-Bernoulli-λ-EDAs are balanced and that no n-Bernoulli-λ-
EDA can be both balanced and stable. Hence, common EDAs are not stable, and
we even show how fast their frequencies reach extremal values with a decent
probability. Last, we introduce the scGA – a new n-Bernoulli-λ-EDA, which
is stable (and thus not balanced) and prove that it optimizes the benchmark
function LeadingOnes in O

(
n log(n)

)
. This is faster than the usual run time of

Θ
(
n2

)
for common EAs (see Table 10.1).

The remaining chapters are concerned with run time analysis. In Chapters 7
and 8, we consider noisy optimization, that is, every time the objective function
is evaluated at a point, we add Gaussian noise to the original value. We then
consider the number of function evaluations that are needed until the unnoisy
optimum is sampled for the �rst time. We determine this run time with respect
to the dimension of the problem space as well as the variance of the noise. If an
algorithm has a run time that is polynomial in both of these quantities, we say
that it scales gracefully with the considered noise. In Chapter 7, we show that
the cGA scales gracefully on the benchmark function OneMax in our setting of
additive posterior Gaussian noise, and in Chapter 8, we show that the algorithm
MMAS-fp scales gracefully on the class of linear pseudo-Boolean functions.
These results show that EDAs are well suited to optimize noisy functions. This
stands in contrast to mutation-only EAs, which fail to optimize a noisy function
with high probability once the variance of the noise is too large and thus do not
scale gracefully [Fri+17].

In Chapter 9, we prove a lower bound of Ω
(
n log(n)

)
of the UMDA on (unnoisy)

9

Chapter 1 Introduction

OneMax. This result mirrors a similar prior result by Sudholt and Witt [SW16a],
who proved the same lower bound for the cGA and whose proof idea we adapt
in our proof. Our analysis considers three di�erent parameter regimes of the
sample size λ of the UMDA. If λ is rather small or rather large, the run time
bound follows by simple stochastic arguments. For the medium range of λ,
we use more advanced tools, as we want to prove that frequencies reach the
incorrect value of 1/n with a su�ciently large probability. In order to show this,
we de�ne a potential function that scales the search space such that the drift of
the resulting process is independent of its expected value and its variance. This
allows us to approximate this process after a su�cient number of iterations via a
normal distribution, for which good tail bounds exit. We then use these bounds
in order to show that it is su�ciently likely for frequencies to reach incorrect
values, which overall slows down the optimization process. In combination with
recently proven matching upper bounds [LN17; Wit17], we can conclude that
the UMDA has a run time of Θ

(
n log(n)

)
on OneMax (for optimal parameters).

Chapter 10 builds upon the concepts of balanced and stable from Chapter 6
and introduces the sig-cGA (Algorithm 2) – a univariate EDA that can be thought
of as being both balanced and stable (for a polynomial number of iterations).
Since n-Bernoulli-λ-EDAs cannot be both, the sig-cGA does not fall into this
framework albeit still being univariate. The reason for not being an n-Bernoulli-
λ-EDA is that the sig-cGA contains a history of all of the bit values of good
solutions among multiple iterations. It uses this information in order to perform
an update for a frequency if a statistical signi�cance in a history is detected.
We prove that the sig-cGA optimizes the two benchmark functions OneMax
and LeadingOnes both in O

(
n log(n)

)
, which is the �rst time that such a result

has been proven for any EDA or EA (see also Table 10.1). Additionally, we
prove that the scGA from Chapter 6, which is an n-Bernoulli-λ-EDA and is also
able to optimize LeadingOnes in O

(
n log(n)

)
, has an exponential run time on

OneMax. This suggests that giving up the balanced property (as done for the
scGA) in order to become stable does not seem bene�cial, whereas leaving the
n-Bernoulli-λ-EDA framework in order to be balanced and stable yields useful
results.

Last, in Chapter 11, we conclude this thesis by emphasizing the most important
lessons learned from our results and by giving an overview on open questions
in the �eld of theory of EDAs.

10

2 Preliminaries

In this chapter, we introduce the notation that we use throughout this thesis, the
benchmark functions that we consider in our analyses, as well as the stochastic
tools we use in order to derive our results. We assume that the reader is familiar
with basic probability theory, and we only provide details for topics we consider
more advanced. For a more detailed introduction, we refer to the book by
Mitzenmacher and Upfal [MU05].

2.1 Notation

We use bold upright letters to denote number sets. For example, N denotes the
set of all natural numbers (including 0), and R denotes the set of all real numbers.
For any m,n ∈ N, we de�ne [m..n] B [m,n] ∩ N, that is, the discrete interval
fromm to n. Further, we de�ne the special case of [n] B [1..n].

We use bold italic letters to denote vectors. For any n ∈ N, any i ∈ [n], and any
vector p ∈ Rn, we denote the i-th component of p with pi . Vectors where each
component is the same number are denoted by writing the respective number in
bold, that is, for any r ∈ R, we let r denote the all-r vector (of a dimension that
has been established prior). For example, 1/2 denotes the all-1/2 vector.

In this thesis, we consider pseudo-Boolean functions, that is, functions map-
ping from the n-dimensional discrete hypercube (bit strings) to real numbers,
formally f : {0, 1}n → R, which we call �tness functions. We call the value of a
�tness function �tness. If not stated otherwise, n ∈ N+ denotes the dimension of
the domain of a �tness function. When performing run time calculations, we
are interested in asymptotic results with respect to n.

For asymptotic notation, we follow the standard conventions of Landau nota-
tion ([Cor+09, Chapter 3]). That is, we do not use it for functions but function
values instead. For example, n ∈ O

(
n2

)
means that the function n 7→ n grows

as most as fast as the function n 7→ n2, up to a constant factor; and a ∈ o(1)
means that a is a sequence converging to 0 (in some variable that is not named;
normally the problem size n). Further, we use poly(n) for any polynomial (in n).

11

Chapter 2 Preliminaries

For two bit strings x ,y ∈ {0, 1}n , let dH(x ,y) denote their Hamming distance,
that is, the number of positions that their di�er in. More formally, we de�ne
dH(x ,y) B |{i ∈ [n] | xi , yi }|. If two bit strings have a Hamming distance of 1,
we say that they are neighbors. Further, let ‖x ‖0 denote the number of 0s of x ,
and let ‖x ‖1 denote the number of 1s.

We denote the characteristic function of a set A with 1A. We may use a
proposition P instead of a set A and write 1{P}, meaning that the characteristic
function is 1 if the proposition is true and 0 otherwise.

2.1.1 Fitness Functions

The run time results of this thesis consider the two, most commonly analyzed,
�tness functions OneMax [Müh92] and LeadingOnes [Rud97].

OneMax

In its standard form, OneMax is a linear function that returns the number of 1s
in a bit string. It is considered to be one of the easiest functions with a unique
optimum for most EAs [Sud13; Wit13]. Formally, it is de�ned as

OneMax(x) =
∑
i ∈[n]

xi . (2.1)

A bit string with i 0s has i neighbors with strictly larger OneMax value.
Hence, in order to maximize this function, it is su�cient to iteratively go from
a bit string to any neighbor with a better �tness. This process of making local
progress is known as hill climbing, and OneMax is used as a benchmark function
to analyze how well an algorithm is able to perform such a hill-climbing task.

Note that the all-1s bit string 1 is the unique global optimum of OneMax.
However, the function can easily be generalized to have an arbitrary bit string
a ∈ {0, 1}n as optimum. The function value is then de�ned to be the Hamming
distance to a, that is,

OneMaxa (x) = dH(x ,a) .

For each a ∈ {0, 1}n , we get a di�erent function OneMaxa , and we call the
set of all of these 2n di�erent functions the OneMax function class. In Chapter 5,
we prove that it is su�cient for our considerations to only analyze OneMax as

12

Notation Section 2.1

the representative function of this function class, since our algorithms of interest
are unbiased with respect to the representation of the function’s domain.

A common run time for EAs or EDAs on OneMax (or, usually, the entire
OneMax function class) is Θ

(
n log(n)

)
(see Table 10.1). For EAs, this run time is

often a result from the coupon collector process [MU05, Section 2.4.1], as the n
di�erent bit values that need to be optimized can be thought of as n di�erent
coupons that need to be collected. For EDAs, the run time is a result of how fast
the underlying probabilistic model converges to one that samples the optimal
solution with high probability. We go more into detail about this in Chapters 9
and 10.

LeadingOnes

LeadingOnes is a function that returns the number of consecutive 1s in a bit
string, starting from the leftmost position. Formally,

LeadingOnes(x) =
∑
i ∈[n]

∏
j ∈[i]

xi . (2.2)

Di�erent from OneMax, LeadingOnes is not linear, as the product introduces
dependencies among the di�erent bits. Now, each bit string (expect the global
optimum 1) has exactly one neighbor with strictly better �tness. Hence, hill
climbing is still su�cient, but, in order to progress locally, the correct neighbor
has to be chosen in every iteration. Thus, optimizing LeadingOnes can be
thought of as �nding a hidden permutation [Afs+13].

Similar to OneMax, the de�nition of LeadingOnes can be generalized to an
arbitrary optimum a ∈ {0, 1}n and an arbitrary permutation π of {0, 1}n . The
optimum a determines which bit is the correct one for each position, and the
permutation π determines the order in which the correct bits have to occur
before the next bit contributes to the �tness at all. This results in the generalized
de�nition of

LeadingOnesa,π (x) =
∑
i ∈[n]

∏
j ∈[i]

1{xπ (j) = aπ (j)} .

For each a ∈ {0, 1}n and each permutation π of {0, 1}n , we get a di�erent
function LeadingOnesa,π , and we call the set of all of these 2nn! di�erent
functions the LeadingOnes function class. Again in Chapter 5, we prove that it

13

Chapter 2 Preliminaries

is su�cient to only consider LeadingOnes as the representative of this class for
the algorithms we analyze.

A common run time for EAs or EDAs on LeadingOnes (or, usually, the entire
LeadingOnes function class) is Θ

(
n2

)
(see Table 10.1). The increase in the run

time when compared to OneMax is, generally speaking, a result of determining
the underlying permutation of the function. It is not su�cient to determine the n
correct bits anymore; they also have to be determined in the correct order. In
Chapter 10, we present an algorithm (Algorithm 2) that, albeit still relying in
uncovering the bits in the correct order, optimizes LeadingOnes in O

(
n log(n)

)
by optimizing each position in time O

(
log(n)

)
.

2.2 Probability Theory

In this section, we introduce the concepts of probability theory that we use in this
thesis. We start with elementary topics and continue with more advanced topics
such as conditional expected values, �ltrations, and stopping times. All of the
following de�nitions (and far more) can be found in the textbook by Grimmett
and Stirzaker [GS01b].

2.2.1 Probability Spaces and Events

A probability space is a triple (Ω,A, P), where the sample space Ω , ∅ is the set
of all elementary events, A ⊆ 2Ω is a σ -algebra containing all the events we
assign a probability to, and P : A → [0, 1] is a probability measure that assigns
probabilities to all events from A. Throughout this thesis, we do not state our
probability spaces explicitly, since they are clear from context.

We use the notation Pr[A] to denote the probability of an eventA of an implicit
probability space, and we say that such an event occurs with high probability
if and only if Pr

[
A
]
∈ O

(
1/poly(n)

)
, that is, the probability for A to not occur

is at most an inverse polynomial. Further, we say that an event A occurs with
overwhelming probability if and only if there is a k ∈ Ω(n) such that Pr

[
A
]
= 2−k.

Recall that n denotes the dimension of a �tness function.
For two events A and B, with Pr[B] , 0, we denote the probability of A

conditional on B with Pr[A | B] B Pr[A ∩ B]/Pr[B], that is, the probability of A,
assuming that B occurred. E�ectively, we consider a new probability space

14

Probability Theory Section 2.2

with B as its new sample space. Conditional probabilities are a very important
concept that most of our tools build upon.

The following theorem shows how conditional probabilities can be used to
calculate a certain probability.

I Theorem 2.1 (Law of Total Probability [GS01b, Chapter 1.4, Lemma 4]).
Let A be an event, let I ⊆ N, and let {Bi }i ∈I be a partition of Ω such that, for all
i ∈ I , we have Pr[Bi] > 0. Then

Pr[A] =
∑
i ∈I

Pr[A | Bi] · Pr[Bi] . J

Theorem 2.1 determines Pr[A] via a case distinction with respect to the di�er-
ent events {Bi }i ∈I that can occur.

We call two events A and B (with Pr[B] , 0) independent if and only if
Pr[A | B] = Pr[A]. Intuitively, knowing that B occurred does not change the
probability of A.

For the rest of this chapter, we always assume that we are given a probability
space (Ω,A, Pr).

2.2.2 Random Variables

In this thesis, we analyze quantities of algorithms that involve randomness, such
as the run time of a randomized algorithm or the quality of a solution at a certain
point in time. This concept is formally known as a random variable.

I De�nition 2.2 (Random Variable). A random variable is any function
X : Ω → R. J

We only consider discrete random variables in this chapter, that is, random
variables X with a countable range (denoted as rng(X)). For continuous random
variables, many of the following concepts apply similarly though.

The probability of an outcome x of a random variable X is determined by
considering the probability of all preimages of x . More formally, the probability
that X takes the value of x ∈ rng(X) is

Pr
[
X−1(x)

]
= Pr

[
{ω ∈ Ω | X (ω) = x}

]
.

We use the more conventional style and denote the above probability with
Pr[X = x]. Further, we denote the respective event with {X = x}, that is, we

15

Chapter 2 Preliminaries

denote it as a set in order to highlight that we consider an event, not a relation.
Consequently, the notation {X ≥ x} is used to denote the union of all events
{X = y} with y ≥ x .

Whenever we compare two random variables X and Y , for example, when
writing X ≥ Y , we mean that this comparison is true for all elementary events,
that is, for all ω ∈ Ω, it holds that X (ω) ≥ Y (ω). Note that such a statement is
di�erent from the event {X ≥ Y }. As a special case, when we write X = Y , both
random variables are identical.4

We say that two random variables X and Y are independent if and only if,
for all x ∈ rng(X) and all y ∈ rng(Y), the events {X = x} and {Y = y} are
independent.

Last, given two random variables X and Y , we say that Y stochastically domi-
nates X , written as Y � X , if and only if, for all x ∈ R, it holds that Pr[Y ≤ x] ≤
Pr[X ≤ x]. Note that, for all x ∈ R, this is equivalent to Pr[Y > x] ≥ Pr[X > x].

For all of our considerations so far, we assumed that the events {X = x} are
actually part or our σ -algebra. However, note that this does not necessarily need
to be true, which leads to the following de�nition.

IDe�nition 2.3 (Measurable RandomVariable). LetB ⊆ A be a σ -algebra.
A (discrete) random variable X is B-measurable if and only if, for all x ∈ rng(X),
it holds that

{X = x} ∈ B . J

We only consider measurable random variables. However, the concept of a
measurable random variable becomes relevant once we restrict the events that
we want to assign a probability to.

Distributions

Given a random variable X , the function D : rng(X) → [0, 1] with D(x) =
Pr[X = x] is called the distribution of X . We use the standard notation of X ∼ D
to denote that X follows distribution D. Examples of very common distributions
are the following.

4 We extend this notation to also apply when X and Y are equal almost surely, that is, for all
positive probabilities. Analogously, when we speak of unique random variables, we also mean
almost surely.

16

Probability Theory Section 2.2

Uniform Distribution. For an n ∈ N+, we say that a random variable X that
takes values in [n] follows a uniform distribution, denoted as X ∼ Unif(n), if
and only if

Pr[X = n] = 1
n
.

This means that every outcome of X is equally likely.

Bernoulli Distribution. We say that a random variable X that only takes the
values 0 and 1 follows a Bernoulli distribution with parameter p ∈ [0, 1], denoted
as X ∼ Ber(p), if and only if

Pr[X = 1] = p and Pr[X = 0] = 1 − p .

This means that a Bernoulli-distributed random variable denotes an indicator
function for an event that occurs with probability p.

Binomial Distribution. When considering n ∈ N+ independent Bernoulli
trials, all with the same success probability p ∈ [0, 1], we get the Binomial
distribution. We say that a random variable X that takes values in [0..n] follows
a Binomial distribution with parameters n and p, denoted as X ∼ Bin(n,p), if
and only if

Pr[X = k] =
(
n

k

)
pk (1 − p)n−k .

Geometric Distribution. The Bernoulli distribution considers a single trial
with success probability p, and the binomial distribution considers n independent
trials with such probability. Similar to those, the geometric distribution also
considers independent trials with the same success probability, but it considers
a variable amount of trials – the amount until a success occurs for the �rst time.
We say that a random variable X that takes values in N+ follows a geometric
distribution with parameter p ∈ [0, 1], denoted as X ∼ Geo(p), if and only if

Pr[X = k] = (1 − p)k−1p .

In this thesis, we may use the terms distribution and random variable synony-
mously. For example, we may write Pr[Bin(n, 1/2) = 2] to denote the probability

17

Chapter 2 Preliminaries

of a binomially distributed random variable to take the value 2, without intro-
ducing a random variable.

For the expected values and variances of the distributions above, we refer to
standard literature [GS01b; MU05].

2.2.3 Expected Values

A natural measure for random variables is their average value with respect to
their distribution, called the expected value of a random variable. This concept
plays a crucial role in our analyses.

I De�nition 2.4 (Expected Value). Let X be a random variable. The expected
value of X is the value

E[X] B
∑

x ∈rng(X)
x · Pr[X = x]

=
∑
ω ∈Ω

X (ω) · Pr[{ω}] . J

Note that we do not state an order in which we add the terms. Hence, we
assume that the above series is absolutely convergent, that is, E[|X |] converges.
This allows us to reorder the terms arbitrarily. Whenever E[|X |] is not absolutely
convergent, the expected value of X is not de�ned.

The �rst equality in De�nition 2.4 is the more common and arguably more
intuitive de�nition, which does not regard the sample space. However, it may
get confusing when considering more complex expressions like E[XY], where
the ranges of X and Y can be di�erent. In these cases, the second equality is
helpful, as it sums over the common domain of X and Y , which is Ω.

A very important property of the expected value is that it is linear.

I Theorem2.5 (Linearity of Expectation [GS01b, Chapter 3.3, Theorem 8]).
Let a,b ∈ R, and let X and Y be random variables. Then

E[aX + bY] = aE[X] + bE[Y] . J

Theorem 2.5 gives us a rule of how the expected value of a complex ran-
dom variable can be calculated by breaking it down into sums of simpler ones,
regardless of any dependencies among them.

18

Probability Theory Section 2.2

A concept related to the expected value of X is the variance of X – a measure
for how largely X deviates from its expected value.

I De�nition 2.6 (Variance). Let X be a random variable. The variance of X is
the value

Var[X] B E
[
(X − E[X])2

]
= E

[
X 2] − E[X]2 . J

Note that the second equality follows from Theorem 2.5.
The variance is the expected value of a special transformation of a random

variable. However, this transformation is sometimes useful, as we will see, for
example, in Section 3.6.

Since the variance is de�ned via an expected value, all of the properties and
de�nitions for expected values apply to the variance as well (when considering
the respectively transformed random variable).

Conditional Expected Values

In our analyses, we often consider a certain state of an algorithm and determine
what the expected next state is. In order to perform such calculations, we need
to consider expected values conditional on that a certain event occurred.

As we already brie�y discussed in Section 2.2.1, conditioning on an event A
(with Pr[A] , 0) can be thought of as considering a new probability space with
sample space A. This leads to the following de�nition of a conditional expected
value.

I De�nition 2.7 (Conditional Expected Value (on an Event)). Let X be a
random variable, and let A be an event with Pr[A] , 0. The expected value of X
conditional on A is the value

E[X | A] B
∑

x ∈rng(X)
x · Pr[X = x | A]

=
∑
ω ∈Ω

X (ω) · Pr[{ω} | A] . J

Our aforementioned intuition of transforming the probability space gets obvi-

19

Chapter 2 Preliminaries

ous by noting that the second equality can be expressed as

1
Pr[A]

∑
ω ∈A

X (ω) · Pr[{ω}] ,

since Pr[{ω} | A] = Pr[{ω}]/Pr[A] if ω ∈ A, and it is 0 otherwise. This means
that we consider A as the new sample space and scale every probability accord-
ingly. Note that this implies that Theorem 2.5 also holds for conditional expected
values.

De�nition 2.7 is useful when we know what event we are conditioning on,
for example, when we know which state an algorithm is in. However, such
information may be subject to randomness itself. Hence, we have to consider all
possible outcomes of the condition. That is, we have to condition on a random
variable.

I De�nition 2.8 (Conditional Expected Value (on a Random Variable)).

Let X and Y be random variables. The expected value of X conditional on Y is
the random variable E[X | Y] such that, for all ω ∈ Ω, it holds that

E[X | Y](ω) = E[X | Y = Y (ω)] . J

Although mentioned in De�nition 2.8, it is very important to stress that
E[X | Y] is a random variable, not a number. This is due to the randomness in
the condition. The expected value E[X | Y] can be thought of as a collection of
all the conditional expected values of X with respect to the values that Y can
take.

The following theorem states an important connection between an expected
value conditional on a random variable and a (normal) expected value.

I Theorem 2.9 (Law of Total Expectation [GS01b, Chapter 3.7, Theo-
rem 4]). Let X and Y be random variables. Then

E
[
E[X | Y]

]
= E[X] . J

Theorem 2.9 is a powerful tool when calculating expected values. It allows us
to consider any partition of the sample space (provided by the random variableY),
calculate the expected values conditional on each event of the partition (which is
usually easier), and then taking the average. Since Y can be arbitrary, this gives
us a great degree of freedom.

20

Probability Theory Section 2.2

Note that we can express Theorem 2.9 in the following way, since we assume
that Y is discrete.

I Corollary 2.10 (Law of Total Expectation by Case Distinction [MU05,

Lemma 2.5]). Let X be a random variable, let I ⊆ N, and let {Ai }i ∈I be a
partition of Ω. Then

E[X] =
∑
i ∈I

E[X | Ai] · Pr[Ai] . J

As we just mentioned, a random variable Y implicitly provides a partition of
the sample space (with respect to the elementary events that are mapped to the
same value). The σ -algebra of the probability space allows us then to consider all
of the usual combinations of elementary events. However, di�erent elementary
events ω1 and ω2 may be mapped to the same value, meaning that we cannot
di�erentiate between ω1 and ω2 with respect to Y . Thus, we basically consider a
coarser probability space with the elementary events {Y = y} for all y ∈ rng(Y),
and the original σ -algebra may be needlessly �ne-grained. This means, that
we can remove Y from our considerations and instead immediately provide a
σ -algebra of the desired granularity. This results in the following de�nition.

I De�nition 2.11 (Conditional Expected Value (on a σ -Algebra)). Let X
be a random variable and B ⊆ A be a σ -algebra. The expected value of X
conditional on B is the random variable E[X | B] such that

(a) E[X | B] is B-measurable and,

(b) for all B ∈ B, it holds that E
[
E[X | B] · 1B

]
= E[X · 1B]. J

We would like to mention that E[X | B] is unique [GS01b, Chapter 7.9, Theo-
rem 26]. For the following discussion, please also refer to Figure 2.1.

De�nition 2.11 follows the aforementioned restriction of a probability space.
The inclusion-minimal events of B r {∅} partition the original sample space Ω
into new elementary events, which may result in a coarser view on the probability
space, described by B. Condition (a) now says that E[X | B] is a random variable
that can be expressed with respect to this coarser view, and condition (b) says
that the expected values of E[X | B] and X are the same when considering only
events in B. Thus, E[X | B] can be thought of a random variable that recovers X
as well as possible in terms of expectation when considering the σ -algebra B.

21

Chapter 2 Preliminaries

Ω

1
2 3

4 5

6 7 8

(a) The random variable X . It takes a dif-
ferent value for each elementary event in Ω.
Assume that it follows a uniform distribu-
tion.

14
3

14
3

14
3

3

316
3

16
3 16

3

Ω

(b) The random variable E[X | B]. Note
that the expected value of E[X | B] coin-
cides with the expected value of X for each
set of tiles with the same color.

Figure 2.1: An exemplary depiction of a random variable X (Figure 2.1 (a)) and its
conditional expectation (Figure 2.1 (b)) with respect to a σ -algebra B ⊂ A. The eight
tiles in each �gure denote the elementary events of Ω. The di�erently colored tiles in
Figure 2.1 (b) denote the elementary events with respect to B, that is, the inclusion-
minimal elements of B r {∅}. Note that these elements partition Ω. Further note that X
is not B-measurable but E[X | B] is.

Especially, note that E[X | {∅,Ω}] = E[X],5 that is, the expected value of X is a
special case of the expected value ofX when conditioning on the trivial σ -algebra
{∅,Ω} – the coarsest view possible. And when X is already B-measurable, we
get that E[X | B] = X .

We use De�nition 2.11 to extend the concept of conditional probability. Let A
be an event and B a σ -algebra. We de�ne Pr[A | B] B E[1A | B], in analogy to
how E[1A] = Pr[A] holds for a normal expected value. Note that Pr[A | B] is a
random variable (taking values in [0, 1]).

The expected value from De�nition 2.11 has all of the bene�cial properties
that the other expected values have.

I Theorem2.12 (Properties of the ExpectedValueConditional on aσ -Al-
gebra [GS01b, Chapter 7.9, Exercise 4]6). Let a,b ∈ R, letX andY be random
variables, and let B ⊆ A be σ -algebras. Then

5 Formally, this equation is incorrect, since E[X] is not a random variable but a number. However,
what we mean is that E[X] is a (deterministic) random variable that only takes the value E[X].

6 The proofs can be found in the accompanying book by Grimmett and Stirzaker [GS01a].

22

Probability Theory Section 2.2

(a) E[aX + bY | B] = aE[X | B] + bE[Y | B],

(b) E
[
E[X | B]

]
= E[X], and

(c) E
[
E[X | A]

�� B]
= E[X | B]. J

Point (a) corresponds to Theorem 2.5; point (b) corresponds to Theorem 2.9;
and point (c) says that when conditioning on multiple σ -algebras, the coarser
algebra wins.

Last, we want to brie�y formalize the connection between De�nitions 2.8
and 2.11. In order to do so, note that σ -algebras are closed under intersection.
Thus, for any random variableX , we de�ne the σ-operator σ(X) to be the coarsest
σ -algebra such that X is still measurable, that is,

σ(X) B
⋂
{B ⊆ A | B is a σ -algebra and X is B-measurable} .

Note that this de�nition can be expanded to multiple random variablesX0, . . . ,Xm
by choosing the smallest σ -algebra such that all of these random variables are still
measurable. Using the σ-operator, we can now interpret E[X | Y] as E[X | σ(Y)],
which conforms with our initial motivation. Thus, we treat all conditional ex-
pected values that are random variables the same, no matter whether they are
conditional on a random variable or a σ -algebra.

2.2.4 Filtrations, Adapted Processes, and Stopping Times

In the last section, we motivated the expected value ofX conditional on a random
variable Y by viewing it as a collection of normal conditional expected values
of X , where each condition is one random outcome of Y . One example we had
in mind was a single state change of a randomized algorithm. However, when
analyzing a randomized algorithm, we usually look at a sequence of (random)
states. At each state, we can consider the expected next state, conditional on
the randomness of the current state. This results in a sequence of random
outcomes that we want to condition on sequentially. Formally, this concept is
modeled by a sequence of σ -algebras, where each σ -algebra denotes all of the
random outcomes that could have taken place so far. Hence, this sequence is
non-decreasing. The resulting sequence is known as a �ltration.

IDe�nition 2.13 (Filtration). Let (Ft)t ∈N be a sequence ofσ -algebras. ThenF
is called a �ltration if and only if, for all t ∈ N, it holds that Ft ⊆ Ft+1. J

23

Chapter 2 Preliminaries

We call an element Ft of a �ltration a �lter, furthering the intuition that we
take a coarser look the underlying probability space.

Continuing our example from above, let (Xt)t ∈N denote the sequence of states
of a random algorithm. Using a �ltration F , we can formalize calculating the
expected next state by considering E[Xt+1 | Ft]. However, we are not guaranteed
that Ft is �ne-grained enough in order to entirely express the current state Xt ,
that is, we have no guarantee that Xt is Ft -measurable, since we did not tie F
to X in any way. The following de�nition ensures that a �ltration has enough
information to be able to reconstruct the current state.

I De�nition 2.14 (Adapted Process). Let (Ft)t ∈N be a �ltration, and let
(Xt)t ∈N be a sequence of random variables. Then X is adapted to F if and
only if, for all t ∈ N, the random variable Xt is Ft -measurable. J

Note that, due to the non-decreasing nature of a �ltration, De�nition 2.14
implies that, for all t ∈ N, the random variables X0, . . . ,Xt are Ft -measurable.

Intuitively speaking, De�nition 2.14 provides a framework for the analysis
of random processes that produce a growing history of random events. It is
important to note though that the de�nition does not prevent the �ltration from
having more information than necessary in order to measure Xt . For example,
(Ft)t ∈N where, for all t ∈ N, we de�ne Ft = A is a �ltration that every random
process is adapted to, since F only consists of the σ -algebraA of the probability
space. In order to restrict the information available for a certain element Xt , the
respective �lter has to be adjusted.

I De�nition 2.15 (Natural �ltration). Let (Xt)t ∈N be a sequence of random
variables. The natural �ltration of X is the �ltration

(
σ(X0, . . . ,Xt)

)
t ∈N. J

The natural �ltration of a process X is the smallest �ltration possible for X in
terms of possible σ -algebras for each Xt , due to the de�nition of the σ-operator.
The natural �ltration is useful when analyzing Markovian processes, where each
state Xt+1 is only dependent on the previous state, Xt .

Following our intuition of (Xt)t ∈N denoting states of a randomized algorithm,
we can think of the index t as a point in time. We then may be interested in
the �rst point in time T such that the algorithm reaches a certain state. For
optimization algorithms, this may be a state where an optimal solution has been
found. Since the algorithm is random, the states are random and, thus, the �rst
point in time of reaching a certain state, that is, T is a random variable. Similar

24

Probabilistic Inequalities Section 2.3

to how we tied a random process to a �ltration by De�nition 2.14, we connect
the random variable T to a �ltration too.

I De�nition 2.16 (Stopping Time). Let (Ft)t ∈N be a �ltration, and let T be a
random variable with rng(T) = N ∪ {∞}. Then T is called a stopping time (with
respect to F) if and only if, for all t ∈ N, it holds that {T = t} ∈ Ft . J

Note that, similar to De�nition 2.14, due the non-decreasing property of a
�ltration, it follows that, for all t ∈ N, we have {T ≤ t} ∈ Ft . Intuitively, a
stopping time is any random variable denoting a point in time of an observation
such that, at point t , it can be determined whether the observation occurred.

An important property of a stopping time T is that the decision of whether
{T = t} occurs can only be guaranteed relying on past information. For example,
consider tossing a fair coin repeatedly. LetT be the random variable that denotes
the �rst point in time such that the coin shows heads. Then T is a stopping time
with respect to the natural �ltration of the process, since we have, after each
coin toss, the information of whether the coin shows heads or not. In contrast to
that, the last point in time T ′ such that the coin shows heads is not a stopping
time with respect to the natural �ltration of the process, since, assuming that
{T ′ = t ′} could be determined at t ′, the �lter Ft ′ does not exclude the events
that heads shows up again in the future (since none of these events are part of
the history yet). This means that {T ′ = t ′} < Ft ′ . However, it is important to
note that the choice of the �ltration is important with respect to whether future
information is allowed or not. For example, for our coin tossing example, when
considering the �ltration that is constantly A, we have complete information
from the very start and can fully determine T ′ immediately.

When we consider a stopping time T that denotes the �rst point in time such
that a certain event occurs, we callT a �rst-hitting time. In Chapter 3, we go into
detail about how the expected values of �rst-hitting times can be determined.

2.3 Probabilistic Inequalities

In this section, we state some important inequalities that we use throughout
this thesis. The �rst inequality is useful for deriving an upper bound on the
probability of the union of events. In such a case, it is su�cient to add the
respective probabilities.

25

Chapter 2 Preliminaries

I Theorem 2.17 (Union Bound [MU05, Lemma 1.2]). Let I ⊆ N, and let
{Ei }i ∈I be a family of events. Then

Pr
[⋃
i ∈I

Ei

]
≤

∑
i ∈I

Pr[Ei] . J

The next inequality states how likely it is for a nonnegative random variable
to deviate from its expected value. The inequality does not necessarily yield a
very strong bound, but it is widely applicable, since its only limitation is that
the random variable must be nonnegative.

I Theorem 2.18 (Markov’s Inequality [MU05, Theorem 3.1]). Let X be a
nonnegative random variable. Then, for all a > 0, it holds that

Pr
[
X ≥ a · E[X]

]
≤

1
a
. J

Theorem 2.18 can be used to derive far stronger bounds for more restricted sce-
narios. The arguably most prominent scenario considers the sum of independent,
Bernoulli-distributed random variables.

I Theorem 2.19 (Cherno� Bounds [MU05, Theorems 4.4 and 4.5]). Let
n ∈ N+, and let (Xi)i ∈[n] be independent Bernoulli-distributed random variables.
Further, let X =

∑
i ∈[n]Xi . Then,

(a) for any 0 < δ ≤ 1, we have Pr
[
X ≥ (1 + δ)E[X]

]
≤ e−

E[X]δ 2
3 , and,

(b) for any 0 < δ < 1, we have Pr
[
X ≤ (1 − δ)E[X]

]
≤ e−

E[X]δ 2
2 . J

Note that when we choose δ ∈ Θ(1), Theorem 2.19 gives us exponentially low
probabilities in E[X] to deviate from the expected value.

When considering the expected value of a random variable that is transformed
by a convex function, the following inequality yields a useful bound.

I Theorem 2.20 (Jensen’s Inequality [MU05, Theorem 2.4]). Let X be a
random variable, and let f be a convex function. Then

E[f (X)] ≥ f
(
E[X]

)
. J

26

Probabilistic Inequalities Section 2.3

The following theorem can be thought of as a generalization of the linearity
of expectation (Theorem 2.5) when the number of random variables under
consideration is subject to randomness itself.

I Theorem 2.21 (Wald’s Equation [GS01b, Chapter 10.2, Lemma 9]). Let
(Xt)t ∈N+ be a sequence of independent, identically distribute random variables
over R, and let T be a stopping time with respect to the natural �ltration of X .
Then

E
[
T∑
t=1

Xt

]
= E[X1] · E[T] . J

The following inequalities provide useful bounds on terms of the form (1+p)n
with respect to the exponential function. Such expressions occur frequently
when considering independent events.

I Theorem 2.22 ([MR95, Proposition B.3]).

(a) For all p ∈ R, it holds that 1 + p ≤ ep .

(b) For all x ,n ∈ R such that n ≥ 1 and |x | ≤ n,(
1 + x

n

)n
≥

(
1 − x2

n

)
ex . J

Note that both cases combined imply for any n ≥ 1 and any x ∈ R with
x2 ∈ o(n) that there exists an a ∈ o(1) such that

(1 − a)e−x ≤
(
1 − x

n

)n
≤ e−x .

27

3 Dri� Theory

This chapter is based on joint work with Timo Kötzing [KK18]. Di�erent from the
conference version, the results in this thesis have been phrased using �ltrations in
order to better align with the rest of this chapter. Further, Section 3.3.2 has been
changed by simplifying the proof of Corollary 3.8 and adding a more general result
(Theorem 3.7) as well as adjusting the discussion in this section with respect to these
changes. Last, Theorem 3.3 as well as Sections 3.6 and 3.7 have been added.

In this chapter, we discuss drift theory, that is, theorems that are well suited for
bounding the expected �rst-hitting times of random processes. We do not only
aim at introducing the theorems we later use in this thesis but also at discussing
the ideas behind the theorems and providing a reference of many useful drift
theorems for di�erent settings.

3.1 Introduction

Drift theory is a general term for a collection of theorems that consider random
processes and bound their expected time to reach a certain value. The beauty
and appeal of these theorems lie in them usually having few restrictions but
yielding strong results. Intuitively speaking, in order to use a drift theorem, one
only needs to estimate the expected change of a random process – the drift – at
any given point in time. Hence, a drift theorem turns expected local changes of
a process into expected �rst-hitting times. In other words, local information of
the process is transformed into global information.

Drift theory gained traction in the theory of randomized search heuristics
when it was introduced to the community by He and Yao [HY01; HY04] via the
additive drift theorem. However, they were not the �rst to prove it. The result
dates back to Hajek [Haj82], who stated the theorem in a fashion quite di�erent
from how it is phrased nowadays. According to Lengler [Len17], the theorem
has been proven even prior to that various times. Since then, many di�erent
versions of drift theorems have been proven, the most common ones being the

29

Chapter 3 Dri� Theory

variable drift theorem [Joh10] and the multiplicative drift theorem [DJW12]. The
di�erent names refer to how the drift is bounded other than independent of time:
additive means that the drift is bounded by the same value for all states; in a
multiplicative scenario, the drift is bounded by a multiple of the current state
of the process; and in the setting of variable drift, the drift is bounded by any
monotone function with respect to the current state of the process.

Over time, the various drift theorems have been stated with di�erent restric-
tions. At �rst, the theorems only applied to �nite or discrete search spaces.
However, these restrictions are rarely used in the proofs and thus not necessary,
as pointed out, for example, by Lehre and Witt [LW14], who prove a general drift
theorem without these restrictions. Nonetheless, one restriction that remained
was a bounded search space, with a few notable exceptions that we brie�y want
to highlight:

• Lengler [Len17] mentions in�nite search spaces and also gives a proof of
the additive drift theorem in the setting of an unbounded search space.
However, Lengler only considers discrete search spaces, and the drift
condition only considers the previous state, not using a �ltration.

• Corus et al. [Cor+14] provide a proof of an additive drift theorem over an
unbounded search space in their appendix, using �ltrations. However, the
authors require that the expected �rst-hitting time of the process is �nite,
which is not always easy to prove and thus restricts the applicability of
the theorem.

• Semenov and Terkel [ST03] state a Theorem very much like an additive
drift theorem for unbounded search spaces, but they require the process to
have a bounded variance, as they also prove concentration for their result.

In this section, we prove the most common drift theorems in the most general
fashion up to date. Our most important results are our upper and lower bound of
the classical additive drift theorem (Corollary 3.8 and Theorem 3.11, respectively),
which we prove for unbounded7 search spaces. These theorems are used as a
foundation for the drift theorems in other settings. Most of our results for upper
bounds require the random process to be nonnegative, which is a restriction
that can be lifted, as we discuss in Section 3.3.2. In contrast to that, for the lower

7 For the upper bound, we require the search space to be lower-bounded but not upper-bounded.
We still refer to such a setting as unbounded.

30

Terms and Tools Section 3.2

bound of the additive drift theorem, we allow the process to be negative, but we
have to bound the step size in return; Example 3.12 shows why our theorems
fail otherwise.

Further, we prove an upper bound for the variable and the multiplicative drift
theorem (Theorem 3.13 and Corollary 3.15, respectively) for unbounded search
spaces, and we present a method that transforms a process with no drift into a
process with positive drift (Theorem 3.18), in order to be able to still apply drift
theory.

We would like to mention that drift theory has also brought forth other results
than expected �rst-hitting times, namely, concentration bounds and negative
drift, which are related. Both areas bound the probability of the �rst-hitting
time taking certain values. Concentration bounds show how unlikely it is for a
process to take much longer than the expected �rst-hitting time [DG13; Köt16].
On the other hand, negative drift bounds how likely it is for the process to reach
the goal although the drift is going the opposite direction [Köt16; OW11]. Since
we use negative-drift theorems in this thesis, Section 3.7 goes a bit more into
detail about this topic.

3.2 Terms and Tools

We consider the expected �rst-hitting timeT of a process (Xt)t ∈N over R adapted
to a �ltration (Ft)t ∈N, where T is a stopping time with respect to F . That is, we
are interested in the expected time it takes the process to reach a certain value
for the �rst time, which we will refer to as the target. Usually, our target is the
value 0, that is, we consider the random variableT = inf{t ∈ N | Xt ≤ 0}, where
we de�ne inf ∅ B ∞.

We provide bounds on E[T | F0] with respect to the drift of Xt , which is
de�ned as

Xt − E[Xt+1 | Ft] .

Recall that E[T | F0] as well as E[Xt+1 | Ft] are both random variables. Because
of the latter, the drift is a random variable, too. Further, note that if the drift
is positive, Xt decreases its value in expectation over time when considering
positive starting values. This is why 0 will be our target most of the time.

We are only interested in the process Xt until the time point T . That is, all
of our requirements only need to hold for all t < T (since we also consider

31

Chapter 3 Dri� Theory

t + 1). While this phrasing is intuitive, it is formally inaccurate, asT is a random
variable. We will continue to use it, however, formally, each of our inequalities
in each of our requirements should be multiplied with the characteristic function
of the event {t < T }. This way, the inequalities trivially hold once t ≥ T and,
otherwise, are the inequalities we state. We go a bit more into detail about
how a drift theorem without this convention looks like in Theorem 3.3 and the
surrounding section.

Last, we state all of our results conditional on F0, that is, we bound E[T | F0].
However, by the law of total expectation (Theorem 2.12, point (b)), one can easily
derive a bound for E[T] = E

[
E[T | F0]

]
.

Martingale Theorems

In this section, we state two theorems that we will use in order to prove our results
in the next sections. Both theorems make use of martingales, a fundamental
concept in the �eld of probability theory. A martingale is a random process
with a drift of 0, that is, in expectation, it does not change over time. Further,
a supermartingale has a drift of at least 0, that is, it decreases over time in
expectation, and a submartingale has a drift of at most 0, that is, it increases over
time in expectation.

The arguably most important theorem for martingales is the Optional-Stopping
Theorem (Theorem 3.1). It is often only provided in a form that suits martingales.
However, this result can be extended to super- and submartingales, as mentioned
by Bhattacharya and Waymire [BW16, Remark 3.7].

I Theorem 3.1 (Optional-Stopping Theorem [GS01b, Chapter 12.5, The-
orem 9] and [BW16, Remark 3.7]). Let (Xt)t ∈N be a sequence of random
variables over R adapted to a �ltration (Ft)t ∈N, and letT be a stopping time with
respect to F . Suppose that

(a) E[T] < ∞ and that

(b) there is some value c ≥ 0 such that, for all t < T ,

E
[
|Xt+1 − Xt |

�� Ft] ≤ c .

Then the following holds.

1. If, for all t < T , we have Xt − E[Xt+1 | Ft] ≥ 0, then E[XT] ≤ E[X0].

32

Additive Dri� Section 3.3

2. If, for all t < T , we have Xt − E[Xt+1 | Ft] ≤ 0, then E[XT] ≥ E[X0]. J

Theorem 3.1 allows us to bound E[XT] independently of the �ltration, which
is why our drift results are independent of the �ltration as well (except for F0).

Note that point 1 refers to supermartingales, whereas point 2 refers to sub-
martingales. Intuitively, point 1 says that a supermartingale will have, in expecta-
tion, a lower value than it started with, which makes sense, as a supermartingale
decreases over time in expectation. Point 2 is analogous for submartingales. For
martingales, both cases can be combined in order to yield an equality.

Martingales are essential in the proofs of our theorems. We will frequently
transform our process such that it results in a supermartingale or a submartingale
in order to apply Theorem 3.1.

Another useful theorem for martingales is the following inequality, which is
basically for martingales what a Cherno� bound (Theorem 2.19) is for binomial
distributions of binary random variables. We state it in a fashion applicable for
supermartingales, as mentioned by Warnke [War16, Remark 10].

I Theorem 3.2 (Azuma-Hoe�ding Inequality [GS01b, Chapter 12.2, The-
orem 3] and [War16, Remark 10]). Let (Xt)t ∈N be a sequence of random
variables over R adapted to a �ltration (Ft)t ∈N. Suppose that

(a) there is some value c > 0 such that, for all t ∈ N, |Xt − Xt+1 | < c .

If, for all t ∈ N, we have Xt − E[Xt+1 | Ft] ≥ 0, then, for all t ∈ N and all r > 0,

Pr[Xt − X0 ≥ r] ≤ e−
r 2
2tc2 . J

3.3 Additive Dri�

We speak of additive drift when the drift can be bounded by a value independent
of the process itself. That is, the bound is spatially and time-homogeneous.

When considering the �rst-hitting time T of a random process (Xt)t ∈N whose
drift is lower-bounded by a value δ > 0, then E[T | F0] is upper-bounded by
X0/δ .8 Interestingly, if the drift of Xt is upper-bounded by δ , E[T | F0] is lower-
bounded by X0/δ . Thus, if the drift of Xt is exactly δ , that is, we know how
much expected progress Xt makes in each step, our expected �rst-hitting time is

8 Note that we have access to X0 because X is adapted to F . Hence, X0 is F0-measurable.

33

Chapter 3 Dri� Theory

equal to X0/δ . This result is remarkable, as it can be understood intuitively as
follows: since we stop once Xt reaches 0, the distance from our start (X0) to our
goal (0) is exactly X0, and we make an expected progress of δ each step. Thus, in
expectation, we are done after X0/δ steps.

3.3.1 A Very Formal Approach

Before we state our results, we provide a very formal version of our main theorem
(Corollary 3.8) for E[T] (for the sake of simplicity). We do so because we are a
bit informal in the following sections, as we already mentioned in Section 3.2.
Hence, we want to provide a rigorous foundation here that shows how a drift
theorem should look like if we were to mention every detail. Since many of
these requirements seem unnecessarily verbose, we drop them afterward. We
would like to mention that, to the best of our knowledge, the only versions of
drift theorems that are this formal appear in the work of Corus et al. [Cor+14].

I Theorem 3.3 (Upper Additive Drift, Unbounded, Very Formal). Let
(Xt)t ∈N be random variables over R adapted to a �ltration (Ft)t ∈N, and let
T = inf{t ∈ N | Xt ≤ 0}. Furthermore, suppose that,

(a) there is some value δ > 0 such that, for all t ∈ N, it holds that

E[(Xt − Xt+1) · 1{t < T } | Ft] ≥ δ · 1{t < T } , and that,

(b) for all t ∈ N, it holds that Xt · 1{t ≤ T } ≥ 0.

Then
E[T] ≤ E[X0]

δ
. J

Note that the random variable 1{t < T } is Ft -measurable, sinceT is a stopping
time with respect F .

The proof of Theorem 3.3 closely follows Lengler [Len17, Theorem 1], who
uses a very short and elegant method but does not consider drift in the setting
of �ltrations.

Proof of Theorem 3.3. We �rst aim at showing that the following inequality holds
for all t ∈ N:

E[Xt+1 | t < T] ≤ E[Xt | t < T] − δ . (3.1)

34

Additive Dri� Section 3.3

Note that this inequality is not a simple transformation of condition (a), because
inequality (3.1) considers expected values that are numbers, not random variables.
We get

E[Xt+1 | t < T] = E[Xt+1 · 1{t < T } | t < T]
(∗)
= E

[
E[Xt+1 · 1{t < T } | Ft]

�� t < T]
(†)

≤ E
[
E[Xt · 1{t < T } | Ft] − δ · 1{t < T }

�� t < T]
‡
= E[Xt · 1{t < T } | t < T] − E[δ · 1{t < T } | t < T]
= E[Xt | t < T] − δ ,

where steps (∗) and (‡) use Theorem 2.12, point (b), step (†) uses condition (a)
of Theorem 3.3, and (‡) additionally uses Theorem 2.9.

By Corollary 2.10, we get, for all t ∈ N, that

E[Xt] = E[Xt | t < T] · Pr[t < T] +
=0³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

E[Xt | t ≥ T] ·Pr[t ≥ T]
= E[Xt | t < T] · Pr[t < T] . (3.2)

Using Corollary 2.10, inequality (3.1) and equation (3.2), we get

E[Xt+1] = E[Xt+1 | t < T] · Pr[t < T] +
=0³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

E[Xt+1 | t ≥ T] ·Pr[t ≥ T]
(3.1)
≤ (E[Xt | t < T] − δ) · Pr[t < T]

(3.2)
= E[Xt] − δ · Pr[t < T] . (3.3)

SinceT is a nonnegative integer random variable, it holds for its expected value
that E[T] =

∑∞
t=0 Pr[t < T] [MR95, Proposition C.7]. By using the de�nition of

an in�nite sum, we get

δ · Pr[t < T] τ→∞←
τ∑
t=0

δ · Pr[t < T]

(3.3)
≤

τ∑
t=0
(E[Xt] − E[Xt + 1])

35

Chapter 3 Dri� Theory

= E[X0] −

≥0³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
E[Xτ+1]

≤ E[X0] .

Dividing by δ �nishes the proof. �

In the following, we omit the indicator random variables and only mention
them indirectly via universal quanti�ers.

3.3.2 Upper Bounds

We give a proof for the additive drift theorem, originally published (in a more
restricted version) by He and Yao [HY01; HY04]. We start by reproving the
original theorem (which requires a bounded search space) but in a simpler, more
elegant and educational manner. We then extend this result by generalizing it to
processes with a bounded step size. Finally, we lift also this restriction.

Commonly, additive drift theorems are stated for nonnegative processes. How-
ever, we show that this restriction is not necessary. Nonetheless, we state all of
our results only for nonnegative processes, except for our most general result
(Theorem 3.7). The reason for this is that the result for nonnegative processes
takes an easier form than the more general one. We continue to discuss details
of this di�erence throughout this section

In all of the following proofs, we transforms the process we consider into a
supermartingale and then use Theorem 3.1 (or a variant). However, in order to
apply Theorem 3.1, we have to make sure to ful�ll condition (a), which is the
hardest part.

I Theorem 3.4 (Upper Additive Drift, Bounded). Let (Xt)t ∈N be random
variables over R adapted to a �ltration (Ft)t ∈N, and let T = inf{t ∈ N | Xt ≤ 0}.
Furthermore, suppose that

(a) there is some value δ > 0 such that, for all t < T , it holds that

Xt − E[Xt+1 | Ft] ≥ δ , that,

(b) for all t ≤ T , it holds that Xt ≥ 0, and that

(c) there is some value c ≥ 0 such that, for all t < T , it holds that Xt ≤ c .

36

Additive Dri� Section 3.3

Then
E[T | F0] ≤

X0
δ
. J

Note that condition (b) means that T can be rewritten as inf{t ∈ N | Xt = 0},
that is, we have to hit 0 exactly in order to stop. As we discuss after the proof,
this restriction is not necessary when adjusting the result of the theorem slightly.

Condition (a) bounds the expected progress we make each time step. The
larger δ , the lower the expected �rst-hitting time. However, due to condition (b),
note that small values of Xt create a natural upper bound for δ , as the progress
for such values can be at most |Xt − 0| = Xt .

Condition (c) means that we are considering random variables over the interval
[0, c]. It is a restriction that all previous additive drift theorems have but that is
actually not necessary, as we show with Corollary 3.8. In the following proof,
we use this condition in order to show that E[T] < ∞, which is necessary when
applying Theorem 3.1.

Proof of Theorem 3.4. We want to use point 1 of Theorem 3.1. Thus, we de�ne,
for all t < T , the process Yt B Xt + δt , which is a supermartingale, since

Yt − E[Yt+1 | Ft] = Xt + δt − E[Xt+1 + δ (t + 1) | Ft]
= Xt − E[Xt+1 | Ft] − δ

≥ 0 ,

as we assume that Xt − E[Xt+1 | Ft] ≥ δ for all t < T .
We now show that E[T | F0] < ∞ holds in order to apply Theorem 3.1. Let

r > 0, and let a be any value such that Pr[X0 ≤ a] > 0. We condition on the
event {X0 ≤ a}, and we consider a time point t ′ = (a + r)/δ and want to bound
the probability that Xt ′ has not reached 0 yet, that is, we consider the event
{Xt ′ > 0}. We rewrite this event as {Xt ′ − a > −a}, which is equivalent to
{Yt ′ − a > −a + δt

′ = r }, by de�nition of Y and t ′.
Note that, for all t < T , we have |Yt − Yt+1 | < c + δ + 1, as we assume that

Xt ≤ c . Thus, the di�erences of Yt are bounded and we can apply Theorem 3.2
as follows, noting that Y0 = X0 ≤ a, due to our condition on {X0 ≤ a}:

Pr[Yt ′ − a > r | X0 ≤ a] ≤ Pr[Yt ′ − Y0 ≥ r | X0 ≤ a]

≤ e−
r 2

2t ′(c+δ+1)2 .

37

Chapter 3 Dri� Theory

If we choose r ≥ a, we get t ′ ≤ 2r/δ and, thus,

Pr[Yt ′ − Y0 > r | X0 ≤ a] ≤ e−
rδ

4(c+δ+1)2 .

This means that the probability that Xt ′ has not reached 0 goes exponentially
fast toward 0 as t ′ (and, hence, r) goes toward∞. Thus, the expected value of T
is �nite.

Now we can use point 1 of Theorem 3.1 in order to get E[YT | F0] ≤ E[Y0 | F0].
In particular, noting that XT = 0 by de�nition,

X0 = E[X0 | F0]

= E[Y0 | F0]
≥ E[YT | F0]
= E[XT + δT | F0]

= E[XT | F0] + δE[T | F0]
= δE[T | F0] .

Thus, we get the desired bound by dividing by δ . �

Note that the proof reveals that condition (b) of Theorem 3.4 can be ignored
in order to get the result

E[T | F0] ≤
X0 − E[XT | F0]

δ
. (3.4)

This result is useful when one can get a lower bound on E[XT | F0]. However,
determining this value may not be easy. Hence, the result is simpli�ed to the
form seen in Theorem 3.4. Further note that we are able to achieve this general
result because none of the tools we use (that is, Theorems 3.1 and 3.2) require
the process to be nonnegative.

Since the arguments in the proof of Theorem 3.4 only need the property of
bounded di�erences in order to apply Theorem 3.2, we can relax the condition of
a bounded state space into bounded step size, which can be seen in the following
theorem.
I Theorem 3.5 (Upper Additive Drift, Bounded Step Size). Let (Xt)t ∈N be
random variables over R adapted to a �ltration (Ft)t ∈N, and let T = inf{t ∈ N |
Xt ≤ 0}. Furthermore, suppose that

38

Additive Dri� Section 3.3

(a) there is some value δ > 0 such that, for all t < T , it holds that

Xt − E[Xt+1 | Ft] ≥ δ , that,

(b) for all t ≤ T , it holds that Xt ≥ 0, and that

(c) there is some value c ≥ 0 such that, for all t < T , we have |Xt+1 − Xt | ≤ c .

Then
E[T | F0] ≤

X0
δ
. J

Proof. The proof of Theorem 3.4 is also applicable here. �

Note that the result of Theorem 3.5 can also be generalized to inequality (3.4),
since the proof is the same as the one of Theorem 3.4.

We now state an even more general additive drift theorem, which drops
condition (c) from Theorem 3.5. However, this means that we cannot rely on
Theorem 3.2 anymore and need another proof strategy. In the paper that this
chapter is based on [KK18], we used Markov’s inequality (Theorem 2.18) and
bounded the step size probabilistically in order to apply Theorem 3.5. While this
approach is feasible, it is quite involved, and there is an easier proof, which we
are going to present here. This proof makes use of the following special form of
the Optional-Stopping Theorem (Theorem 3.1).

I Theorem 3.6 (Optional-Stopping Theorem for Nonnegative Supermar-

tingales [Dur19, Theorem 4.8.4]). Let (Xt)t ∈N be a sequence of random vari-
ables over R adapted to a �ltration (Ft)t ∈N, and let T be a stopping time with
respect to F . Suppose that,

(a) for all t < T , we have Xt − E[Xt+1 | Ft] ≥ 0, and that,

(b) for all t ≤ T , it holds that Xt ≥ 0.

Then E[XT] ≤ E[X0]. J

Note that the two conditions of Theorem 3.6 state that the considered process is
a nonnegative supermartingale. The advantage of this theorem over Theorem 3.1
is that we neither have to show �rst that the expected �rst-hitting time is �nite
nor that the process has a bounded expected step size. This allows us to easily

39

Chapter 3 Dri� Theory

prove the following theorem, which is the most general additive-drift theorem
up to date. Di�erent to most common drift theorems, this theorem allows to
overshoot the target by a certain amount. In return, a penalty term is added to
the expected �rst-hitting time.

I Theorem 3.7 (General Upper Additive Drift, Unbounded). Let a ≤ 0,
let (Xt)t ∈N be random variables over R adapted to a �ltration (Ft)t ∈N, and let
T = inf{t ∈ N | Xt ≤ 0}. Furthermore, suppose that

(a) there is some value δ > 0 such that, for all t < T , it holds that

Xt − E[Xt+1 | Ft] ≥ δ and that,

(b) for all t ≤ T , it holds that Xt ≥ a.

Then

E[T | F0] ≤
X0 − E[XT | F0]

δ

≤
X0 − a

δ
. J

Proof. We follow the proof idea of Theorem 3.4 but use Theorem 3.6 instead of
Theorem 3.1. Thus, we do not have to show that E[T] is �nite.

We de�ne for all t < T the processYt B Xt−a+δt , which is a supermartingale,
since

Yt − E[Yt+1 | Ft] = Xt − a + δt − E[Xt+1 − a + δ (t + 1) | Ft]
= Xt − E[Xt+1 | Ft] − δ

≥ 0 ,

as we assume that Xt − E[Xt+1 | Ft] ≥ δ for all t < T .
Note that Y is nonnegative, as, for all t ≤ T , it holds due to condition (b) that

Yt = Xt − a + δt

≥ Xt − a

≥ 0 .

40

Additive Dri� Section 3.3

Hence, we can apply Theorem 3.6 and get

X0 − a = E[X0 − a | F0]

= E[Y0 | F0]
≥ E[YT | F0]
= E[XT − a + δT | F0]

= E[XT | F0] − a + δE[T | F0] .

Solving this inequality for E[T] yields the �rst result of the theorem. Using the
bound XT ≥ a and thus E[XT | F0] ≥ a yields the second result and concludes
the proof. �

As before, we state Theorem 3.7 with respect to nonnegative processes by
choosing a = 0, which is the usual form for additive drift theorems.

I Corollary 3.8 (Upper Additive Drift, Unbounded). Let (Xt)t ∈N be ran-
dom variables over R adapted to a �ltration (Ft)t ∈N, and let T = inf{t ∈ N |
Xt ≤ 0}. Furthermore, suppose that

(a) there is some value δ > 0 such that, for all t < T , it holds that

Xt − E[Xt+1 | Ft] ≥ δ and that,

(b) for all t ≤ T , it holds that Xt ≥ 0.

Then
E[T | F0] ≤

X0
δ
. J

Note that any random processs X may be transformed into one only taking
nonnegative values by de�ning Y = max{X , 0}. Since Corollary 3.8 does not
have the additional term of −a in its result, it may seem that it makes more
sense to always transform a process into a nonnegative one and then apply
Corollary 3.8 instead of Theorem 3.7. However, it is important to note that such
a transformation may a�ect the drift. In general, the drift of X will always be
a lower bound for the drift of Y , since the former can take values less than 0
whereas the latter is bounded by 0. Thus the expected di�erences of X may be
smaller than those of Y . Consequently, the result of Theorem 3.7 bene�ts of

41

Chapter 3 Dri� Theory

this (potentially) lower bound on the drift when compared to Corollary 3.8. The
following example highlights this di�erence.

I Example 3.9. Let n > 0, and let (Xt)t ∈N be a random process with X0 = 1
and, for all t ∈ N, Xt+1 = Xt with probability 1 − 1/n, and Xt+1 = −n + 1
otherwise. Let T denote the �rst point in time t such that the event {Xt ≤ 0}
occurs. Since T follows a geometric distribution with success probability 1/n,
we have E[T | X0] = n. We now upper-bound E[T] using Theorem 3.7 and
Corollary 3.8. We start with the former.

We have, for all t < T , thatXt−E[Xt+1 | X0, . . . ,Xt] = 1 and, thus, E[T | X0] ≤
(1 − (−n + 1))/1 = n. We now consider Corollary 3.8.

For all t < T , let Yt = max{Xt , 0}. Thus, we getYt −E[Yt+1 | Y0, . . . ,Yt] = 1/n
and consequently E[T | X0] ≤ 1/(1/n) = n. This is the same bound as before.
However, in the second case, the drift changed but no additional term was added
in the result. J

Further, it is important to note that cutting o� a process at 0 may result in
Corollary 3.8 not being applicable at all whereas Theorem 3.7 is, as the following
example shows.

I Example 3.10. Let (Xt)t ∈N be a random process with X0 = 1 and, for all
t ∈ N, Xt+1 = Xt/2 with probability 1/2, and Xt+1 = (3/2)Xt − 2 otherwise.
Let T denote the �rst point in time t such that the event {Xt ≤ 0} occurs.
Since T follows a geometric distribution with success probability 1/2, we have
E[T | X0] = 2.

Note that if we consider Y B max{X , 0}, Corollary 3.8 is not applicable, since
this process approaches 0 in the limit. However, Theorem 3.7 is applicable to X ,
as the process has a drift of 1. By noting that the process can never go below −2,
we get E[T | X0] ≤ (1 − (−2))/1 = 3, which is worse than the actual value of
E[T | X0], since the bound of −2 is rather pessimistic. Noting that, for all t ∈ N+,
the random variableXT takes the value (3/2) · (1/2)t−1−2 with probability (1/2)t ,
we see that E[XT] = −1 and consequently E[T | X0] ≤ (1 − (−1))/1 = 2, which
is the actual value. Overall, Theorem 3.7 can bound the expected �rst-hitting
time tightly, whereas Corollary 3.8 is not applicable. J

It remains an open problem whether condition (b) of Theorem 3.7 is necessary
or not. We were not able to �nd any counterexample. However, showing this
more general result proves di�cult, as introducing a lower bound (and then
applying Theorem 3.7) can a�ect the drift, as the two examples above show.

42

Additive Dri� Section 3.3

3.3.3 Lower Bound

In this section, we provide a lower bound for the expected �rst-hitting time
under additive drift. In order to do so, we need an upper bound for the drift.
Since we now lower-bound the �rst-hitting time, a large upper bound of the
drift makes the result bad. Thus, we do not require a lower bound on the search
space, as larger di�erences can only increase the drift’s upper bound. However,
we need to have some restriction on the step size in order to make sure not to
move away from the target. We provide an example (Example 3.12) showing this
necessity at the end of this section.

I Theorem 3.11 (Lower Additive Drift, Expected Bounded Step Size). Let
(Xt)t ∈N be random variables over R adapted to a �ltration (Ft)t ∈N, and let
T = inf{t ∈ N | Xt ≤ 0}. Furthermore, suppose that

(a) there is some value δ > 0 such that, for all t < T , it holds that

Xt − E[Xt+1 | Ft] ≤ δ , and that

(b) there is some value c ≥ 0 such that, for all t < T , it holds that

E
[
|Xt+1 − Xt |

�� Ft] ≤ c .

Then
E[T | F0] ≥

X0
δ
. J

Proof. We make a case distinction with respect to E[T | F0] being �nite. If
E[T | F0] is in�nite, then the theorem trivially holds. Thus, we now assume that
E[T | F0] < ∞.

Similar to the proof of Theorem 3.4, we de�ne, for all t < T , Yt = Xt + δt ,
which is a submartingale, since

Yt − E[Yt+1 | F0] = Xt − δt − E[Xt+1 − δ (t + 1) | Ft]
= Xt − E[Xt+1 | Ft] − δ

≤ 0 ,

as we assume that Xt − E[Xt+1 | Ft] ≤ δ for all t < T .

43

Chapter 3 Dri� Theory

Since we now assume that E[T | F0] < ∞ and that E
[
|Xt+1 − Xt |

�� Ft] ≤ c for
all t < T , we can directly apply point 2 of Theorem 3.1 and get that E[YT | F0] ≥
E[Y0 | F0]. This yields, noting that XT ≤ 0,

X0 = E[X0 | F0]

= E[Y0 | F0]
≤ E[YT | F0]
= E[XT + δT | F0]

= E[XT | F0] + δE[T | F0]
≤ δE[T | F0] .

Thus, we get the desired bound by dividing by δ . �

Note that, similar to what we discussed after Theorem 3.4, the prove reveals
that we can alternatively state the bound

E[T | F0] ≥
X0 − E[XT | F0]

δ
.

Thus, any upper bound on E[XT | F0] yields a valid result, Theorem 3.11 only
chooses the most pessimistic bound.

As we already mentioned, the step size of the process has to be bounded in
some way for a lower bound for the expected �rst-hitting time, as the following
example shows.

I Example 3.12. Let δ ∈ (0, 1), and let (Xt)t ∈N be a random process withX0 = 2
and, for all t ∈ N, Xt+1 = 0 with probability 1/2 and Xt+1 = 2Xt − 2δ otherwise.
Further, let T denote the �rst point in time t such that Xt = 0. Then T follows
a geometric distribution with success probability 1/2, which yields E[T] = 2.
However, we have that Xt − E[Xt+1 | X0, . . . ,Xt] = δ . If Theorem 3.11 could be
applied to this process (by neglecting the condition of the bounded step size),
the theorem would yield that E[T] ≥ 2/δ , which is not true. J

3.4 Variable Dri�

In contrast to additive drift, variable drift means that the drift can depend on
the current state of the process (while still being bounded independently of the

44

Variable Dri� Section 3.4

time). Interestingly, these more �exible drift theorems can be derived by using
additive drift. Intuitively, the reasoning behind this approach is to scale the
search space such that the information relevant to the process’s history cancels
out. As a side note, we would like to mention that Lengler [Len17] notes that
considering the processXt B E[T | Ft]− t always yields a drift of 1.9 This means
that additive drift (in theory) can always be used in order to get a tight result.
However, determining the value of E[T | Ft] − t is usually hard. Hence, the
variable drift theorem can be thought of as a handy approximation of the process
de�ned above.

The �rst variable drift theorem was proven by Johannsen [Joh10] and, inde-
pendently in a di�erent version, by Mitavskiy et al. [MRC09]. It was later re�ned
by Rowe and Sudholt [RS14]. In all of these versions, bounded search spaces
were used. Due to Corollary 3.8, we can drop this restriction.

It is important to note that variable drift theorems are commonly phrased such
that the �rst-hitting time T denotes the �rst point in time such that the random
process drops below a certain value (our target) – it is not enough to hit that
value. However, this restriction is not always necessary. Thus, we also consider
the setting from Section 3.3, where T denotes the �rst point in time such that
we hit our target. In this section, our target is no longer 0 but a value xmin.

In all of our theorems in this section, we make use of a set D. This set contains
(at least) all possible values that our process can take while not having reached
the target yet. It is a formal necessity in order to calculate the bound of the
�rst-hitting time (via an integral). However, when applying the theorem, it is
usually su�cient to choose D = R or D = R≥0.

3.4.1 Below the Target

The following version of the theorem assumes that the process has to drop below
the target, denoted by xmin. We provide the other version afterward.

I Theorem 3.13 (Upper Variable Drift, Unbounded, Below Target). Let
(Xt)t ∈N be random variables over R adapted to a �ltration (Ft)t ∈N, let xmin > 0,
and let T = inf{t ∈ N | Xt < xmin}. Additionally, let D denote the smallest real
interval that contains at least all values x ≥ xmin that, for all t ≤ T , any Xt can
take. Furthermore, suppose that

9 This can be checked using point (c) of Theorem 2.12.

45

Chapter 3 Dri� Theory

(a) there is a monotonically increasing function h : D → R+ such that, for all
t < T , it holds that

Xt − E[Xt+1 | Ft] ≥ h(Xt) , that

(b) X0 ≥ xmin and, for all t ≤ T , it holds that Xt ≥ 0.

Then
E[T | F0] ≤

xmin
h(xmin)

+

∫ X0

xmin

1
h(z)

dz . J

Proof. The proof follows the one given by Rowe and Sudholt [RS14] very closely.
We de�ne a function д : D ∪ [0,xmin] → R≥0 as follows:

д(x) =

{
0 if x < xmin,
xmin

h(xmin)
+

∫ x
xmin

1
h(z)dz else.

Note that д is well-de�ned, since 1/h is monotonically decreasing and every
monotone function is integrable over all compact intervals of its domain [Rud76,
Theorem 6.9]. Further, д(Xt) = 0 holds if and only if Xt < xmin. Thus, both
processes have the same �rst-hitting time.

Assume that x ≥ y ≥ xmin. We get

д(x) − д(y) =

∫ x

y

1
h(z)

dz

≥
x − y

h(x)
,

since h is monotonically increasing. Assuming y ≥ x ≥ xmin, we get, similar to
before,

д(x) − д(y) = −

∫ y

x

1
h(z)

dz

≥ −
y − x

h(x)

=
x − y

h(x)
.

46

Variable Dri� Section 3.4

Thus, we can write, for x ≥ xmin and y ≥ xmin,

д(x) − д(y) ≥
x − y

h(x)
.

Further, for x ≥ xmin > y ≥ 0, we get

д(x) − д(y) =
xmin

h(xmin)
+

∫ x

xmin

1
h(z)

dz

≥
xmin
h(x)

+
x − xmin
h(x)

=
x

h(x)

≥
x − y

h(x)
.

Overall, for x ≥ xmin (including X0 ≥ xmin) and y ∈ R≥0, we can estimate

д(x) − д(y) ≥
x − y

h(x)
.

We use this to determine the drift of the process д(Xt) as follows:

д(Xt) − E[д(Xt+1) | Ft] = E[д(Xt) − д(Xt+1) | Ft]

≥
E[Xt − Xt+1 | Ft]

h(Xt)

≥ 1 ,

where we used the condition on the drift of X .
An application of Corollary 3.8 completes the proof. �

3.4.2 Hi�ing the Target

As mentioned before, it is not always necessary to drop below the target. For
the additive drift, for example, we are interested in the �rst time reaching the
target. Interestingly, the proof for the following theorem is straightforward, as
it is almost the same as the proof of Theorem 3.13. Intuitively, the waiting time
for getting below the target, once it is reached, is eliminated from the expected

47

Chapter 3 Dri� Theory

�rst-hitting time. However, it is important to note that it is now not allowed to
get below the target.

I Theorem 3.14 (Upper Variable Drift, Unbounded, Hitting Target). Let
(Xt)t ∈N be random variables over R adapted to a �ltration (Ft)t ∈N, let xmin ≥ 0,
and let T = inf{t ∈ N | Xt ≤ xmin}. Additionally, let D denote the smallest real
interval that contains at least all values x ≥ xmin that, for all t ≤ T , any Xt can
take. Furthermore, suppose that

(a) there is a monotonically increasing function h : D → R+ such that, for all
t < T , it holds that

Xt − E[Xt+1 | Ft] ≥ h(Xt) and that,

(b) for all t ≤ T , it holds that Xt ≥ xmin..

Then
E[T | F0] ≤

∫ X0

xmin

1
h(z)

dz . J

Proof. This proof is almost identical to the proof of Theorem 3.13. The di�erence
is that we de�ne our potential function д : D → R≥0 as follows:

д(x) =

{
0 if x ≤ xmin,∫ x
xmin

1
h(z)dz else.

As for д(x) − д(y), the case x ≥ xmin > y does not exist anymore, since we
cannot get below xmin. Thus, the potential di�erence is the same in all cases, and
nothing changes in the rest of the proof. �

3.5 Multiplicative Dri�

A special case of variable drift is multiplicative drift, where the drift can be
bounded by a multiple of the most recent value in the history of the process. As
before, we provide upper bounds in the two versions of either dropping below the
target or hitting it. In this setting, it can be intuitively argued why the version of
dropping below the target is useful: consider a sequence of nonnegative numbers

48

Multiplicative Dri� Section 3.5

that halves its current value each time step. This process will never reach 0
within �nite time. However, it drops below any value greater than 0.

Both upper bounds we state are simple applications of the corresponding
variable drift theorems from Section 3.4.

3.5.1 Below the Target

Corollary 3.15 has �rst been stated by Doerr et al. [DJW12] using �nite state
spaces. Afterward, it has been proven multiple times for processes not requiring
an upper bound (although this is not always stated) [DG13; LS18; LW13].

I Corollary 3.15 (UpperMultiplicative Drift, Unbounded, BelowTarget).

Let (Xt)t ∈N be random variables over R adapted to a �ltration (Ft)t ∈N, let xmin >
0, and let T = inf{t ∈ N | Xt < xmin}. Furthermore, suppose that

(a) there is some value δ > 0 such that, for all t < T , it holds that

Xt − E
[
Xt+1

�� Ft] ≥ δXt , that

(b) X0 ≥ xmin and, for all t ≤ T , it holds that Xt ≥ 0.

Then

E[T | F0] ≤
1 + ln

(
X0
xmin

)
δ

. J

Proof. We de�ne a function h : [xmin,∞) → R+ with h(x) = δx . Note that h
is monotonically increasing and that, by construction, for all t < T , we have
Xt − E[Xt+1 | Ft] ≥ h(Xt). Thus, by applying Theorem 3.13, we get

E[T | F0] ≤
xmin

h(xmin)
+

∫ X0

xmin

1
h(z)

dz

=
xmin
δxmin

+
ln

(
X0
xmin

)
δ

,

which completes the proof. �

49

Chapter 3 Dri� Theory

3.5.2 Hi�ing the Target

By applying Theorem 3.14 instead of Theorem 3.13, we get the following theorem.
As in the case of Theorem 3.14, the process now has to be lower-bounded by xmin.

I Corollary 3.16 (Upper Multiplicative Drift, Unbounded, Hitting Tar-

get). Let (Xt)t ∈N be random variables over R adapted to a �ltration (Ft)t ∈N, let
xmin > 0, and let T = inf{t ∈ N | Xt ≤ xmin}. Furthermore, suppose that

(a) there is some value δ > 0 such that, for all t < T , it holds that

Xt − E
[
Xt+1

�� Ft] ≥ δXt , and that,

(b) for all t ≤ T , it holds that Xt ≥ xmin.

Then

E[T | F0] ≤
ln

(
X0
xmin

)
δ

. J

Proof. We de�ne the same potential as in the proof of Corollary 3.15 but apply
Theorem 3.14 instead. �

As before, we provide an example that shows that the upper bounds are as
tight as possible, up to constant factors, for the range of processes we consider.

I Example 3.17. Let δ ∈ (0, 1) be a value bounded away from 1. Consider the
process (Xt)t ∈N, withX0 > 1, that decreases each step deterministically such that
Xt+1 = (1− δ)Xt holds. LetT denote the �rst point in time such that the process
drops below 1. Thus, we get T ∈ Θ

(
− log(1−δ)(X0)

)
= Θ

(
− ln(X0)/ln(1 − δ)

)
=

Θ
(
ln(X0)/δ

)
, where the last equation makes use of the Taylor expansion of

ln(1 − δ) ∈ Θ(−δ), as 1 − δ does not converge to 0, by assumption. J

3.6 Dri� Without Dri�

In order for any of the above drift theorems to be applicable, the process needs to
have a positive drift toward the target. However, sometimes one is interested in
the �rst-hitting time of unbiased processes, that is, processes with a drift 0. The
classical example for that is the Gambler’s Ruin process [MU05, Section 7.2.1],
which describes a fair random walk.

50

Dri� Without Dri� Section 3.6

d d
0

α α+β
2

β

d(β − α − d)

Yt

Xt

Figure 3.1: A depiction of how Theorem 3.18 transforms a random variable Xt . The
resulting random variable Yt is positive over (α , β), has the roots α and β , and takes its
maximum (β−α)2/4 at (α +β)/2. Note that in the interval [α , β], the random variableXt
is within a distance of d ∈ [0, (β − α)/2] to α or β if and only if Yt ≤ d(β − α − d).

In this section, we focus on such unbiased processes, that is, martingales.
We show that in these cases the variance (which is nonnegative by de�nition;
De�nition 2.6) can be used in order to apply a drift theorem. Since the variance
of a process is 0 if and only if the process is deterministic, we get a framework
applicable to any unbiased random process.

We start by providing a transformation of a martingale into another random
process that has positive drift. The underlying method of this transformation is
known as predictable quadratic variation, although it is not always referred to un-
der this name. For more information, please refer to the books of Durrett [Dur19,
Chapter 4.5] or Williams [Wil91, Chapter 12.11]. The way the martingale is
transformed is depicted in Figure 3.1.

I Theorem 3.18 (Martingale Drift Transformation). Let (Xt)t ∈N be ran-
dom variables over R adapted to a �ltration (Ft)t ∈N, let [α , β] ⊂ R be an interval,
and let T = inf{t ∈ N | Xt < (α , β)}. Furthermore, suppose that,

(a) for all t < T , it holds that Var[Xt+1 | Ft] > 0 and that,

(b) for all t < T , it holds that E[Xt+1 | Ft] = Xt .

Then the process (Yt)t ∈N with

Yt = (Xt − α)(β − Xt)

is, for all t < T , a positive random process with drift Var[Xt+1 | Ft] toward 0. J

51

Chapter 3 Dri� Theory

Proof. Since, for all t ∈ N, the random variableYt is a concave quadratic function
with the roots α and β , it holds, for all t ′ < T , that Yt ′ > 0, that is, the process is
positive then. We now determine the drift of Yt (toward 0) for all t < T . Note
that Yt is Ft -measurable, since it is expressed by constants and by Xt , which is
Ft -measurable by assumption.

Yt − E[Yt+1 | Ft] = (Xt − α)(β − Xt) + α − E[(Xt+1 − α)(β − Xt+1) + α | Ft]

= −X 2
t + (α + β)Xt − αβ − E

[
−X 2

t+1 + (α + β)Xt+1 − αβ
�� Ft]

= −

= E[Xt+1 | Ft]ª
Xt

2 + E
[
X 2
t+1

�� Ft] + (α + β)Xt − (α + β)

=Xt³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
E[Xt+1 | Ft]

= E
[
X 2
t+1

�� Ft] − E[Xt+1 | Ft]
2

= Var[Xt+1 | Ft] ,

which is positive by assumption. This concludes the proof. �

Since the transformed process Y described in Theorem 3.18 is positive as long
as Xt ∈ (α , β), it follows that T also denotes the �rst-hitting time of Yt ≤ 0.
Hence, Yt can be used in order to apply any drift theorem.
ICorollary 3.19 (MartingaleUpperAdditiveDrift). Let (Xt)t ∈N be random
variables over [α , β] ⊂ R adapted to a �ltration (Ft)t ∈N, and let T = inf

{
t ∈

N
�� Xt ∈ {α , β}

}
. Furthermore, suppose that

(a) there is some value δ > 0 such that, for all t < T , it holds that

Var[Xt+1 | Ft] ≥ δ and that,

(b) for all t < T , it holds that E[Xt+1 | Ft] = Xt .
Then

E[T | F0] ≤
(X0 − α)(β − X0)

δ
. J

Proof. We use Theorem 3.18 to transform X into the process Y , which has a
drift of at least δ , by assumption. Note that, for all t ≤ T , it holds that Yt ≥ 0.
Applying Corollary 3.8 completes the proof. �

For the lower bound drift theorem, the martingale itself does not have to be
bounded but only the search space. Due to the boundedness of the search space,
we do not require a restriction on the expected step size.

52

Dri� Without Dri� Section 3.6

ICorollary 3.20 (Martingale LowerAdditiveDrift). Let (Xt)t ∈N be random
variables over R adapted to a �ltration (Ft)t ∈N, let [α , β] ⊂ R be an interval, and
let T = inf{t ∈ N | Xt < (α , β)}. Furthermore, suppose that,

(a) there is some value δ > 0 such that, for all t < T , it holds that

Var[Xt+1 | Ft] ≤ δ and that,

(b) for all t < T , it holds that E[Xt+1 | Ft] = Xt .

Then
E[T | F0] ≥

(X0 − α)(β − X0)

δ
. J

Proof. We use Theorem 3.18 and want to apply Theorem 3.11. For this, we can
argue analogously as in the proof of Corollary 3.19. However, we still need to
check the expected bounded step size of Y .

Note that Yt is a convex function in Xt and is maximal for Xt = (α + β)/2,
resulting in |Yt | ≤ (αβ/4)2. Thus, in order to bound

E
[
|Yt+1 − Yt |

�� Ft] ≤ E
[
|Yt+1 |

�� Ft] + |Yt |
we are left with bounding

E
[
|Yt+1 |

�� Ft] = E
[
|(Xt+1 − α)(β − Xt+1)|

�� Ft]
≤ |α + β |E

[
|Xt+1 |

�� Ft] + E[
X 2
t+1

�� Ft] + |αβ | .
Since we can bound Var[Xt+1 | Ft] = E

[
X 2
t+1

�� Ft] − E[Xt+1 | Ft]
2 by assump-

tion, we can bound the two expected values E
[
X 2
t+1

�� Ft] and E[|Xt+1 | | Ft] and
therefore E

[
|Yt+1 − Yt |

�� Ft] . Applying Theorem 3.11 �nishes the proof. �

The other drift theorems follow analogously, using Theorem 3.18. However,
the resulting theorems get more complicated, since the processY is more complex
thanX . One consequence of this is that the drift ofY has to be stated with respect
to (Xt − α)(β − Xt) instead of Xt , which may inhibit the applicability of such a
theorem. Nonetheless, we would like to mention that we state a multiplicative
version of a drift theorem for martingales in Corollary 6.6, and we successfully
apply it in Section 6.3.

53

Chapter 3 Dri� Theory

As we mentioned at the beginning of this section, Theorem 3.18 allows to
generalize from processes like the Gambler’s Ruin. In the following, we want to
use the above theorems in order to get the exact �rst-hitting time of said process.

I Example 3.21 (Gambler’s Ruin [MU05, Section 7.2.1]). Let n ∈ N, and
let (Xt)t ∈N be a random process over {0, . . . , 2n} such that, for all t ∈ N, it holds
that

(a) if Xt = x < {0, 2n}, then Pr[Xt+1 = x − 1] = Pr[Xt+1 = x + 1] = 1
2 , and

(b) if Xt = x ∈ {0, 2n}, then Pr[Xt+1 = x] = 1.

Further, let T = inf
{
t ∈ N

�� Xt ∈ {0, 2n}
}
.

Note that, for all t ∈ N, it holds that E[Xt+1 | Xt] = Xt . Hence, we use
Theorem 3.18 and bound, for all t < T ,

Var[Xt+1 | Xt] =
1
2 · (Xt − 1 − Xt)

2 +
1
2 · (Xt + 1 − Xt)

2 = 1 .

Applying both Corollary 3.19 and 3.20 yields E[T | X0] = X0(2n − X0). Espe-
cially, for X0 = n, we get E[T] = n2. J

3.7 Negative Dri�

In order to provide a more complete picture of drift, we also want to mention
two common negative-drift theorems and derive a useful corollary from one of
them, which we use in our results.

Negative drift considers a setting where the drift is directed away from the
target, that is, the drift toward the target is negative. Negative-drift theorems
are then used to derive superpolynomial lower bounds on the probability that
�rst-hitting time of the process reaching the target is polynomial.

The �rst theorem considers random processes that are allowed to make arbi-
trarily large jumps as long as the probability of such jumps decreases exponen-
tially in their width. It is also important to note that the drift has to be bounded
by a constant.

I Theorem 3.22 (Negative Drift for an Interval [OW11; OW12]). Let
(Xt)t ∈N be random variables over R adapted to a �ltration (Ft)t ∈N, and let b ∈ R
such that X0 ≥ b. Suppose that there exist an interval [a,b] ⊆ R, two constants

54

Negative Dri� Section 3.7

δ , ε > 0, and, possibly depending on ` B b − a, a function r (`) satisfying
1 ≤ r (`) ∈ o

(
`/log(`)

)
such that, for all t ∈ N, it holds that

(a) E
[
(Xt+1 − Xt) · 1{a < Xt < b}

�� Ft] ≥ ε · 1{a < Xt < b} and,

(b) for all j ∈ N, it holds that

Pr
[
|Xt+1 − Xt | · 1{Xt > a} ≥ j · 1{Xt > a}

�� Ft] ≤ r (`)

(1 + δ)j .

Then there is a constant c > 0 and a function m(`) ∈ Ω
(
`/r (`)

)
such that, for

T B inf{t ∈ N | Xt ≤ a}, it holds that

Pr
[
T ≤ 2

c`
r (`)

]
= 2−m(`) . J

Note that the indicator random variables in Theorem 3.22 say that the respec-
tive condition only has to hold if the proposition of the indicator function is true.
Otherwise, the condition is trivially satis�ed.

Theorem 3.22 is very useful, since it only assumes a negative drift over a part
of the search space. However, when considering a process with bounded step
size, condition (b) may be harder to check. In such a case, it may make sense to
use the following theorem that works for processes that are deterministically
bounded in their step size. Note that both the drift and the bound on the step
size do not have to be constants in this theorem.

I Theorem 3.23 (Negative Drift; Bounded Step Size [Köt16]). Let (Xt)t ∈N
be random variables over R adapted to a �ltration (Ft)t ∈N. Further, letX0 ≤ 0, let
b > 0, and let T = inf{t ∈ N | Xt ≥ b}. Suppose that there are values c ∈ (0,b)
and ε < 0 such that, for all t < T , it holds that

(a) E[Xt+1 − Xt | Ft] ≤ ε and that

(b) |Xt − Xt+1 | < c .

Then, for all t ∈ N, it holds that

Pr[T ≤ t] ≤ t · e−
b |ε |
2c2 . J

55

Chapter 3 Dri� Theory

Theorem 3.23 comes with the drawback that it assumes the drift to be negative
as long as the target has not been reached. This means that the drift has to be
negative over the whole search space below the target, not only over a part of
it. This is especially bad when considering bounded search spaces, where the
drift cannot be negative once the lower bound is reached. Hence, we propose
the following corollary that circumvents this problem.

I Corollary 3.24 (Negative Drift for an Interval; Bounded Step Size). Let
(Xt)t ∈N be random variables over R adapted to a �ltration (Ft)t ∈N. Further, let
X0 ≤ 0, let b > 0, and let T = inf{t ∈ N | Xt ≥ b}. Suppose that there are values
a ≤ 0, c ∈ (0,b), and ε < 0 such that, for all t < T , it holds that

(a) E[(Xt+1 − Xt) · 1{Xt ≥ a} | Ft] ≤ ε · 1{Xt ≥ a}, that

(b) |Xt − Xt+1 | · 1{Xt ≥ a} < c · 1{Xt ≥ a} + 1{Xt < a}, and that

(c) Xt+1 · 1{Xt < a} ≤ 0.

Then, for all t ∈ N, it holds that

Pr[T ≤ t] ≤ t2 · e−
b |ε |
2c2 . J

Proof. We consider two di�erent phases of a run of X : one phase where Theo-
rem 3.23 is applicable and one phase where it is not because we left the interval
[a,n) where negative drift is guaranteed. In the former case, we can bound the
probability, in the latter case, we need to invest at least one step in order to be
able to reach n, which can be viewed as a restart. We then recurse until no more
steps are left.

Let A denote the event that X0 can reach n without getting below a. For all
t ∈ N, we can then write

Pr[T ≤ t] = Pr[{T ≤ t} ∩A] + Pr
[
{T ≤ t} ∩A

]
,

which is basically Theorem 2.1 but also allows for A = ∅.
Note that we can use Theorem 3.23 to bound Pr[{T ≤ t} ∩A], since the indi-

cator random variables in conditions (a) and (b) are 1 in this case.
In order to bound Pr

[
{T ≤ t} ∩A

]
, we make the following observation: X

must go below a at one point in time (due to A) and then can only reach n by

56

Negative Dri� Section 3.7

getting back into the interval [a, 0], due to condition (c). This costs at least one
step. Hence, for all t ∈ N, we get

Pr
[
{T ≤ t} ∩A

]
≤ Pr[T ≤ t − 1] .

We now use the same arguments as before in order to bound Pr[T ≤ t − 1].
Thus, for all t ∈ N, we get

Pr[T ≤ t] ≤
t∑
i=1

i · e−
b |ε |
2c2

≤ t2 · e−
b |ε |
2c2 ,

which concludes the proof. �

Corollary 3.24 is very pessimistic in its bound but, in return, does not make
many more assumptions on the process than Theorem 3.23. And since the goal of
using a negative-drift theorem usually is to get a superpolynomial upper bound
on the �rst-hitting time being polynomial, the extra factor of t in Corollary 3.24
has no impact then.

57

4
The n-Bernoulli-λ-

EDA Framework

This chapter is based on joint workwith Tobias Friedrich and TimoKötzing [FKK16],
where the framework was �rst introduced. Section 4.2 contains additional de�-
nitions, which are based on another joint work with Tobias Friedrich and Timo
Kötzing [FKK18].

In this chapter, we introduce a framework for a class of estimation-of-distribu-
tion algorithms (EDAs) that all of our results fall into, with the exception of
Algorithm 2 from Chapter 10. We call this framework the n-Bernoulli-λ-EDA
(see Algorithm 1).

We start by discussing di�erent frameworks that contain some EDAs. After-
ward, we introduce our framework and show that all commonly theoretically
analyzed EDAs are subsumed by it.

4.1 Introduction

A framework is an algorithm that is �exible enough to yield other algorithms
as special cases when using certain parameter values. Hence, we use the term
framework synonymously with the class of algorithms that it subsumes.

The main reason for considering a framework is to prove propositions for
an entire class of algorithms at once instead of showing them for every single
algorithm. Further, a framework provides the same terminology for all algorithms
of the class. Hence, even when properties are only proven for certain algorithms,
one can ask oneself whether this statement generalizes to the entire framework.

The framework we introduce in this chapter – the n-Bernoulli-λ-EDA (Algori-
thm 1) – is motivated by the two aforementioned premises: �rst, we use it in
order to prove general properties of a special class of EDAs in Chapters 5 and 6.
Second, we prove run time results for certain algorithms in Chapters 7 to 10 and
discuss how these relate to known run time results for similar EDAs.

As we discussed in Chapter 1, we consider univariate EDAs optimizing pseudo-
Boolean functions. Thus, our framework encompasses only such algorithms.

59

Chapter 4 The n-Bernoulli-λ-EDA Framework

That is, their probabilistic model is fully determined by a probability vector
where each component denotes the probability to sample a 1 at that position;
and the only parameters of the framework are the number of samples drawn
each iteration and a function that says how the probabilistic model is updated
(equation (4.1)). In Section 4.3, we show how commonly analyzed EDAs are
subsumed by this framework.

We use the n-Bernoulli-λ-EDA as our framework, as it best captures the
algorithms we are interested in. However, other frameworks exist that also
subsume univariate EDAs, and we would like to discuss them brie�y.

Ollivier et al. [Oll+17] propose the method of Information-Geometric Opti-
mization (IGO), which is a very general method de�ned for arbitrary search
spaces and uses an update method known as in�nitesimal maximum likelihood.
Applying the IGO to the Boolean domain results in an algorithm that also sub-
sumes all of the algorithm we mention in Section 4.3. However, it does not
encapsulate univariate EDAs that do not follow such an update rule. Further, due
to its applicability to any domain (and it being mainly motivated by continuous
search spaces), the IGO framework is not very well suited for our discrete setting,
that is, it is too vast.

Another framework was introduced by Paixão et al. [Pai+15], which is in-
tended to model any evolutionary process. Hence, this very general framework
subsumes all univariate EDAs. However, similar to the IGO, due to its generality,
it does not speci�cally focus on EDAs and is not well-suited for their analysis.

Other approaches have been examined by Shapiro [Sha06], who analyzed
EDAs that use a maximum-likelihood update, and by Dang and Lehre [DL15],
who proposed a class of EDAs that update their distributions only with informa-
tion from the current samples, not with information from the current distribution.
Again, these approaches do not capture all univariate EDAs.

4.2 The n-Bernoulli-λ-EDA

The n-Bernoulli-λ-EDA generalizes EDAs that use an n-fold product of a Ber-
noulli distribution as their probabilistic model. This means that their model is
represented by a probability vector p ∈ [0, 1]n , and an individual x ∈ {0, 1}n is
sampled with respect to p such that

∀i ∈ [n] : Pr[xi = 1] = pi ∧ Pr[xi = 0] = 1 − pi .

60

The n-Bernoulli-λ-EDA Section 4.2

Algorithm 1: The n-Bernoulli-λ-EDA framework with a given update
scheme φ, optimizing f .

1 t ← 0;
2 p(t) ← 1

2 ;
3 repeat

4 D ← ∅;
5 for j ∈ [λ] do
6 x ← o�spring sampled with respect to p(t);
7 D ← D ∪ {x};
8 p(t+1) ← φ

(
p(t),

(
x , f (x)

)
x ∈D

)
;

9 t ← t + 1;
10 until termination criterion met;

We call p the frequency vector of the algorithm and its components frequencies.
The initial frequency vector is given by p(0) = 1/2.

Until a termination criterion is met, the algorithm iteratively samples λ ∈ N+
o�spring and updates each frequency according to the update scheme of the
algorithm, which is a function

φ : [0, 1]n ×
(
{0, 1}n × R

)λ
→ [0, 1]n (4.1)

that takes the current frequency vector p(t), an o�spring population10 D of λ
individuals sampled according to p(t), and their respective �tness, and it yields
the frequencies of p(t+1) for the following iteration. The whole framework is
summarized in Algorithm 1.

Given an o�spring population D, we say that x ∈ D has rank i ∈ [λ] (denoted
as x (i)) if x has the i-th best �tness in D.11 Since we want ranks to be unique, we
assume that ties are broken uniformly at random if not stated otherwise.

Given an n-Bernoulli-λ-EDA A, let P (t)(A) denote the set of all possible fre-
quency vectors of A in iteration t , and let P(A) B

⋃∞
t=0 P

(t)(A) denote the set of
all possible frequency vectors of A. Analogously, P (t)i (A) ⊆ [0, 1] denotes the set

10 We assume that the population is a multiset, that is, we allow duplicate entries.
11 Note that best is relative to whether the objective is maximization or minimization. For

maximization, for example, the best �tness would be the largest value.

61

Chapter 4 The n-Bernoulli-λ-EDA Framework

of possible values of the frequency p(t)i , and Pi (A) denotes the set of all possible
values of pi . We say that A is ρ-bounded if, for all i ∈ [n] and all p ∈ P(A), we
have |pi − φ(p, ·)i | ≤ ρ, that is, an update can change a frequency by at most ρ.

4.2.1 Special Update Schemes

Equation (4.1) allows arbitrary interactions between di�erent positions and
individuals or even �tness values. Normally, EDAs that fall into the n-Bernoulli-
λ-EDA framework are not that permissive when performing an update. Thus, in
the following, we describe more restricted update schemes.

Decomposable EDAs

Commonly, n-Bernoulli-λ-EDAs consider each frequency independently when
performing an update. The following de�nition formalizes this behavior.

I De�nition 4.1 (Decomposable EDAs). LetA be an n-Bernoulli-λ-EDA with
update scheme φ. We say that A is decomposable if and only if there exists a
set of n functions Ûφi : [0, 1] ×

(
{0, 1} × R

)λ
→ R, indexed by i ∈ [n] such that,

for all �tness functions f , all possible frequency vectors p ∈ P(A), all o�spring
populations D that can be sampled by p, and all i ∈ [n], it holds that

φ
(
p,

(
x , f (x)

)
x ∈D

)
i = Ûφi

(
pi ,

(
xi , f (x)

)
x ∈D

)
.

If there is a single function Ûφ such that, for all i ∈ [n], Ûφ = Ûφi , we say that A is
singularly decomposable. We then drop the index i . J

As we will see in Section 4.3, all EDAs we present are singularly decomposable.
Hence, they treat every position equally and do not introduce a bias toward
certain positions. In Section 5.4, we go more into detail about this property.

Locally Updating EDAs

Some singularly decomposable n-Bernoulli-λ-EDAs restrict their update scheme
by performing an update to a frequency that is based solely on the current
frequency value and the information of whether it should be increased, decreased,
or not changed at all. We call such EDAs locally updating, since they only have a
very local view on all of the potential information when performing an update.

62

The n-Bernoulli-λ-EDA Section 4.2

I De�nition 4.2 (Locally Updating EDAs). Let A be an n-Bernoulli-λ-EDA
with update scheme φ. We say that A is locally updating if and only if there are
two functions

• move:
(
{0, 1} × R

)λ
→ {up, stay, down} and

• set : [0, 1] → [0, 1], which is monotonically increasing,

such that, for all �tness functions f , all possible frequency vectors p ∈ P(A), all
o�spring populations D that can be sampled by p, and all i ∈ [n], abbreviating
vi B move

((
xi , f (x)

)
x ∈D

)
, it holds that

φ
(
p,

(
x , f (x)

)
x ∈D

)
i =


set(pi) if vi = up,
pi if vi = stay,
1 − set(1 − pi) if vi = down.

J

Note that the de�nition enforces that an increase and a decrease are centrally
symmetric around (1/2, 1/2), that is, an increase of pi is the same as a decrease
of 1 − pi . We go more into detail about why this is bene�cial in Section 5.5.

We assume that set(pi) ≥ pi in order to enforce that ›up‹ does not decrease
the frequency. Note that this also entails that ›down‹ does not increase the
frequency. Without this assumption, ›down‹, for example, could take the role of
›up‹, which would result in convoluted case distinctions in proofs. By assuming
set(pi) ≥ pi , we avoid such overlaps.

4.2.2 Margins

When a frequencyp(t)i is 0 or 1, then all bits sampled at position i in iteration t are
either 0 or 1, respectively. Usually, the update scheme of an n-Bernoulli-λ-EDA
is phrased such that the updated frequency p(t+1)i is 0 or 1 again.12 This means
that the algorithm is stuck at this position and cannot change its frequency
anymore. In order to prevent this and to always be able to sample 0s and 1s at
each position, many algorithms cap their frequency vector beforehand. We then
speak of a margin.

Formally, a margin is a number b ∈ (0, 1/2] such that, for all p ∈ P(A), it
holds that p ∈ [b, 1 − b]n , and we call b and 1 − b the lower and upper border,

12 Note that the update scheme could, in fact, check whether a frequency is 0 or 1 and then set it
to another value. However, we do not know of any EDA that does this.

63

Chapter 4 The n-Bernoulli-λ-EDA Framework

respectively. A common way to ensure that an n-Bernoulli-λ-EDA has a margin
of b is to change line 8 of Algorithm 1 as follows:

p(t+1)i = min
{
max

{
φ
(
p(t),

(
x , f (x)

)
x ∈D

)
i ,b

}
, 1 − b

}
. (4.2)

This way, borders can easily be enforced on an existing update scheme without
changing the scheme itself.

We would like to note that a common margin for n-Bernoulli-λ-EDA is 1/n,
which is also the typical mutation rate for classical EAs [Doe+13; Jan13].

4.3 Classifying Existing EDAs

In this section, we show how existing EDAs are subsumed by the n-Bernoulli-λ-
EDA framework. We only focus on those algorithms that have been theoretically
analyzed, and we mention corresponding theoretical results. If not stated other-
wise, the results always assume a margin of 1/n.

4.3.1 PBIL

The Population-based Incremental Learning algorithm (PBIL) was introduced
by Baluja [Bal94]. It is a ρ-bounded, singularly decomposable n-Bernoulli-λ-EDA
with parameters ρ (the learning rate) and µ (the population size) with µ ≤ λ. The
update scheme is, for all i ∈ [n],

φ
(
p,

(
x , f (x)

)
x ∈D

)
i = (1 − ρ)pi + ρ

∑µ
k=1 x

(k)
i

µ
.

This algorithm yields other well-known algorithms for the extreme cases of
µ = 1 or ρ = 1, as we will show next.

Höhfeld and Rudolph [HR97] were the �rst to prove convergence results for
the PBIL without a margin. Very recently, Lehre and Nguyen [LN18] proved
an expected run time of O

(
nλ log(λ) + n2

)
, for λ ∈ Ω

(
log(n)

)
, on LeadingOnes

and the binary-value function BinVal.

64

Classifying Existing EDAs Section 4.3

4.3.2 UMDA

The Univariate Marginal Distribution Algorithm (UMDA) was introduced by Müh-
lenbein and Paaß [MP96]. It is a special case of the PBIL for ρ = 1. Hence, it
is still a singularly decomposable n-Bernoulli-λ-EDA. However, it is not longer
bounded. The update scheme is, for all i ∈ [n],

φ
(
p,

(
x , f (x)

)
x ∈D

)
i =

∑µ
k=1 x

(k)
i

µ
.

This means that a frequency is set to the relative number of 1s of the µ best
individuals. This way, a frequency can, in theory, make large changes in a single
iteration, for example, from 1/µ to 1. However, such large changes are very
unlikely. We go into detail about the UMDA and its update scheme in Chapter 9.

The UMDA has been extensively analyzed in the past years. Initially, Chen
et al. [Che+09a; Che+09b] considered it on non-standard functions they de�ned
in the papers. Then, Chen et al. [Che+10] proved a polynomial run time of the
UMDA on the benchmark function LeadingOnes. This result was followed up
by Dang and Lehre [DL15], who improved the upper bound on LeadingOnes
and proved an upper bound on OneMax. Krejca and Witt [KW18a] proved a
lower bound of Ω

(
n log(n)

)
on OneMax, for certain parameter settings.13 The

matching upper bound was proven independently by Witt [Wit17] and Lehre
and Nguyen [LN17].

4.3.3 λ-MMASIB

The MAX-MIN Ant System algorithm with iteration-best update (λ-MMASIB)
was introduced by Neumann et al. [NSW10]. The algorithm builds upon the
more general MMAS framework by Stützle and Hoos [SH00], which considers
virtual ants traversing edges of a graph, laying pheromone, in order to represent
a probabilistic model on graphs. An ant chooses an edge proportional to its
pheromone value with respect to the sum of all pheromone values of outgoing
edges of that node. When considering a directed path of length n with two edges
between two adjacent nodes, the resulting pheromone vector can be interpreted
as a frequency vector (see Figure 4.1). Hence, such special cases are univariate
EDAs.

13 Chapter 9 is based on this result.

65

Chapter 4 The n-Bernoulli-λ-EDA Framework

p1

1 − p1

p2

1 − p2

. . .
pn−1

1 − pn−1

pn

1 − pn

Figure 4.1: A graph whose pheromone trail can be interpreted as a frequency vector. A
virtual ant is supposed to traverse the graph from left to right. Each iteration, it has to
choose one of two edges per node. If it chooses the top edge, this can be interpreted as
sampling a 1 in a univariate EDA model. If the ant traverses the bottom edge, this can
be interpreted as sampling a 0.

The λ-MMASIB is a special case of the PBIL for µ = 1, that is, only the best
individual of an iteration is considered for an update. The λ-MMASIB is a ρ-
bounded, locally updating n-Bernoulli-λ-EDA with the following two functions:

move
((
xi , f (x)

)
x ∈D

)
=

{
up if x (1)i = 1 ,
down if x (1)i = 0 , and

set(pi) = (1 − ρ)pi + ρ .

The ›set‹ function is depicted in Figure 4.2 (a). Note that if a frequency pi is
decreased, it takes the value (1 − ρ)pi . Hence, for all i ∈ [n], the update scheme
of the λ-MMASIB can also be written as

φ
(
p,

(
x , f (x)

)
x ∈D

)
i = (1 − ρ)pi + x

(1)
i ρ ,

that is, the current frequency pi is always reduced by a factor of 1 − ρ and only
increased if the bit at position i of the best individual is 1.

Interestingly, λ-MMASIB has mostly been analyzed with λ = 2. The �rst
results date back to Neumann et al. [NSW10], who proved an upper bound of
O

(
n log(n)

)
for the 2-MMASIB with ρ ∈ Θ

(
1/(
√
n log(n))

)
on OneMax. Further,

they showed that the λ-MMASIB takes, with overwhelming probability, expected
exponential time on any pseudo-Boolean function with a unique optimum if
λ/ρ ≤

(
ln(n)

)
/244. Sudholt and Witt [SW16a] proved a matching lower bound

of Ω
(
n log(n)

)
of 2-MMASIB on OneMax.

66

Classifying Existing EDAs Section 4.3

0 0.5 1

0.5

1

ρ

λ-MMASIB

(a) The ›set‹ function of the λ-MMASIB.
Note that the value 1 cannot be reached
within �nite time when increasing a fre-
quency. Consequently, the same is true
when decreasing a frequency.

0 0.5 1

0.5

1

1
K

1 − 1
K

cGA

(b) The ›set‹ function of the cGA. In con-
trast to the λ-MMASIB, the cGA can reach 1
within �nite time. In more detail, if a fre-
quency with a value of at least 1 − 1/K is
increased, it is set to 1.

Figure 4.2: The ›set‹ functions of the λ-MMASIB (Figure 4.2 (a)) and of the cGA (Fig-
ure 4.2 (b)) depicted as solid (blue) lines. The dashed line represents the identity function,
and the distance of the solid line to the identity depicts the change made by a single
update. Recall that, for a frequency p, we demand set(p) ≥ p. Hence, ›set‹ cannot be
below the identity. When mirroring the ›set‹ function at (1/2, 1/2) both horizontally
and vertically, one gets the function that is used for decreasing p, that is, 1 − set(1 − p).

4.3.4 cGA

The Compact Genetic Algorithm (cGA) was introduced by Harik. et al. [HLG99].
It is a 1/K-bounded, locally updating n-Bernoulli-2-EDA with parameter K , the
so-called population size. Its ›move‹ and ›set‹ functions are as follows:

move
((
xi , f (x)

)
x ∈D

)
=


up if x (1)i > x (2)i ,

down if x (1)i < x (2)i ,

stay if x (1)i = x (2)i , and

set(pi) = pi +
1
K
.

The ›set‹ function is depicted in Figure 4.2 (b). Note that if a frequency pi is
decreased, it takes the value pi − 1/K . Hence, for all i ∈ [n], the update scheme

67

Chapter 4 The n-Bernoulli-λ-EDA Framework

of the cGA can also be written as

φ
(
p,

(
x , f (x)

)
x ∈D

)
i = pi + (x

(1)
i − x

(2)
i)

1
K
,

that is, the current frequency pi is shifted by 1/K with respect to the sign of the
bit di�erence at position i of both individuals.

The �rst theoretical analysis of the cGA was conducted by Droste [Dro06],
who analyzed it without a margin on the class of all linear pseudo-Boolean
functions. Droste showed that the cGA optimizes di�erent functions in a di�erent
expected time, with OneMax being the easiest and BinVal the hardest function.
Further, he showed a general lower bound of Ω

(
K
√
n/log(n)

)
for the cGA on

any pseudo-Boolean function if K = poly(n). In Chapter 7, we consider the
cGA without a margin in a noisy setting. Sudholt and Witt [SW16a] proved a
tight expected run time bound of Θ

(
n log(n)

)
on OneMax. Recently, Lengler

et al. [LSW18] proved a lower bound of Ω
(
K1/3n + n log(n)

)
on OneMax for the

cGA if K = O
(√
n log(n)2

)
, suggesting a bimodal behavior of the run time, and

Witt [Wit18] proved a lower bound of Ω
(
n2

)
for the cGA without a margin on

LeadingOnes.

68

5
Unbiasedness of n-

Bernoulli-λ-EDAs

This chapter is based on joint workwith Tobias Friedrich and TimoKötzing [FKK18].
Some de�nitions of this paper have been moved to Chapter 4.

In this chapter, we show when an n-Bernoulli-λ-EDA is unbiased with respect
to the encoding of the objective function and when not. We start by introducing
the concept of unbiasedness. We then de�ne it formally via automorphisms of the
discrete hypercube. Afterward, we state our main theorem, Theorem 5.5, which
provides a general characterization of an n-Bernoulli-λ-EDA being unbiased.
Last, we re�ne this characterization for decomposable and locally updating
n-Bernoulli-λ-EDAs, and we conclude.

The results of this chapter imply that all of the run time results in the following
chapters are always applicable for the entire function class, not only for the
speci�c function we consider.

5.1 Introduction

In this thesis, we view EDAs as well as randomized search heuristics (RSHs)
in general as problem-agnostic solvers for pseudo-Boolean optimization, and
their only way to get any information about the problem at hand is to query the
�tness function, seen as a subroutine. Thus, the problem itself can be seen as a
black box to the algorithm, and this scenario of optimization is called black-box
optimization.

When optimizing in a black-box scenario, the number of calls to the subroutine
is of great importance, since the other operations of an RSH are usually very
cheap. Thus, the subroutine calls dominate the overall cost of the respective
algorithm. Coming from this point of view, Droste et al. [DJW06] introduced
a new complexity theory for RSHs: the so-called black-box complexity (BBC).
In this model, a randomized search heuristic is assumed to solve a problem by
querying the subroutine for potential solutions (modeled as bit strings) and then
receiving feedback in form of the solution’s quality. The worst-case complexity

69

Chapter 5 Unbiasedness of n-Bernoulli-λ-EDAs

of a speci�c algorithm on a problem class is de�ned as the expected number of
queries to the subroutine on a worst-case instance of this class; and the BBC
of a class is the best possible worst-case complexity, taken over all black-box
algorithms.

Although this de�nition captures the initial idea of subroutine calls very
well, it does not prohibit the algorithm to be highly problem-speci�c. Droste
et al. [DJW02], for example, showed that the Max-Clique problem, which is
NP-hard in classical complexity theory, has a polynomial BBC. This is due to
the respective algorithm learning the instance via queries and then performing
costly o�ine computations, which do not increase the BBC. This highlights that
the BBC alone does not necessarily provide su�cient information about the true
complexity of a problem. In addition to that, Anil and Wiegand [AW09] showed
that the black-box complexity of OneMax is Θ

(
n/log(n)

)
,14 whereas traditional

EAs, such as the (1 + 1) EA, usually have an expected complexity of Θ
(
n log(n)

)
on OneMax [DJW02] (see Table 10.1).

In order to focus on solvers that are more problem-agnostic, Lehre and
Witt [LW12] restricted the BBC model introduced by Droste et al. [DJW06]
such that the algorithms considered can only make use of unbiased variation
operators when querying the next bit string, and the algorithms are not allowed
to see the representational structure of solutions during selection. This restricted
variant is called unbiased black-box complexity. Unbiased means that the respec-
tive algorithm performs the same when given two problem instances where one
is a perturbation of the other, restricted to permutations and bit �ips. Hence, the
algorithm is unbiased with respect to 0s and 1s as well as their positions, and it
has to treat them the same way. Rowe and Vose [RV11] proposed a more general
de�nition of unbiased, which focuses on the sequence of queried bit strings (the
trace) of the algorithm under consideration. They call an algorithm unbiased if
it behaves the same under any permutation of the search space that the problem
class is closed under. When considering problem classes closed under the afore-
mentioned perturbations, this de�nition results in the unbiased BBC from Lehre
and Witt [LW12] without the restriction on the selection process. Further, Rowe
and Vose [RV11] showed that, for any black-box algorithm on a problem class,
there exists an unbiased algorithm (in their sense) that is at least as good. This
means that the BBC of a problem class is the same as its unbiased BBC. Hence,

14 Actually, this result dates back to Erdős and Rényi [ER63], who proved it in the context of
information theory.

70

Automorphisms of the Hypercube Section 5.2

it su�ces to study unbiased algorithms when one is interested in the BBC of a
class.

Doerr et al. [DDK14] showed that the unbiased BBC, in the sense of Lehre and
Witt [LW12], of di�erent subproblems of the NP-complete Partition problem is
polynomial when using higher-arity operators. This has lead to other restricted
BBCs [DW14a; DW14b] or combinations of them [DL17]. However, the original
unbiased BBC model is still considered an important complexity measure up to
this date [BLS14; DDK15; DDY16b; Doe+11a; DW14c].

Surprisingly, all of the results for unbiased BBC so far only considered classical
EAs although EDAs �t very well into the black-box model too. We combine
the up to now unrelated �elds of unbiased BBC and EDAs, and we characterize
unbiasedness for the entire class of n-Bernoulli-λ-EDAs. This characterization
(Theorem 5.5) shows strong similarities to the original de�nition of unbiased
algorithms, introduced by Lehre and Witt [LW12], and it provides insights into
how the properties of an unbiased population-based algorithm extend to EDAs.
We then consider more restricted update schemes, leading to characterizations
that are easier to verify than the general one. We especially �nd a very concise
characterization for locally updating n-Bernoulli-λ-EDAs. We also prove that all
of the EDAs mentioned in Section 4.3 are unbiased.

Interestingly, to the best of our knowledge, all common EDAs are unbiased.
One possible explanation for this may be that the sample procedure is unbiased
and that the samples are not altered afterward. Thus, a bias could only be
introduced via the way the probability distribution is updated. However, as
we show in Section 5.4, at least for the n-Bernoulli-λ-EDA framework, such an
update usually exhibits a property that strongly favors unbiasedness.

5.2 Automorphisms of the Hypercube

Lehre and Witt [LW12] de�ne unbiasedness with respect to variation operators
over {0, 1}n . These operators draw bit strings according to probability distribu-
tions that are invariant under automorphisms of {0, 1}n : permutations and ⊕
(XOR) operations on bit strings. We extend these functions to [0, 1]n to be able
to use them directly on the frequency vectors of n-Bernoulli-λ-EDAs.

Let σ be a permutation of [n]. We overload this notation and call a function
σ : [0, 1]n → [0, 1]n a permutation if and only if it rearranges the elements of
its input according to σ such that, for all p ∈ [0, 1]n and all i, j ∈ [n] with

71

Chapter 5 Unbiasedness of n-Bernoulli-λ-EDAs

σ (i) = j, we have σ (p)j = pi . In this case, we say that σ maps position i to
position j. Further, we call a function χ : [0, 1]n → [0, 1]n a complementation if
and only if, for each position, it either takes the complement of the value at this
position or does not change it. That is, for all p ∈ [0, 1]n and all i ∈ [n], we have
χ (p)i = 1 − pi or χ (p)i = pi .

We call any bijection α : {0, 1}n → {0, 1}n that preserves the Hamming
distance dH a Hamming automorphism. It is well-known that there are exactly
2nn! Hamming automorphisms.15 Note that this means that any Hamming
automorphism α can be denoted as the composition of a permutation σ and a
complementation χ over {0, 1}n , that is, α = χ ◦ σ . We are now interested in
the superspace [0, 1]n of {0, 1}n and use the metric d de�ned as follows:

∀x ,y ∈ [0, 1]n : d(x ,y) =
n∑
i=1
|xi −yi | .

This corresponds to the 1-norm. It naturally extends the Hamming distance on
{0, 1}n .

We say that α : [0, 1]n → [0, 1]n is an isometric automorphism (of [0, 1]n)
if it is bijective and distance-preserving, that is, for all x ,y ∈ [0, 1]n, we have
d(x ,y) = d

(
α(x),α(y)

)
.

The following lemma shows that the Hamming automorphisms are in a one-
to-one correspondence with the isometric automorphisms.

I Lemma 5.1. For any isometric automorphism α , let αH denote α restricted
to {0, 1}n . Let two isometric automorphisms α and β be given. It then holds that

1. αH is a Hamming automorphism,

2. if αH = βH, then α = β , and that,

3. for every Hamming automorphism η, there exists an isometric automor-
phism α such that αH = η. J

Proof. Regarding point 1, it su�ces to show that α maps any x ∈ {0, 1}n to
{0, 1}n . Letx be the component-wise complement ofx . We then haved(x ,x) = n.

15 This can be seen as follows: there are 2n possible choices for α(0). After α(0) is �xed, the n
1-neighbors of 0 can be mapped in an arbitrary (but bijective) manner to the n 1-neighbors
of α(0), for which there are n! choices. After these mappings are determined, the Hamming
automorphism is completely determined.

72

Automorphisms of the Hypercube Section 5.2

Thus, d
(
α(x),α(x)

)
= n. Since only pairs of points from {0, 1}n can be of distance

n in [0, 1]n , we get that α(x) ∈ {0, 1}n , as desired.
Regarding point 2, for all j ∈ [n], we use e(j) to denote the bit string which

is 0 everywhere except in position j. We now show the following claim:

∀x ,y ∈ [0, 1]n :
(
∀z ∈ {0, 1}n : d(x ,z) = d(y,z)

)
→ x = y . (5.1)

Let x ,y ∈ [0, 1]n such that, for all z ∈ {0, 1}n, it holds that d(x ,z) = d(y,z).
We now get for all a ∈ [0, 1]n and j ∈ [n] that

d(a, 0) − d
(
a, e(j)

)
=

n∑
i=1

ai −

(j−1∑
i=1

ai + (1 − aj) +
n∑

i=j+1
ai

)
= 2aj − 1 .

Thus, we get for all j ∈ [n] that

2x j − 1 = d(x , 0) − d
(
x , e(j)

)
= d(y, 0) − d

(
y, e(j)

)
= 2yj − 1 ,

which shows x = y.
Now, suppose that αH = βH. Let x ∈ [0, 1]n be given. We have for all

z ∈ {0, 1}n that d
(
α(x),α(z)

)
= d(x ,z) = d

(
β(x), β(z)

)
, because α and β are

isometric. Since αH = βH are Hamming automorphisms, we have for all z ∈
{0, 1}n that d

(
α(x),z

)
= d

(
β(x),z

)
. Using proposition 5.1, we see that α(x) =

β(x), as desired.
Regarding point 3, let η be given. We construct a distance-preserving exten-

sion α of η to [0, 1]n such that αH = η. For all x ∈ [0, 1]n, let

α(x) = η(0) +
n∑
i=1

(
η
(
e(i)

)
− η(0)

)
· xi . (5.2)

Note that η
(
e(i)

)
di�ers from η(0) in exactly one position, since η is distance-

preserving. This position does not necessarily have to be i , since η can perform
a permutation. Assume that this position is j ∈ [n]. Then, for any k ∈ [n],
the value

(
η
(
e(i)

)
− η(0)

)
k is 1 or −1 if k = j and 0 otherwise. Note further

73

Chapter 5 Unbiasedness of n-Bernoulli-λ-EDAs

that, for each unit vector, a component di�erent from all other unit vectors is
non-zero in η

(
e(i)

)
− η(0), since η is bijective. Overall (assuming that position i

is mapped to position j), for any x ∈ [0, 1]n, this means that α(x)j is completely
determined by η(0)j +

(
η
(
e(i)

)
− η(0)

)
j · xi . This shows that α is bijective (albeit

not necessarily on [0, 1]n), since the inverse can be computed uniquely, due to
the unique partition of the sum into the di�erent components and due to η being
a bijection.

We now show that α maps bijectively to [0, 1]n . Again, assume that posi-
tion i is mapped to position j, and let x ∈ [0, 1]n. Recall that η can only perform
complementations additionally to permutations. We show that

η(0)j +
(
η
(
e(i)

)
− η(0)

)
j · xi

is a bijection of [0, 1]. It then follows that α is a bijection of [0, 1]n , since the
components do not interfere with one another.

We make a case distinction with respect to whether η takes the complement
at position j (after performing the permutation) or not.
Case η(x)j = xi . Then, η(0)j = 0 and

(
η
(
e(i)

)
− η(0)

)
j = 1. Thus, α(x)j = xi ,

which is a bijection from [0, 1] to [0, 1].
Case η(x)j = 1 − xi . Then, η(0)j = 1 and

(
η
(
e(i)

)
− η(0)

)
j = −1. Thus,

α(x)j = 1 − xi , which is also a bijection from [0, 1] to [0, 1].
Combining both cases yields that α(x)i is a bijection of [0, 1] for every x and

every i . Thus, α is a bijection of [0, 1]n , as we discussed before.
Now, we show that α is distance-preserving. For this, let x ,y ∈ [0, 1]n, and

let σ be the permutation of indices that η realizes. We get

d
(
α(x),α(y)

)
=

n∑
i=1

��α(x)i − α(y)i ��
=

n∑
i=1

����η(0)σ (i) + (
η
(
e(i)

)
− η(0)

)
σ (i) · xi

− η(0)σ (i) −
(
η
(
e(i)

)
− η(0)

)
σ (i) · yi

����
=

n∑
i=1

���� (η (e(i)) − η(0))σ (i)(xi −yi)����

74

Unbiased EDAs Section 5.3

=

n∑
i=1
|xi −yi | ,

since d
(
η(e(i)),η(0)

)
= d

(
e(i), 0

)
= 1.

We now show that αH is equal to η, that is, for all x ∈ {0, 1}n , it holds that
α(x) = η(x). We do so by showing that the components are the same. We handle
this case very similarly to the one where we showed that α is bijective on [0, 1]n.

Let i ∈ [n] be an arbitrary index, let x ∈ {0, 1}n, and consider that η maps
position i to position j ∈ [n]. We now make a case distinction with respect to
whether η takes the complement at position j or not.

Case η(x)j = xi :

α(x)j = η(0)j +
(
η
(
e(i)

)
j − η(0)j

)
· xi

= 0 + (1 − 0) · xi
= xi = η(x)j .

Case η(x)j = 1 − xi :

α(x)j = η(0)j +
(
η
(
e(i)

)
j − η(0)j

)
· xi

= 1 + (0 − 1) · xi
= 1 − xi = η(x)j .

Hence, for all j ∈ [n], we have α(x)j = η(x)j . This �nishes the proof. �

It follows from Lemma 5.1 that each Hamming automorphism α has a unique
distance-preserving extension to [0, 1]n . Let α̂ denote this unique extension of α
to an isometric automorphism.

5.3 Unbiased EDAs

We start by de�ning the general concept of unbiasedness of a black-box algo-
rithm. Such an algorithm follows the very general framework of querying bit
strings from an oracle, where each query (that is, sample) can only depend on
all bit strings and their �tness queried so far. The original de�nition of unbiased
black-box complexity was introduced by Lehre and Witt [LW12]. Since then,
the de�nition has been stated several times in di�erent formulations [DKW11;

75

Chapter 5 Unbiasedness of n-Bernoulli-λ-EDAs

Doe+11a; RV11]. Usually, the de�nition makes use of unbiased variation opera-
tors, which are operators that sample from distributions in a way that is invariant
under permutations and complementations (thus, only implicitly capturing the
time point of the query).

Rowe and Vose [RV11], however, take a di�erent approach and de�ne unbi-
asedness in terms of the sequence of queries to the oracle (the trace). In this
de�nition, an algorithm is unbiased if its trace is invariant under permutations
and complementations (thus, only implicitly capturing the distribution used for
sampling).

We use the de�nition of Rowe and Vose [RV11], phrased in the sense of our
previously introduced concepts of permutations and complementations of [0, 1]n .

I De�nition 5.2 (Unbiasedness). A black-box algorithm A is a mapping that
takes a sequence of bit strings with corresponding �tness values and returns a
bit string. Since A may be randomized, a black-box algorithm A and a �tness
function f together de�ne a sequence of random variables (X (i))i ∈N, where X (i)
denotes the i-th bit string computed by A:

∀i ∈ N : X (i) = A
((
X (j), f

(
X (j)

))
j<i

)
.

For a given algorithmA and �tness function f , we denote the dependency ofX (i)
on A and f by writing, for all i ∈ N, X (i)(A, f).

We call a black-box algorithm A unbiased if and only if, for all Hamming
automorphisms α , all �tness functions f , and all i ∈ N, it holds that

X (i)(A, f) = α
(
X (i)(A, f ◦ α)

)
. (5.3)

J

Intuitively, when given an unbiased black-box algorithm A, it performs the
same when optimizing f or f ◦α ; the only di�erence is that A using f optimizes
the unperturbed hypercube, whereas A using f ◦ α optimizes the hypercube
perturbed by α . This way, if A using f samples x , A using f ◦ α samples
α−1(x) with the same probability and queries (with the same probability) the
same individual: x = α

(
α−1(x)

)
(since f (x) = (f ◦ α)

(
α−1(x)

)
). Note that an

n-Bernoulli-λ-EDA A is a black-box algorithm, as it samples λ bit strings every
iteration, which can trivially be sequentialized. The probability vector p of A is
implicitly captured in the history of search points X (i)(A, f), where those with

76

Unbiased EDAs Section 5.3

indices i ∈ {λt , . . . , λ(t+1)−1} share the same distribution, which isp(t). We now
focus on an invariance property of the update scheme of an n-Bernoulli-λ-EDA.

I De�nition 5.3 (H-Invariance). LetA be an n-Bernoulli-λ-EDA with update
scheme φ, and letH be a family of bijections over [0, 1]n with �xed point 1/2
such that, for all h ∈ H , it holds that h−1 ∈ H . We say that A isH -invariant if
and only if, for all h ∈ H , all �tness functions f , all possible frequency vectors
p ∈ P(A), and all o�spring populations D that can be sampled by p, it holds that

h
(
φ
(
p,

(
x , f (x)

)
x ∈D

))
= φ

(
h(p),

(
h(x), f (x)

)
x ∈D

)
. J

Note that the right-hand side of this equation can be written as

φ
(
h(p),

(
x , (f ◦ h−1)(x)

)
x ∈h(D)

)
,

that is, h(p) can sample h(D) (since p can sample D). In the following, if H
is the class of all permutations, we call an H -invariant n-Bernoulli-λ-EDA A
permutation-invariant. If H is the class of all complementations, we call A
complementation-invariant. And ifH is the class of all isometric automorphisms,
we callA automorphism-invariant. Note that any function in any of these families
has 1/2 as a �xed point. This is important in order to ensure that A has an initial
distribution that is equally fair to any function h ∈ H .

I Lemma 5.4. LetA be anH -invariant n-Bernoulli-λ-EDA. Then, for allh ∈ H ,
all time steps t , and all p(t) ∈ P (t)(A), we have

h
(
p(t)

)
∈ P (t)(A) . J

Proof. Let h be any function ofH . We prove this lemma by induction over t .
For the base case, we have p(0) = 1/2, which is equal to h(1/2), since 1/2 is

a �xed point for any h ∈ H . Hence, h
(
p(0)

)
∈ P (0)(A).

For the inductive step, we assume that h
(
p(t)

)
∈ P (t)(A) holds. We now show

that h
(
p(t+1)

)
∈ P (t+1)(A) holds. Due to the de�nition of an n-Bernoulli-λ-EDA,

we have that p(t+1) =φ
(
p(t),

(
x , f (x)

)
x ∈D

)
. And since A isH -invariant, it holds

that
h
(
φ
(
p(t),

(
x , f (x)

)
x ∈D

))
= φ

(
h
(
p(t)

)
,
(
h(x), f (x)

)
x ∈D

)
.

Thus, h
(
p(t+1)

)
= φ

(
h
(
p(t)

)
,
(
h(x), f (x)

)
x ∈D

)
. The latter is in P (t+1)(A), since

77

Chapter 5 Unbiasedness of n-Bernoulli-λ-EDAs

h
(
p(t)

)
∈ P (t)(A) – due to the induction hypothesis –, which is updated by φ and,

thus, creates an element in P (t+1)(A) by de�nition. �

Lemma 5.4 shows how heavily the update scheme of an n-Bernoulli-λ-EDA is
already restricted when assuming that it is invariant. We now state our main
theorem, which characterizes when an n-Bernoulli-λ-EDA is unbiased. Recall
that we de�ned α̂ to be the unique extension of a Hamming automorphism α
after Lemma 5.1.

I Theorem 5.5. Let A be an n-Bernoulli-λ-EDA. Then the following are equiv-
alent:

1. A is unbiased.

2. For all �tness functions f , all isometric automorphisms α̂ , and all t ∈ N, it
holds that

p(t)(A, f) = α̂
(
p(t)(A, f ◦ α)

)
. (5.4)

3. A is automorphism-invariant.

4. A is permutation- and complementation-invariant. J

Proof. (1) ⇒ (2). Let f be any �tness function, and let α̂ be any isometric
automorphism. Note that α

(
X (i)(A, f ◦ α)

)
= α̂

(
X (i)(A, f ◦ α)

)
, since α̂ maps bit

strings to bit strings, according to Lemma 5.1.
As mentioned before, the random variablesX (i)(A, f)with indices i ∈ {λt , . . . ,

λ(t +1)−1} follow the same distribution, which isp(t). This means thatp(t)(A, f)
describes the distribution of (amongst others)X (λt)(A, f), asA samples bit strings
according to its frequency vector, due to the de�nition of an n-Bernoulli-λ-EDA.

Since we assume that A is unbiased, the random variable X (λt)(A, f) is equal
to α̂

(
X (λt)(A, f ◦ α)

)
for any t , and, thus, their distributions are equal as well.

This means that equation (5.4) holds.
(1)⇐ (2). Since equation (5.4) holds and since p(t)(A, f) and p(t)(A, f ◦ α) de-

scribe distributions over bit strings, it follows thatX (λt)(A, f) = α̂
(
X (λt)(A, f ◦ α)

)
for all t .

Due to an n-Bernoulli-λ-EDA sampling λ individuals every iteration, it follows
that X (λt)(A, f) is equal to X (i)(A, f), where i ∈ {λt + 1, . . . , λ(t + 1) − 1}. This
shows equation (5.3) for the remaining indices i and completes this direction.

78

Unbiased EDAs Section 5.3

(2)⇒ (3). Let f be any �tness function, let α̂ be any isometric isomorphism,
let t ∈ N be any iteration, let p(t) = p(t)(A, f) , and let ˜p(t) = p(t)(A, f ◦ α).
Note that due to the de�nition of P(A), we cover all p ∈ P(A) by choosing an
arbitrary t and considering p(t). We now show thatA is automorphism-invariant.

Since equation (5.4) holds, we have that p(t+1) = α̂
(
˜p(t+1)

)
. Due to the de�ni-

tion of an update, this means that

φ
(
p(t),

(
x , f (x)

)
x ∈D

)
= α̂

(
φ
(
˜p(t),

(
x , (f ◦ α)(x)

)
x ∈D̃

))
, (5.5)

where D should be sampled by p(t) and D̃ should be sampled by ˜p(t).
Due to equation (5.4), we further have that p(t) = α̂

(
˜p(t)

)
, which is equivalent

to α̂ −1
(
p(t)

)
= ˜p(t), since α̂ is invertible.

Substituting this into equation (5.5) and inverting α̂ leads to

α̂ −1
(
φ
(
p(t),

(
x , f (x)

)
x ∈D

))
= φ

(
α̂ −1

(
p(t)

)
,
(
x , (f ◦ α)(x)

)
x ∈D̃

)
.

Note that D̃ = α̂ −1(D), since ˜p(t) = α̂ −1
(
p(t)

)
, and that f ◦ α = f ◦ α̂ , since α

and α̂ are equal on bit strings. Thus, the above equation is equivalent to A being
automorphism-invariant, as we discussed after De�nition 5.3.
(3)⇒ (2). For this direction, we use the same notation as in the previous

direction. We now show that equation (5.4) holds for all t .
For the base case, we have p(0) = ˜p(0) = 1/2 by the initialization step of an

n-Bernoulli-λ-EDA. Permutations obviously do not change this equality, since
all frequencies are the same. Complementations also do not change anything,
since 1 − 1/2 = 1/2. Hence, p(0) = α̂

(
˜p(0)

)
, as we desire.

For the inductive step, we assume that equation (5.4) holds up to a t ∈ N,
which is equivalent to α̂ −1

(
p(t)

)
= ˜p(t). When making an update, we get

˜p(t+1) = φ
(
˜p(t),

(
x , (f ◦ α)(x)

)
x ∈α−1(D)

)
= φ

(
α̂ −1(p(t)),

(
α−1(x), f (x)

)
x ∈D

)
,

where D is a random variable denoting an o�spring population that can be
sampled by p(t), and where we used the induction hypothesis and that (f ◦
α)

(
α−1(x)

)
= f (x).

Since A is automorphism-invariant, we can pull α̂ −1 in front of φ. Hence, we

79

Chapter 5 Unbiasedness of n-Bernoulli-λ-EDAs

get
φ
(
α̂ −1(p(t)),

(
α−1(x), f (x)

)
x ∈D

)
= α̂ −1

(
φ
(
p(t),

(
x , f (x)

)
x ∈D

))
,

which is equivalent to ˜p(t+1), as we have seen previously.
Substituting φ

(
p(t),

(
x , f (x)

)
x ∈D

)
with p(t+1), we get

˜p(t+1) = α̂ −1
(
p(t+1)

)
⇔ p(t+1) = α̂

(
˜p(t+1)

)
,

which is what we wanted to show.
(3)⇒ (4). This direction is trivial, since every permutation and every comple-

mentation is an isometric automorphism.
(4) ⇒ (3). Let α̂ be any isometric automorphism, and let f be any �tness

function. Let σ be a permutation and χ be a complementation such that α̂ = χ ◦σ .
Since A is permutation-invariant, we get, for any p ∈ P(A) and any D sampled

by p, that

σ
(
φ
(
p,

(
x , f (x)

)
x ∈D

))
= φ

(
σ (p),

(
σ (x), f (x)

)
x ∈D

)
= φ

(
σ (p),

(
x , (f ◦ σ−1)(x)

)
x ∈σ (D)

)
,

where σ (p) ∈ P(A), due to Lemma 5.4, and σ (D) is an o�spring population that
can be sampled by σ (p). Thus, since A is also complementation-invariant and
since (f ◦ σ−1) is also a �tness function, we get

χ
(
φ
(
σ (p),

(
x , (f ◦ σ−1)(x)

)
x ∈σ (D)

))
= φ

(
χ
(
σ (p)

)
,
(
χ (x), (f ◦ σ−1)(x)

)
x ∈σ (D)

)
= φ

(
χ
(
σ (p)

)
,
(
χ
(
σ (x)

)
, f (x)

)
x ∈D

)
= φ

(
α̂(p),

(
α(x), f (x)

)
x ∈D

)
.

We now combine both cases and get

α̂
(
φ
(
p,

(
x , f (x)

)
x ∈D

))
= χ

(
σ
(
φ
(
p,

(
x , f (x)

)
x ∈D

)))
= φ

(
α̂(p),

(
α(x), f (x)

)
x ∈D

)
,

which means that A is automorphism-invariant.
Overall, we showed all equivalences that we stated. �

Theorem 5.5 only considers n-Bernoulli-λ-EDAs without a margin. However,

80

Decomposability Section 5.4

we would like to note that imposing a margin via equation (4.2) onto an unbiased
n-Bernoulli-λ-EDA A leaves it unbiased. The reason for this is that equation (4.2)
can be interpreted as a new update scheme of another n-Bernoulli-λ-EDA A′

with no externally imposed margin. Since a margin b is the same for all positions
and a�ects 0 and 1 in a symmetric fashion (it limits the frequencies to [b, 1−b]n),
Lemma 5.4 still applies. Hence, A′ is still automorphism-invariant (since A is by
assumption) and, due to Theorem 5.5, it is unbiased.

5.4 Decomposability

Theorem 5.5 characterizes the unbiasedness for all n-Bernoulli-λ-EDAs, that is,
its statement is very general, and some of the requirements may be di�cult to
check. Common n-Bernoulli-λ-EDAs have a more speci�c update scheme than
the one presented in the framework (Algorithm 1). Thus, we can give more
precise statements on unbiasedness if we focus on meaningful subsets of update
schemes.

In the following, we consider decomposable EDAs (De�nition 4.1). Within
this class, we look at singularly decomposable EDAs and such that we call self-
complementary (De�nition 5.8). The former (which includes all locally updating
algorithms) are permutation-invariant, the latter are complementation-invariant.
Hence, an algorithm having both properties is unbiased.

I Theorem 5.6. Let A be a decomposable n-Bernoulli-λ-EDA. Then the follow-
ing are equivalent:

1. A is singularly decomposable.

2. A is permutation-invariant. J

Proof. (1)⇒ (2). Let Ûφ denote the update function used byA for every frequency,
and let σ be any permutation. Consider that σ maps position i to position j.

Since A is singularly decomposable, we get

φ
(
σ (p),

(
σ (x), f (x)

)
x ∈D

)
j = Ûφ

(
σ (p)j ,

(
σ (x)j , f (x)

)
x ∈D

)
= Ûφ

(
pi ,

(
xi , f (x)

)
x ∈D

)
= σ

(
φ
(
p,

(
x , f (x)

)
x ∈D

))
j
.

And since i and j are arbitrary, it follows that A is permutation-invariant.

81

Chapter 5 Unbiasedness of n-Bernoulli-λ-EDAs

(2)⇒ (1). We prove this direction by contraposition. Hence, assume that A is
not singularly decomposable. Since A is still decomposable, there exist at least
two di�erent update functions Ûφi and Ûφ j .

Let f ∗ be a �tness function, p∗ ∈ P(A) a possible frequency vector, and D∗ an
o�spring population that can be sampled by p∗ such that

Ûφi
(
p∗i ,

(
xi , f

∗(x)
)
x ∈D∗

)
, Ûφ j

(
p∗i ,

(
xi , f

∗(x)
)
x ∈D∗

)
. (5.6)

Note that only the index of Ûφ changes, since the functions are di�erent for the
same input.

Let σ ∗ be a permutation that maps i to j. Similar to the direction before, we
have

σ ∗
(
φ
(
p∗,

(
x , f ∗(x)

)
x ∈D∗

))
j
= Ûφi

(
p∗i ,

(
xi , f

∗(x)
)
x ∈D∗

)
and

φ
(
σ ∗(p∗),

(
σ ∗(x), f ∗(x)

)
x ∈D∗

)
j = Ûφ j

(
p∗i ,

(
xi , f

∗(x)
)
x ∈D∗

)
.

Using inequality (5.6), we get by combining the two above equations that

σ ∗
(
φ
(
p∗,

(
x , f ∗(x)

)
x ∈D∗

))
j
, φ

(
σ ∗(p∗),

(
σ ∗(x), f ∗(x)

)
x ∈D∗

)
j ,

which means that A is not permutation-invariant. This concludes the proof. �

Theorem 5.6 provides a very strong guideline for creating n-Bernoulli-λ-
EDAs: if your algorithm should be decomposable and unbiased, then it has to
be singularly decomposable. This statement is helpful, since it is not hard to
come up with a singularly decomposable n-Bernoulli-λ-EDA. But it also tells
us that there is no sense in trying any more complicated update schemes if
we want a decomposable one. A question that might now be asked is whether
unbiasedness implies decomposability. If so, we would know that only singularly
decomposable n-Bernoulli-λ-EDAs could be unbiased. Unfortunately, there exist
algorithms that are not decomposable but still unbiased, as we will argue next.

5.4.1 An Unbiased Non-decomposable EDA

The idea of the algorithm we are going to present is the following: the update
scheme is closely related to the one of the λ-MMASIB. However, the parameter ρ
is adaptive with respect to the current frequency vector. The more each frequency

82

Decomposability Section 5.4

is away from its center 1/2, the greater ρ gets. This means that the step size
is increasing the further the algorithm commits to a certain direction for its
frequencies. Formally, for any ρ ∈ [0, 1] and any frequency vector p, let

ρp = ρ

(
1
2 +

1
n

n∑
k=1

����pk − 1
2

����) .
Consider the following update scheme:

φ
(
p,

(
x , f (x)

)
x ∈D

)
i =

(
1 − ρp

)
pi + x

(1)
i · ρp , (5.7)

where x (1) – the individual of rank 1 – is determined uniformly at random in
the case of ties. Note that an n-Bernoulli-λ-EDA with such an update scheme is
not decomposable, as ρp uses all frequencies.

I Proposition 5.7. Let A be the n-Bernoulli-λ-EDA with update scheme φ as
given in equation (5.7). Then A is unbiased. J

Proof. We use Theorem 5.5 and show thatA is permutation- and complementation-
invariant.

We start by showing that A is permutation-invariant. For this, let σ be an
arbitrary permutation that maps position i to position j. We get

σ
(
φ
(
p,

(
x , f (x)

)
x ∈D

))
j
=

(
1 − ρp

)
pi + x

(1)
i · ρp

=
(
1 − ρσ (p)

)
σ (p)j + σ

(
x (1)

)
j · ρσ (p)

= φ
(
σ (p),

(
σ (x), f (x)

)
x ∈D

)
j ,

as we can re-order the summands in ρp without changing its value.
Note that the updates σ

(
φ
(
p,

(
x , f (x)

)
x ∈D

))
andφ

(
σ (p),

(
σ (x), f (x)

)
x ∈D

)
are

both random variables. Thus, x (1) does not necessarily have to denote the same
individual when looking at both cases. However, due to our assumptions on x (1),
we do not have to consider it changing in-between the equations, since x (1) and
σ
(
x (1)

)
both have �tness f

(
x (1)

)
and, thus, get chosen for an update with equal

probability in both cases. This shows that A is permutation-invariant.
We now show that A is complementation-invariant. For this, let χ be an

arbitrary complementation. Note that |χ (p)k − 1/2| = |pk − 1/2| and, thus,
ρp = ρχ (p).

83

Chapter 5 Unbiasedness of n-Bernoulli-λ-EDAs

Consider that χ takes the complement at position i; the other case of χ not
changing anything at position i can be shown analogously and more easily. Thus,
we get

φ
(
χ (p),

(
χ (x), f (x)

)
x ∈D

)
i =

(
1 − ρχ (p)

)
χ (p)i + χ

(
x (1)

)
i · ρχ (p)

=
(
1 − ρp

)
(1 − pi) +

(
1 − x (1)i

)
· ρp

= 1 − ρp −
(
1 − ρp)pi + ρp − x (1)i · ρp

= 1 −
(
(1 − ρp)pi + x (1)i · ρp

)
= χ

(
φ
(
p,

(
x , f (x)

)
x ∈D

))
i
,

which means thatA is complementation-invariant. This completes the proof. �

The update scheme presented in equation (5.7) uses the entire frequency vector
to update any frequency pi , but it only uses the i-th bit for each individual in the
o�spring population D. Thus, it may be that an operator that makes use of D in
a non-bit-wise manner might make the algorithm biased. However, there exist
operators that use D entirely and still result in unbiased algorithms.

One example is the operator s(D), which we will de�ne after introducing the
following auxiliary function (for i ∈ [n]):

s(D, i) =

{
1 if

∑
x ∈D xi ∈ {0, λ} ,

0 otherwise.

Note that s(D, i) is 1 if and only if all individuals have the same value at index i;
otherwise, it is 0. Now, let s(D) = (1/n)

∑n
k=1 s(D,k). Consider the update

scheme

φ
(
p,

(
x , f (x)

)
x ∈D

)
i =

(
1 − ρ · s(D)

)
pi + x

(1)
i · ρ · s(D) . (5.8)

Analogous to Proposition 5.7, this update scheme is unbiased. Essentially, this
boils down to s(D) being permutation- and complementation-invariant.

Finally, one can combine the update schemes of equations (5.7) and (5.8), and
the resulting n-Bernoulli-λ-EDA is still unbiased. Thus, the class of unbiased
decomposablen-Bernoulli-λ-EDAs is a proper subset of the class of all unbiasedn-
Bernoulli-λ-EDAs. However, many theoretically analyzed n-Bernoulli-λ-EDAs –
such as the ones in Section 4.3 – are singularly decomposable.

84

Decomposability Section 5.4

5.4.2 Unbiased Decomposable EDAs

We now look at complementation invariance for decomposable n-Bernoulli-λ-
EDAs. For this, we de�ne the following property.

I De�nition 5.8 (Self-Complementarity). Let A be a singularly decompos-
able n-Bernoulli-λ-EDA with update scheme φ, using the update function Ûφ. We
say that A is self-complementary if and only if, for all �tness functions f , all
possible frequency vectors p ∈ P(A), all o�spring populations D that can be
sampled by p, and all indices i , we have

1 − Ûφ
(
pi ,

(
xi , f (x)

)
x ∈D

)
= Ûφ

(
1 − pi ,

(
1 − xi , f (x)

)
x ∈D

)
. J

The update of a self-complementaryn-Bernoulli-λ-EDA works in the following
way: increasing or decreasing a frequency at index i (the probability to sample
a 1) is the same as decreasing or increasing, respectively, the complement of the
frequency (the probability to sample a 0) in the same manner as the frequency
would if all the bits at index i were inverted. This means that the scheme for
decreasing follows from the scheme of increasing or vice versa. We can now
state the following theorem.

I Theorem 5.9. Let A be a singularly decomposable n-Bernoulli-λ-EDA. Then
the following are equivalent:

1. A is complementation-invariant.

2. A is self-complementary. J

Proof. (1)⇒ (2). This direction trivially follows from De�nition 5.3 by applying
De�nition 4.1 and using the complementation such that for all i , χ (p)i = 1 − pi .

(2)⇒ (1). The update scheme φ is per component equal to Ûφ by De�nition 4.1
for any i . Thus, we can consider an arbitrary i . For any complementation χ
with χ (p)i = pi , the equation in De�nition 5.3 trivially holds. Thus, only the
case χ (p)i = 1 − pi needs to be considered, which holds by the assumption of
point 2. �

For a singularly decomposablen-Bernoulli-λ-EDA, checking complementation-
invariance is very straightforward. We can now give a more speci�c characteri-
zation of unbiasedness.

85

Chapter 5 Unbiasedness of n-Bernoulli-λ-EDAs

I Corollary 5.10. Let A be a decomposable n-Bernoulli-λ-EDA. Then the
following are equivalent:

1. A is unbiased.

2. A is singularly decomposable and self-complementary. J

Proof. We show that point 2 is equivalent to A being permutation- and comple-
mentation-invariant. Theorem 5.5 then yields the equivalence to point 1.

Due to Theorem 5.6, A being singularly decomposable is equivalent to it being
permutation-invariant; and due to Theorem 5.9, being self-complementary is
equivalent to being complementation-invariant. This �nishes the proof. �

Examples of unbiased decomposable EDAs

We now apply Corollary 5.10 to some of the algorithms mentioned in Section 4.3
to prove their unbiasedness. We discuss the remaining algorithms in the next
section.

I Theorem 5.11. The PBIL, the UMDA, and the λ-MMASIB are unbiased. J

Proof. We only show that the PBIL is unbiased, since the UMDA and the λ-MMASIB
are special instances of it. Note that the PBIL is singularly decomposable. Thus,
we only show that it is complementation-invariant. Then applying Corollary 5.10
�nishes the proof.

In the following, let Ûφ denote the update function that PBIL uses for its update
scheme. Further, recall that we assume a uniform tie-breaking rule, that is, if
there is a tie in �tness, the winner is determined uniformly at random. Hence,
for any �tness function f and any Hamming automorphism α , if an individual x
is the winner of a tie-break using f , α(x) will be the winner of a tie-break
using f ◦ α−1 with equal probability.

Ûφ
(
1 − pi ,

(
1 − xi , f (x)

)
x ∈D

)
= (1 − ρ)(1 − pi) + ρ

∑µ
k=1

(
1 − x (k)i

)
µ

= 1 − ρ − (1 − ρ)pi + ρ
(
µ

µ
−

∑µ
k=1 x

(k)
i

µ

)
= 1 −

(
(1 − ρ)pi + ρ

∑µ
k=1 x

(k)
i

µ

)

86

Locally Updating EDAs Section 5.5

= 1 − Ûφ
(
pi ,

(
xi , f (x)

)
x ∈D

)
.

Note that 1 − x (k) and x (k) have the same rank with equal probability, due to
uniform tie-breaking. Thus, the equalities shown above hold. �

5.5 Locally Updating EDAs

Last, we look at locally updating n-Bernoulli-λ-EDAs. In Theorem 5.11, we
skipped the cGA. We did so because it is locally updating and, thus, its update
schemes can be expressed very concisely. Hence, we want to give a characteri-
zation that is even easier to check than the one given in Corollary 5.10. Note
that all locally updating n-Bernoulli-λ-EDAs are singularly decomposable by
de�nition and, hence, already permutation-invariant by Theorem 5.6. We focus
on a subclass of algorithms that move symmetrically and show that this property
is equivalent to being complementation-invariant and, thus, unbiased.

I De�nition 5.12 (Symmetrical Movement). Let A be a locally updating n-
Bernoulli-λ-EDA. We say that A moves symmetrically at position i ∈ [n] if and
only if, for all �tness functions f and all o�spring populations D that can be
sampled by a frequency vector from P(A), it holds that Pi (A) = {1/2} or that

�ip
(
move

((
xi , f (x)

)
x ∈D

)
i

)
= move

((
1 − xi , f (x)

)
x ∈D

)
i , (5.9)

where �ip : {up, stay, down} → {up, stay, down} swaps ›up‹ and ›down‹ and
maps ›stay‹ to ›stay‹.

If A moves symmetrically at all positions i ∈ [n], we say that it moves sym-
metrically. J

A symmetrically moving n-Bernoulli-λ-EDA moves a frequency into the op-
posite direction if all the bits for an update at this position are �ipped.

I Theorem 5.13. Let A be a locally updating n-Bernoulli-λ-EDA. Then the
following are equivalent:

1. A is complementation-invariant.

2. A moves symmetrically. J

87

Chapter 5 Unbiasedness of n-Bernoulli-λ-EDAs

Proof. We show that being self-complementary (De�nition 5.8; here denoted
by (S)) is equivalent to A moving symmetrically (this theorem’s point 2). The
equivalence to A being complementation-invariant then follows by applying
Theorem 5.9. In the following, we always consider any i ∈ [n].

(S)⇒ (2). We assume that Pi (A) ⊃ {1/2} and show that equation (5.9) holds.
For this, let vi = move

((
xi , f (x)

)
x ∈D

)
, and let vi = move

((
1 − xi , f (x)

)
x ∈D

)
.

We make a case distinction with respect to vi .
First, assume that vi = up. Then, 1 − Ûφ

(
pi ,

(
xi , f (x)

)
x ∈D

)
= 1 − set(pi) by

assumption and the de�nition of a locally updating n-Bernoulli-λ-EDA. Further,
since we assume that A is self-complementary, we have

1 − Ûφ
(
pi ,

(
xi , f (x)

)
x ∈D

)
= Ûφ

(
1 − pi ,

(
1 − xi , f (x)

)
x ∈D

)
and, thus, 1 − set(pi) = Ûφ

(
1 − pi ,

(
1 − xi , f (x)

)
x ∈D

)
.

We now make a case distinction with respect to vi in the update on the right-
hand side. For vi = up, we get Ûφ

(
1 − pi ,

(
1 − xi , f (x)

)
x ∈D

)
= set(1 − pi) and,

thus, 1 − set(pi) = set(1 − pi), which is only true if set(pi) = pi . Now, 1/2 is
not a �xed point of ›set‹ due our assumption of Pi (A) ⊃ {1/2}. Note that D
as well as its bit-wise complement can be sampled in iteration 0, that is, when
p(0) = 1/2, especially p(0)i = 1/2. Since ›move‹ decides independent of pi in
which direction to move, vi cannot be ›up‹, because that would contradict A
being complementation-invariant in iteration 0: p(1)i would be greater than 1/2
(since 1/2 is not a �xed point) but so would ˜p(1)i (the update of p(0) with respect
to the bit-wise complement of D). However, ˜p(0)i had to be smaller than 1/2.
For vi = stay, we get 1 − set(pi) = 1 − pi , which, again, can only hold if

set(pi) = pi . We can argue analogously to before, the only di�erence being
that ˜p(1)i would be 1/2, whereas p(1)i would, again, be greater than 1/2, which
contradicts A being complementation-invariant.

For vi = down, we get 1 − set(pi) = 1 − set
(
1 − (1 − pi)

)
, which is always

true. Hence, if vi = up, then vi = down.
The other two cases with respect to vi can be done analogously and yield

that vi = stay if vi = stay, and that vi = up if vi = down (always assuming that
Pi (A) ⊃ {1/2}). All in all, this results in �ip(vi) = vi .

(2)⇒ (S). If Pi (A) = {1/2}, A is trivially complementation-invariant for that
position, since its only frequency for this position is 1/2, independent of any D
sampled.

88

Locally Updating EDAs Section 5.5

If Pi (A) ⊃ {1/2}, we show that

1 − Ûφ
(
pi ,

(
xi , f (x)

)
x ∈D

)
= Ûφ

(
1 − pi ,

(
1 − xi , f (x)

)
x ∈D

)
.

We start with the former and make, as before, a case distinction with respect to
vi . Due to A moving symmetrically, we have �ip(vi) = vi .

First, assume that vi = up. We then get

1 − Ûφ
(
pi ,

(
xi , f (x)

)
x ∈D

)
= 1 − set(pi)
= 1 − set

(
1 − (1 − pi)

)
= Ûφ

(
1 − pi ,

(
1 − xi , f (x)

)
x ∈D

)
,

where the �rst and third equality follow from the de�nition of a locally updating
n-Bernoulli-λ-EDA’s update scheme, using that vi = up (�rst equality) and that
vi = down (third equality). The other two cases can be done analogously and
yield the same result. This concludes the proof. �

Using Theorem 5.13, we get the following Corollary.

I Corollary 5.14. Let A be a locally updating n-Bernoulli-λ-EDA. Then the
following are equivalent:

1. A is unbiased.

2. A moves symmetrically. J

Proof. We show that point 2 is equivalent to A being unbiased. Note that we
assume A to be singularly decomposable, as it is locally updating.

Due to Theorem 5.13,Amoving symmetrically is equivalent to it being comple-
mentation-invariant, which is equivalent to it being self-complementary (Theo-
rem 5.9); and due to Corollary 5.10, this is equivalent to A being unbiased. �

For a locally updating n-Bernoulli-λ-EDA, only the ›move‹ function decides
whether the algorithm is unbiased or not. The remaining update via ›set‹ is
already set up to perform an unbiased update. This makes checking for unbi-
asedness very easy.

I Theorem 5.15. The cGA is unbiased. J

89

Chapter 5 Unbiasedness of n-Bernoulli-λ-EDAs

Proof. We make use of Corollary 5.14 and show that the cGA moves symmet-
rically. Let i ∈ [n] be an arbitrary index. As before, since we assume uniform
tie-breaking, we can assume for all x ∈ D that the ranks of x and 1 − x are the
same with equal probability (as they have the same �tness f (x), according to
equation (5.9)). Further, we use the same notation for the two ›move‹ values as
in the proof of Theorem 5.13: vi and vi .

For the cGA, move
((
xi , f (x)

)
x ∈D

)
= vi depends on the relation of x (1)i and

x (2)i . If x (1)i = x (2)i , then 1− x (1)i = 1− x (2)i , as well. This means that vi = stay and
vi = stay. Thus, �ip(vi) = vi .

If x (1)i > x (2)i , then 1 − x (1)i < 1 − x (2)i . This means that vi = up and vi = down.
Hence, �ip(vi) = vi . The case x (1)i < x (2)i follows completely analogously. Overall,
the cGA moves symmetrically and is, thus, unbiased. �

Since we only need to check the ›move‹ function of a locally updating n-
Bernoulli-λ-EDA, Theorem 5.15 can be generalized: every locally updating
n-Bernoulli-λ-EDA with a ›move‹ function as in the cGA is unbiased. Thus,
the framework of locally updating n-Bernoulli-λ-EDAs provides a powerful tool
to easily come up with unbiased n-Bernoulli-λ-EDAs: a single (symmetrically
moving) ›move‹ function can be used with arbitrary ›set‹ functions and will
always result in an unbiased algorithm.

5.6 Conclusions

We analyzed the broad class of n-Bernoulli-λ-EDAs with respect to unbiasedness.
That is, we proved when those algorithms behave the same, regardless of the
problem encoding, which is a desirable property in true black-box optimization,
as the optimization algorithm has no knowledge about the representation of
the problem. We showed how this applies to certain algorithms by providing
examples. In order to account for the simpler update schemes of those example
algorithms, we provided conciser characterizations of certain subclasses, which
can be veri�ed more easily. Our results can especially be viewed as guidelines
on how to create an update scheme when one wants to create an unbiased
algorithm – or when not.

The results of this chapter allow us to generalize our run time results in
the following chapters to the OneMax function class or the LeadingOnes
function class when we consider one of these functions, respectively. Further,

90

Conclusions Section 5.6

Corollary 5.14 allows us to easily prove the unbiasedness of locally updating
n-Bernoulli-λ-EDAs when the ›move‹ function is that of an algorithm of which
we already know that it is unbiased. In Sections 6.4.1 and 8.2.1, we use this in
order to easily argue that the considered algorithms are unbiased.

For future research, the subclass of locally updatingn-Bernoulli-λ-EDAs seems
reasonably limited in order to derive a lower bound in the unbiased black-box
complexity setting. And we conjecture that the lower bound is Ω

(
n log(n)

)
, moti-

vated by the results on the cGA and the 2-MMASIB by Sudholt and Witt [SW16a]
and insights from Chapter 9 like Lemma 9.7.

91

6
n-Bernoulli-λ-EDAs Cannot

be Balanced and Stable

This chapter is based on joint workwith Tobias Friedrich and TimoKötzing [FKK16].
The results from that paper have been heavily reworked for this chapter. The de-
�nition of stable was changed in order to better re�ect the idea of the concept.
Consequently, all of the results have been rephrased with respect to the new de�-
nition. Further, the results have been generalized and follow the concept of drift
for martingales (described in Section 3.6), which was not available when the re-
sults were originally published. Last, in the conference version, the main result
applied a negative-drift theorem incorrectly, as it assumed the drift to be negative
everywhere. This has now been corrected by using an appropriate negative-drift
theorem where the drift does not need to be negative everywhere.

Parts of the introduction are from joint work with Benjamin Doerr [DK18a],
which is based on a joint conference publication [DK18b].

In this chapter, we de�ne the two properties of balanced and stable for n-
Bernoulli-λ-EDAs. A balanced EDA does not change its frequency vector in
expectation when there is no signal from the �tness function, and the frequencies
of a stable EDA stay clsoe to 1/2 in such a case. We prove that these concepts
are mutually exclusive (Theorem 6.11), show that the algorithms mentioned in
Section 4.3 are all balanced (Theorems 6.8 and 6.10 and Corollary 6.9), and we
introduce a stable n-Bernoulli-λ-EDA that is able to optimize LeadingOnes with
high probability in O

(
n log(n)

)
iterations in expectation (Section 6.4).

6.1 Introduction

EDAs optimize a function by evolving a probabilistic model of the solution space.
In an iterative fashion, an EDA uses its model to generate samples and then
updates it with respect to observations made from these samples. An algorithm-
speci�c parameter determines how strong the changes to the model in each
iteration are.

In order for an EDA to succeed in optimization, it is important that the proba-
bilistic model is changed over time in a way that better solutions are sampled

93

Chapter 6 n-Bernoulli-λ-EDAs Cannot be Balanced and Stable

more frequently. However, due to the randomness in sampling (also called ge-
netic drift), the model should not be changed too drastically in a single iteration
in order to prevent wrong updates from having a long-lasting impact.

Recent theoretical results for EDAs have clearly demonstrated that this trade-
o� between convergence speed and accumulation of erratic updates can be
delicate and non-trivial to understand. Among the most relevant works, Sudholt
and Witt [SW16a] and our results in Chapter 9 prove lower bounds of the
expected run times of three common n-Bernoulli-λ-EDAs on the benchmark
function OneMax. In simple words, these bounds show that if the parameter for
updating the model is too large, the model converges too quickly and very likely
to a wrong model. In consequence, it then takes a long time to �nd the optimum
(usually by �rst reverting to a better �tting model). On the other hand, if the
parameter is too small, then the model converges to the correct model, but it
does so slowly. More formally, Sudholt and Witt [SW16a] prove a lower bound
of Ω

(
K
√
n + n log(n)

)
for the 2-MMASIB and the cGA, where 1/K is the step size

of the algorithm, and in Chapter 9, we prove a lower bound of Ω
(
λ
√
n + n log(n)

)
for the UMDA, where λ is the population size of the algorithm. These results
show that choosing the parameter with a value of ω

(√
n log(n)

)
has no bene�t.

Further, it has been recently shown by Lengler et al. [LSW18] that the run time of
the cGA on OneMax is Ω

(
K1/3n + n log(n)

)
for K ∈ O

(√
n/

(
log(n) log(log(n))

))
.

Together with the results from Sudholt and Witt [SW16a], this suggests a bimodal
behavior in the run time with respect to the parameter K in the regime of
K ∈ Ω

(
log(n)

)
∩ O

(√
n log(n)

)
, showing that the run time is sensitive to the

parameter choice.

In this chapter, we analyze when the parameter choice of an n-Bernoulli-
λ-EDA likely results in the convergence to a non-optimal frequency vector.
By convergence we mean that a frequency gets subconstantly close to 0 or 1,
which then allows to sample bits at the respective position more consistently.
We consider a setting with a constant �tness function such that there is no
preference for an individual over another. That is, we analyze the behavior of
an algorithm with respect to genetic drift, and convergence to any frequency
vector is considered bad, as the �tness function does not indicate that 1s are
better than 0s or vice versa.

In Section 6.3, we de�ne two important properties in this setting. We say that
an n-Bernoulli-λ-EDA A is balanced if it does not change its frequency vector in

94

Preliminaries Section 6.2

a single iteration in expectation (De�nition 6.3). And we say that A is t-stable if
its frequencies stay close to 1/2 during t many iterations (De�nition 6.4).

Being stable for a large number of iterations is a desirable property of an
n-Bernoulli-λ-EDA, since it guarantees with high probability that the algorithm
will not converge during that time to a wrong model when there is no input
from the �tness function. The property of being balanced seems to be related
to this concept, as it guarantees that the frequency vector does not change
in expectation in such a scenario. Hence, it is reasonable to ask whether an
n-Bernoulli-λ-EDA with both properties exists or if being balanced may even
imply being stable. The relevance of this question is increased by the fact that
we prove all of the commonly analyzed n-Bernoulli-λ-EDAs (see Section 4.3) to
be balanced. Unfortunately, we give a general result that, informally speaking,
states that a balanced n-Bernoulli-λ-EDA cannot be stable (Theorem 6.11).

In Section 6.4, we then apply the concept of stability to the �tness function
LeadingOnes, which does not provide a signal for a long period of time for
certain positions: the bits at the end of a bit string will only yield a preference
for 1s if all prior bits in the string are 1s as well. This is very unlikely to happen
during early iterations of an n-Bernoulli-λ-EDA, since all frequencies start at
a constant value of 1/2. Since all commonly analyzed n-Bernoulli-λ-EDAs are
balanced and thus not stable, it is likely that their step size has to be small in
order to prevent convergence to an incorrect frequency vector, resulting in a
slow optimization time. Hence, we introduce the scGA (short for stable cGA),
which is a variant of the cGA that is stable. This allows to choose a large step size
and optimize with high probability LeadingOnes within O

(
n log(n)

)
iterations

in expectation (Corollary 6.16). This is a run time that only few EAs can match
(see Table 10.1). However, we would like to mention that we prove in Chapter 10
that the scGA optimizes OneMax ine�ciently in return (Theorem 10.9).

6.2 Preliminaries

In the following, we de�ne the concepts of balanced and stable for n-Bernoulli-
λ-EDAs. Afterward, we mention theorems that we use in order to analyze
algorithms that have one of these properties.

A balanced n-Bernoulli-λ-EDA does not change its frequencies in expectation
when there is no signal from the �tness function. The following de�nition
formalizes what we mean by no signal.

95

Chapter 6 n-Bernoulli-λ-EDAs Cannot be Balanced and Stable

I De�nition 6.1 (No Signal). Let f : {0, 1}n → R denote a �tness function,
and let S ⊆ [n] denote a set of position. We say that f provides no signal at
positions in S if and only if, for all x ,y ∈ {0, 1}n such that x and y are the same
at all positions not in S (and may di�er at positions in S), it holds that

f (x) = f (y) .

We say that f provides no signal if and only if f provides no signal in [n]. J

Note that the requirement in De�nition 6.1 that x and y are from {0, 1}n
is rather strict and can be relaxed such that it may also be applied to subsets
of {0, 1}n , such as an o�spring population of an n-Bernoulli-λ-EDA. This can
be applied, for example, in the case of LeadingOnes (equation (2.2)): early in
the optimization process, positions toward the end of a bit string will provide
no signal for all practical purposes but will become meaningful later in the
optimization.

When a �tness function does not provide a signal at some positions, it is
indi�erent about the respective bit values. We are interested in how an n-
Bernoulli-λ-EDA behaves in such a situation.

I De�nition 6.2 (f -Independence). Let f be a �tness function that provides
no signal, and let A be an n-Bernoulli-λ-EDA that is optimizing f . We then say
that A is f -independent. J

De�nition 6.2 provides a convenient term for considering a setting where
an n-Bernoulli-λ-EDA performs an update when the �tness function gives no
indication of which individuals are preferable. Note that this de�nition (as well
as the following de�nitions) can be also phrased with respect to a subset of
indices (as done in De�nition 6.1). However, for the sake of brevity, we only
consider all positions at once.

We may say that an n-Bernoulli-λ-EDA A is f -independent without naming
a �tness function. If we do so, we assume that we are given a function f such
that A is f -independent.

We now de�ne when an n-Bernoulli-λ-EDA is balanced.

I De�nition 6.3 (Balancedn-Bernoulli-λ-EDA). LetA be an f -independent
n-Bernoulli-λ-EDA. We say that A is unbiased if and only if, for all t ∈ N, it holds
that

E
[
p(t+1)

�� p(t)] = p(t) . J

96

Preliminaries Section 6.2

A balanced n-Bernoulli-λ-EDA does not change its frequency vector in expec-
tation when performing an update, given a �tness function providing no signal.
Hence, the frequencies describe martingales in such a case.

The following concept formalizes that an update of an f -independent n-
Bernoulli-λ-EDA is concentrated around 1/2, which we call stable.

I De�nition 6.4 (t-Stable n-Bernoulli-λ-EDA). Let A be an f -independent
n-Bernoulli-λ-EDA, and let t ∈ N. We say that A is t-stable if and only if for all
values d ∈ o(1) there is a constant c > 0 such that

Pr
[
∃i ∈ [n], t ′ ≤ t : p(t

′)

i < [d, 1 − d]
]
≤

1
nc
.

If and only if A is t-stable for all values of t ∈ N that are a polynomial in n,
we say that A is polynomially stable. Further, if and only if A is t-stable for all
t ∈ N, we say that A is stable. J

The frequencies of a t-stable n-Bernoulli-λ-EDA take with high probability
only constant values for t iterations, given a �tness function providing no signal.
Conversely, an n-Bernoulli-λ-EDA is not t-stable when there is a time point in
the interval [0..t] such that a frequency gets subconstantly close to 0 or 1 with a
probability greater than any polynomially low probability.

We now provide theorems that we use in our analyzes when considering
balanced or stable n-Bernoulli-λ-EDAs. In order to determine whether an n-
Bernoulli-λ-EDA is stable, we need to know whether a frequency can get sub-
constantly close to the borders (0 or 1) within a given time span. For this, we are
going to use drift theory, as introduced in Chapter 3. Our main tool will be the
transformation given in Theorem 3.18. As discussed in Section 3.6, we can then
bound �rst-hitting times by considering the variance of the martingale. In order
to calculate variances easily, we use the following theorem.

I Theorem 6.5 ([GS01b, Chapter 3.3, Theorem 11]). Let X and Y be two
independent random variables. Then,

• for all a ∈ R, it holds that Var[aX] = a2Var[X], and

• Var[X + Y] = Var[X] + Var[Y]. J

Similar to the linearity of the expected value (Theorem 2.5), Theorem 6.5
allows us to calculate the variance of a random variable by decomposing it into
simpler ones.

97

Chapter 6 n-Bernoulli-λ-EDAs Cannot be Balanced and Stable

We bound the �rst-hitting times of martingales using the multiplicative drift
theorem (Corollary 3.15) after applying Theorem 3.18, which results in the
following corollary. It bounds the �rst-hitting time of a martingale to get within
a distance of at least d to two bounds α and β , which are free to choose.

I Corollary 6.6 (Martingale Upper Multiplicative Drift, Below Target).

Let (Xt)t ∈N be random variables over [α , β] ⊂ R adapted to a �ltration (Ft)t ∈N,
let d ∈

(
0, (β − α)/2

]
, and let T = inf{t ∈ N | Xt < [α + d, β − d]}. Furthermore,

suppose that

(a) there is some value δ > 0 such that, for all t < T , it holds that

Var[Xt+1 | Ft] ≥ δ (Xt − α)(β − Xt) , that

(b) X0 ∈ [α + d, β − d], and that,

(c) for all t < T , it holds that E[Xt+1 | Ft] = Xt .

Then

E[T | F0] ≤
1 + ln

(
(X0−α)(β−X0)
d (β−α−d)

)
δ

. J

Proof. Let (Yt)t ∈N denote the transformed process of X according to Theo-
rem 3.18. We want to apply Corollary 3.15 to Y . Hence, we have to check
that the conditions of the theorem are satis�ed.

SinceX is a martingale over [α , β], it follows, for all t ∈ N, thatYt ≥ 0. Further,
since, for all t ∈ N, the random variable Yt is a concave function with the roots α
and β and since α and β are at least d apart, it holds thatXt < [α +d, β −d] if and
only if Yt <

(
(α + d) − α

) (
β − (α + d)

)
= d(β − α − d) C ymin. Thus, T denotes

the �rst point in time such that Yt < ymin. Since we can bound the drift of Y via
the variances of X according to Theorem 3.18, we can apply Corollary 3.15. This
concludes the proof. �

6.3 Balanced Versus Stable

In this section, we show that the concepts of balanced and stable are mutually
exclusive (Theorem 6.11). However, note that in order to be not stable, an n-
Bernoulli-λ-EDA needs to be able to take frequency values that are subconstantly

98

Balanced Versus Stable Section 6.3

close to one of the borders (0 or 1). Hence, we only consider such algorithms.
An n-Bernoulli-λ-EDA whose frequencies can only take constant values are of
no particular interest for optimization anyway, as the probability of sampling
a speci�c individual is always exponentially small in the problem size then,
resulting in an exponential expected run time (assuming a polynomial number
of optima).

Further note that adding a margin b to a balanced n-Bernoulli-λ-EDA that
can reach 0 or 1 makes it become not balanced, since a frequency at a value
that could reach (without loss of generality) the value 0 before now gets cut o�
short, leading in expectation to a greater frequency after the update. Hence, we
only consider n-Bernoulli-λ-EDAs without a margin. However, we would like to
mention that all of the results in this section follow analogously for an interval
of frequency values where adding a margin has no impact on the update.

We start o� by showing that all of the commonly analyzedn-Bernoulli-λ-EDAs
are balanced.
I Theorem 6.7. The PBIL, the UMDA, the λ-MMASIB, and the cGA are bal-
anced. J

Proof. Assume that the algorithms are f -independent. We show for every po-
sition that the frequency does not change in expectation. Let i ∈ [n] be an
index, and let p ′i be the value of pi after an update. Let x (k) denote the k-th best
individual in the o�spring population D of any of the n-Bernoulli-λ-EDAs listed
below, as de�ned in the beginning of Section 4.3.

Since the algorithms are f -independent, x (k)i is 1 with probability pi and 0
with probability 1 − pi .

PBIL: Using the linearity of expectation, we get

E
[
p ′i

�� pi] = (1 − ρ)pi + ρ∑µ
k=1 E

[
x (k)i

�� pi]
µ

= (1 − ρ)pi + ρ
∑µ

k=1 pi

µ

= (1 − ρ)pi + ρpi
= pi .

UMDA/λ-MMASIB: Both algorithms are balanced, since they are special
cases of PBIL.

99

Chapter 6 n-Bernoulli-λ-EDAs Cannot be Balanced and Stable

cGA: Again, using the linearity of expectation, we get

E
[
p ′i

�� pi] = (
pi −

1
K

)
pi (1 − pi) + pi

(
1 − 2pi (1 − pi)

)
+

(
pi +

1
K

)
pi (1 − pi)

= 2p2
i (1 − pi) + pi − 2p2

i (1 − pi)
= pi . �

We now show that all of the above algorithms are not polynomially stable and,
thus, not stable. We start with the PBIL and then discuss the other algorithms.
The proof technique will be the same for all of the proofs: we use Corollary 6.6 and
bound the expected �rst-hitting time of a frequency going below a subconstant
value. Afterward, we apply Markov’s inequality (Theorem 2.18) to the �rst-
hitting time in order to argue that the algorithm is not polynomially stable.

I Theorem 6.8. For all d ∈ o(1) there is a constant c > 0 such that the PBIL is
not (cµ/ρ2) ln(1/d)-stable. J

Proof. Assume that the PBIL is f -independent and consider a position i ∈ [n].
Let d ∈ o(1), and let T = inf{t ∈ N | p(t)i < [d, 1 − d]}. Note that pi is a
martingale over [0, 1], since the PBIL is f -independent. We now bound the
expected value of T by applying Corollary 6.6. In order to do so, we need to
bound the conditional variance of pi .

Let t < T , and letx (k) denote the individual of rankk from iteration t . Note that
the bit values at position i follow a Bernoulli distribution with success probability
p(t)i . Further note that conditional on p(t)i and due to p(t)i < {0, 1} because of
t < T , the random variables p(t)i and x (k) (for all k ∈ [λ]) are independent.
Additionally, all individuals are sampled independently from one another by the
de�nition of an n-Bernoulli-λ-EDA. Hence, using Theorem 6.5, we get

Var
[
p(t+1)i

��� p(t)i]
= Var

[
(1 − ρ)p(t)i + ρ

∑µ
k=1 x

(k)
i

µ

����� p(t)i
]

= (1 − ρ)2

=0³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Var

[
p(t)i

��� p(t)i]
+ρ2

∑µ
k=1 Var

[
x (k)i

��� p(t)i]
µ2

=
ρ2

µ
· p(t)i

(
1 − p(t)i

)
.

100

Balanced Versus Stable Section 6.3

By now applying Corollary 6.6 with δ = ρ2/µ and the law of total expectation
and by noting that p(0)i = 1/2, we get

E[T] ≤
1 + ln

(
1

4d(1−d)

)
ρ2
µ

∈ O
(
µ

ρ2
log

(
1
d

))
.

Finally, by applying Markov’s inequality (Theorem 2.18), we see that

Pr
[
T < 2E[T]

]
≥

1
2 .

Thus, the probability of pi getting subconstantly close to a border within poly-
nomial time is at least 1/2. This concludes the proof. �

If 1/ρ and µ are bounded from above by polynomials and if d is chosen such
that 1/d ≤ 2poly(n), then Theorem 6.8 says that the PBIL is not polynomially
stable.

Note that the t-stable property only considers the number of iterations in
which frequencies only take constant values – the number of �tness function
evaluations does not matter. This is why λ does not occur in the statement that
the PBIL is not polynomially stable. Hence, if one is interested in the expected
number of �tness function evaluations until a frequency gets subconstantly
close to a border, the same method as in the proof above can be used but a
factor of λ needs to be added, since an n-Bernoulli-λ-EDA samples λ individuals
each iteration. Hence, in order to guarantee that a frequency of the PBIL gets
subconstantly close to a border within polynomially many �tness function
evaluations, λ needs to be upper-bounded by a polynomial too.

Since the UMDA and the λ-MMASIB are special cases of the PBIL, we get the
following corollary.

I Corollary 6.9. For all d ∈ o(1) there is a constant c > 0 such that the
UMDA is not cµ ln(1/d)-stable and such that the λ-MMASIB is not (c/ρ2) ln(1/d)-
stable. J

We now consider the cGA and show that it is not stable. Aside from a di�erent

101

Chapter 6 n-Bernoulli-λ-EDAs Cannot be Balanced and Stable

variance than that of the PBIL, the same arguments as in the proof of Theorem 6.8
apply.

I Theorem 6.10. For all d ∈ o(1) there is a constant c > 0 such that the cGA
is not cK2 ln(1/d)-stable. J

Proof. We follow the same proof strategy as in the proof of Theorem 6.8. Hence,
we use the same notation.

When bounding the conditional variance of p(t+1)i , we again make use of
Theorem 6.5. Note that this theorem implies for a random variable X that
Var[−X] = Var[X]. We get

Var
[
p(t+1)i

��� p(t)i]
= Var

[
p(t)i + (x

(1)
i − x

(2)
i)

1
K

���� p(t)i]
=

=0³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Var

[
p(t)i

��� p(t)i]
+

1
K2

(
Var

[
x (1)i

��� p(t)i]
+ Var

[
x (2)i

��� p(t)i])
=

2
K2 · p

(t)
i

(
1 − p(t)i

)
.

By applying Corollary 6.6 with δ = 2/K2, we get

E[T] ∈ O
(
K2 log

(
1
d

))
.

Using Markov’s inequality in the same fashion as in the proof of Theorem 6.8
concludes the proof. �

When looking at the �rst-hitting time of the cGA of O
(
K2 log(1/d)

)
and at

that of the λ-MMASIB of O
(
(1/ρ)2 log(1/d)

)
of a frequency getting up to d close

to a border, we see that the algorithms behave asymptotically identically when
choosing K = 1/ρ. However, one main di�erence is that the cGA can actually
reach a border within �nite time, whereas the λ-MMASIB is not able to do so.
Hence, it is important that we only consider getting close to a border.

The �rst-hitting time of the UMDA of O
(
µ log(1/d)

)
is by factor of µ smaller.16

However, when considering the number of �tness function evaluations and

16 When comparing µ to the algorithm-speci�c parameters K and 1/ρ of, respectively, the cGA
and the λ-MMASIB.

102

Balanced Versus Stable Section 6.3

assuming that λ ∈ Θ(µ), the �rst-hitting time is in the same order of magnitude
of that of the cGA and the 2-MMASIB. Related to that, Lengler et al. [LSW18]
discuss other similarities of the cGA and the UMDA, and the results by Sudholt
and Witt [SW16a] and the results from Chapter 9 also draw a common picture
for these three algorithms.

We would like to mention that using Markov’s inequality in the proofs of
Theorems 6.8 and 6.10 is su�cient, but stronger concentration bounds can be
achieved by using the multiplicative drift theorem by Doerr and Goldberg [DG13],
which also provides a tail bound. Similar calculations as in the proofs above then
yield that the �rst-hitting times are not exceeded by a constant factor with high
probability.

The proofs of Theorems 6.8 and 6.10 make use of Theorem 3.18, which can
be used since the PBIL and the cGA are balanced. We now show that this idea
generalizes to all n-Bernoulli-λ-EDAs without margin that can (in the limit)
reach the borders.

I Theorem 6.11. Let A be a balanced n-Bernoulli-λ-EDA. If there is a position
i ∈ [n] such that there exists a d ∈ o(1) such that

inf
{
Var

[
p(t+1)i + 1{p(t)i < [d, 1 − d]}

�� p(t)i] �� t ∈ N}
> 0 , (6.1)

then A is not stable. J

Proof. We follow again the same proof strategy as in the proof of Theorem 6.8.
Hence, let T = inf{t ∈ N | p(t)i < [d, 1 − d]}. Since, for all t < T , we have that
p(t)i ∈ [d, 1 − d], it follows from equation (6.1) that

inf
{
Var

[
p(t+1)i

�� p(t)i] �� t < T }
C δ > 0 .

Since pi is a martingale, due to A being balanced, we can apply Corollary 3.19
with δ as de�ned above and get

E[T] ≤ 1
4δ .

Using Markov’s inequality as at the end of the proof of Theorem 6.8 concludes
the proof. �

Intuitively, Theorem 6.11 says that a balanced n-Bernoulli-λ-EDA is not stable

103

Chapter 6 n-Bernoulli-λ-EDAs Cannot be Balanced and Stable

if there is a frequency that has a positive variance while not being in distance d
to the borders. In this case, the drift of the variance then pushes the frequency
below d to the borders, resulting in the EDA not being stable.

Note that the random variable 1{p(t)i < [d, 1 − d]} is not being used in the
proof of Theorem 6.11. Its only purpose is to make sure that variances where
p(t)i is not in [d, 1 − d] account for a �xed value that allows the in�mum to be
greater than 0. This is because we do not care about the variance if p(t)i leaves
the interval [d, 1−d]. By adding 1{p(t)i < [d, 1−d]}, we make sure that variances
in the case of p(t)i < [d, 1 − d] do not change the applicability of the theorem.

Further note that equation (6.1) implies that the variance cannot degenerate
to 0 in the limit, with respect to the number of iterations, while the frequency
is not close to the borders. This is a stronger statement than requiring that
the variance is always positive, as the following example shows. Consider a
deterministic update scheme that updates a frequency from 1/2 to 1/4 and then
always to the arithmetic mean of the last two values. Then the variance will be
positive for all time points while being su�ciently far away from the borders,
but it will reach 0 in the limit. Equation (6.1) makes sure that no (potentially
in�nite) sequence of updates degenerates into such a case when the frequency
is not close to the borders.17

We would like to mention that such pathological cases as described above do
not occur in commonly analyzed EDAs and, likely, not in natural n-Bernoulli-λ-
EDAs, as this would mean that a frequency can converge to other values than 0
or 1, which seems counterintuitive.

6.4 Solving LeadingOnes E�iciently

Considering positions with no signal is of particular interest when analyzing an
n-Bernoulli-λ-EDA optimizing LeadingOnes. Note that when we speak of the
run time of an algorithm, we refer to the expected number of �tness function
evaluations until the optimum is sampled for the �rst time. Further, when

17 Equation (6.1) is actually more restrictive than necessary, as we only need the in�mum to
be positive while not having left the interval [d, 1 − d] yet. That is, if the update scheme has
degenerate cases that can only be reached after leaving the interval [d, 1 − d], Theorem 6.11
would not apply, but the same proof strategy would still yield that the respective n-Bernoulli-
λ-EDA is not stable.

104

Solving LeadingOnes E�iciently Section 6.4

considering unbiased algorithms (as we do here), all results hold for the entire
LeadingOnes function class.

For LeadingOnes, if the maximum number of leading 1s over all individuals
in an o�spring population D is j , all positions i > j + 1 do not provide a signal (in
a relaxed sense) in that iteration because the respective bits xi of each individual
in D do not contribute to the �tness.

We now look at the cGA optimizing LeadingOnes. We call positions j ∈ [n]
with p j = 1 solved and all other positions unsolved. The cGA can easily solve
the leftmost (�rst) unsolved position j because an individual sampled with a 1
at position j always has a higher �tness than an individual having a 0. So p j
cannot decrease, whereas the frequencies of all the other unsolved positions
can. We say that an algorithm e�ciently optimizes LeadingOnes if the expected
run time of an algorithm is in o

(
n2

)
, since Θ

(
n2

)
is a common run time for

evolutionary algorithms (see Table 10.1). Note that the run time of the cGA is
twice the number of iterations until it �rst samples an optimal solution, since
the cGA samples two o�spring each iteration.

We �rst look at the expected time needed for the �rst unsolved position to be
solved, assuming its frequency is not too low.

I Lemma 6.12. Consider the cGA optimizing LeadingOnes. Further, assume
that position i ∈ [n] becomes the �rst unsolved position in iteration t ′ and that
there is a constant c ∈ (0, 1) such that p(t

′)

i = c . Then pi reaches 1 within an
expected number of O

(
K log(K)

)
iterations. J

Proof. We are going to use Corollary 3.15 in order to bound the expected value
of T = inf{t − t ′ ∈ N | p(t)i = 1}. Note that we consider the iteration t ′ to be
the �rst iteration, since we are only interested in the number of iterations from
there on. Further, since p(t

′)

i < 1, the �rst-hitting time T is nonnegative. In the
following, we consider a time point t with t ′ ≤ t < T .

Since Corollary 3.15 requires the process to move toward 0, we look at the
drift of the potential Xt = 1 − p(t)i . Note that Xt < 1/K is equivalent to p(t)i = 1.

Because i is the �rst unsolved position,p(t)i cannot decrease and the probability
of making an increase is 2p(t)i

(
1 − p(t)i

)
, otherwise it does not move. Thus, when

considering the drift of X , we get

E[Xt − Xt+1 | Xt] = 2(1 − Xt)Xt
1
K

105

Chapter 6 n-Bernoulli-λ-EDAs Cannot be Balanced and Stable

≥
2c
K
Xt .

By applying Corollary 3.15 with xmin = 1/K and noting that X0 = 1 − c , we get

E[T | X0] ≤
1 + ln

(
K (1−c)

2c

)
2c
K

∈ O
(
K log(K)

)
. �

Now that we took a closer look at the cGA, we want to give a general result
for optimizing LeadingOnes with an n-Bernoulli-λ-EDA with no margin by
sequentially solving the positions from left to right.

I Theorem 6.13. Let A be an n-Bernoulli-λ-EDA with no margin optimizing
LeadingOnes, let q be a polynomial, and let ` ∈ (0, 1/2). Assume that there
exists a constant ε > 0 such that, for each position i ∈ [n], it holds that if the
frequency pi is unsolved, it only drops below ` within O

(
nq(n)

)
iterations with

a probability of at most n−(ε+1). Furthermore, suppose that for each position j , it
holds that if j becomes the �rst unsolved position in iteration t ′ and p(t

′)

j ≥ `,
then p j reaches 1 within O

(
q(n)

)
iterations in expectation.

Then A succeeds after an expected time of O
(
nq(n)

)
with a probability of at

least 1 − n−ε . J

Proof. First, we bound the probability that a frequency drops below ` within
O

(
nq(n)

)
iterations. Since each frequency only does so with probability of at

most n−(ε+1), the probability that at least one of the n frequencies does so during
the same number of iterations is at most n−ε by a union bound. Thus, with a
probability of at least 1 − n−ε , all frequencies will be at least at ` for O

(
nq(n)

)
iterations. Conditional on this event, each of the n frequencies reaches 1 within
an expected time of O

(
q(n)

)
once it becomes the �rst unsolved position. This

concludes the proof. �

Note that the expected run time stated in Theorem 6.13 is only conditional on
no frequency reaching 0. If we consider unbiased n-Bernoulli-λ-EDAs, we know
that frequencies can reach 0 when they can reach 1, due to Lemma 5.4. Once
a frequency is at 0, the run time is in�nite. Hence, the unconditional expected
run time for such algorithms is in�nite as well, which can be seen as a major

106

Solving LeadingOnes E�iciently Section 6.4

disadvantage of this approach. In Chapter 10, we circumvent this problem by
introducing a better algorithm (see Algorithm 2).

Theorem 6.13 shows us that ann-Bernoulli-λ-EDA can optimize LeadingOnes
in O

(
n log(n)

)
if the time needed for each frequency to reach 1 is in O

(
log(n)

)
and if the frequencies of yet unsolved positions do not drop too low with high
probability.

6.4.1 The Stable cGA

Because Lemma 6.12 only gives us an upper bound ofO
(
K log(K)

)
for a frequency

of the cGA to reach 1, and because the cGA is not stable (Theorem 6.10), meaning
that unsolved positions may quickly reach 0, it is unlikely that the cGA solves
LeadingOnes e�ciently. We hence propose to change the ›set‹ function of the
cGA such that the algorithm becomes stable18 and such that each �rst unsolved
position’s frequency reaches 1 within O

(
log(n)

)
rounds. We call this variant the

stable cGA (for short: scGA) with parameters σ ∈ [0, 1] and d ∈ (1/2, 1]. The
parameter σ denotes a bias that pushes a frequency toward 1/2, even when there
is no signal from the �tness function. The parameter d denotes a value that is
su�cient for the scGA in order to set the frequency, when increasing, to 1. The
›set‹ function of the scGA is as follows:

set(pi) =


pi +

1
K + σ if pi < 1/2 ,

pi +
1
K if 1/2 ≤ pi < d ,

1 else.

Recall that ›set‹ denotes the case when the frequency should increase (see
De�nition 4.2), hence, the bias σ is only applied if a frequency is below 1/2. Since
the ›move‹ function of the scGA is the same as that of the cGA (Section 4.3.4),
when decreasing a frequency that is above 1/2, the bias is added as well. Similarly,
if a frequency goes below 1 − d , it is immediately set to 0. Further, this implies
that the scGA is unbiased (Corollary 5.14 and Theorem 5.15).

We now go into detail about how fast the scGA solves LeadingOnes. Note
that since frequencies of the scGA can reach 0, the expected run time of the

18 Note that the time period of being stable is dependent on the algorithm’s parameters. We will
choose its parameters such that the algorithm is O

(
n log(n)

)
-stable.

107

Chapter 6 n-Bernoulli-λ-EDAs Cannot be Balanced and Stable

algorithm is in�nite. As discussed before, we thus focus on the expected run
time conditional on no frequency reaching 0.

First, we consider the expected time it takes for the scGA to increase the
frequency of the �rst unsolved position to 1.

I Lemma 6.14. Consider the scGA optimizing LeadingOnes, with d being a
constant and σ being arbitrary. Further, assume that position i ∈ [n] becomes
the �rst unsolved position in iteration t ′ and that there is a constant c ∈ (1−d,d)
such that p(t

′)

i = c . Then pi reaches 1 within an expected number of O(K)
iterations. J

Proof. Since i is the �rst unsolved position, pi cannot decrease and, thus, the
update of the scGA is the same as of that of the cGA. Hence, we can follow the
proof of Lemma 6.12, and we use the same notation. The only di�erence in our
scenario is that when applying Corollary 3.15, we now choose xmin = 1−d , since
a value of d is su�cient in order to set pi to 1. Note that 1 − d is a constant by
assumption. Hence, we get E[T | X0] ∈ O(K). �

We now prove that the scGA is t-stable for certain values of K , σ , and d . Recall
that the scGA cannot be stable, since the frequencies can reach the borders.

I Theorem 6.15. Let α > 0 be an arbitrary constant, and let β ∈ Ω(1) be
su�ciently large. Then there is a constant c > 0 such that the scGA with
K = α/σ ≥ β ln(n) and d ∈ (1/2, 1] being constant is 2cK -stable. J

Proof. We show that with high probability no frequency will leave the interval
(1 − d,d) within 2cK iterations. Since d < o(1), this then proves that the scGA
is 2cK -stable. We �rst show that a single frequency does not leave the interval
(1−d,d)with high probability and then use a union bound over all n frequencies
to �nish the proof.

Consider a position i ∈ [n]. We use Theorem 3.22 in order to show thatpi with
p(0)i = 1/2 does not reach 1−d within 2cK iterations with high probability. Since
the scGA is locally updating and since we assume that the scGA is f -independent
in this scenario, the same proof strategy can be used to show that pi does not
reach d within the same time and the same probability.

Because Theorem 3.22 requires the drift to be bounded by a constant, we con-
sider the process (Xt)t ∈N with Xt B Kp(t)i . Using the notation of Theorem 3.22,
we choose a = (1−d)K and b = K/2, resulting in ` = b −a = (d − 1/2)K ∈ Θ(K),
since d ∈ Θ(1).

108

Solving LeadingOnes E�iciently Section 6.4

We now consider the drift of X for any time point t such that a < Xt < b:

E[Xt+1 − Xt | Xt] =

(
K

(
p(t)i −

1
K

)
− Kp(t)i

)
p(t)i

(
1 − p(t)i

)
+

(
K

(
p(t)i +

1
K
+ σ

)
− Kp(t)i

)
p(t)i

(
1 − p(t)i

)
= (−1 + 1 + Kσ)p(t)i

(
1 − p(t)i

)
= σp(t)i

(
1 − p(t)i

)
≥ α(1 − d)d ,

since p(t)i
(
1 − p(t)i

)
is a concave function and since we assume that a < Xt < b.

Note that the drift is a positive constant, due to d ∈ Θ(1) and α ∈ Θ(1).
We now focus on condition (b) of Theorem 3.22 and only consider time points

where Xt > a. Note that the scGA can change the value of a frequency by at
most 1/K + σ . Hence, it holds that

|Xt+1 − Xt | ≤ 1 + Kσ
= 1 + α .

Hence, we only need to bound the probability of |Xt+1 −Xt | being at most 1 + α .
Let r (`) = 1 + α , which is in o

(
`/log(`)

)
, since α ∈ Θ(1) and ` ∈ Θ(K) ⊆ ω(1).

Further, let δ = (1 + α)1/(1+α) − 1. Note that δ is a constant, due to α ∈ Θ(1), and
that δ > 0. Thus, for all j ∈ [0..1 + α], it holds that

Pr[|Xt+1 − Xt | ≥ j | Xt] ≤ 1

=
1 + α
1 + α
≤

1 + α
(1 + α)

j
1+α

=
r (`)

(1 + δ)j ,

since j/(1+α) ≤ 1 for the considered range of j . For all j > 1+α , the probability
that |Xt+1−Xt | ≥ j is 0, as we discussed before, which is trivially upper-bounded
by r (`)/(1 + δ)j . Hence, we can apply Theorem 3.22 in order to bound the

109

Chapter 6 n-Bernoulli-λ-EDAs Cannot be Balanced and Stable

probability that T = inf{t ∈ N | p(t)i ≤ 1 − d} = inf{t ∈ N | Xt ≤ a}. Since
`/r (`) ∈ Θ(K) and since K ≥ β ln(n) for β being su�ciently large, there are
positive constants c , c ′, and c ′′ such that

Pr
[
T ≤ 2cK

]
≤ 2−c ′K

≤
1

nc ′′+1
.

As we discussed at the beginning of this proof, using the same arguments
above in order to show that pi does not reach d within 2cK iterations with high
probability and via a union bound over all n di�erent frequencies, the probability
that at least one frequency leaves the interval (1 − d,d) within 2cK iterations is
at most 2n−c ′′. This concludes the proof. �

Note that Theorem 6.15 shows that the scGA is polynomially stable if σ ∈
o
(
1/log(n)

)
(when choosing the other parameters appropriately).

We can now conclude that the scGA is able to optimize LeadingOnes in
O

(
n log(n)

)
, as we show in the following corollary.

I Corollary 6.16. Let α > 0 be an arbitrary constant, and let β ∈ Θ(1) be
su�ciently large. Then the scGA with K = α/σ ≥ β ln(n) and d ∈ (1/2, 1)
being constant optimizes LeadingOnes with high probability within O

(
n log(n)

)
iterations in expectation. J

Proof. We want to use Theorem 6.13, so we make sure to ful�ll the requirements.
Looking into the proof of Theorem 6.15 shows us that there are constants c, ε > 0
such that a frequency leaves the interval (1 − d,d) within 2cK ∈ ω

(
n log(n)

)
iterations, for β being su�ciently large, only with a probability of at most
n−(ε+1). Further, due to Lemma 6.14 and K ∈ Θ

(
log(n)

)
, the scGA solves a

leftmost unsolved position within O
(
log(n)

)
iterations in expectation when the

respective probability starts from a constant value; since the scGA is stable for
at least ω

(
n log(n)

)
in our scenario, all frequencies are at least 1 − d , which is a

constant. Applying Theorem 6.13 �nishes the proof. �

Although the scGA optimizes LeadingOnes in an expected time that is un-
common for EAs (see Table 10.1), it is not able to optimize OneMax e�ciently,
which we prove in Chapter 10. For OneMax, the property of being stable ac-
tually hinders the scGA to update its frequencies quickly to 1, since they are

110

Conclusions Section 6.5

constantly pushed back to 1/2, due to every position providing a signal with a
decent probability.

6.5 Conclusions

We considered the two concepts of balanced and stable, and we proved that they
are mutually exclusive for n-Bernoulli-λ-EDAs. For a frequency, this means that
it either stays uncommitted when there is no signal from the �tness function
and has the risk of moving randomly to one of the frequency borders (also called
genetic drift), or that it stays concentrated around its starting value of 1/2 but has
a bias when there is no signal. Since we proved that the commonly theoretically
analyzed EDAs are all balanced, this implies that they are not stable and thus
have problems dealing with longer phases of no signal.

In order to compensate for this problem, we introduced a new algorithm
(the scGA), which is an O

(
n log(n)

)
-stable version of the cGA, and we proved

that it optimizes LeadingOnes within O
(
n log(n)

)
iterations (Corollary 6.16). Its

property of being stable helps it such that frequencies at later positions stay close
to 1/2 until the respective positions become relevant. However, we would like to
mention that the arti�cial bias in the algorithm that pushes the frequencies to 1/2
is bad when there is no strong signal from the �tness function, as is the case
for OneMax. In fact, in Chapter 10, we prove that the scGA optimizes OneMax
only in a number of iterations exponential in its parameter K (Theorem 10.9).

Overall, being not stable is not necessarily a major downside of an algorithm,
since it usually is su�cient to remain stable only for a period of a certain length
(as is the case for the scGA). However, the longer this period can be made without
impacting the ability to easily pick up signals in the �tness function, the more
the algorithm reduces the impact of genetic drift and can better optimize a �tness
function. In Chapter 10, we introduce an algorithm (Algorithm 2) that can be
thought of as a univariate EDA which is not an n-Bernoulli-λ-EDA with both
properties (modulo a margin of 1/n where it cannot be balanced; and stable
meaning for a certain polynomial period of time, dependent on the algorithm’s
parameters). This algorithm stores information from multiple iterations until
it performs an update, which is di�erent from n-Bernoulli-λ-EDAs, which only
have access to information from the current iteration. It is an interesting question
whether the approach from Chapter 10 is in general better than an n-Bernoulli-
λ-EDA or whether the latter class contains some algorithms that can compete

111

Chapter 6 n-Bernoulli-λ-EDAs Cannot be Balanced and Stable

with our algorithm from Chapter 10. In other words, is the restriction of having
to make a decision on how to update a frequency given only data from the
current iteration a strict restriction for optimization? One step into this direction
would be to prove a general lower bound for balanced n-Bernoulli-λ-EDAs on
LeadingOnes.

112

7
Upper Bound of the

cGA on Noisy OneMax

This chapter is based on joint work with Tobias Friedrich, Timo Kötzing, and An-
drew M. Sutton [Fri+17]. Only the theoretical results for the cGA have been in-
cluded, since it is the only EDA considered in the original paper. Further, the de�-
nition of graceful scaling has been slightly adjusted by adding a statement about
the random nature of the considered algorithm, which is absent in the journal ver-
sion. Parts of the following introduction have been taken from another joint work
with Tobias Friedrich, Timo Kötzing, and Andrew M. Sutton on noise [Fri+16].

In this chapter, we analyze the cGA (without a margin) on a noisy version of
OneMax, where the true �tness value is distorted by adding a Gaussian random
variable to it. We introduce the concept of graceful scaling (De�nition 7.1), which
describes that an algorithm is able to optimize a class of noisy functions with
high probability within polynomial time, measured in the variance of the noise.
We then prove that the cGA scales gracefully on OneMax with additive Gaussian
noise (Theorem 7.11).

7.1 Introduction

Evolutionary algorithms are widely used for solving real-world optimization
problems in uncertain environments, and EDAs seem to perform well [SGL07].
Jin and Branke [JB05] survey a number of sources of uncertainty that randomized
search heuristics must often deal with in practice:

1. noisy objective functions,
2. dynamically changing problems,
3. approximation errors in the objective function, and
4. a requirement that an optimal solution must be robust to changes in

its design variables and its environmental parameters that occur after
optimization is complete.

Arguably, the two most important sources of uncertainty are point 1 and
point 2, namely, stochastic problems and dynamic problems (see also [Bia+09]

113

Chapter 7 Upper Bound of the cGA on Noisy OneMax

for a recent survey). We focus on stochastic problems, that is, problems, where
the objective function value of a search point follows a random distribution,
and that distribution does not change over time. In these scenarios, EAs must
somehow �lter the �tness signal from the noise. If the noise intensity is relatively
small, this poses little to no problems to selection. However, as the noise intensity
grows, the signal becomes more obscured, and the picture is no longer as clear.

A �rst categorization of di�erent types of noise in optimization was given by
Beyer et al. [BOS02] and further developed by Beyer and Sendho� [BS07]. The
authors delineate several types of noise:

1. noise from the environment,
2. actuator imprecision (noise in the decision variables),
3. imprecision of the evaluation of system output, and
4. uncertainties regarding feasibility constraints.

We focus on uncertainty of type 3, in which the measurement of the objective
function is perturbed by some additive stochastic noise term. This noise model
has also been called additive posterior noise by Gießen and Kötzing [GK16]
and has been studied in the context of combinatorial optimization in several
papers [DHK12; FK13; GP96; ST12].

The rigorous analysis of the run time of EAs on noisy functions on discrete
domains was initiated by Droste [Dro04]. In that paper, a noisy variant of the
OneMax test function was analyzed for the simplest EA: the (1+1) EA. In essence,
it was shown that the (1+1) EA can deal with small noise levels, but not medium
noise levels.

In this chapter, we address the dependency of optimization time on noise
intensity (measured as the variance). Speci�cally, we ask whether there is some
kind of threshold point in the noise intensity at which the noise becomes too
high for e�cient optimization or whether it is possible for algorithms to be
somehow robust to scaling of the noise level.

In order to formally characterize how search heuristics can exhibit robustness
to noise intensity, we introduce the concept of graceful scaling (De�nition 7.1).
Intuitively, a search heuristic scales gracefully with noise if a polynomial increase
of the variance can be compensated by polynomially more resources.

We consider centered Gaussian noise with variance σ 2 and use OneMax as
the underlying �tness function. In the journal version that this chapter is based
on [Fri+17], we proved for this setting that a constant variance can already lead

114

Preliminaries Section 7.2

to a superpolynomial run time for the simple hillclimbers Random Local Search
(RLS) and (1+1) EA. Further, the (µ+1) EA using any polynomial population size
of at least ω(1) is proven to be ine�cient for a noise intensity of σ 2 ∈ ω

(
n2

)
.19

We investigate the cGA (Section 4.3.4), whose working principles as an EDA
are in contrast to the (µ+1) EA, which is an EA. Rather than relying on an
explicit population, where a good individual may be removed due to a bad �t-
ness evaluation, the cGA maintains a probability vector that serves as a history,
which is updated by at most 1/K in each iteration. This approach allows the
cGA to smooth the noise su�ciently without having to resort to explicit noise-
handling strategies. We prove that as long as K is su�ciently large, that is,
K ∈ ω

(
σ 2√n log(n)

)
, then the cGA scales gracefully with Gaussian noise. Specif-

ically, we prove that after O
(
Kσ 2√n log(Kn)

)
many iterations, the cGA will have

sampled the all-1s string with high probability, as desired (Theorem 7.11). In
other words, there is no threshold point in noise intensity at which the algorithm
begins to perform poorly.

The proof of Theorem 7.11 gives insight into how the cGA can �lter the signal
out of the noise e�ciently. Even under intense noise (that is, a large variance), as
long as the step size 1/K is small enough, selection errors due to misclassi�cation
by the noisy function are not penalized greatly, and the overall e�ect of selection
biases the stochastic process described by the frequencies toward the optimal
con�guration. This can be contrasted with mutation-only approaches, for which
such selection errors become fatal in the sense that progress in the correct
direction is no longer visible to the algorithm.

7.2 Preliminaries

We study the cGA (see Section 4.3.4) optimizing OneMax with additive Gaussian
noise, parameterized by the variance. Since the cGA is unbiased (Theorem 5.15),
our results also hold for the entire OneMax class. However, for the sake of
clarity, we phrase all of our results choosing OneMax with the all-1s string as
its optimum.

When considering the optimization of a noisy �tness function f , two evalua-
tions of f for the same point can lead to di�erent results, as the noise is drawn

19 We would like to mention that the proof of the theorem that this result is based on [Fri+17,
Theorem 4] seems to be incorrect, as it contains an incomplete case distinction. However, the
authors believe that the proof can be �xed and that the respective theorem is true.

115

Chapter 7 Upper Bound of the cGA on Noisy OneMax

again with every evaluation. In this chapter, we assume that each search point is
evaluated for its �tness value in each iteration anew. That is, after each iteration,
the �tness evaluation is discarded, even if the search point is not. Further, we
say that an algorithm succeeds in optimizing a noisy function if and only if it
samples an optimum of the underlying unnoisy function.

Let F be a family of pseudo-Boolean functions {Fn}n∈N where each Fn is a
set of (unnoisy) functions f : {0, 1}n → R. Let D be a family of distributions
{Dθ }θ ∈R such that, for all Dθ ∈ D, we have E[Dθ] = 0. We de�ne F with additive
D-noise as the set F [D] B { fn + Dθ | fn ∈ Fn ∧ Dθ ∈ D}.

We now de�ne when an algorithm is robust to additive noise.

I De�nition 7.1 (Graceful Scaling). An algorithm A scales gracefully with
noise on F [D] if there is a polynomial q such that, for all дn,θ = fn + Dθ ∈ F [D],
there exists a parameter setting p such that A(p) �nds the optimum of fn using
at most q(n,θ) calls to дn,θ with high probability. J

Let σ 2 ≥ 0 be a variance, and let Z ∼ N(0,σ 2), that is, Z is a normally
distributed random variable with mean 0 and variance σ 2. We then denote the
noisy OneMax function by OneMax[σ 2] : x 7→ ‖x ‖1 + Z .

The following lemma gives tail bounds for Z by using estimates of the com-
plementary error function. This will be useful in our proofs for bounding the
probability that the OneMax[σ 2] correctly ranks two arbitrary search points.

I Lemma 7.2. Let Z ∼ N(0,σ 2). For all t > 0, it holds that

Pr[Z < −t] ≤ 1
2e

−t2
2σ 2 . J

Proof. For any t > 0, by the de�nition of erfc(t) = (2/
√
π)

∫ ∞
t e−t 2dt and the

de�nition of a Gaussian distribution, the tail bound ofZ is given by Pr[Z < −t] =
(1/2) erfc

(
t/(σ
√
2)

)
. Chang et al. [CCM11] bound erfc(t) by αe−βt 2 . Choosing

α = β = 1 yields the desired upper bound. �

In order to prove our main result, we use the following drift theorem, which
we phrase in a similar fashion to the theorems in Chapter 3. It is basically
Corollary 3.15 but additionally provides a tail bound on how likely it is that the
process has not reached its goal within the denoted time. We only mention the
concentration bound.

116

Formal Analysis Section 7.3

I Theorem 7.3 (Tail Bound For Multiplicative Drift [DG13]). Let (Xt)t ∈N
be a sequence of random variables over {0} ∪ [xmin,xmax], where xmin > 0,
adapted to a �ltration (Ft)t ∈N, and let T = inf{t ∈ N | Xt = 0}. Furthermore,
suppose that there exists a value δ > 0 such that, for all t < T , it holds that

E[Xt − Xt+1 | Ft] ≥ δXt .

Then, for all λ > 0, it holds that

Pr

T >
λ + ln

(
X0
xmin

)
δ

������� X0

 ≤ e−λ . J

The following lemma states an exact equality for the �rst absolute moment of
a random variable Z in terms of its characteristic function φZ (t) = E

[
eitZ

]
.

I Lemma7.4 ([BE65, Special Case of Lemma 2]). LetZ be a random variable
with E[|Z |] < ∞. Then

E[|Z |] = 1
π

∫ ∞

−∞

1 −<
(
φZ (t)

)
t2

dt ,

where<(z) is the real part of z ∈ C. J

7.3 Formal Analysis

We now show that the cGA (without a margin) scales gracefully with Gaussian
noise. Let T? be the optimization time of the cGA on OneMax[σ 2], namely, the
�rst time that it generates the underlying true optimal solution 1n . Since we
want to apply drift theory and thus need our target to be 0, we consider the
random process (Xt)t ∈N de�ned as

Xt = n −
n∑
i=1

p(t)i . (7.1)

Further, we bound the optimization time by T = inf{t ∈ N | Xt = 0}. This is
the time until the product distribution has converged to the optimal frequency
vector. Clearly, T? ≤ T since the cGA produces 1n in the T -th iteration almost

117

Chapter 7 Upper Bound of the cGA on Noisy OneMax

surely. However, T? and T can be in�nite when there is a position i ∈ [n] and
a time point t < T? where p(t)i = 0, since the process can never subsequently
generate any string x with xi = 1. In order to circumvent this, Droste [Dro06]
estimates E

[
T?

]
conditioned on the event that T? is �nite, and then bounds the

probability of �nite T?. We follow this approach and prove that as long as K is
large enough, the optimization time is polynomial with high probability.

We �rst de�ne the probability that the cGA misclassi�es two points under
comparison due to the presence of noise.

I De�nition 7.5. Let x ,y ∈ {0, 1}n . Without loss of generality, suppose
that ‖x ‖1 − ‖y‖1 = ` ≥ 0, and let E be the event that OneMax[σ 2](x) <
OneMax[σ 2](y). We de�ne the probability to misclassify x and y as the func-
tion ∆ : [n] ∪ {0} → [0, 1] with

∆(`) =

{
1
2 if ` = 0 ,
Pr

[
E

�� ‖x ‖1 − ‖y‖1 = `] if ` > 0 .
J

Note that we de�ne the probability of misclassi�cation in the case of ` = 0 to
be 1/2 because we care about which individual will be chosen in this case.

The following lemma bounds the misclassi�cation probability in terms of the
noise intensity measured by the variance.

I Lemma7.6. For any ` ∈ [n], it holds that∆(`) > ∆(`+1). Moreover, assuming
that σ 2 > 0, there exists a constant c > 0 such that

∆(`) ≤
1
2

(
1 − c

σ 2

)
. J

Proof. Let x ,y ∈ {0, 1}n be any bit strings such that ‖x ‖1 − ‖y‖1 = `. The event
that OneMax[σ 2] incorrectly classi�es y as superior to x is equivalent to the
event {OneMax[σ 2](x) < OneMax[σ 2](y)}. Let Zx ,Zy ∼ N(0,σ 2) denote the
noise from the evaluation of x and y, respectively. Then we get

Pr
[
OneMax[σ 2](x) < OneMax[σ 2](y)

]
= Pr

[
` + (Zx − Zy) < 0

]
.

Letting Z ∗ B Zx − Zy , we have Z ∗ ∼ N(0, 2σ 2) and ∆(`) = Pr[Z ∗ < −`]. Fur-
thermore, ∆(` + 1) = Pr[Z ∗ < −(` + 1)] < Pr[Z ∗ < −`] = ∆(`). Finally, applying
Lemma 7.2, we have Pr[Z ∗ < −`] ≤ (1/2)e−`2/(4σ 2) ≤ (1/2)e−1/(4σ 2). The proof

118

Formal Analysis Section 7.3

is then completed by applying the well-known bound 1 − z > e−z/(1−z) [Mit64,
Inequality 2.68] and setting z = 1/(4σ 2 + 1). �

We now prove the following lemma, which we use in the proof of the upcoming
Lemma 7.8.

I Lemma 7.7. Let k ∈ N. Then

1
π

∫ ∞

−∞

1 − cosk (t)
t2

dt = 2
22d k2 e

⌈
k

2

⌉(2⌈k2 ⌉⌈k
2
⌉)
. J

Proof. We express the k-th power of cos(t) in terms of the binomial expan-
sion [GR07, Equations 1.320.5 and 1.320.7]:

cosk (t) = 1
2k

k∑
j=0

(
k

j

)
cos

(
(2j − k)t

)
.

Thus, we may calculate the inde�nite integral∫ 1 − cosk (t)
t2

dt

= −
1
2k

k∑
j=0

(
k

j

) ∫ cos((2j − k)t)
t2

dt − 1
t

= −
1
2k

k∑
j=0

(
k

j

) (
−
cos((2j − k)t)

t
− (2j − k)

∫ sin((2j − k)t)
t

dt
)
−
1
t

=
cosk (t)

t
−

1
2k

k∑
j=0

(
k

j

)
(k − 2j) Si

(
(2j − k)t

)
−
1
t
, (7.2)

where Si(z) B
∫ z
0

sin(x)
x dx is the sine integral,20 and where

∫
cos((2j − k)t) ·

20 Since we are eventually interested in the de�nite integral from negative in�nity to positive
in�nity, the sine integral is derived by a case distinction of the intervals (−∞, 0) and [0,∞).
Although Si is only de�ned over [0,∞), we extend it such that, for any z ∈ R+, Si(−z) B − Si(z),
since sin(−z) = − sin(z). This saves us a case distinction in the places where we use Si.

119

Chapter 7 Upper Bound of the cGA on Noisy OneMax

(1/t2)dt is integrated by parts once, noting that

∂ cos((2j − k)t)
∂t

= −(2j − k) · sin((2j − k)t) .

We de�ne the function

hk (t) B −
1
2k

k∑
j=0

(
k

j

)
(k − 2j) Si

(
(2j − k)t

)
.

By the algebraic limit theorem,

lim
t→∞

hk (t) = −
1
2k

k∑
j=0

(
k

j

)
(k − 2j) lim

t→∞
Si

(
(2j − k)t

)
.

The limits at in�nity of the sine integral are [AS65, Equation 5.2.25]

lim
t→∞

Si
(
(2j − k)t

)
=


π
2 if (2j − k) > 0 ,
0 if (2j − k) = 0 ,
− π2 if (2j − k) < 0 .

Therefore,

lim
t→∞

hk (t) =
−π

2k+1
©­­«

k∑
j=d k2 e

(
k

j

)
(k − 2j) −

b k2 c∑
j=0

(
k

j

)
(k − 2j)

ª®®¬
=

π

2k+1
©­­«
b k2 c∑
j=0

(
k

j

)
(k − 2j) −

k∑
j=d k2 e

(
k

j

)
(k − 2j)

ª®®¬
=

π

2k+1

(⌈
k

2

⌉(2⌈k2 ⌉⌈k
2
⌉)

I (k)

)
,

where

I (k) =

{
1 if k is odd,
2 if k is even.

120

Formal Analysis Section 7.3

The last step of the transformations above can be proven inductively by noting
that s(k) B dk/2e

(2 dk/2e
dk/2e

)
I (k) follows the recursion

s(k) =

{
2 · s(k − 1) + 2

(k−1
k−1
2

)
if k is odd,

2 · s(k − 1) if k is even, and
s(0) = 0 .

It is possible to express I (k) = 2(k+1)/22 dk/2e , and so

lim
t→∞

hk (t) = π

⌈
k

2

⌉(2⌈k2 ⌉⌈k
2
⌉)

2−2d
k
2 e . (7.3)

A similar derivation yields

lim
t→−∞

hk (t) = − lim
t→∞

hk (t) . (7.4)

In order to complete the proof, we take the inde�nite integral derived in equa-
tion (7.2) and use that limt→∞ cosk (t)/t = limt→∞ 1/t = 0 to compute the
de�nite integral as follows:∫ ∞

−∞

1 − cosk (t)
t2

dt = lim
t→∞

(
cosk (t)

t
+ hk (t) −

1
t

)
− lim

t→−∞

(
cosk (t)

t
+ hk (t) −

1
t

)
= lim

t→∞
hk (t) − lim

t→−∞
hk (t)

= 2 lim
t→∞

hk (t) ,

where we have used equation (7.4). Finally, substituting equation (7.3) for the
limit at positive in�nity, we get∫ ∞

−∞

1 − cosk (t)
t2

dt = π · 2
⌈
k

2

⌉(2⌈k2 ⌉⌈k
2
⌉)

2−2d
k
2 e . �

We can now prove the following technical lemma that yields some properties
of the sum of n independent random variables over {−1, 0, 1}. Speci�cally, we
derive a bound on the probability that the sum is equal to 0 and a lower bound

121

Chapter 7 Upper Bound of the cGA on Noisy OneMax

on the �rst absolute moment of the sum. We later use these results in proofs
about the drift of the frequencies during the run of the cGA.

I Lemma 7.8. Let a ∈ (0, 1) be a constant, and let p ∈ [a, 1]n be a probability
vector. Consider a random variable Z =

∑n
i=1 Zi , each Zi independent, where

Zi =


1 with probability pi (1 − pi) ,
−1 with probability pi (1 − pi) , and
0 with probability 1 − 2pi (1 − pi) .

Then Pr[Z = 0] ≥ 1/(4
√
n), and

E
[
|Z |

]
≥ a

√
2
n

(
n −

n∑
i=1

pi

)
. J

Proof. Let ξ =
∑n

i=1 |Zi |. Then ξ is distributed as a Poisson binomial distribution
with each success probability equal to 2pi (1 − pi). Furthermore, Z = 0 when
exactly k of the Zi variables are non-zero for some even k , and exactly k/2 of
these are selected to be negative, with the remainingk/2 positive. The probability
that exactly k of the variables are non-zero is Pr[ξ = k], and the probability of
selecting exactly k/2 to be positive is

(k
k/2

)
2−k so we can write

Pr[Z = 0] =
n∑

k=0
Pr[ξ = k]

(
k
k
2

)
2−k ,

where
(k
k/2

)
= 0 if k is odd. Since

(k
k/2

)
vanishes at odd i , we have

Pr[Z = 0] =
bn/2c∑
k=0

Pr[ξ = 2k]
(
2k
k

)
2−2k .

(2k
k

)
is the k-th central binomial coe�cient, for which we have the well-known

bound 22k/(2
√
k) ≤

(2k
k

)
[Bul15, Binomial Coe�cient Inequalities (b)], hence,

Pr[Z = 0] ≥ Pr[ξ = 0] +
bn/2c∑
k=1

Pr[ξ = 2k] 1
2
√
k

122

Formal Analysis Section 7.3

≥
1

2
√
n
Pr[ξ is even] , (7.5)

since 1/(2
√
n) ≤ 1/(2

√
k).

In order to �nish the proof, note that for any integer random variableX , where
we denote the probability generating function by G(z) = E

[
zX

]
, it holds that

Pr[X is even] =
(
1 +G(−1)

)
/2. Since ξ is a Poisson binomial distribution with

success probability qi for the i-th trial, we can write the probability generating
function as G(z) =

∏n
i=1(1 − qi + qiz) (by the binomial theorem). Therefore,

Pr[ξ is even] = 1 +G(−1)
2

=
1
2

(
1 +

n∏
i=1
(1 − 2qi)

)
.

Finally, since qi = 2pi (1 − pi) ≤ 1/2 for all i ∈ [n], the product in the above
equation must be nonnegative. Therefore, Pr[ξ is even] ≥ 1/2 and the claimed
bound on Pr[Z = 0] follows from equation (7.5).

We now bound the �rst absolute moment of Z from below. For every S ⊆
[n], let ES denote the event that |Zi | = 1 ↔ i ∈ S . We �rst calculate the
expectation of |Z | conditional on these events. Since the probabilities pi are
mutually independent, we get

E
[
eitZ

�� ES]
= eitE[Z | ES]

=

n∏
j=1

eitE[Z j | ES] .

If j ∈ S , then Z j = 1 with probability 1/2 and Z j = −1 with probability 1/2.
Thus,

eitE[Z j | ES∧j ∈S] = eit
2 +

e−it
2 .

On the other hand, if j < S , then Z j = 0 and so

eitE[Z j | ES∧j<S] = e0

= 1 .

123

Chapter 7 Upper Bound of the cGA on Noisy OneMax

We collect the above terms to write

E
[
eitZ

�� ES]
=

n∏
j=1

(
1S (j)

(
eit
2 +

e−it
2

)
+ 1 − 1S (j)

)
=

∏
j ∈S

cos(t) = cos |S |(t) .

Thus, by Lemma 7.4,

E[|Z | | ES] =
1
π

∫ ∞

−∞

1 − cos |S |(t)
t2

dt

= д(|S |) ,

where д(k) = 2dk/2e
(2 dk/2e
dk/2e

)
2−2 dk/2e by Lemma 7.7. Again applying bounds on

the central binomial coe�cient, we get д(k) ≥
√
dk/2e ≥

√
k/2. And since k ≤ n,

we have д(k) ≥ k/
√
2n.

By the law of total expectation (Corollary 2.10), we get

E[|Z |] =
n∑

k=1
д(k)

∑
S ⊆[n] : |S |=k

Pr[ES]

≥
1
√
2n

n∑
k=1

k
∑

S ⊆[n] : |S |=k
Pr[ES]

=
E[ξ]
√
2n
. (7.6)

Since ξ follows a Poisson binomial distribution with the i-th success probability
equal to 2pi (1 − pi), and since every pi ≥ a, we have

E[ξ] =
n∑
i=1

2pi (1 − pi)

≥ 2a
(
n −

n∑
i=1

pi

)
.

Substituting this inequality into inequality (7.6) completes the proof. �

124

Formal Analysis Section 7.3

We use Lemma 7.8 in the proof of the next lemma whenever we need bounds
on the expected absolute di�erence of the count of 1s between the o�spring
generated by the cGA. Speci�cally, the following lemma bounds the drift on Xt
as de�ned in equation (7.1), conditional on the event that no frequency gets too
small.

I Lemma 7.9. Consider the cGA optimizing OneMax[σ 2] and let X be the
random process de�ned in equation (7.1). Assume that there exists a constant
a > 0 such that, for all i ∈ [n] and all t < T , we have p(t)i ≥ a and that Xt > 0.
Then

E[Xt − Xt+1 | Xt] ≥ δXt ,

where 1/δ ∈ O
(
σ 2K
√
n
)
. J

Proof. Let x and y be the o�spring generated in iteration t , and let Zt = ‖x ‖1 −
‖y‖1. For all i ∈ [n] de�ning

Zi,t =


−1 if xi = 0 and yi = 1,
0 if xi = yi ,
1 if xi = 1 and yi = 0,

note thatZt =
∑n

i=1 Zi,t . Let E denote the event that the evaluation ofOneMax[σ 2]

incorrectly ranksx andy. Without loss of generality, suppose ‖x ‖1 ≥ ‖y‖1. Then
E
[
Xt − Xt+1

�� Xt ; E
]
= E

[
|Zt |

�� Xt
]
/K . On the other hand, if OneMax[σ 2](x)

evaluates to at most OneMax[σ 2](y) during iteration t , the roles above are
swapped and E[Xt − Xt+1 | Xt ; E] = −E

[
|Zt |

�� Xt
]
/K . By the law of total expec-

tation, we get

E[Xt − Xt+1 | Xt] =
E
[
|Zt |

�� Xt
]

K

(
1 − 2Pr[E]

)
. (7.7)

Note that, for any i ∈ [n], it holds that Pr
[
Zi,t = 1

�� Xt
]
= Pr

[
Zi,t = −1

�� Xt
]
=

p(t)i (1 − p
(t)
i) and Pr

[
Zi,t = 0

�� Xt
]

is the converse probability. Since we have
assumed each p(t)i ≥ a, we can apply Lemma 7.8 to obtain

E
[
|Zt |

�� Xt
]
≥ a

√
2
n

(
n −

n∑
i=1

p(t)i

)

125

Chapter 7 Upper Bound of the cGA on Noisy OneMax

= aXt

√
2
n
. (7.8)

Last, we substitute inequality (7.8) into equation (7.7) and use Lemma 7.6 to
bound Pr[E] = ∆

(��‖x ‖1 − ‖y‖1��) from above. This completes the proof. �

In order to use Lemma 7.9, we require that the frequencies stay large enough
during the run of the cGA. Increasing the step size K obviously translates to
�ner-grained frequency values, which means slower dynamics for p(t)i . We point
out that this scaling of the update probabilities is an application of the technique
of rescaled mutations [Bey00] to the space of probability vectors. Provided that K
is set su�ciently large, the frequencies remain above an arbitrary constant for
any polynomial number of iterations with very high probability. This is captured
by the following lemma.

I Lemma 7.10. Consider the cGA optimizing OneMax[σ 2] with σ 2 > 0. Let
a ∈ (0, 1/2) be an arbitrary constant, and letT ′ = inf{t ∈ N | ∃i ∈ [n] : p(t)i ≤ a}.
IfK ∈ ω

(
σ 2√n log(n)

)
, then for every polynomial poly(n), for n su�ciently large,

Pr[T ′ < poly(n)] is superpolynomially small. J

Proof. We want to apply Corollary 3.24 and show that the probability of a
frequency reaching a is superpolynomially small.

Consider a position i ∈ [n] of the cGA. Let (Yt)t ∈N be the stochastic process
Yt =

(
1/2−p(t)i

)
K . Note that Y is a random process on the set [−K/2..K/2] with

Y0 = 0. Let T = inf{t ∈ N | Yt > (1/2 − a)K}. We now show that there is a
negative drift as long as Yt ≥ −K/2 + 1.

We �rst argue that there is a constant c > 0 such that, for all t < T , it holds
that

E[Yt | Yt−1] ≤ Yt−1 −
c

σ 2 ·
Pr[xi , yi]
√
n

. (7.9)

Consider an iteration t < T ′, and let x and y be the strings generated by the
cGA in iteration that iteration. We de�ne x̂ B (x1,x2, . . . ,xi−1,xi+1, . . .xn) to
be the substring of x constructed by removing the i-th element and ŷ analogously.
Since each element of x and y is constructed independently, we can regard x̂ , ŷ,
xi , and yi to be independent.

De�ne the random variable δt B Yt − Yt−1. Note that E[Yt | Yt−1] = Yt−1 +
E[δt | Yt−1], where δt ∈ {−1, 0, 1}. Further, de�ne ˆ̀ = ‖x̂ ‖1 − ‖ŷ‖1. We distin-
guish between the two events that | ˆ̀| is non-zero or zero.

126

Formal Analysis Section 7.3

Case | ˆ̀| > 0. Suppose without loss of generality that ˆ̀ > 0 (that is, ‖x̂ ‖1 >
‖ŷ‖1). Hence, δt = 0 if and only if xi = yi . Moreover, δt = −1 only in the case
that

(a) xi = 1 and yi = 0 and x is accepted (in which case ` = ˆ̀+ 1), or

(b) xi = 0 and yi = 1 and x is not accepted (in which case ` = ˆ̀− 1).

Event (a) occurs only if OneMax[σ 2] does not misclassify x andy, whereas event
(b) occurs only if OneMax[σ 2] does misclassify x and y. Thus,

Pr[δt = −1] = Pr[xi = 1,yi = 0]
(
1 − ∆(ˆ̀+ 1)

)
+ Pr[xi = 0,yi = 1]∆(ˆ̀− 1) .

Please note that, formally speaking, the probability above should be a random
variable and thus conditional on a �lter (or a random variable). However, condi-
tioning on Yt−1 is not enough, since this does not entail that the individuals x
and y are known. Hence, we actually had to condition onto a �lter where
both Yt−1 as well as the sampled o�spring are known. For the sake of brevity,
we ignore this detail, treat the probability as a normal probability, and continue
to condition only on Yt−1 for the drift. Since drift can be used with any �ltration,
we do not limit applicability this way.

Similarly, δt = 1 only in the event that

(a) xi = 1 andyi = 0 but x is not accepted, because x andy were misclassi�ed
by OneMax[σ 2], or

(b) xi = 0 and yi = 1 and x is accepted because OneMax[σ 2] ranked x and y
correctly.

Thus,

Pr[δt = 1] = Pr[xi = 1,yi = 0]∆(ˆ̀+ 1) + Pr[xi = 0,yi = 1]
(
1 − ∆(ˆ̀− 1)

)
.

Since Pr[xi = 1,yi = 0] = Pr[xi = 0,yi = 1] = Pr[xi , yi]/2, we get

E[δt | Yt−1; ˆ̀ , 0] = Pr[δt = 1] − Pr[δt = −1]
= −Pr[xi , yi]

(
∆(ˆ̀− 1) − ∆(ˆ̀+ 1)

)
< 0 ,

127

Chapter 7 Upper Bound of the cGA on Noisy OneMax

where we apply Lemma 7.6. We conclude that in this case,

E[Yt | Yt−1; ˆ̀ , 0] = Yt−1 + E[δt | Yt−1; ˆ̀ , 0]
< Yt−1 .

Case
ˆ̀ = 0. In this case, if xi = yi , then x = y and there is zero drift.

Otherwise, if xi > yi , then ‖x ‖1 − ‖y‖1 = 1, or if yi > xi , then ‖y‖1 − ‖x ‖1 = 1.
The drift in this case only depends on whether or not OneMax[σ 2] misclassi�es
x and y. In particular,

Pr[δt = −1] = Pr[xi = 1,yi = 0](1 − ∆(1)) + Pr[xi = 0,yi = 1]
(
1 − ∆(1)

)
and

Pr[δt = 1] = Pr[xi = 1,yi = 0]∆(1) + Pr[x1 = 0,yi = 1]∆(1) .

By Lemma 7.6, there is a constant c > 0 such that

E[δt | Yt−1; ˆ̀ , 0] = Pr[δt = 1] − Pr[δt = −1]
= −Pr[xi , yi]

(
1 − 2∆(1)

)
≤ −

c

σ 2Pr[xi , yi] .

Hence, for this case, we get

E[Yt | Yt−1; ˆ̀ = 0] = Yt−1 + E[δt | Yt−1; ˆ̀ , 0]

≤ Yt−1 −
c

σ 2Pr[xi , yi] .

Applying the law of total expectation, we see that

E[Yt | Yt−1] ≤ Yt −
c

σ 2Pr[xi , yi]Pr[ˆ̀ = 0] .

It remains to bound Pr[ˆ̀ = 0] = Pr[‖x̂ ‖1 = ‖ŷ‖1]. We de�ne the random
variable Z =

∑n
j=2 Z j , where

Z j =


1 if x j > yj ,
0 if x j = yj , and
−1 if x j < yj .

128

Formal Analysis Section 7.3

Thus, Pr[‖x̂ ‖1 = ‖ŷ‖1] = Pr[Z = 0] ≥ 1/(4
√
n − 1) by Lemma 7.8, since we

consider an iteration t < T ′ and hence all frequencies are at least a. This proves
the claim in equation (7.9).

Note that in any iteration, if xi = yi , then Yt = Yt−1. Thus, for an estimate of
the upper bound of T , we can ignore self-loops in the process.

More formally, let (Ŷt)t ∈N be the restriction of Yt to iterations such that
Yt , Yt−1. Similarly, let T̂ = inf{t ∈ N | Ŷt > (1/2 − a)K}. The random variable
T stochastically dominates the random variable T̂ , since removing equal moves
can only make the process hit faster, that is, ∀t ∈ N : Pr[T > t] ≥ Pr

[
T̂ > t

]
.

Due to the above arguments, we see that there is a constant c ′ > 0 such that

E
[
Ŷt

�� Ŷt−1] = E
[
Yt

�� Ŷt−1;xi , yi]
= Ŷt − E

[
δt

�� Ŷt−1;xi , yi]
≤ Ŷt −

c

σ 2√n
,

since conditioning on Ŷt−1 assures that there is a t ′ < T such that equation (7.9)
holds for iteration t ′.

By Corollary 3.24 with ε ∈ −Θ
(
σ−2/
√
n
)

and noting that Y0 = Ŷ0 = 0 and
|Ŷt − Ŷt+1 | = 1 <

√
2, we get for all t ∈ N that

Pr[T ≤ t] ≤ Pr
[
T̂ ≤ t

]
≤ t2 · e−

(12 −a)K |ε |
4 .

Since we assume that K ∈ ω
(
σ 2√n log(n)

)
, there exists a d ∈ ω(1) such that

Pr[T ≤ t] = t2n−d . Thus, for any polynomial t , with probability superpolyno-
mially close to 1, Y has not yet reached a state larger than (1/2 − a)K , and so,
for all 0 ≤ t ′ ≤ t , we get p(t

′)

i > a. As this holds for every position i , applying
a union bound retains a superpolynomially small probability that any of the n
frequencies has gone below a within polynomially many steps. �

It is now straightforward to prove that the optimization time of the cGA
is polynomial in the problem size and the noise variance. This means that
the cGA scales gracefully with Gaussian noise. We actually prove a stronger
condition than the �rst-hitting time of the true optimal solution: we show that
after polynomial time, the frequencies have converged to the optimal frequency

129

Chapter 7 Upper Bound of the cGA on Noisy OneMax

distribution (pi = 1 for all i ∈ [n]). The proof is carried out by �rst conditioning
on the event that no frequency gets too small. This event is guaranteed with high
probability by Lemma 7.10. The result then follows by showing that the drift of
the sum of frequencies is large enough in order to hit the optimal distribution
within the claimed time bound.

I Theorem 7.11. Consider the cGA optimizing OneMax[σ 2] with variance
σ 2 > 0. If K ∈ ω

(
σ 2√n log(n)

)
, then with high probability, the cGA has con-

verged to the optimal frequency vector after O
(
Kσ 2√n log(Kn)

)
iterations. J

Proof. We consider the drift of the stochastic process (Xt)t ∈N as de�ned in
equation (7.1). This is a stochastic process over the state space S =

⋃nK
i=0{n−i/K}.

Hence, the bounds needed for Theorem 7.3 are xmin = 1/K and xmax = n.
Let a ∈ (0, 1/2) be a constant. We say the process has failed by time t if there

exists some t ′ ≤ t and some i ∈ [n] such that p(t
′)

i ≤ a. Let T = inf{t ∈ N | Xt =

0}.
Assuming that the process never fails, by Lemma 7.9, the drift of X in each

step is bounded by E[Xt − Xt+1 | Xt] ≥ δXt , where 1/δ ∈ O
(
σ 2K
√
n
)
. By

Theorem 7.3, for any λ > 0, it holds that Pr
[
T >

(
ln(X0/xmin) + λ

)
/δ

�� X0
]
≤

e−λ . Choosing λ = d ln(n) for any constant d > 0, the probability that T ∈
Ω

(
Kσ 2√n log(Kn)

)
is at most n−d .

Let E be the event that the process has not failed within O
(
Kσ 2√n log(Kn)

)
ite-

rations. By the law of total probability (Theorem 2.1), the probability of X reach-
ing 0 (corresponding to the optimal frequency vector) within O

(
Kσ 2√n log(Kn)

)
steps is at least (1 − n−d)Pr[E], where we apply Lemma 7.10 to bound the proba-
bility of E. This concludes the proof. �

7.4 Conclusions

In this chapter, we examined the robustness of the cGA to additive Gaussian
noise and showed that it scales gracefully (Theorem 7.11). Intuitively, the cGA
uses its frequency vector to average out the noise over many iterations. This is
in contrast to population-based algorithms, such as the (µ+1) EA that fail if the
variance is too large [Fri+17]. The intuitive reason for their failing is that the
probability of generating and accepting a worse individual becomes larger than
the probability of generating and accepting a better individual, as mutation has

130

Conclusions Section 7.4

a bias towards bit strings with about as many 0s as 1s, and, for high noise, the
probability of accepting slightly worse individuals is about 1/2.

A similar technique for coping with noise to what the cGA inherently displays
is resampling. In this strategy, when optimizing a noisy objective function, an
individual is evaluated multiple times, and the average �tness is used. This has
the e�ect of explicitly reducing the variance of the noise. However, resampling
comes at the extra cost of potentially many more function evaluations. Akimoto
et al. [AAT15] explicitly studied the e�ect of resampling on various noise models
to derive the extra cost incurred by performing enough resampling to ensure
that the underlying optimization algorithm sees an almost noiseless function.

Both of the above approaches – EDAs and resampling – have the problem that
the parameters of the algorithm (either the step size or the number of resamples)
have to be chosen with respect to the variance of the noise. Since this value is
usually unknown, the approaches by itself are not very useful. Hence, in the
journal version that this chapter is based on [Fri+17], we propose an algorithm
scheme that starts with a variance of 1 and restarts the underlying algorithm
with twice the previous variance if the prior run was deemed to have failed, due
to the prior calculated expected run time. This scheme is called noise-oblivious,
since the variance is not part of the input anymore. Experimental results in
the paper show that the cGA outperforms the RLS and the (µ+1) EA (the latter
two both using an appropriate amount of resamples) regardless of whether a
noise-oblivious scheme is used or not.

Note that a noise-oblivious scheme still has the drawback that a bound on
the expected run time of the underlying algorithm is required in order to know
when to restart. Thus, this approach is not applicable in most scenarios. A better
strategy would be to consider multiple runs for di�erent choices of the variance.
In each iteration, one parameter setting is chosen according to some distribution
(for example, a power law distribution) and then the corresponding algorithm is
advanced by a constant number of steps. This way, each parameter setting has
a chance of being chosen, and no prior bound on the run time for a setting is
required. However, rigorous analyzes are needed in order to assess the validity
of this approach.

While all of our results considered �rst-hitting times, one can also look at these
problems from the perspective of a �xed time budget [JZ14]. We believe that
similar results can be obtained in this setting. Further, we conjecture that EAs that
explicitly use recombination can also scale gracefully. A step in that direction

131

Chapter 7 Upper Bound of the cGA on Noisy OneMax

was made by Prügel-Bennett et al. [PRS15], who proved that a generational
EA using uniform crossover needs only O

(
n log(n)2

)
function evaluations to

optimize OneMax with an additive noise of variance σ 2 = n.

132

8
Upper Bound of the MMAS-fp

on Noisy Linear Functions

This chapter is based on joint work with Tobias Friedrich, Timo Kötzing, and An-
drew M. Sutton [Fri+16]. We only consider posterior noise and not prior noise, in
order for this chapter to be more similar to Chapter 7. Further, this chapter �xes
some inaccuracies of the journal version.

In this chapter, we consider the same noise setting as in Chapter 7, and we
show that the MMAS-fp (see Section 8.2.1) scales gracefully (De�nition 7.1) with
additive Gaussian noise on linear functions (Theorem 8.4), which is very similar
to our result obtained for the cGA on OneMax (Theorem 7.11). Further, we show
that the MMAS-fp also successfully optimizes linear functions when the noise is
bounded within a polynomial interval with very high probability (Corollary 8.5).

8.1 Introduction

Ant colony optimization (ACO; [DS04]) is a meta-heuristic for designing rando-
mized general-purpose optimization algorithms inspired by the foraging behavior
of ant colonies, and it has been successfully applied as a heuristic technique for
solving combinatorial optimization problems.

As we already discussed in Section 7.1, in real-world optimization problems,
there is sometimes a large degree of uncertainty present due to the complexity of
candidate solution generation, noisy measurement processes, and rapidly chang-
ing problem environments. Empirically, ACO seems particularly well-suited
to uncertain problems due to its dynamic and distributed nature, and in some
cases it can outperform classical state-of-the-art approaches on dynamic network
routing problems [CDG08]. We focus on a version of the Max-Min Ant System
(MMAS Stützle and Hoos [SH00]) applied to pseudo-Boolean optimization.

In order to address these practical issues, the theoretical analyses of rando-
mized search heuristics under uncertainty has recently gained momentum. For
example, a number of recent papers rigorously analyzed the performance of
evolutionary algorithms in stochastic environments [BQT18; DL16; GK16]. For

133

Chapter 8 Upper Bound of the MMAS-fp on Noisy Linear Functions

ant colony optimization, a series of papers considered the performance of ACO
on single destination shortest paths (SDSP) problems with stochastic weights.
This work was initiated by Sudholt and Thyssen [ST12] and later followed up
by Doerr et al. [DHK12], who showed that by augmenting the ant system with a
re-evaluation strategy on the best-so-far solution, many of the di�culties with
noise discovered in [ST12] could be overcome. Feldmann and Kötzing [FK13]
showed that an ant system that uses a �tness-proportional update rule (called
MMAS-fp) can e�ciently optimize SDSP on graphs with stochastic weights. The
MMAS-fp is closer to systems that are used by practitioners [SH00] and is the
ant system variant that we analyze in this chapter.

For the optimization of functions over bit strings, analyses of ACO suggest that
it often performs worse than evolutionary algorithms and simple hill-climbers
in a noise-free setting Kötzing et al. [Köt+11]. On the other hand, ACO can
outperform evolutionary algorithms on dynamic problems [KM12; LW16]. So
far, the question of how robust ACO is to noisy evaluation on pseudo-Boolean
optimization remains unanswered.

Our goal is to observe the robustness of ACO to noise on a class of simple
objective functions. In particular, we are interested in whether the MMAS-fp
scales gracefully (De�nition 7.1). In contrast to Chapter 7, we do not only consider
OneMax but linear functions in general, that is, functions with a prede�ned
sequence of weights w that map a bit string x to

∑
i ∈[n] xiwi . Note that if we set

all weights to 1, we recover OneMax.
The main result of this chapter is given by Theorem 8.4, where we show that

the MMAS-fp scales gracefully with noise from a Gaussian distribution. Further,
we extend our �ndings to other noise models and show that we achieve the
same robustness also in the presence of other noise distributions (Corollary 8.5),
where the noise is bounded by a polynomial with very high probability.

8.2 Preliminaries

The �tness functions we investigate are linear, following the notation of Droste et
al. [DJW02]. That is, given a vector w of length n of positive weights, we consider
functions f (x) =

∑
i ∈[n] wixi . Thus, the all-1s string is the global optimum. We

discuss why we assume positive weights in Section 8.2.1.
For a given weight vector w, we de�ne wmin to be its minimum weight, wmax to

be its maximum weight, andW =
∑

i ∈[n] wi to be the sum of all weights. Further,

134

Preliminaries Section 8.2

for an individual x ∈ {0, 1}n , let ‖w(x)‖0 denote the sum of weights wi with
xi = 0, and let ‖w(x)‖1 be de�ned analogously for weights of 1-bits. Note that,
for all x ∈ {0, 1}n , we haveW = ‖w(x)‖0 + ‖w(x)‖1.

Throughout this chapter, we consider the same noisy setting as described in
Section 7.2. That is, for a given deterministic �tness function f and a Gaussian
random variableD ∼ N(0,σ 2), we de�ne the noisy variant as f[σ 2](x) B f (x)+D.
We also mainly make use of the theorems mentioned Section 7.2.

Last, we say that an event A occurs with very high probability if and only if,
for all p(n) ∈ O

(
poly(n)

)
, it holds that Pr

[
A
]
≤ 1/p(n), that is, the probability

of A is superpolynomially small.

8.2.1 MMAS-fp

Our algorithm of interest is the MMAS-fp, an ACO algorithm with a so-called
�tness-proportional update rule. It is related to the λ-MMASIB (Section 4.3.3) and
thus also an n-Bernoulli-λ-EDA (Algorithm 1). The main di�erence is that the
MMAS-fp only samples a single individual x per iteration and then updates its
frequencies with respect to the relative quality of x . In order to simplify the
calculations in this chapter, we assume that a frequency denotes the probability
to sample a 0 (instead of a 1). For all i ∈ [n], the update scheme of the MMAS-fp
then is

φ
(
p,

(
x , f (x)

)
x ∈D

)
i =


(
1 − ρ f (x (1))

W

)
pi + ρ

f (x (1))
W if x (1)i = 0 ,(

1 − ρ f (x (1))
W

)
pi if x (1)i = 1 .

The MMAS-fp is – di�erent than the λ-MMASIB – not locally updating, since
the update makes use of the �tness of its o�spring x , which may vary. However,
the MMAS-fp is still unbiased, since the proof of Theorem 5.11 basically applies
here too. Hence, switching the roles of 0s and 1s does not change the applicability
of our results. Further, we consider the MMAS-fp with and without a margin
(see Section 4.2.2). If we use a margin, we call it b.

Note that the update scheme of the MMAS-fp only works properly if we can
guarantee that 0 ≤ ρ f (x)/W ≤ 1. Hence, we assume that our (unnoisy) linear
�tness functions have nonnegative weights in order for ρ f (x)/W ≥ 0 to hold.
Further note that we assume that the MMAS-fp has access toW. In reality, one
either has to have an upper bound on W or choose ρ accordingly in order to

135

Chapter 8 Upper Bound of the MMAS-fp on Noisy Linear Functions

guarantee that ρ f (x)/W ≤ 1. However, since f is perturbed by unbounded
noise in our setting, it is always possible that ρ f (x)/W > 1 or ρ f (x)/W < 0. If
this happens and a frequency leaves the interval [0, 1] (or, for a margin b, the
interval [b, 1 − b]), we assume that the respective frequency is capped according
to equation (4.2).

8.3 Formal Analysis

In this section, we bound the run time of the MMAS-fp for optimizing a noisy
linear function f[σ 2], which we denote as f , for convenience, in the proofs but
not in the statements of the theorems.

First, we bound the range of the noise with very high probability and thus the
di�erence of two consecutive frequencies. Since the noise is unbounded, it can
always happen that this bound is exceeded during an update. By bounding the
noise with very high probability, we make sure that such updates happen only
very rarely. We then choose ρ such that it can compensate for likely noise levels.

I Lemma 8.1. Consider the MMAS-fp (with or without a margin) with any ρ
optimizing f[σ 2]. Let m ∈ ω

(
σ
√
log(n)

)
. Then, for all positions i ∈ [n] and all

time points t ∈ N, it holds with very high probability that

|p(t)i − p
(t+1)
i | ≤ ρ

W +m

W
. J

Proof. Let D denote the noise of a �tness evaluation. We now bound | f (x)| =
|W + D | ≤W +m with high very probability. By the symmetry of D around 0
and by Lemma 7.2, we get for any r ∈ R that

Pr[D > r] = Pr[D < −r]

≤
1
2e
− r 2

2σ 2 .

For r =m ∈ ω
(
σ
√
log(n)

)
, this probability is superpolynomially small. Hence,

we can bound | f (x)| ≤W +m with very high probability.
We now make a case distinction with respect to whether p(t)i is increased or

decreased. We assume no margin, since capping a frequency only makes the
di�erence smaller.

136

Formal Analysis Section 8.3

For the case p(t+1)i =
(
1 − ρ f (x)

W

)
p(t)i , we get

|p(t)i − p
(t+1)
i | =

����p(t)i − (
1 − ρ f (x)

W

)
p(t)i

����
= ρ
| f (x)

≤1«
p(t)i |

W

≤ ρ
| f (x)|

W
.

For the case p(t+1)i =
(
1 − ρ f (x)

W

)
p(t)i + ρ

f (x)
W , we get

|p(t)i − p
(t+1)
i | =

����p(t)i − ((
1 − ρ f (x)

W

)
p(t)i + ρ

f (x)

W

)����
= ρ
| f (x)(

≥−1³¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ
p(t)i − 1)|
W

≤ ρ
| f (x)|

W
.

Bounding | f (x)| ≤W +m with very high probability completes the proof. �

From now on, we always condition on the event that the noise does not exceed
the bounds mentioned in the proof of Lemma 8.1, which holds with very high
probability in any polynomial number of steps of the MMAS-fp for all of the n
frequencies via a union bound. We refer to other runs as fails. Due to that, all of
the following theorems only hold with very high probability.

Further, we always assume from now on, for anym ∈ ω
(
σ
√
log(n)

)
, that we

choose ρ ∈ o
(
W /(W +m)

)
such that ρ f (x)/W ∈ o(1) holds for all x with very

high probability. Let s B ρ(W +m)/W ∈ o(1) then denote the greatest di�erence
possible for two consecutive frequency values (with very high probability). If an
update changes a frequency by at most s , we call it normal.

Note that the noise can also be negative and, thus, we lower-bound ρ f (x)/W ≥
−ρ(W +m)/W ≥ −s . In such a case, a decreasing update of a frequency pi is an
increase, and the resulting frequency will be greater than 1 if pi > 1/(1 + s) =
1−s/(1+s) > 1−cs for a constant c > 0. Conversely, an increasing update is then

137

Chapter 8 Upper Bound of the MMAS-fp on Noisy Linear Functions

a decrease, and the resulting frequency will be less than 0 if pi < s/(1+s) ∈ O(s).
Hence, a normal update can still lead to a frequency leaving the interval [0, 1] (or,
for a margin b, the interval [b, 1 − b]). If this happens, the resulting frequency is
set to the respective bound, which we still consider normal and not a failing run.
The reasoning behind this consideration is that the frequency is so close to a
border that the wrong update does not matter.

We aim to show that with very high probability a frequency will not reach
a constant value greater than 1/2 within polynomial time during a non-failing
run of the MMAS-fp. For this, we show that there is a negative drift for every
frequency toward 1.

I Lemma 8.2. Let m ∈ ω
(
σ
√
log(n)

)
, and let d ∈ (1/2, 1) be a constant. Con-

sider the MMAS-fp (without a margin or with a margin b ≤ 1 − d) with
ρ ∈ o

(
Wwmin/

(
(W +m)2 log(n)

))
optimizing f[σ 2]. Then, with very high proba-

bility, no frequency reaches a value of at least d in polynomial time. J

Proof. Note that, due to our assumptions on ρ, we have that s ∈ o(1). Further,
we assume a non-failing run of the MMAS-fp. Thus, all following statements
hold with very high probability.

We �rst show for any position i ∈ [n] that the respective frequencypi does not
reach d within polynomial time very likely by using Corollary 3.24. Afterward,
we apply a union bound (Theorem 2.17), which then concludes the proof.

Since p(0)i = 1/2 and Corollary 3.24 requires the �rst value to be at most 0,
we consider the process (Xt)t ∈N with Xt = p(t)i − 1/2. We now show that X
has negative drift over the interval [−s,d − 1/2). Thus, let t ∈ N be such that
−s ≤ Xt < d − 1/2, and let A denote the event that xi was sampled as a 1. We
get

E
[
Xt+1 − Xt

��� p(t)i]
= E

[
p(t+1)i − p(t)i

��� p(t)i]
= E

[(
1 − ρ f (x)

W

)
p(t)i

���� p(t)i]
+ E

[
ρ
f (x)

W

���� A;p(t)i] =p (t)i³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Pr

[
A

�� p(t)i]
−p(t)i

=
ρ

W

(
E
[
f (x)

��� A;p(t)i]
− E

[
f (x)

��� p(t)i])
p(t)i

138

Formal Analysis Section 8.3

=
ρ

W

(
E
[
W − ‖w(x)‖0 + D

��� A;p(t)i]
− E

[
W − ‖w(x)‖0 + D

��� p(t)i])
p(t)i

=
ρ

W

(
W −

(
wi +

∑
j ∈[n]
j,i

wjp
(t)
j

)
−

(
W −

(
wip

(t)
i +

∑
j ∈[n]
j,i

wjp
(t)
j

)))
p(t)i

= p(t)i (p
(t)
i − 1)wi

ρ

W

≤ −p(t)i (1 − p
(t)
i)wmin

ρ

W

≤ −d(1 − d)wmin
ρ

W
,

where the last inequality used that −s ≤ Xt < d − 1/2 and that the concave
function p(t)i (1 − p

(t)
i) is minimal over the interval [1/2 − s,d] for p(t)i = d .

Since we assume a non-failing run, we can use Lemma 8.1 in order to strictly
upper-bound the maximum di�erence of an update by

√
2s . Further note that any

Xt < −s can be at most 0 after an update. Hence, we can apply Corollary 3.24
and see that there is a constant c > 0 such that

Pr[T ≤ t] ≤ t2 exp
(
−

(>0­
d − 1

2

)
d(1 − d)wmin

ρ
W

4 ρ2

W 2 (W +m)2

)
≤ t2 exp

(
−

cWwmin
ρ(W +m)2

)
.

Due to our assumption ρ ∈ o
(
Wwmin/

(
(W +m)2 log(n)

))
, the exponential func-

tion in the bound above is superpolynomially small. Hence, the probability
that pi reaches values of at least d within polynomial time is superpolynomially
small.

As stated at the beginning of the proof, applying a union bound over all of
the n frequencies yields that no frequency reaches a value of at least d within
polynomial time with very high probability. And since the probability of a run
being non-failing is very high according to Lemma 8.1, the probability of that
event still remains very high, which concludes the proof. �

We now consider the sum of all frequencies, which we call ptotal, and lower-
bound its drift toward 0. Note that if we assume that the MMAS-fp has a margin,

139

Chapter 8 Upper Bound of the MMAS-fp on Noisy Linear Functions

then the drift cannot be positive if the frequencies are too close to the lower
border – in the extreme case that all frequencies are at the lower border, the
drift is negative. However, if the margin is su�ciently small and there is at
least on frequency that is su�ciently large, the drift of this frequency outweighs
the (possibly negative) drift of the other frequencies that are close to the lower
border.

I Lemma 8.3. Letm ∈ ω
(
σ
√
log(n)

)
. Consider the MMAS-fp optimizing f[σ 2]

with no margin or a margin b ∈ o
(
wmin/(wmaxn

3)
)

and with ρ ∈ o
(
Wwmin/((W +

m)2 log(n))
)
∩ o

(
W /((W +m)n)

)
. If at least one frequency is at least 1/n, then

the drift of the sum of all frequencies ptotal toward 0 is with very high probability
in Ω(ptotalρwmin/W). J

Proof. We assume a non-failing run and that no frequency reaches a value of at
least a constant value d ∈ (1/2, 1). Due to Lemmas 8.1 and 8.2, all of the following
statements then hold with very high probability. Further, we pessimistically
assume frequencies below 1/n as having reached b. Note that b ∈ o(1/n) and
s = ρ(W +m)/W ∈ o(1/n). Hence, if a frequency has a value of at least 1/n, it is
normally updated.

Consider an iteration t such that k ∈ [0..n − 1] frequencies are below 1/n.
We split the overall drift of the sum of all frequencies into the (positive) drift of
the n − k frequencies that are at least 1/n and into the (negative) drift of the k
frequencies that are below 1/n. Let Y denote the index set of those former n − k
frequencies and Z the index set of the latter k .

For the o�spring x sampled by p(t), let xY denote the bit string consisting only
of those elements of x whose index is in Y , and let xZ be de�ned analogously
with respect to Z . Further, we denote the sum of frequencies with index in Y
by pYtotal and the sum of those with index in Z by pZtotal. Last, let Ptotal denote
E
[
‖w(x)‖0

�� p(t)] = ∑
j ∈[n] wjp

(t)
j , and let PYtotal and PZtotal be de�ned analogously.

We now consider the drift of the n − k frequencies with an index in Y . We
mark the updated frequency vector by a prime and get

E
[
pYtotal −

(
pYtotal

) ′ ��� p(t)] = E
[
pYtotal −

(
pYtotal

(
1 − ρ f (x)

W

)
+ ‖xY ‖0ρ

f (x)

W

) ����� p(t)
]

=
ρ

W

(
pYtotalE

[
f (x)

��� p(t)] − E[
‖xY ‖0 f (x)

�� p(t)]) ,

140

Formal Analysis Section 8.3

where

E
[
f (x)

��� p(t)] = E
[
W − ‖w(x)‖0 + D

�� p(t)]
=W − Ptotal ,

and

E
[
‖xY ‖0 f (x)

�� p(t)] = E
[
‖xY ‖0(W − ‖w(x)‖0 + D)

�� p(t)]
=W E

[
‖xY ‖0

�� p(t)] − E[
‖xY ‖0 · ‖w(x)‖0

�� p(t)]
=WpYtotal − E

[
‖xY ‖0 · ‖w(x)‖0

�� p(t)] .
We further bound, noting that the bits of x are sampled independently from
another,

E
[
‖xY ‖0 · ‖w(x)‖0

��� p(t)] = E
[∑
a∈Y

∑
j ∈[n]

1{xa = 0}wj · 1{x j = 0}
���� p(t)]

=
∑
a∈Y

∑
j ∈[n]

wjE
[
1{xa = 0} · 1{x j = 0}

��� p(t)]
=

∑
a∈Y

∑
j ∈[n]
j,a

wjE
[
1{xa = 0}

�� p(t)]E[
1{x j = 0}

�� p(t)]
+

∑
a∈Y

waE
[
1{xa = 0} · 1{xa = 0}

�� p(t)]
=

∑
a∈Y

∑
j ∈[n]
j,a

wjp
(t)
a p(t)j +

∑
a∈Y

wap
(t)
a

=
∑
a∈Y

p(t)a
∑
j ∈[n]

wjp
(t)
j −

∑
a∈Y

wa

(
p(t)a

)2
+

∑
a∈Y

wap
(t)
a

=
∑
a∈Y

p(t)a
∑
j ∈[n]

wjp
(t)
j +

∑
a∈Y

wap
(t)
a

(
1 −

≤d«
p(t)a

)
≥ pYtotalPtotal + (1 − d)P

Y
total ,

141

Chapter 8 Upper Bound of the MMAS-fp on Noisy Linear Functions

where the last inequality made use of our assumption that no frequency reaches
values of at least d .

Thus, we get for the positive drift

E
[
pYtotal −

(
pYtotal

) ′ ��� p(t)]
≥

ρ

W

(
pYtotal(W − Ptotal) −

(
WpYtotal − p

Y
totalPtotal − (1 − d)P

Y
total

))
=

ρ

W
(1 − d)PYtotal .

We now consider the k frequencies with an index in Z . First, we bound the
sum of the updated frequency vector. If a 1 is sampled at a position, the respective
frequency cannot be decreased anymore, as we assume that it is at the lower
border b. In the other case, the frequency is increased normally.

E
[(
pZtotal

) ′ ��� p(t)] = E
[
‖xZ ‖1b + ‖x

Z ‖0

((
1 − ρ f (x)

W

)
b + ρ

f (x)

W

) ����� p(t)
]

= E
[=kb³¹¹·¹¹¹µ
‖xZ ‖1b + ‖x

Z ‖0b −‖x
Z ‖0bρ

f (x)

W
+ ‖xZ ‖0ρ

f (x)

W

��� p(t)]
= kb +

ρ

W
(1 − b)E

[
‖xZ ‖0 f (x)

��� p(t)] .
Thus, for the drift of those frequencies, we get

E
[
pZtotal −

(
pZtotal

) ′ ��� p(t)] = kb − kb − ρ

W
(1 − b)E

[
‖xZ ‖0 f (x)

��� p(t)]
= −

ρ

W
(1 − b)E

[
‖xZ ‖0 f (x)

��� p(t)] ,
where

E
[
‖xZ ‖0 f (x)

��� p(t)] = E
[
‖xZ ‖0

(
W − ‖w(x)‖0 + D

) ��� p(t)]
=W E

[
‖xZ ‖0

��� p(t)] − E[
‖xZ ‖0 · ‖w(x)‖0

��� p(t)]
=Wkb − E

[
‖xZ ‖0 · ‖w(x)‖0

��� p(t)] .
The calculations for E

[
‖xZ ‖0 · ‖w(x)‖0

�� p(t)] follow analogously to the ones

142

Formal Analysis Section 8.3

before for the positive drift, and we get

E
[
‖xZ ‖0 · ‖w(x)‖0

��� p(t)] =∑
a∈Z

p(t)a
∑
j ∈[n]

wjp
(t)
j +

∑
a∈Z

wap
(t)
a

(
1 − p(t)a

)
≥ kbPtotal + (1 − d)PZtotal .

Hence, we get the negative drift

E
[
pZtotal −

(
pZtotal

) ′ ��� p(t)] ≥ − ρ
W
(1 − b)

(
Wkb − kbPtotal − (1 − d)PZtotal

)
≥ −

ρ

W
(1 − b)Wkb .

Overall, taking together the positive and the negative drift part, we get

E
[
ptotal − (ptotal)

′
��� p(t)] ≥ ρ

W
(1 − d)PYtotal −

ρ

W
(1 − b)Wkb

=
ρ

W

(
(1 − d)PYtotal − (1 − b)Wkb

)
,

which we want to be positive.

Recall that we only consider k ∈ [0..n − 1]. For the drift to be positive, it
su�ces to show that PYtotal ∈ ω(Wkb). Using the de�nition of PYtotal and that all
those frequencies are at least 1/n, we want to have that

≥wmin
1
n³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ∑

a∈Y

wapa ∈ ω

(≤n−1©
k b

≤nwmax³¹¹¹¹¹¹¹·¹¹¹¹¹¹¹µ∑
j ∈[n]

wj

)
.

Hence, we check that the following

wmin
n
∈ ω

(
n2wmaxb

)
⇔ 1 ∈ ω

(
n3

wmax
wmin

b

)
,

which is true, because we assume b ∈ o
(
wmin/(wmaxn

3)
)
. So we can bound the

drift by Ω
(
PYtotalρ/W

)
.

Since we want the drift to be expressed in terms of ptotal, for an ε > 0, we need
PYtotalρ/W ≥ εptotal to hold. We bound PYtotal ≥ wminp

Y
total and ptotal = p

Y
total + k` <

143

Chapter 8 Upper Bound of the MMAS-fp on Noisy Linear Functions

pYtotal + k/n and get wminp
Y
totalρ/W ≥ ε(p

Y
total + k/n). This leaves us with

ε ≤
wminp

Y
totalρ

W (pYtotal +
k
n)

=
wminρ

W (1 + k
pYtotaln
)

∈ O
(
wminρ

W

)
.

Overall, we �nally get a drift of Ω(ptotalwminρ/W). �

Since there is a strong drift for the frequencies toward 0, due to Lemma 8.3,
we can now bound the run time of the MMAS-fp with very high probability.

I Theorem 8.4. Letm ∈ ω
(
σ
√
log(n)

)
. Consider the MMAS-fp optimizing f[σ 2]

with no margin or a margin b ∈ o
(
wmin/(wmaxn

3)
)

and with ρ ∈ o
(
Wwmin/((W +

m)2 log(n))
)
∩o(W /((W +m)n)). Then, for any λ ∈ ω

(
log(n)

)
, the algorithm �nds

the optimum after O
(
W λ log(n)/(ρwmin)

)
iterations with very high probability.

J

Proof. As before, we assume a non-failing run and that no frequency reaches
values of at least a constant in (1/2, 1). Due to Lemmas 8.1 and 8.2, all of the
following statements then hold with very high probability.

Let T denote the �rst point in time such that the MMAS-fp samples the
optimum, that is, the all-1s string. In order to bound the probability that the
MMAS-fp takes more than O

(
W λ/(ρwmin)

)
iterations, we proceed as follows:

we assume that the MMAS-fp can only sample the optimum if the sum of all
frequencies ptotal is su�ciently small. If the optimum is not sampled then, we
reset the algorithm. LetT ′ denote the �rst point in time that this process samples
the optimum. Note that T ′ stochastically dominates T , since the normal MMAS-
fp has a chance of sampling the optimum in any iteration and since its frequencies
are at most that of the augmented process. Thus, we bound the probability thatT ′
exceeds O

(
W λ log(n)/(ρwmin)

)
.

We �rst consider a single (possibly restarted) run of the MMAS-fp. Let T ∗
denote the �rst point in time such that ptotal drops below 1, and let ε > 0 be
a constant. Due to the multiplicative of ptotal · ερwmin/W from Lemma 8.3, we
can apply Theorem 7.3, assuming that ptotal is 0 once it is less than 1 and noting

144

Formal Analysis Section 8.3

that ptotal is n/2 at the beginning, and we get

Pr
[
T ∗ >

1 + ln
(n
2
)

ερwmin
W

]
≤ e−1 . (8.1)

Now, the augmented process has one chance to sample the optimum. We
know that ptotal < 1, but this value does not allow us to uniquely determine
the value of each frequency individually. However, note that the probability to
sample the optimum is then minimized by assuming that as many frequencies as
possible are as high as possible, since the probability of sampling the optimum is
a Schur-concave function over [0, 1]n [BP83]. Thus, we pessimistically assume
that a constant number of frequencies have constant values and that the other
frequencies are at the lower border b or at 0. This results in a constant probability
of c > 0 of sampling the optimum.

Taking this probability together with the probability from equation (8.1), we
see that the probability that a single run does not sample the optimum within
O

(
W log(n)/(ρwmin)

)
iterations is at most (1 − e−1)(1 − c), which is at most a

constant c ′ < 1.
Note that the number of restarts of our augmented process follows a geo-

metric distribution with a success probability of 1 − c ′, where success means
that the optimum was sampled. Thus, the probability that the optimum was
not sampled after λ ∈ N restarts, is at most (c ′)λ+1. Choosing λ ∈ ω

(
log(n)

)
yields a superpolynomially low probability. Since every restart accounts for
O

(
W log(n)/(ρwmin)

)
iterations, the augmented process �nds the optimum after

O
(
W λ log(n)/(ρwmin)

)
iterations with very high probability.

Overall, due to T ′ � T , conditional on a non-failing run and the frequencies
not reaching constant values greater than 1/2, the MMAS-fp �nds the optimum
withinO

(
W λ log(n)/(ρwmin)

)
iterations with very high probability. Using the law

of total probability (Theorem 2.1) then yields that the unconditional probability
of the MMAS-fp sampling the optimum after the mentioned number of iterations
is still very high. This concludes the proof. �

Theorem 8.4 shows that the MMAS-fp scales gracefully (see De�nition 7.1)
with Gaussian noise, since, assuming a polynomial variance, we can choose
a polynomial ρ such that the run time of MMAS-fp is polynomial with very
high probability. However, note that this only holds if 1/wmin andW are both

145

Chapter 8 Upper Bound of the MMAS-fp on Noisy Linear Functions

upper-bounded by a polynomial. Otherwise, the step size is too small in order to
result in a polynomial run time.

8.3.1 Non-Gaussian Noise

Note that our considerations only discussed noise in Lemma 8.1. All of the
other theorems analyzed the MMAS-fp as if it optimized a non-noisy �tness
function. Since Lemma 8.1 only makes use of the noise bounds of the Gaussian
distribution and no other properties (except its mean being 0), we can generalize
our results to a greater class of noise distributions. For any random variable D,
we now consider optimization of the function fD (x) B f (x) + D. This leads to
the following corollary.
I Corollary 8.5. Consider the MMAS-fp optimizing fD with no margin or a
margin b ∈ o

(
wmin/(wmaxn

3)
)
, where D is a random variable with E[D] = 0 such

that, for some function t∗(n) > 0 and all polynomials p(n), it holds that

Pr
[
|D | > t∗(n)

]
∈ o

(
1

p(n)

)
. (8.2)

If ρ = o
(
Wwmin/

(
(W + t∗(n))2 log(n)

))
, then, for any λ ∈ ω

(
log(n)

)
, the algori-

thm �nds the optimum after O
(
W λ log(n)/(ρwmin)

)
iterations with very high

probability. J

Proof. We follow the same proof outline used to prove Theorem 8.4. The only
di�erence is that we use t∗(n) instead ofm, which is possible, since equation (8.2)
guarantees that a run of the MMAS-fp is non-failing with very high probability
(similar to Lemma 8.1). Further, due to E[D] = 0, the noise is ignored in the drift
calculations. This concludes the proof. �

Note that Corollary 8.5 does not tell us whether the MMAS-fp scales gracefully
with noise D, as we do not know what the variance of the noise is. However,
if t∗(n) can be expressed as a polynomial in the variance of the noise, then the
MMAS-fp scales gracefully with D.

8.4 Conclusions

We proved that the MMAS-fp optimizing linear pseudo-Boolean functions scales
gracefully with Gaussian noise (Theorem 8.4). This means that the run time

146

Conclusions Section 8.4

depends polynomially (in fact, only linearly) on the variance of the noise. This
is similar to our results in Chapter 7, where we proved that the cGA scales
gracefully with Gaussion noise on OneMax. However, in contrast to the cGA,
our results for the MMAS-fp hold for all linear functions where the weights are
still polynomial. Further, the noise model can be generalized to distributions
that can be bounded with very high probability (Corollary 8.5).

The main di�erence in the analyses of the cGA and the MMAS-fp is that the
former samples two individuals whereas the latter only samples one. Since, for
the cGA, the components of both o�spring need to be compared (and the result
may be incorrect due to the noise), the analysis is more involved, whereas for
the MMAS-fp, we were able to bound the impact of the noise (Lemma 8.1) and
then basically analyze an unnoisy �tness function.

The same drawbacks of results on graceful scaling that we discussed in Sec-
tion 7.4 apply here as well. Namely, the variance of the noise has to be known
in advance for the optimization to succeed. However, the same approach that
we proposed for the cGA in order to circumvent this can also be used for the
MMAS-fp. The only problem that remains is that the MMAS-fp still needs to
have a bound on the sum of all weights W of the �tness function in order to
perform a normal update. Unfortunately, this is an inherent problem of the
algorithm and not introduced by the noisy setting. Assuming that the MMAS-fp
is only chosen when it seems appropriate, that is, the user has such a bound on
the sum of weights, this poses no issue any longer.

Since we now have proven that two n-Bernoulli-λ-EDAs scale gracefully with
noise, an interesting question is if all of the algorithms mentioned in Section 4.3
show this behavior and if this result holds for (univariate) EDAs in general.

147

9
Lower Bound of the

UMDA on OneMax

This chapter is based on joint work with Carsten Witt [KW18a]. It eliminates some
minor inaccuracies from the journal version.

In this chapter, we prove that the UMDA (with a margin of 1/n) needs in
expectation at least Ω

(
µ
√
n + n log(n)

)
�tness function evaluations to optimize

OneMax (Theorems 9.6 and 9.20). In conjunction with some recently and inde-
pendently proven upper bounds by Lehre and Nguyen [LN17] and Witt [Wit17],
this results in a Θ

(
n log(n)

)
run time for the UMDA on OneMax for many pa-

rameter combinations of µ and λ.

9.1 Introduction

The arguably most important research area in the theory of evolutionary compu-
tation is run time analysis, giving insights into how and why di�erent algorithms
behave in a certain way on speci�c functions. While the formal analysis of EAs
started in the 1990s [Müh92], the �rst run time analysis of EDAs was conducted
far later by Droste [Dro06], who analyzed the cGA on linear functions. Pa-
pers considering other EDAs, like, for example, the λ-MMASIB by Neumann
et al. [NSW10] followed.

Recently, more run time results for EDAs were published [DK18b; DL15;
FKK16; LN17; LN18; LSW18; SW16a; Wit17; Wit18]. Most of these works con-
sider either the cGA [LSW18; SW16a; Wit18] or the UMDA [DL15; LN17; Wit17],
mostly on the function OneMax. While the papers on the cGA interestingly all
contain some lower bounds, the same is not true for the UMDA. This chapter
provides the �rst lower-bound run time analysis for the UMDA.

We follow the ideas of Sudholt and Witt [SW16a] and derive a lower bound of
Ω

(
n log(n)

)
for the UMDA on OneMax, which is a typical lower bound for many

evolutionary algorithms on this function. The algorithm has already been ana-
lyzed some years ago for several arti�cially designed example functions [Che+07;
Che+09a; Che+09b; Che+10]. However, none of these papers consider the stan-
dard benchmark function for theory: the OneMax function. In fact, the run

149

Chapter 9 Lower Bound of the UMDA on OneMax

time analysis of the UMDA on OneMax has turned out to be rather challeng-
ing; the �rst such result, showing an upper bound of O

(
n log(n) log(log(n))

)
on

its expected run time for certain settings of µ and λ, was not published until
2015 [DL15]. Speci�c lower bounds for the UMDA were to date missing. The
previous best result Ω

(
n/log(n)

)
on the expected run time followed from general

black-box complexity theory [DJW06] and did not shed light on the working
principles of the UMDA.

Recently, two matching upper bounds ofO
(
n log(n)

)
of the UMDA onOneMax

have been proven independently from one another [LN17; Wit17] for certain
cases of µ and λ. Our results match almost all of these cases, providing a tight
run time bound of Θ

(
n log(n)

)
.

As mentioned above, the concepts of the proofs in this chapter are based on
prior work from Sudholt and Witt [SW16a]. However, analyzing the UMDA is
much more di�cult than analyzing the cGA or the 2-MMASIB, since the update
of the latter algorithms is bounded by an algorithm-speci�c parameter and the
algorithms only have up to three distinct successor states for each frequency.
The UMDA, on the other hand, can change each of its frequencies to any value
x/µ with a certain probability, where x ∈ [0..µ], due to the nature of its update
rule. This makes analyzing the UMDA far more involved, because every single
update has to be bounded probabilistically. Further, the simple update rules for
the cGA and the 2-MMASIB allow for a distinction into two cases that determines
whether a frequency will increase or decrease; a fact that was heavily exploited
in the analyses by Sudholt and Witt [SW16a]. For the UMDA, no such simple
case distinction can be made.

9.2 Preliminaries

We consider the UMDA (see Section 4.3.2) with a margin of 1/n optimizing
OneMax. Since the UMDA is unbiased (Theorem 5.11), all of our results gener-
alize to the OneMax class. When choosing the µ �ttest individuals among the λ
o�spring (so-called selection), we break ties uniformly at random.

We are interested in a lower bound of the UMDA’s expected number of function
evaluations on OneMax until the optimum is sampled. Note that this is at least
the expected number of iterations until the optimum is sampled (minus one)
times λ, as we do not necessarily have to evaluate all λ o�spring in the last
iteration.

150

Preliminaries Section 9.2

In all of our calculations except Section 9.4, we always assume, for some
constant β > 0, that λ = (1 + β)µ.

9.2.1 Selecting Individuals

In order to optimize a function e�ciently, the UMDA needs to evolve its frequen-
cies toward the right direction, making it more likely to sample an optimum.
In the setting of OneMax, this means that each frequency should be increased
(toward a value of 1 − 1/n). This is where selection comes into play.

By selecting µ best individuals every iteration with respect to their �tness, we
hope that many of them have correctly set bits at each position, such that the
respective frequencies increase. However, even in the simple case of OneMax,
where a 1 is always better than a 0, there is a �aw in the update process that
prevents UMDA from optimizing OneMax too fast. To see why this �aw occurs,
consider an arbitrary position j ∈ [n] in the following.

When selecting individuals for an update topj , the UMDA considers the �tness
of each entire individual. That is, although each frequency is independently
updated from the others, selection is done with respect to all positions at once.
Thus, when looking at position j, it can happen that we have many 0s, because
the individuals chosen for the update may have many 1s in their remaining
positions, which can lead to a decrease of pj .

Since having a 1 at a position is always better than a 0 when considering
OneMax, the selection is biased, pushing for more 1s at each position. However,
this bias is not necessarily too large: consider that for each individual each bit
but bit j has already been sampled. When looking at the selection with respect to
only n − 1 bits in each individual, some individuals may already be so good that
they are determined to be chosen for selection, whereas others may be so bad
that they de�nitely cannot be chosen for selection, regardless of the outcome of
bit j.

Consider the �tness of all individuals sampled during one iteration of the
UMDA with respect to n − 1 bits, that is, all bits but bit j . We call each of these n
di�erent �tness values (from 0 to n − 1) a level. Assume that the individuals
are sorted decreasingly by their level; each individual having a unique index.
Let w+ be the level of the individual with rank µ, and let w− be the level of the
individual with rank µ+1. Since bit j has not been considered so far, its value can
potentially increase each individual’s level by 1. Now assume that w+ = w

− + 1.
Then individuals from level w− can end up with the same �tness as individuals

151

Chapter 9 Lower Bound of the UMDA on OneMax

from level w+, once bit j has been sampled. Thus, individuals from level w+
were still prone to selection. This means that the outcome of bis j can in�uence
whether the individual is being selected or not.

Among the µ individuals chosen during selection, we distinguish between
two di�erent types: 1st-class and 2nd-class individuals. 1st-class individuals are
those which are chosen during selection no matter which value bit j has. The
remaining of the µ selected individuals are the 2nd-class individuals; they had to
compete with other individuals for selection. Therefore, their bit value j is biased
toward 1 compared to 1st-class individuals. Note that 2nd-class individuals can
only exist if w+ ≤ w

− + 1, since, in this case, individuals from level w− can still
be as good as individuals from level w+ after sampling bit j.

For any iteration t , letXt denote the number of 1s at position j of the µ selected
individuals of the UMDA, and let C∗ denote the number of 2nd-class individuals
in iteration t + 1. Note that the number of 1s of 1st-class individuals during
iteration t+1 follows a binomial distribution with success probabilityXt/µ. Since
we have µ −C∗ 1st-class individuals, the distribution of the number of 1s of these
follows Bin(µ −C∗,Xt/µ). Note that the actual frequency in iteration t + 1 might
be set to either 1/n or 1 − 1/n if the number of 1s in the µ selected individuals
is too close to 0 or µ, respectively. We will be able to ignore this fact in our
forthcoming analyses, since all considerations are stopped when a frequency
drops below 1/n or exceeds 1 − 1/n.

9.2.2 The Number of 2nd-Class Individuals

Consider a bit position j ∈ [n]. In this section, we again speak of levels as
de�ned in the previous section. Those de�nitions as well as the following ones
are also depicted in Figure 9.1. Level n − 1 is the topmost, and level 0 is the
bottommost. For all i ∈ [0..n − 1], let Ci denote the cardinality of level i , that is,
the number of individuals in level i during an arbitrary iteration of the UMDA,
and let C≥i =

∑n−1
a=i Ca .

Let M denote the index of the �rst level from the top such that the number of
sampled individuals is greater than µ when including the following level, that is,

M = max{i | C≥i−1 > µ} .

Note that M can never be 0, and only if M = n−1, thenCM can be greater than µ.
Note further that CM can be 0.

152

Preliminaries Section 9.2

· · ·
n − 1n − 20 M

· · ·

> µ

1st-class individuals (µ −C∗ many)2nd-class candidates

2nd-class individuals (C∗ many)

Figure 9.1: An exemplary visualization of the di�erent de�nitions we need. The boxes
depict all of the n levels, the numbers above show their respective �tness, and the black
dots symbolize individuals in these levels. The blue line cutting through level M − 1
marks the point where more than µ individuals have been sampled when starting from
the top. In that level, not all individuals are going to be selected. Further, the individuals
from the level below can be selected (as their �tness can still increase by one when
sampling the last bit), and individuals from the level above can be not selected. Hence, the
individuals in those levels are 2nd-class candidates. The individuals in higher levels will
always be selected, thus they are 1st-class individuals. Out of the 2nd-class candidates,
those individuals that are chosen during selection are the 2nd-class individuals (in this
example, those would be two individuals, that is, C∗ = 2). Last, M depicts the cut level,
that is, the topmost level such that the number of sampled individuals is greater than µ
when including the next (lower) level.

Due to the de�nition of M , if M , n − 1, level M − 1 contains the individual
of rank µ + 1, as described in the previous section. Thus, levels M , M − 1,
and M − 2 contain all of the individuals that are prone to selection (if such
exist at all). Hence, individuals in levels at least M + 1 are de�nitely 1st-class
individuals. 2nd-class individuals, if any, have to come from level M , M − 1,
or M − 2. We call the individuals from these three levels 2nd-class candidates.
Note that the actual number of 2nd-class individuals is bounded from above by
µ −C≥M+1 = µ −C≥M +CM , since exactly µ individuals are selected.

Since the 2nd-class individuals are the only ones that are prone to selection
and thus the only ones that actively help in progressing a single frequency
toward 1−1/n, it is of utmost importance to understand the distribution ofC∗ B
µ −C≥M+1, that is, the biased impact to an update as explained in Section 9.2.1.
Moreover, we will also need a bound on the number of 2nd-class candidates.

Before we get to analyzing the 2nd-class individuals, we introduce several aux-

153

Chapter 9 Lower Bound of the UMDA on OneMax

iliary statements. We start with a very useful lemma on conditional binomially
distributed random variables.

I Lemma 9.1. Let x ,y ≥ 0, and let X be a binomially distributed random
variable with arbitrary parameters such that Pr[X ≥ x] > 0. Then

Pr[X ≥ x + y | X ≥ x] ≤ Pr[X ≥ y] . J

Proof. Let n and p be the parameters of the underlying binomial distribution ofX .
Given x ≥ 0, we de�ne the random variable Yx B X − x . Conditional on X ≥ x ,
we have Yx ∼ Bin(k,p) for k ∈ [0..n−x] and therefore Yx � X (see Section 2.2.2).
Hence, Pr[X ≥ x + y | X ≥ x] = Pr[Yx ≥ y | X ≥ x] ≤ Pr[X ≥ y]. �

Moreover, we are going to use a corollary that is based on Lemma 8 from
Sudholt and Witt [SW16a], the proof of which can be seen in an extended
version [SW16b, Lemma 9]. Also, the idea behind the corollary is given by
Sudholt and Witt [SW16b] but not presented as an independent statement.

I Lemma 9.2 ([SW16b, Lemma 9]). Let S be the sum ofm ∈ N+ independent
Poisson trials where trial i ∈ [m] has success probability pi ∈ [1/6, 5/6]. Then,
for all s ∈ [0..m], it holds that Pr[S = s] ∈ O

(
1/
√
m

)
. J

I Corollary 9.3. Let X be the sum of n ∈ N+ independent Poisson trials where
trial i ∈ [n] has success probability pi . Further, let Θ(n) many pi -s be within
[1/6, 5/6]. Then, for all x ∈ [0..n], it holds that Pr[X = x] ∈ O

(
1/
√
n
)
. J

Proof. Let m ∈ Θ(n) denote the number of pi -s that are within [1/6, 5/6]. When
sampling X , assume without loss of generality that the �rstm trials are the ones
with pi ∈ [1/6, 5/6]. Let S denote the sum of these trials, and let Y denote the
sum of the remaining n −m trials. Since the trials are independent, we get

Pr[X = x] =
x∑
s=0

Pr[S = s]Pr[Y = x − s] .

We can upper-bound Pr[S = s] ∈ O
(
1/
√
m

)
= O

(
1/
√
n
)

by using Lemma 9.2
andm ∈ Θ(n). Thus, there exists a constant c > 0 such that

Pr[X = x] ≤
c
√
n

x∑
s=0

Pr[Y = x − s] .

154

Preliminaries Section 9.2

Bounding the sum by 1 concludes the proof. �

Corollary 9.3 lets us easily get upper bounds for the probability that a sam-
pled individual has a certain (and arbitrary) �tness (with respect to either all n
positions or all positions but j). In order to apply it, we have to make sure that
Θ(n) frequencies are still within [1/6, 5/6]. Thus, we assume from now on that
this assumption holds. In Section 9.3.2, we go into detail and prove under which
circumstances this assumption holds.

Note that all statements from now on regarding a speci�c position j hold
regardless of the bits at any other of the Θ(n) positions that do not stay within
[1/6, 5/6]. This means that the statements are even true if the bits at those other
positions are chosen by an adversary.

We are now ready to analyze C∗ and the number of 2nd-class candidates.

I Lemma 9.4. Consider the UMDA with λ = (1 + β)µ optimizing OneMax.
Let ε > 0 be a constant such that ε < 1 − 1/(1 + β), and let Z̃ be a random
variable that takes values in [λ] only with probability at most 2e−(ε2/(3+3ε))µ and
is 0 otherwise. If there are Θ(n) frequencies in [1/6, 5/6], then the distribution of
C∗ is stochastically dominated by Bin

(
λ,O

(
1/
√
n
))
+ Z̃ , and the distribution of

CM +CM−1 +CM−2 is stochastically dominated by 1 + Bin
(
λ,O

(
1/
√
n
))
+ Z̃ . J

Proof. We carefully investigate and then reformulate the stochastic process
generating the λ individuals (before selection), restricted to n − 1 bits. Each
individual is sampled via a vector of probabilities p ′ = (p ′1, . . . ,p ′n−1) obtained
from the frequencies of the UMDA by leaving one entry out. By counting its
number of 1s, each of the λ individuals then falls into some level i ∈ [0..n − 1],
with some probability qi depending on the vector p ′. Since the individuals
are created independently, the number of individuals in level i is binomially
distributed with parameters λ and qi .

Next, we take an alternative view on the process of putting individuals into
levels, using the principle of deferred decisions. We imagine that the process
�rst samples all individuals in level 0 (through λ trials, all of which either hit the
level or not), then (using the trials which did not hit level 0) all individuals in
level 1, and so on, up to level n − 1.

The number of individuals C0 in level 0 is still binomially distributed with
parameters λ and q0. However, after all individuals in level 0 have been sampled,
the distribution changes. We have λ −C0 trials left, each of which can hit one of
the levels 1 to n − 1. In particular, such a trial will hit level 1 with probability

155

Chapter 9 Lower Bound of the UMDA on OneMax

q1/(1 − q0), by the de�nition of conditional probability, since level 0 is excluded.
This holds independently for all of the λ −C0 trials so thatC1 follows a binomial
distribution with parameters λ −C0 and q1/(1 − q0). Inductively, also all Ci for
i > 1 are binomially distributed; for example,Cn−1 is distributed with parameters
λ −Cn−2 − · · · −C0 and 1. Note that this model of the sampling process can also
be applied for any other permutation of the levels; we will make use of this fact.

Analyzing the number of 2nd-class individuals. We �rst focus on C∗ =
µ −C≥M+1 and will later use bounds on its distribution to analyze CM +CM−1 +
CM−2. Formally, by applying the law of total probability (Theorem 2.1), the
distribution of C∗ looks as follows for k ∈ [0..λ]:

Pr[C∗ ≥ k] =
n−1∑
i=1

Pr[M = i] · Pr[µ −C≥i+1 ≥ k | M = i] . (9.1)

We bound the terms of the sum di�erently with respect to the index i . First, we
look into a particular value i∗ such that Pr[M ≥ i∗] is exponentially unlikely, and
then make a case distinction via i∗.

LetX be the number of 1s in a single individual sampled (without conditioning
on certain levels being hit). Let c1 > 0 be a constant, and choose i∗ such that

Pr[X ≥ i∗ − 1] ≤ 1
(1 + ε)(1 + β) and

Pr[X ≥ i∗ − 1] ≥ 1
(1 + ε)(1 + β) −

c1
√
n
.

Such an i∗ must exist, since every level is hit with probability O
(
1/
√
n
)

when
sampling an individual, according to Corollary 9.3. Clearly, we also have i∗ ≤
n − 1.

A crucial observation is that there is a constant c2 > 0 such that Pr[M ≥ i∗] ≤
e−c2µ , since the expected number of individuals sampled with at least i∗ − 1 1s
is at most λ/

(
(1 + ε)(1 + β)

)
= µ/(1 + ε), and the probability of sampling at

least (1 + ε) · µ/(1 + ε) = µ is at most e−ε2 ·µ/(3(1+ε)) = e−c2µ by Cherno� bounds
(Theorem 2.19). Note that we have considered level i∗ − 1 because C≥i∗−1 < µ
implies M < i∗.

In equation (9.1), considering the partial sum for all i ≥ i∗, we therefore

156

Preliminaries Section 9.2

immediately estimate , as just discussed,

n−1∑
i=i∗

Pr[M = i] · Pr[µ −C≥i+1 ≥ k | M = i] ≤ Pr[M ≥ i∗]

≤ e−c2µ .

For the terms with i < i∗ (in particular, the case i = n − 1 is excluded), we
take a view on the �nal expression in equation (9.1) and focus on the conditional
probability Pr[µ −C≥i+1 ≥ k | M = i], in which we want to reformulate the
underlying event appropriately. Here we note that, de�ning C≤i =

∑i
j=0Cj , the

event
{µ −C≥i+1 ≥ k} ∩ {M = i}

is equivalent to
{C≤i ≥ λ − µ + k} ∩ {M = i} ,

and, using the de�nition of M , this is also equivalent to

{C≤i ≥ λ − µ + k} ∩ {C≤i−2 < λ − µ} ∩ {C≤i−1 ≥ λ − µ} .

We now take the above-mentioned view on the stochastic process and assume
that levels 0 to i − 2 have been sampled, and a number of experiments in a
binomial distribution is carried out to determine the individuals from level i − 1.
Hence, given some C≤i−2 C a < λ − µ, our event is equivalent to the event

E∗ B
{
Ci +Ci−1 ≥ (λ − µ − a) + k

}
∩ {Ci−1 ≥ λ − µ − a} .

Recall from our model above that Ci−1 follows a binomial distribution with
λ − a trials and with a certain success probability s . Similarly, Ci follows a
binomial distribution with parameters λ−a−Ci−1 and s ′. As we are interested in
a cumulative distribution, we may pessimistically upper-bound the total number
of trials forCi−1 by λ. Regarding s , note that it denotes the probability to sample
an individual with i − 1 1s, given that it cannot have less than i − 1 1s. Note
further that Pr[X ≥ i∗ − 1], where X again denotes the level of the individual
sampled in a trial, is a lower bound for all probabilities Pr[X ≥ i − 1], since i < i∗.
To upper-bound s , we use Corollary 9.3, which tells us that the unconditional
probability to hit a level is in O

(
1/
√
n
)
, regardless of which level is hit. However,

we have to condition on the event that certain levels (namely 0 to i − 2, where

157

Chapter 9 Lower Bound of the UMDA on OneMax

i < i∗) cannot be hit anymore. We pessimistically exclude even some more
levels than possible, more precisely, we exclude the levels from 0 up to i∗ − 2.
This means that we condition on Pr[X ≥ i∗ − 1]. By the de�nition of conditional
probability, the probability of O

(
1/
√
n
)

from Corollary 9.3 thus gets increased
by a factor of 1/Pr[X ≥ i∗ − 1], which is constant. Hence, Ci−1 is stochastically
dominated by a binomial distribution with parameters λ and O

(
1/
√
n
)
.

Similarly, assuming that also level i − 1 has been sampled, Ci is dominated by
a binomial distribution with parameters λ −Ci−1 and O

(
1/
√
n
)
.

In order to �nally bound Pr[E∗] from above, which involves a condition on
the outcome of Ci−1, we apply Lemma 9.1, where we let X B Ci−1 and x =
λ− µ −a as well as y = k . Since we have boundedCi−1 (without the condition on
Ci−1 ≥ x) by a binomial distribution with success probability O

(
1/
√
n
)
, we get

from the lemma that Pr[Ci−1 − x ≥ k | Ci−1 ≥ x] ≤ Pr
[
Bin

(
λ,O

(
1/
√
n
))
≥ k

]
.

Note that the right-hand side is a bound independent of C0, . . . ,Ci−1. With
respect to Ci , we do not consider an additional condition on its outcome but
use the result Pr[Ci ≥ k] ≤ Pr

[
Bin(λ −Ci−1,O

(
1/
√
n
)
) ≥ k

]
derived in the last

paragraph directly. Hence, both Ci−1 − x , conditional on Ci−1 ≥ x , and Ci have
been bounded by binomial distributions with a success probability in O

(
1/
√
n
)
.

In E∗, we are confronted with the sum of these two random variables and study
the distribution of the sum. Together, we get

Pr[E∗] ≤ Pr
[
Bin(λ,O

(
1/
√
n
)
) ≥ k

]
,

since we consider at most λ trials. Pulling this term in front of the sum over
i for the terms i < i∗ in equation (9.1) and estimating this sum with 1 (since
we sum over mutually disjoint events) leaves us with an additional term of
Pr

[
Bin(λ,O

(
1/
√
n
)
) ≥ k

]
for Pr[µ −C≥M+1 ≥ k]. This proves the lemma’s state-

ment on the distribution of C∗.

Analyzing the number of 2nd-class candidates. We are left with analyz-
ing C∗∗ B CM + CM−1 + CM−2. We handle the very unlikely case M = n − 1,
whose probability is upper-bounded by Pr[M ≥ i∗], separately and cover it by
adding the random variable Z̃ to our result. By a symmetrical argument to the
above, for some index i∗∗ such that there is a constant c3 > 0 such that

Pr[X < i∗∗] = 1 − 1
(1 − ε)(1 + β) +

c3
√
n
,

158

Preliminaries Section 9.2

we obtain that M ≤ i∗∗ also happens with probability at most e−ε2 ·µ/(2(1−ε)) ≤
e−ε2 ·µ/(3+3ε)), for ε < 1− 1/(1+ β). This unlikely case is also included in Z̃ . From
now on, we assume i∗∗ < M < n − 1. We note that by de�nition of M , we then
have C≥M ≤ µ and C≥M−1 ≥ µ + 1. Hence, CM−1 ≥ 1 such that we have to
investigate the distribution of C∗∗ conditional on {CM−1 ≥ 1 + (µ −C≥M)}.

We take the same view on the stochastic process as above but imagine now
that the levels are sampled in the order from n−1 down to 0. Conditional on that
the levels n−1 to M+1 have been sampled, the levels M , M−1, and M−2 are still
hit with probability O

(
1/
√
n
)

each, since Pr[X < i∗∗] is a constant. Therefore,
the distribution of CM is bounded according to

Pr[CM ≥ k] ≤ Pr
[
Bin(λ −C≥M+1,O

(
1/
√
n
)
) ≥ k

]
.

In order to analyze CM−1, we recall that we have to condition on the event
{CM−1 ≥ 1 + (µ −C≥M)}. Hence, we can use Lemma 9.1 similarly as above and
get that

Pr[CM−1 ≥ 1 + (µ −C≥M) + k | CM−1 ≥ 1 + (µ −C≥M)]
≤ Pr

[
Bin(λ −C≥M ,O

(
1/
√
n
)
) ≥ k

]
.

Note that the right-hand side of the inequality is independent of C∗.
Applying the same argumentation once more for level M − 2 (where no

conditions on the size exist), we get

Pr[CM−2 ≥ k] ≤ Pr
[
Bin(λ −C≥M−1,O

(
1/
√
n
)
) ≥ k

]
.

Using our stochastic bound onC∗ from above, we altogether obtain thatC∗∗ is
stochastically dominated by the sum of 1, three binomially distributed random
variables with a total number of λ trials and success probability O

(
1/
√
n
)

each,
and the variable Z̃ . �

Now that we understand howC∗ is distributed, we can look at the distribution
of both the 1st- and 2nd-class individuals. We even can take a �ner-grained view
on the number of 1s contributed by them.

I Lemma 9.5. Consider the UMDA optimizing OneMax. Consider further that
Θ(n) frequencies are within [1/6, 5/6] and that we are in iteration t . Let j ∈ [n]

159

Chapter 9 Lower Bound of the UMDA on OneMax

be any position, and let Xt−1 denote the number of 1s at position j in iteration
t − 1.

The distribution Z1,t of the number of 1s of 1st-class individuals is stochas-
tically dominated by Bin(µ,Xt−1/µ), and the distribution Z2,t of the number
of 1s of 2nd-class individuals is stochastically dominated by C∗, where C∗ is
distributed as seen in Lemma 9.4. In particular, there are constants c1, c2 > 0
such that

E
[
Z2,t

]
≤

c2µ
√
n
+ e−c1µ and

E
[
Z2,t

�� Xt−1
]
≤ c2

(
Xt−1
µ
+
Xt−1
√
n

)
+ e−c1µ . J

Proof. The distribution of Z1,t has already been described in Section 9.2.1 as
Bin(µ −C∗,Xt−1/µ), which is dominated by Bin(µ,Xt−1/µ). We also know that
the number of 2nd-class individuals is bounded from above by C∗, and their
number of 1s is trivially bounded by this cardinality too. The �rst statement on
the expected value of Z2,t follows by taking the expected value of the binomial
distribution and noting that there is a constant c3 > 0 such that E

[
Z̃
]
≤ λe−c1µ =

e−c3µ , since λ ∈ Θ(µ).
In order to show the second statement on the expected value of Z2,t , we recall

our de�nition of 2nd-class candidates from above. These candidates have not
been subject to selection yet. Each of these candidates samples a 1 at position j
independently of the others with probability Xt−1/µ, thus the expected total
number of 1s in 2nd-class candidates is the expected number of candidates
multiplied withXt−1/µ, by Wald’s equation (Theorem 2.21). By Lemma 9.4, there
is an expected number of at most 1 + c2µ/

√
n + e−c3µ of candidates, using again

λ ∈ Θ(µ). Since the 2nd-class individuals are only selected from the candidates,
the claim on the expected value of Z2,t follows. �

9.3 Lower Bound on OneMax

In the following, we derive a lower bound on the UMDA’s run time on OneMax.
First, we state the main theorem.

I Theorem 9.6. For some constant β > 0, let λ = (1 + β)µ. Then the expected
optimization time of the UMDA on OneMax is Ω

(
µ
√
n + n log(n)

)
. J

160

Lower Bound on OneMax Section 9.3

In order to prove the theorem, we distinguish between di�erent cases for
λ: small, medium, and large. We cover the lemmas that we use to prove the
di�erent cases in di�erent sections. The �rst and the last case are fairly easy to
prove, hence we discuss them �rst, leaving the second case of medium λ – the
most di�cult one – to be discussed last.

In each of the following sections, we introduce the basic idea behind each of
the proofs.

9.3.1 Small Population Sizes

In this section, for some constant c1 > 0, we consider a population size of
λ ≤ (1 − c1) log2(n). If the population size is that small, the probability that a
frequency reaches 1/n is rather high, and thus the probability to sample the
optimum will be quite small.

If enough frequencies drop to 1/n, we can bound the expected number of
�tness evaluations until we sample the optimum by Ω

(
n log(n)

)
. The following

lemma and its proof closely follow Sudholt and Witt [SW16b, Lemma 13].

I Lemma 9.7. Assume that Ω(nc1) frequencies, c1 > 0 being a constant, are at
1/n. Then the UMDA needs with overwhelming probability and in expectation
Ω

(
n log(n)

)
function evaluations to optimize any function, where the all-1s string

is the unique global optimum. J

Proof. We look at
(
c2n ln(n)

)
/(2λ) iterations, where c2 < c1 is a positive constant,

and show that it is very unlikely to sample the all-1s string during that time.
Note that this translates to Ω

(
n log(n)

)
function evaluations until the optimum

is sampled, as the UMDA samples λ o�spring every iteration.
Consider a single position with frequency at 1/n. The probability that this

position never samples a 1 during our time of
(
c2n ln(n)

)
/(2λ) iterations is at

least ((
1 − 1

n

)λ) c2n ln(n)
2λ

=

(
1 − 1

n

) c2n ln(n)
2

≥
1
2e
−
c2
2 ln(n)

≥ n−c2

161

Chapter 9 Lower Bound of the UMDA on OneMax

if n is large enough, where we used Theorem 2.22.
Given at least c3nc1 frequencies at 1/n, with c3 > 0 being a constant, the

probability that all of these positions sample at least one 1 during
(
c2n ln(n)

)
/(2λ)

iterations is at most, using Theorem 2.22,

(1 − n−c2)c3n
c1
≤ e−c3nc1−c2 ,

which is exponentially small in n, since c1 > c2, due to our assumptions. Hence,
with overwhelming probability, UMDA will need at least Ω

(
n log(n)

)
function

evaluations to �nd the optimum. �

Note that since the UMDA is unbiased (Theorem 5.11), Lemma 9.7 holds for
any function with a unique global optimum, if Ω(nc1) frequencies are at the
wrong borders.

We can now prove our lower bound for small population sizes.

I Theorem 9.8. Let λ ≤ (1−c1) log2(n) for some arbitrarily small constant c1 >
0. Then the UMDA needs with overwhelming probability and in expectation
Ω

(
n log(n)

)
function evaluations to optimize any function with a unique global

optimum. J

Proof. Since the UMDA is unbiased, we assume without loss of generality that
the global optimum is the all-1s string. We consider an arbitrary position i ∈ [n]
and study the �rst iteration of the UMDA.

The probability that all λ bits at position i are sampled as 0 equals 2−λ ≥
n−(1−c1). In this case, the frequency of the position is set to 1/n. The expected
number of such positions is nc1 , and by Cherno� bounds (Theorem 2.19), with
overwhelming probability, Ω(nc1) such positions exist (noting that c1 is a positive
constant by assumption).

Applying Lemma 9.7 yields the result, since we already haveΩ(nc1) frequencies
at 1/n after a single iteration of the UMDA with overwhelming probability. �

9.3.2 Large Population Sizes

We now show that a population size of λ ∈ Ω
(√
n log(n)

)
leads to a run time

of Ω
(
n log(n)

)
. In order to prove this, we �rst show that it is unlikely that too

many frequencies leave the interval [1/6, 5/6] quickly in this scenario. Thus, it
is also unlikely to sample the optimum.

162

Lower Bound on OneMax Section 9.3

We start by proving that a single frequency does not leave [1/6, 5/6] too
quickly if µ ∈ ω(1). We make use of Corollary 9.3 and the lemmas following
from it, all of which make use of the lemmas we prove here themselves. At the
end of this section, we discuss why this seemingly contradictory approach is
feasible.

I Lemma 9.9. Consider an arbitrary frequency of the UMDA with λ ∈ ω(1)
optimizing OneMax. For a su�ciently small constant γ , during the �rst at
least γ · min{µ,

√
n} iterations, this frequency will not leave [1/6, 5/6] with a

probability of at least a constant greater than 0. J

Proof. We consider the expected change of an arbitrary position’s frequency pt
over time t . Let Xt , again, denote the number of 1s of the µ selected individuals.
Note that pt+1 = Xt/µ.

Due to Lemma 9.5, we know that Xt is the sum of two random variables Z1,t
and Z2,t , where Z1,t � Bin(µ,Xt−1/µ) corresponds to the number of 1s due to
the 1st-class individuals, and Z2,t � Bin

(
λ,O

(
1/
√
n
))
+ Z̃t corresponds to the

2nd-class individuals’ number of 1s, pessimistically assuming that each 2nd-class
individual contributes a 1.

First, we upper-bound the probability of pt reaching 5/6 during γ ·min{µ,
√
n}

iterations. Then we do the same for reaching 1/6. Taking the converse probability
of a union bound over both cases then yields the result.
The probability of reaching 5/6. Since Z1,t is dominated by a martingale

which we want to account for in the process, we analyze ϕt+1 B (Xt/µ)
2, with

ϕ0 = (1/2)2. The original process of pt reaching 5/6 translates into the new
process p2t reaching (5/6)2.

We bound the expected change during one step:

E[ϕt+1 − ϕt | Xt−1] =
1
µ2

(
E
[
X 2
t

�� Xt−1
]
− X 2

t−1
)

=
1
µ2

(
E
[
(Z1,t + Z2,t)

2 �� Xt−1
]
− X 2

t−1

)
=

1
µ2

(
E
[
Z 2
1,t

�� Xt−1
]
+ E

[
Z 2
2,t

�� Xt−1
]

+ 2E
[
Z1,t · Z2,t

�� Xt−1
]
− X 2

t−1
)
.

As discussed before, we look at the dominating distributions of Z1,t and

163

Chapter 9 Lower Bound of the UMDA on OneMax

Z2,t . Further, note that Z1,t and Z2,t are not independent but their dominating
distributions are.

We calculate the di�erent terms separately. Using that Z1,t � Bin(µ,Xt−1/µ)
and that, for any two random variables Y and Y ’, it holds that E

[
Y 2 �� Y ′] =

Var[Y | Y ′] + E[Y | Y ′]2 (similar to what is discussed in De�nition 2.6 and using
Theorem 2.12), we get

E
[
Z 2
1,t

�� Xt−1
]
≤ µ

Xt−1
µ

(
1 − Xt−1

µ

)
+

(
µ
Xt−1
µ

)2
≤ Xt−1 + X

2
t−1 .

For Z2,t , let Z ∗t ∼ Bin
(
λ,O

(
1/
√
n
))

, and let c1 > 0 be a constant. Recall that
Z̃ is a random variable that takes values in [λ] with probability e−c1µ and is 0
otherwise. Similar to before and noting that µe−c1µ ≤ e−c2µ , for a constant c2 > 0,
we see that there is a constant c3 > 0 such that

E
[
Z 2
2,t

�� Xt−1
]
≤ E

[
(Z ∗t)

2 �� Xt−1
]
+ E

[
(Z̃t)

2 �� Xt−1
]
+ 2E

[
Z ∗t

�� Xt−1
]
E
[
Z̃t

�� Xt−1
]

≤
c3µ
√
n
+
c3µ

2

n
+ e−c2µ + c3µ

√
n
e−c2µ

≤ max
{
c3µ
√
n
,
c3µ

2

n
, e−c2µ

}
,

because the term c3µ/(
√
ne−c2µ) is always dominated by another term. Note that

c3µ/
√
n dominates if µ ∈ o

(√
n
)

and µ ≥ c4 ln(n) for a su�ciently large constant
c4 > 0. For µ ∈ Ω

(√
n
)
, the term c3µ

2/n dominates. In the remaining cases (when
µ is at most logarithmic), the term e−c2µ dominates.

By Lemma 9.5, Xt−1 ≤ µ and µ ∈ Ω
(√
n log(n)

)
, we get

E
[
Z2,t

�� Xt−1
]
≤ max

{
c3µ
√
n
, e−c2µ

}
,

where the term µe−c1µ only dominates if µ ≤ c5 ln(n) for a su�ciently small
constant c5 > 0.

Using our prior calculations and independence of the dominating distributions,

164

Lower Bound on OneMax Section 9.3

we can bound

2E
[
Z1,t · Z2,t

�� Xt−1
]
≤ Xt−1 ·max

{
c3µ
√
n
, e−c2µ

}
.

Thus, we get

E[ϕt+1 − ϕt | Xt−1] ≤
1
µ2

(
Xt−1 + X

2
t−1 +max

{
c3µ
√
n
,
c3µ

2

n
, e−c2µ

}
+ Xt−1 ·max

{
c3µ
√
n
, e−c2µ

}
− X 2

t−1

)
≤

1
µ2

(
max

{
c3µ
√
n
,
c3µ

2

n
, e−c2µ

}
+ Xt−1

(
1 +max

{
c3µ
√
n
, e−c2µ

}))
Xt−1≤µ
≤

2
µ2
µ

(
1 +max

{
c3µ
√
n
, e−c2µ

})
∈ Θ

(
max

{
1
µ
,
1
√
n

})
.

We now look at how far ϕ gets within T iterations and want to bound the
probability of it going above (5/6)2. Note that

ϕT = ϕ0 +
T−1∑
t=0
(ϕt+1 − ϕt) .

Due to our bounds and Theorem 2.12, we get, for a su�ciently large constant ζ ,

E[ϕT] =
(
1
2

)2
+

T−1∑
t=0

E
[
E[ϕt+1 − ϕt | Xt−1]

]
≤

1
4 + ζT ·max

{
1
µ
,
1
√
n

}
.

165

Chapter 9 Lower Bound of the UMDA on OneMax

Using Markov’s inequality (Theorem 2.18) gives us, for k > 1,

Pr
[
ϕT ≥ k

(
1
4 + ζT ·max

{
1
µ
,
1
√
n

})]
≤ Pr

[
ϕT ≥ kE[ϕT]

]
≤

1
k
.

We want that (5/6)2 ≥ k
(
1/4 + ζT · max{1/µ, 1/

√
n}

)
holds, since then

Pr
[
ϕT ≥ (5/6)2

]
is upper-bounded by Pr

[
PT ≥ k(1/4 + ζT ·max{1/µ, 1/

√
n})

]
≤

1/k , which we want to be less than 1/2 in order to apply a meaningful union
bound over both cases at the end of this proof. Hence, assume k > 2. We get(

5
6

)2
≥ k

(
1
4 + ζT ·max

{
1
µ
,
1
√
n

})
⇔ T ≤

(
25
36k −

1
4

)
min{µ,

√
n}

ζ
,

which is positive as long as k < 25/9. Thus, we can bound k ∈ (2, 25/9).
Therefore, if T ≤ γ ·min{µ,

√
n}, for a su�ciently small constant γ > 0, then

the probability of an arbitrary frequency exceeding 5/6 is at most a constant less
than 1/2 (for k ∈ (2, 25/9)).

The probability of reaching 1/6. We now analyze how likely it is that pt
hits 1/6 in a similar amount of time. For this case, we de�ne a slightly di�erent
potential ϕ ′t+1 B (1−Xt/µ)

2 = 1−2Xt/µ+(Xt/µ)
2, that is, we mirror the process

at 1/2 and then use the same potential as before.
Looking at the expected di�erence during one step, we see that

E
[
ϕ ′t+1 − ϕ

′
t

�� Xt−1
]
= 1 − 2E[Xt | Xt−1]

µ
+

(
E[Xt | Xt−1]

µ

)2
− 1 + 2Xt−1

µ
−

(
Xt−1
µ

)2
=

2
µ

(
Xt−1 − E[Xt | Xt−1]

)
+ E[ϕt+1 − ϕt | Xt−1] ,

where we only have to determine the expected value of Xt−1 − E[Xt | Xt−1],
because we already analyzed E[ϕt+1 − ϕt | Xt−1] before.

Considering just the 1st-class individuals, it holds that E[Xt | Xt−1] = Xt−1,
because we then have a martingale. But due to the elitist selection of the UMDA,
actually E[Xt | Xt−1] ≥ Xt−1 holds, because of the bias of the 2nd-class individu-

166

Lower Bound on OneMax Section 9.3

als, which prefer 1s over 0s. Thus, E[Xt−1 − Xt | Xt−1] ≤ 0, and we get

E
[
ϕ ′t+1 − ϕ

′
t

�� Xt−1
]
≤ E[ϕt+1 − ϕt | Xt−1] ,

which we already analyzed.
Hence, we can argue analogously as before and get, again, a probability of

at most a constant less than 1/2 to reach 1/6 during at most γ · min{µ,
√
n}

iterations. Taking a union bound over both cases concludes the proof. �

We now expand the case from a single frequency to all frequencies.

I Lemma 9.10. For a su�ciently small constant γ , during the �rst at least
γ ·min{µ,

√
n} iterations of the UMDA optimizing OneMax, it holds that Θ(n)

frequencies stay in the interval [1/6, 5/6] with at least constant probability. J

Proof. We look atT ≤ γ ·min{µ,
√
n} iterations. Thus, the probability for a single

frequency to leave [1/6, 5/6] is at most a constant c < 1, according to Lemma 9.9.
In expectation, there are at most cn frequencies outside of [1/6, 5/6], and due to
Markov’s inequality (Theorem 2.18), for a constant δ > 0 with (1 + δ)c < 1, the
probability that there are at least (1 + δ)cn such frequencies is at most 1/(1 + δ).
This means that with at least constant probability, at least

(
1− c(1+ δ)

)
n ∈ Θ(n)

frequencies are still within [1/6, 5/6]. �

Note that the proof of Lemma 9.9 relies on Corollary 9.3, and the proof of
Corollary 9.3 also relies on Lemma 9.9. Formally, this cyclic dependency can
be solved by proving both propositions in conjunction via induction over the
number of iterations up to γ ·min{µ,

√
n}, for a su�ciently small constant γ . For

the base case, all frequencies are at 1/2 ∈ [1/6, 5/6], and both propositions hold.
For the inductive step, assuming that t < γ ·min{µ,

√
n}, we already now that

both propositions hold up to iteration t . Thus, the requirements for the proofs
of Corollary 9.3 and Lemma 9.9 are ful�lled, and the proofs themselves pass.

We now prove an easy lower bound.

I Corollary 9.11. Consider the UMDA with µ ∈ Ω
(√
n log(n)

)
optimizing

OneMax. Its run time is then in Ω
(
n log(n)

)
in expectation and with at least

constant probability. J

Proof. Since we assume µ ∈ Ω
(√
n log(n)

)
, Lemma 9.10 yields that within at most

γ · min{µ,
√
n} = γ

√
n iterations, γ su�ciently small, at least c1n frequencies,

167

Chapter 9 Lower Bound of the UMDA on OneMax

with c1 > 0 being a constant, are at most 5/6 with probability Ω(1). Hence,
assuming this to happen, the probability to sample the optimum is at most
(5/6)c1n ≤ e−c2n , where c2 > 0 is a constant. Thus, the expected run time is at
least γ

√
nλ ∈ Ω

(
n log(n)

)
. �

9.3.3 Medium Population Sizes

In this section, we consider the remaining population sizes of µ ∈ O
(√
n log(n)

)
∩

Ω
(
log(n)

)
, where we recall that λ = (1 + β)µ. Basically, we lower-bound the

probability that a single frequency hits 1/n. In order to do so, we analyze the
one-step change of the number of 1s at the frequency’s position and approximate
it via a normal distribution. For this, we use a general form of the central limit
theorem (CLT), along with a bound on the approximation error.

I Lemma9.12 (CLTWithBerry-Esseen Inequality [Fel71, ChapterXVI.5,
Theorem 2]). Letm ∈ N+, and let (Xi)i ∈[m] be a sequence of independent ran-
dom variables, where, for each i ∈ [m], the random variableXi has �nite expected
value µi , variance σ 2

i , and third central moment. Further, de�ne

s2m B
m∑
i=1

σ 2
i and Cm B

1
sm

m∑
i=1
(Xi − µi) .

Then the distribution of Cm can be approximated by the standard normal
distribution, and for the approximation error, it holds for all x ∈ R that��Pr[Cm ≤ x] − Φ(x)

�� ≤ C ·

∑m
i=1 E

[
|Xi − µi |

3]
s3m

,

whereC > 0 is a constant and Φ(x) denotes the cumulative distribution function
of the standard normal distribution. J

Note that the approximation error in Lemma 9.12 is vanishing if

lim
m→∞

1
s3m

m∑
i=1

E
[
|Xi − µi |

3] = 0 (9.2)

holds. In this case, Cm converges in distribution to the standard normal distribu-
tion [Bil95, Theorem 27.3]. Equation (9.2) is called the Lyapunov condition.

168

Lower Bound on OneMax Section 9.3

In order to make use of Lemma 9.12, we need to study the stochastic pro-
cess on the Xt values (which, again, denotes the number of 1s of an arbitrary
position) and determine the accumulated expectations and variances of every
single one-step change. Using the notation from Lemma 9.5, we note that the
Xt value in expectation changes very little from one step to the next. How-
ever, considerable variances are responsible for changes of the Xt value, and it
turns out that the variances are heavily dependent on the current state. We get
Var

[
Z1,t

�� Xt−1
]
≤ Xt−1(1 − Xt−1/µ), that is, if Xt−1 ≤ µ/2, then the 1st-class

individuals are responsible for a typical deviation of
√
Xt−1. This dependency of

Var
[
Z1,t

�� Xt−1
]

on Xt−1 makes a direct application of Lemma 9.12 di�cult.

In order to make Lemma 9.12 applicable, we de�ne a potential function that
transforms Xt−1 such that the expected di�erence between two points in time
is still close to 0, but the variance is independent of the state. This potential
function is inspired by the approach used by Sudholt and Witt [SW16a] in
order to analyze two very simple EDAs. Since the standard deviation of Z1,t
is Θ

(√
Xt−1

)
, we work with a potential function whose slope at point Xt−1 is

Θ
(
1/
√
Xt−1

)
, so that the dependency of the variance on the state cancels out.

We proceed with the formal de�nition. Let д denote the potential function,
de�ned over [0..µ]. Our de�nition is simpler than the one from Sudholt and
Witt [SW16a], as we do not need д to be centrally symmetric around µ/2. We
de�ne

д(x) B
√
µ

µ−1∑
j=x

1
√
j + 1

.

Since we are interested in the one-step change in potential for a point in time
t ∈ N, let ∆t B д(Xt+1) − д(Xt).

We will often use the following bounds on the change of potential. For
x ,y ∈ [0..µ] with y < x , we get

д(y) − д(x) =
√
µ
x−1∑
j=y

1
√
j + 1

≤
√
µ
x − y
√
y + 1

, and (9.3)

д(y) − д(x) =
√
µ
x−1∑
j=y

1
√
j + 1

≥
√
µ
x − y
√
x + 1

. (9.4)

169

Chapter 9 Lower Bound of the UMDA on OneMax

Bounding the Expected Change in Potential

We start by bounding the expected value of ∆t and see that also the transformed
process moves very little in expectation (however, its variance will be large,
as shown in the following subsection). Because of the Lyapunov condition
(equation (9.2)), which we address in Section 9.3.3, we do so in both directions.

I Lemma 9.13. Let µ ∈ O
(√
n log(n)

)
. Then, for all t ∈ N and all Xt ∈ [µ − 1],

there are constants c1, c2 > 0 such that

E[∆t | Xt] ≥ −

(
e−c1µ + c2

(Xt

µ
+

Xt
√
n

))√ µ

Xt + 1
and

E[∆t | Xt] ≤ 120
√

µ

Xt
. J

Proof. Consider an iteration t ∈ N. We abbreviate Xt = x .
The lower bound. First, we derive the lower bound. We have E[∆t | x] =

E[д(Xt+1) | x]−д(x). Due to Lemma 9.5, we get that there are constants c1, c2 > 0
such that

E[Xt+1 | x] ≤ x + e−c1µ + c2
(
x

µ
+

x
√
n

)
.

Since д is convex, we get by Jensen’s inequality (Theorem 2.20) that

E[д(Xt+1) | x] − д(x) ≥ д
(
E[Xt+1 | x]

)
− д(x)

≥ д

(
x + e−c1µ + c2

(
x

µ
+

x
√
n

))
− д(x) .

Applying equation (9.3) gives us the desired result of

д

(
x + e−c1µ + c2

(
x

µ
+

x
√
n

))
− д(x) ≥ −

(
e−c1µ + c2

(
x

µ
+

x
√
n

))√
µ

x + 1 .

The upper bound. We show the upper bound by ignoring 2nd-class individ-
uals, since they are biased toward increasing x and, therefore, decreasing ∆t .
Hence, we now assume thatXt+1 follows a binomial distribution with parameters
µ and x/µ, that is, E[Xt+1 − x | x] = 0. In a delicate analysis, we estimate how
much E[∆t | x] is shifted away from 0 due to the non-linearity of the potential

170

Lower Bound on OneMax Section 9.3

function. We use the inequalities

д(i) ≤ д(x) +

√
µ(x − i)
√
i + 1

for i < x , and

д(i) ≤ д(x) +

√
µ(x − i)
√
i + 1

for i > x ,

which are just rearrangements of equations (9.3) and (9.4), noting that x − i is
negative in the second inequality. We estimate

E[∆t | x] =

µ∑
i=0

(
д(i) − д(x)

)
Pr[Xt+1 = i | x]

≤

x−1∑
i=0

(
д(x) +

√
µ(x − i)
√
i + 1

− д(x)

)
Pr[Xt+1 = i | x]

+

µ∑
i=x+1

(
д(x) +

√
µ(x − i)
√
i + 1

− д(x)

)
Pr[Xt+1 = i | x]

=

∞∑
i=0

(√
µ(x − i)
√
i + 1

Pr[Xt+1 = i | x]

)
.

We now split the set of possible outcomes of i into intervals of length
√
x .

More precisely, for k ∈ N, we de�ne Ik B {dx − (k + 1)
√
xe, . . . , bx − k

√
xc}.

The points in these intervals are all less than or equal to x . In order to cover the
outcomes above x when considering some i ∈ Ik , we consider the points i and
2x − i together, exploiting that they are mirrors of each other of distance x − i
to x , more formally x − i = −(x − (2x − i)). Plugging in i and 2x − i for i ∈ Ik
and summing over all k ≥ 0, we obtain

E[∆t | x] ≤
∞∑
k=0

∑
i ∈Ik

(√
µ(x − i)
√
i + 1

Pr[Xt+1 = i | x]

+

√
µ(i − x)

√
2x − i + 1

Pr[Xt+1 = 2x − i | x]
)

≤

∞∑
k=0

∑
i ∈Ik

(√
µ(x − i)√

x − (k + 1)
√
x + 1

Pr[Xt+1 = i | x]

171

Chapter 9 Lower Bound of the UMDA on OneMax

−

√
µ(x − i)√

x + (k + 1)
√
x + 1

Pr[Xt+1 = 2x − i | x]
)
,

where the last inequality used that the choice i = x − (k + 1)
√
x maximizes both

the positive and the negative term in the inner sum.
We take special care of intervals where x − (k + 1)

√
x ≤ x/2 (that is, k ≥

√
x/2 − 1) and handle them directly. The maximum increase in potential is

observed when Xt+1 = 0 and equals

√
µ
x−1∑
j=0

1
√
j + 1

≤
√
µ

(
1 +

∫ x

1

1
√
z
dz

)
=
√
µ(1 + 2

√
x − 2

√
1)

≤
√
4µx ,

where the �rst inequality approximates the sum by an integral by noting that
1/
√
z is monotonically decreasing in z [Cor+09, Inequality (A.12)].

By Cherno� bounds (Theorem 2.19), the probability of Xt+1 ≤ x/2 is at most
e−x/24. Hence, the intervals of index at least kmax B

√
x/2 − 1 contribute only a

term of S∗ B
√
4µxe−x/24 ≤ 100

√
µ/x to E[∆t | x].21

For smaller k , we argue more precisely. Note that, for a ≥ b > 0, it holds that
a − b ≤ (a2 − b2)/2b. Now, since√

x + (k + 1)
√
x + 1√

x − (k + 1)
√
x + 1

= 1 +
√
x + (k + 1)

√
x + 1 −

√
x − (k + 1)

√
x + 1√

x − (k + 1)
√
x + 1

≤ 1 +

2(k+1)
√
x

2
√
x−(k+1)

√
x+1√

x − (k + 1)
√
x + 1

= 1 + (k + 1)
√
x

x − (k + 1)
√
x + 1

,

we have

E[∆t | x]

21 The inequality 2xe−x/24 ≤ 100/
√
x for x ≥ 1 can be checked using elementary calculus.

172

Lower Bound on OneMax Section 9.3

≤

kmax∑
k=0

∑
i ∈Ik

(√
µ(x − i)√

x + (k + 1)
√
x + 1

(
1 + (k + 1)

√
x

x − (k + 1)
√
x + 1

)
Pr[Xt+1 = i | x]

−

√
µ(x − i)√

x + (k + 1)
√
x + 1

Pr[Xt+1 = 2x − i | x]
)
+ S∗ . (9.5)

We now look more closely into the inner sum and work with the abbreviation

E∗k B
∑
i ∈Ik

(
(x − i) · Pr[Xt+1 = i] − (x − i)Pr[Xt+1 = 2x − i]

)
.

Coming back to inequality (9.5), this enables us to estimate the inner sum for
arbitrary k by∑

i ∈Ik

(√
µ(x − i)√

x + (k + 1)
√
x + 1

(
1 + (k + 1)

√
x

x − (k + 1)
√
x + 1

)
Pr[Xt+1 = i | x]

−

√
µ(x − i)√

x + (k + 1)
√
x + 1

Pr[Xt+1 = 2x − i | x]
)

= E∗k ·

√
µ√

x + (k + 1)
√
x + 1

+
∑
i ∈Ik

√
µ(x − i)√

x + (k + 1)
√
x + 1

·
(k + 1)

√
x

x − (k + 1)
√
x + 1

Pr[Xt+1 = i | x]

≤
E∗k
√
µ√

x + (k + 1)
√
x + 1

+
∑
i ∈Ik

√
µ(x − i)(k + 1)

x − (k + 1)
√
x + 1

Pr[Xt+1 = i | x] ,

where the last inequality estimated
√
x/

√
x + (k + 1)

√
x + 1 ≤ 1. Since k ≤ kmax,

that is, (k + 1)
√
x ≤ x/2, the last bound is easily bounded from above by

E∗k
√
µ√

x + (k + 1)
√
x + 1

+
∑
i ∈Ik

√
µ(x − i)(k + 1)

x
2

Pr[Xt+1 = i | x] .

We proceed by bounding the sum over Ik , noting that we have, by Cherno�

173

Chapter 9 Lower Bound of the UMDA on OneMax

bounds (Theorem 2.19),

Pr[Xt+1 ∈ Ik | x] ≤ Pr
[
Xt+1 ≤ x − k

√
x

�� x]
≤ e−

k2
3 .

Hence, since x − i ≤ (k + 1)
√
x for i ∈ Ik , we get∑

i ∈Ik

√
µ(x − i)(k + 1)

x
2

≤
2√µ
x

∑
i ∈Ik

(k + 1)2
√
xPr[Xt+1 = i | x]

≤
2√µ(k + 1)2
√
x

∑
i ∈Ik

Pr[Xt+1 = i | x]

≤
2√µ(k + 1)2e− k

2
3

√
x

.

Altogether, we have obtained from inequality (9.5) the simpler inequality

E[∆t | x] ≤
kmax∑
k=0

©­«
E∗k
√
µ√

x + (k + 1)
√
x + 1

+
2√µ(k + 1)2e− k

2
3

√
x

ª®¬ + S∗ , (9.6)

which we will bound further. The idea is to exploit that∑
k≥0

E∗k = 0 , (9.7)

which is a consequence of E[Xt+1 | x] = x , since

0 = E[Xt+1 | x] − x

=
∑
k≥0

∑
i ∈Ik

(
(i − x) · Pr[Xt+1 = i | x] + ((2x − i) − x)Pr[Xt+1 = 2x − i | x]

)
=

∑
k≥0

E∗k .

174

Lower Bound on OneMax Section 9.3

Using similar calculations as above, we manipulate the sum∑
k≥0

E∗k
√
µ√

x + (k + 1)
√
x + 1

from the upper bound of inequality (9.6) and recognize that, using again a − b ≤
(a2 − b2)/2b for a ≥ b > 0, it is equal to∑

k≥0

E∗k
√
µ√

x +
√
x + 1

·

(
1 +

√
x +
√
x + 1 −

√
x + (k + 1)

√
x + 1√

x + (k + 1)
√
x + 1

)
≤

∑
k≥0
E∗k<0

E∗k
√
µ√

x +
√
x + 1

(
1 − k

√
x

2
√
x + (k + 1)

√
x + 1

√
x +
√
x + 1

)

+
∑
k≥0
E∗k ≥0

E∗k
√
µ√

x +
√
x + 1

· 1 .

Similarly as above, we get, using Cherno� bounds (Theorem 2.19),

E∗k ≥

x+(k+1)
√
x∑

i=x+k
√
x

(x − i)Pr[Xt+1 = i]

≥ −2(k + 1)e−
k2
3
√
x .

Combining this with equation (9.7), we arrive at the inequality∑
k≥0

E∗k
√
µ√

x + (k + 1)
√
x + 1

≤
∑
k≥0
E∗k<0

E∗k
√
µ√

x +
√
x + 1

(
1 − k

√
x

2
√
x + (k + 1)

√
x + 1

√
x +
√
x + 1

)

≤
∑
k≥0

2(k + 1)e− k
2
3
√
x
√
µ√

x +
√
x + 1

·
k
√
x

2
√
x + (k + 1)

√
x + 1

√
x +
√
x + 1

,

175

Chapter 9 Lower Bound of the UMDA on OneMax

which is at most ∑
k≥0

k(k + 1)e−k2/3√µ
√
x

.

Substituting this into inequality (9.6), we �nally obtain

E[∆t | x] ≤
∑
k≥0

©­«
2(k + 1)2e− k

2
3
√
µ

√
x

+
k(k + 1)e− k

2
3
√
µ

√
x

ª®¬ + S∗
≤ 20
√
µ
√
x
+
100√µ
√
x

= 120
√
µ
√
x
,

where the bound
∑∞

k=0(2(k + 1)2+k(k + 1))e−k
2/3 ≤ 20 was obtained numerically.

This �nally proves the upper bound on E[∆t | x]. �

Lower Bound on the Variance of the Potential Change

Before we analyze the variance of ∆t , we introduce a lemma that we are going
to use.

I Lemma 9.14 ([OW15, Lemma 6]). Let X ∼ Bin(µ, r/µ) with r ∈ [1, µ − 1],
let ` = min{r , µ − r }, and let ζ > 0 be an arbitrary constant. Then

Pr
[
X ≥ E[X] + ζ

√
`
]
∈ Ω(1) .

Note that if r ≤ µ/2, we get

Pr
[
X ≥ E[X] + ζ

√
E[X]

]
∈ Ω(1) . J

Oliveto and Witt [OW15] only state the lemma for ζ = 1. However, introduc-
ing the constant factor does not change the lemmas’s proof at all.

With Lemma 9.14 in place, we now lower-bound the variance of ∆t . Note that
the following lemma only applies up to Xt ≤ (5/6)µ, which will be guaranteed
in its application.

176

Lower Bound on OneMax Section 9.3

I Lemma 9.15. Let µ ∈ ω(1) and µ ∈ O
(√
n log(n)

)
. Then, for all t ∈ N and

Xt ∈ [(5/6)], it holds that

Var[∆t | Xt] ∈ Ω(µ) . J

Proof. Consider an iteration t ∈ N. Again, we abbreviate Xt = x . We lower-
bound E[∆t | x] from Lemma 9.13 by E∗ B −

(
1 + c2(x/

√
n + 1)

)
·
√
µ/(x + 1),

where we pessimistically estimated e−c1µ ≤ 1 and x/µ ≤ 1 because x ≤ µ. We
estimate

Var[∆t | x] = E
[(
∆t − E[∆t | x]

)2 ��� x]
≥ E

[(
∆t − E[∆t | x]

)2
· 1{∆t < E∗}

��� x]
≥ E

[
(∆t − E

∗)2 · 1{∆t < E∗}
�� x]
.

Note that we can ignore 2nd-class individuals, as they would only increase Xt+1
even further, leading to a greater di�erence of ∆t and E∗.

We derive a su�cient condition for ∆t < E∗. For this, we introduce the
constant ζ and claim that д(x + ζ

√
x) ≤ д(x) + E∗ if ζ is su�ciently large. This

claim is equivalent to

д(x) − д(x + ζ
√
x) ≥ −E∗ . (9.8)

We lower-bound the left-hand side as follows, assuming that ζ is su�ciently
large and using equation (9.4):

д(x) − д(x + ζ
√
x) ≥

√
µ ·

ζ
√
x√

x + ζ
√
x + 1

≥
√
µ ·

ζ
√
x√

2ζx

=

√
µζ

2 ,

and we want this to be at least −E∗.

177

Chapter 9 Lower Bound of the UMDA on OneMax

The inequality
√
µζ /2 ≥ −E∗ is equivalent to√

ζ

2 ·
√
x + 1 − 1 ≥ c2

(
x
√
n
+ 1

)
.

We prove this inequality by lower-bounding the left-hand side, assuming that ζ
is su�ciently large, and get√

ζ

2 ·
√
x + 1 − 1 ≥

√
ζx

2 .

It is now evident that
√
ζx/2 ≥ c2(x/

√
n + 1) ⇔

√
ζ /2 ≥ c2(

√
x/n + 1/

√
x)

holds (for x , 0) if ζ is su�ciently large, that is, if ζ ≥ (4c2)2, because x ≤ µ
and we assume µ ∈ O

(√
n log(n)

)
, thus,

√
x/n + 1/

√
x ≤ 1 + 1. For x = 0, the

inequality trivially holds.
Using inequality (9.8), which we just derived, we get

∆t < E∗ ⇔ д(Xt+1) − д(x) < E∗

⇔ д(Xt+1) < д(x) + E
∗

⇐ д(Xt+1) < д(x + ζ
√
x)

⇔ Xt+1 > x + ζ
√
x ,

where we used the de�nition of д and that it is a decreasing function.
We proceed by estimating E

[
(∆t − E

∗)2 · 1{∆t < E∗}
�� x]

. First, we see that,
assuming Xt+1 > x + ζ

√
x and using inequality (9.8) as well as equation (9.4),

we have

∆t − E
∗ = д(Xt+1) −

(
д(x) + E∗

)
≤ д(Xt+1) − д(x + ζ

√
x)

= −
√
µ

Xt+1−1∑
j=x+ζ

√
x

1
√
j + 1

.

Note that we derive an upper bound of ∆t −E
∗ because we only consider ∆t < E∗,

that is, ∆t − E
∗ < 0. Thus, its square gets minimized for an upper bound.

Since Xt+1 > x + ζ
√
x implies ∆t < E∗, we get, using Jensen’s inequality

178

Lower Bound on OneMax Section 9.3

(Theorem 2.20), that

E
[
(∆t − E

∗)
2
· 1{∆t < E∗}

�� x]
≥ E

[
(∆t − E

∗)
2
· 1{Xt+1 > x + ζ

√
x}

�� x]
≥ E

[(
д(Xt+1) − д(x + ζ

√
x)

)
· 1{Xt+1 > x + ζ

√
x}

�� x]2
=

©­«
µ∑
i=0
(−
√
µ)

i−1∑
j=x+ζ

√
x

1
√
j + 1

· 1{i > x + ζ
√
x}Pr[Xt+1 = i | x]

ª®¬
2

= µ
©­«

µ∑
i=x+ζ

√
x+1

i−1∑
j=x+ζ

√
x

1
√
j + 1

Pr[Xt+1 = i | x]
ª®¬
2

.

We now derive a lower bound for the inner sum. Using equation (9.4), we get

i−1∑
j=x+ζ

√
x

1
√
j + 1

≥
i − x − ζ

√
x

√
i

.

Substituting this back into the expectation gives us

µ
©­«

µ∑
i=x+ζ

√
x+1

i−1∑
j=x+ζ

√
x

1
√
j + 1

Pr[Xt+1 = i | x]
ª®¬
2

≥ µ
©­«

µ∑
i=x+ζ

√
x+1

i − x − ζ
√
x

√
i

Pr[Xt+1 = i | x]
ª®¬
2

≥ µ
©­«

µ∑
i=x+2ζ

√
x+1

i − x − ζ
√
x

√
i

Pr[Xt+1 = i | x]
ª®¬
2

,

where we narrowed the range for i . In this new range, the term (i−x−ζ
√
x)/
√
i is

monotonically increasing with respect to i and hence minimal for i = x+2ζ
√
x+1

in the range [x + 2ζ
√
x + 1..µ]. We lower-bound this term by

x + 2ζ
√
x + 1 − x − ζ

√
x√

x + 2ζ
√
x + 1

=
ζ
√
x + 1√

x + 2ζ
√
x + 1

179

Chapter 9 Lower Bound of the UMDA on OneMax

≥
ζ
√
x + 1√
3ζx

=

√
ζ

3 +
1√
3ζx

∈ Ω(1) .

Hence, we �nally have

Var[∆t | x] ∈ Ω
©­«µ ©­«

µ∑
i=x+2ζ

√
x+1

Pr[Xt+1 = i | x]
ª®¬
2ª®¬

⊆ Ω
(
µPr

[
Xt+1 ≥ x + 2ζ

√
x + 1

�� x]2)
⊆ Ω(µ) ,

where the last inequality used Lemma 9.14 to lower-bound the probability. The
lemma can be used immediately for x ≤ µ/2. Otherwise, we still have x ≤ (5/6)µ
by assumption. Then Lemma 9.14 bounds Pr

[
Xt+1 ≥ x + ζ

√
µ − x

�� x]
, which

only changes everything by a constant factor, since √µ − x ∈ Ω
(√
x
)

holds due
to
√
x/
√
µ − x ≤

√
(5µ/6)/(µ/6) ∈ O(1). This concludes the proof. �

Establishing the Lyapunov Condition

In order to apply Lemma 9.12, we are left with bounding the third central
moments.

I Lemma 9.16. If µ ∈ ω(1) ∩ O
(√
n log(n)

)
, then, for all t ∈ N, it holds that

E
[
|∆t − E[∆t | Xt]|

3 �� Xt
]
∈ O

(
µ

3
2
)
. J

Proof. Consider an iteration t ∈ N. We bound E
[
|∆t − E[∆t | Xt]|

3 �� Xt
]

by

E
[(
|∆t | + |E[∆t | Xt]|

)3 �� Xt
]
,

aiming at reusing the bounds on E[∆t | Xt] we know from Lemma 9.13.
In order to treat the binomial expression raised to the third power, we use the

180

Lower Bound on OneMax Section 9.3

simple bound, for a,b ≥ 0, that

(a + b)3 = a3 + 3ab2 + 3a2b + b3

≤ 4a3 + 4b3 .

Thus,

E
[
|∆t − E[∆t | Xt]|

3 �� Xt
]
≤ 4E

[
|∆t |

3 �� Xt
]
+ 4|E[∆t | Xt]|

3 ,

and due to Lemma 9.13, there is a constant ζ > 0 such that, for all Xt ∈ [µ − 1]
and µ ∈ O

(√
n log(n)

)
, we have

−ζ
√
µ ≤ E[∆t | Xt] ≤ ζ

√
µ .

Hence, our main task left is to bound E
[
|∆t |

3 �� Xt
]
. We claim that

E
[
|∆t |

3 �� Xt
]
∈ O

(
µ

3
2
)
.

In order to show this, we analyze the distribution ofд(Xt+1)−д(Xt) conditional
onXt . We recall from Lemma 9.5 thatXt+1 (that is, the new value before applying
the potential function) is given by the sum of two distributions, both of which are
binomial or almost binomial; more precisely, Xt+1 = Z1,t+1+Z (C

∗), where Z1,t+1
is the number of 1s sampled through 1st-class individuals in iteration t + 1,C∗ is
the number of 2nd-class individuals, and Z (C∗) is the number of 1s sampled by
them. We note, using Lemmas 9.4 and 9.5, that Z (C∗) ≺ C∗ ≺ Bin(λ, c1/

√
n) + Z̃ ,

for some constant c2 > 0, and Z̃ takes some value in [λ] only with probability of
at most e−c2µ , for some constant c2 > 0. Moreover, Z1,t+1 ∼ Bin(µ −C∗,Xt/µ).

In order to overestimate |∆t | = |д(Xt+1) − д(Xt)|, we observe that

|д(Xt+1) − д(Xt)| =
��д (Z1,t+1 + Z (C

∗)
)
− д(Xt)

�� · 1{Z1,t+1 + Z (C
∗) < Xt }

+
��д (Z1,t+1 + Z (C

∗)
)
− д(Xt)

�� · 1{Z1,t+1 + Z (C
∗) ≥ Xt } .

Hence, in order to bound |∆t |, it is enough to take the maximum of the two
values

• Ψ1 B
���д(Bin (

µ, Xt
µ

))
− д(Xt)

��� and

• Ψ2 B
���д(Bin(

µ, Xt
µ

)
+ Bin

(
λ, c√

n

)
+ Z̃

)
− д(Xt)

���

181

Chapter 9 Lower Bound of the UMDA on OneMax

and analyze it. The �rst expression covers the case that Z1,t+1 + Z (C
∗) < Xt .

Then, we transform C∗ random variables whose success probability is greater
than Xt/µ (since 2nd-class individuals are biased toward 1s) into variables with
success probability exactlyXt/µ, which increases the probability ofZ1,t+1+Z (C

∗)

being less than Xt . On the other hand, if Z1,t+1 + Z (C
∗) ≥ Xt , we get an even

larger value by including C∗ additional experiments.

CaseΨ1. We claim that E
[
|Ψ1 |

3 �� Xt
]
∈ O

(
µ3/2

)
. In order to show this, we

proceed similarly as in bounding the expected value of ∆t in Lemma 9.13 and
de�ne intervals of length

√
x , where x B Xt . More precisely, for k ∈ Z, we

de�ne Ik B {dx − (k + 1)
√
xe, . . . , bx − k

√
xc}, that is, also negative indices are

allowed, leading to intervals lying above x . By applying equation (9.3), we get

E
[
|Ψ1 |

3 �� x]
≤

∞∑
k=0

∑
i ∈Ik∪I−k

(√
µ(|i − x |)

x − (k + 1)
√
x

)3
Pr[|Ψ1 | = |i | | x]

≤

∞∑
k=0

(√
µ(k + 1)

√
x

x − (k + 1)
√
x

)3
Pr

[
|Ψ1 | ≥ k

√
x

�� x]
,

Note that for k ≤
√
x , we have by Cherno� bounds (Theorem 2.19) that

Pr[Xt+1 ∈ Ik | x] ≤ Pr
[
Xt+1 ≤ x − k

√
x

�� x]
≤ e−

k2
3 and

Pr[Xt+1 ∈ I−k | x] ≤ Pr
[
Xt+1 ≥ x + k

√
x

�� x]
≤ e−

k2
4 .

Moreover, Pr[Xt+1 ≤ x/2 | x] ≤ e−x/24. Using the standard form of Cherno�
bounds [MU05, Theorem 4.4], we additionally bound, for j ≥ 1, the probability
Pr[Xt+1 ≥ (1 + j/2)x | x] ≤

(
ej/2/(1 + j/2)1+j/2

)x
≤ e−jx/10.

Using these di�erent estimates while distinguishing between k ≤
√
x/2 − 1

and k ≥
√
x/2, we get for x ≥ 1 that there are constants c3, c4 > 0 such that

E
[
|Ψ1 |

3 �� x]
≤

√
x
2 −1∑
k=0

(√
µ(k + 1)

√
x

x
2

)3
2e−

k2
4 +

(
д(0) − д(x)

)3Pr[Xt+1 ≤
x

2

��� x]
+

∞∑
j=1

(
д(x) − д

(
x
(
1 + j

2

)))3
Pr

[
Xt+1 ≥ x + j

x

2

��� x]

182

Lower Bound on OneMax Section 9.3

≤ c3µ
3
2 + (x

√
µ)3e−

x
24 +

∞∑
j=1

(
j
x

2
√
µ
)3
e−j

x
10

≤ c4µ
3
2 ,

where we use the trivial bound д(x) − д(y) ≤
√
µ |x − y | and pessimistically

assume Xt+1 = 0 in the case Xt+1 ≤ x/2.

CaseΨ2. With respect toΨ2, we observe that, for c5 > 0 being a constant,

Ψ2 ≺

����д(Bin(
µ,

x

µ

))
− д(x)

���� + c5µPr[Z̃ , 0
�� x] + (

д(0) − д
(
Bin

(
λ,

c1
√
n

)))
by usingд(x+a+b)−д(x) =

(
д(x+a)−д(x)

)
+

(
д(x+a+b)−д(x+a)

)
, for arbitrary

a,b ∈ R, and pessimistically estimating the contribution of Z (C∗) to occur at
point 0, where the potential function is steepest. Moreover, we pessimistically
assume that the event Z̃ , 0 leads to the maximum possible change in potential,
which is д(0) − д(µ) ∈ O(µ). Hence,

E
[
|Ψ2 |

3 �� x]
≤ 4E

[����д(Bin (
µ,

x

µ

))
− д(x)

����3 ����� x
]

(9.9)

+ 4E
[(
д(0) − д

(
Bin

(
λ,

c1
√
n

)))3 ����� x
]
+ (c5µ)

3 · Pr
[
Z̃ , 0

�� x] .
We recall that Pr

[
Z̃ , 0

�� x] ≤ e−c2µ , thus

(c5µ)
3 · Pr

[
Z̃ , 0

�� x] = (c5µ)3 · e−c2µ
∈ o(1)

⊆ O
(
µ3/2

)
for µ = ω(1). Hence, the last term from inequality (9.9) has already been bounded
as desired, and we only have to show bounds on the �rst two terms.

We recognize that the �rst term of inequality (9.9) is O
(
µ3/2

)
since, up to

183

Chapter 9 Lower Bound of the UMDA on OneMax

constant factors, it is the same as E
[
|Ψ1 |

3 �� Xt
]
. Hence, we are left with the claim

E
[(
д(0) − д

(
Bin

(
λ,

c1
√
n

)))3 ����� x
]
∈ O

(
µ

3
2
)
.

In order to show this, we let Z ∼ Bin(λ, c1/
√
n) and consider di�erent de�-

nitions of the intervals Ik , for k ≥ 0, that Z can fall into. The de�nition of the
intervals distinguishes two cases.
Case 1: λ ≥

√
n/(2e2c1). As the greatest di�erence of two neighboring values

of −д is at most √µ, it su�ces to prove the stronger claim

√
µ · E

[
Bin

(
λ,

c1
√
n

)3 ���� x]
∈ O

(
µ

3
2
)
.

We de�ne I0 B [0, 2e2c1λ/
√
n] and Ik B [(1 + k)e2c1λ/

√
n, (2 + k)e2c1λ/

√
n]

for k ≥ 1. Then (similar to the analysis of E[|Ψ1 |
3 | x]), we get

E
[
Bin

(
λ,

c1
√
n

)3 ���� x]
≤

(
2e2c1λ
√
n

)3
+

∞∑
k=1

(
(2 + k)e2c1λ
√
n

)3
Pr[Z ∈ Ik | x] .

Using the Cherno� bound [MU05, Theorem 4.4] that Pr[Y ≥ s] ≤ 2−s for
s ≥ 2e2E[Y], we get Pr[Z ∈ Ik] ≤ e−(2+k)e2λ/

√
n ≤ e−c6k/2 by our assumption

on λ, where c6 > 0 is a constant. We see that

E
[
Bin

(
λ,

c1
√
n

)3 ���� x]
≤

c6λ
3

n
3
2
+
c6λ

3

n
3
2

∞∑
k=1
(2 + k)3e−c6

k
2

∈ O
(
λ3

n
3
2

)
= O

(
µ3

n
3
2

)
,

hence √µ · E
[
Bin(λ, c1/

√
n)3

�� x]
∈ O

(
µ7/2/n3/2

)
. Since µ ∈ O

(√
n log(n)

)
by

assumption of the lemma, the bound is at most O
(
n1/4 log7/2(n)

)
, and this is

clearly O
(
µ3/2

)
, since µ ∈ Ω

(√
n
)

in this case.
Case 2: λ <

√
n/(2e2c1). We de�ne Ik B [k,k + 1] for k ≥ 0 and note that

E[Z] ∈ O(1) since µ ∈ O(λ) = O
(√
n
)
. Hence, by Cherno� bounds for k > E[Z],

184

Lower Bound on OneMax Section 9.3

Pr[Z ≥ k | x] = e−αk for some constant α > 0. Similar to the other case, we get

E
[(
д(0) − д(Z)

)3 ��� x]
≤ (
√
µ)3 · E[Z]3 + √µ

∞∑
k>E[Z]

k32−αk

∈ O
(
µ

3
2
)
,

which completes the proof. �

Using Lemmas 9.15 and 9.16, we now establish the Lyapunov condition (equa-
tion (9.2)), assuming, for all t ∈ N, that Xt ≤ (5/6)µ. Using Lemma 9.12, we get
for s2t B

∑t−1
j=0 Var

[
∆j

�� X j
]

that

1
s3t

t−1∑
j=0

E
[
|∆j − E[∆j | X j]|

3 �� X j
]
∈ O

(
µ

3
2 t

(µt)
3
2

)
= O

(
1
√
t

)
,

which is o(1) for t ∈ ω(1). The sum of the ∆j can then be approximated as stated
in the following lemma.

I Lemma 9.17. Let Yt B
∑t−1

j=0 ∆j and t ∈ ω(1). Then

Yt − E[Yt | X0]√∑t−1
j=0 Var

[
∆j

�� X j
]

converges in distribution to N(0, 1). The absolute error of this approximation is
O

(
1/
√
t
)
. J

Likelihood of a Frequency Ge�ing Very Small

We now apply Lemma 9.17 in order to prove how likely it is for a single frequency
to either get close to 1/n or exceed 5/6. For this, we use the following estimates
for Φ(x).

185

Chapter 9 Lower Bound of the UMDA on OneMax

I Lemma 9.18 ([Fel68, Chapter VII, Lemma 2]). For any x > 0, it holds that(
1
x
−

1
x3

)
1
√
2π

e−
x2
2 ≤ 1 − Φ(x) ≤ 1

x

1
√
2π

e−
x2
2 ,

and for x < 0, it holds that(
−1
x
−
−1
x3

)
1
√
2π

e−
x2
2 ≤ Φ(x) ≤

−1
x

1
√
2π

e−
x2
2 . J

I Lemma 9.19. Consider a bit of the UMDA on OneMax and let pt be its
frequency in iteration t ∈ N. We say that the process breaks a border at time t if
min{pt , 1 − pt } ≤ 1/n. Given s < 0 and any starting state p0 ≤ 5/6, let Ts be the
smallest t such that pt − p0 ≤ s holds or a border is broken.

Assume thatΘ(n) other frequencies stay within [1/6, 5/6] until timeTs . Choos-
ing 0 < α < 1, where 1/α ∈ o(µ) and α ∈ O

(√
n/µ

)
, and −1 < s < 0 constant,

we then have for some constant κ, ζ > 0 that

Pr
[
Ts ≤ αs

2µ or pt exceeds 5
6 before Ts

]
≥

(
(|s |α)

1
2

κ
−
(|s |α)

3
2

κ3

)
1
√
2π

e−
κ2

2|s |α −
ζ
√
αµ
. J

Proof. Throughout the analysis, we assume that Xt ≤ (5/6)µ, since all considera-
tions are stopped when the frequency exceeds 5/6, that is, when Xt ≥ (5/6)µ. By
Lemma 9.13, we have, for all j ∈ N and X j ∈ [µ − 1], that there are two constants
c1,γ1 > 0 such that

E
[
∆j

�� X j
]
≥ −

√
µ

X j + 1

(
e−c1µ + γ1

(
X j
√
n
+
X j

µ

))
.

Moreover, according to Lemma 9.15, Var
[
∆j

�� X j
]
≥
√
c2µ for some constant

c2 > 0. Since the Lyapunov condition has been established for Yt B
∑t−1

j=0 ∆j
in Lemma 9.17, we know that

(
Yt − E[Yt | X0]

)
/st converges in distribution to

N(0, 1) if t ∈ ω(1). Hence, we choose t = αs2µ, which is ω(1) since α ∈ ω(1/µ)
by assumption.

For s2t B
∑t−1

j=0 Var
[
∆j

�� X j
]
, we obtain s2t ≥ αs

2c2µ
2. Hence, recalling that we

assume s < 0, we get st ≥
√
αc2 |s |µ. The next task is to bound E[Yt]. Using our

186

Lower Bound on OneMax Section 9.3

bound on E
[
∆j

�� X j
]

and recalling that Xt ∈ [0..(5/6)µ] and µ ∈ ω(1), for some
constants γ2, c3 > 0, we have

E[∆t | Xt] ≥ −
©­­«e−c1µ

√
µ

1 + γ1
5
6µ√
5
6µ + 1

(√
µ
√
n
+

1
√
µ

)ª®®¬
≥ −

(
c3 + γ2

µ
√
n

)
.

This implies E[Yt] ≥ −t
(
c3 + γ2µ/

√
n
)
= −αs2µ

(
c3 + γ2µ/

√
n
)
. Therefore, for

some constant γ3 > 0 depending on α , we get

E[Yt]
st
≥ −
(αs2µ)

(
c3 + γ2

µ
√
n

)
√
αc2 |s |µ

≥ −γ3

√
1
c2α
,

using the assumptions |s | ≤ 1 along with both α ≤ 1 and α ∈ O
(√
n/µ

)
.

To bound Pr[Yt ≥ r] for arbitrary r , we note that

Yt ≥ r ⇐⇒
Yt
st
−
E[Yt | X0]

st
≥

r

st
−
E[Yt | X0]

st
,

and recall that the distribution of Yt/st − E[Yt | X0]/st converges to N(0, 1) with
absolute error O

(
1/
√
t
)
. Hence, there is a constant c4 > 0 such that

Pr[Yt ≥ r] ≥ 1 − Φ
(

r
√
c2α |s |µ

+ γ3

√
1
c2α

)
−

c4
√
t

(9.10)

for any r such that the argument of Φ is positive, where Φ denotes the cumulative
distribution function of the standard normal distribution.

We focus on the event E∗ B {Yt ≥ 2µ
√
|s |}, recalling that s < 0 and Xt ≥

X0 ⇔ Yt ≤ Y0. Note that E∗ means д(Xt) − д(X0) ≥ 2µ
√
|s |, and this implies

an upper bound on the negative Xt − X0 as follows: function д is steepest at
point 0, and by the de�nition of д and an approximation by an integral [Cor+09,

187

Chapter 9 Lower Bound of the UMDA on OneMax

Inequality (A.12)], for any y ≥ 1, we have

д(y) − д(0) ≤
y−1∑
j=0

√
µ

j + 1

≤
√
µ

(
1 +

∫ y

1

1
√
j
dj

)
=
√
µ(1 + 2√y − 2

√
1)

≤ 2√yµ .

Thus, for an a > 0, the event {д(Xt) − д(X0) ≥ a} is only possible if Xt ≤

X0 − a2/(4µ). In other words, the event E∗ implies Xt − X0 ≤ sµ, which is
equivalent to pt − p0 ≤ s . Hence, in order to complete the proof, we only need
a lower bound on the probability of E∗. Setting r B 2µ

√
|s | in inequality (9.10),

we bound the argument of Φ according to

r
√
c2α |s |µ

+
γ3
√
c2α
≤

2√
c2 |s |α

+
γ3
√
c2α

≤
γ4√
c2 |s |α

,

for some constant γ4 > 0, since |s | ≤ 1.

By Lemma 9.18,

1 − Φ
(

γ4√
c2 |s |α

)
≥

(√
c2 |s |α

γ4
−

(√
c2 |s |α

)3
γ 34

)
1
√
2π

exp
(
−

γ 24
2c2 |s |α

)
C p(α , s) ,

which means that the frequency changes by s (which is negative) until iteration
αs2µ with probability at least p(α , s) − c4/

√
t = p(α , s) − c4/

√
αµ, where the last

term stems from the bound on the absolute error of the approximation by the
standard normal distribution. Choosing κ B γ4/

√
c2 in the statement of the

lemma completes the proof. �

188

Lower Bound on OneMax Section 9.3

9.3.4 Proof of the Lower Bound

Finally, we put all previous lemmas together in order to prove our main theorem:
Theorem 9.6.

Proof of Theorem 9.6. As outlined above, we distinguish between three regimes
for λ. The case of small λ (that is, λ < (1− c1) log2(n)) is covered by Theorem 9.8,
noting that Ω

(
n log(n)

)
dominates the lower bound for the considered range

of µ. The case of large λ (that is, λ ∈ Ω
(√
n log(n)

)
) is covered by Corollary 9.11.

We are left with the medium case (µ ∈ Ω
(
log(n)

)
∩ o

(√
n log(n)

)
), which is the

most challenging one to prove.
In the following, for some s ∈ R which we specify later, we consider a phase

consisting of T B s2γ · min{µ,
√
n} iterations, for the constant γ > 0 from

Lemma 9.10. Without loss of generality, we assume that γ < 1. We conceptu-
ally split individuals (that is, bit strings) of the UMDA into two substrings of
length n/2 each and apply Lemma 9.10 with respect to the �rst half of the bits.
In the following, we condition on the event that Θ(n) frequencies from the �rst
half are within the interval [1/6, 5/6] throughout the phase.

We show next that some frequencies from the second half are likely to walk
down to the lower border. Let j ∈ [n] be an arbitrary position from the second
half. First, we apply Lemma 9.9. Hence, pj does not exceed 5/6 within the phase
with probability Ω(1). In the following, we condition on this event.

We then revisit bit j and apply Lemma 9.19 in order to show that, under this
condition, the random walk on its frequency pj achieves a negative displacement.
Note that the event of not exceeding a certain positive displacement (more
precisely, the displacement of 5/6 − 1/2 = 1/3) is positively correlated with
the event of reaching a given negative displacement (formally, the state of
the conditional stochastic process is always stochastically smaller than of the
unconditional process). We can therefore apply Lemma 9.19 for a negative
displacement of s B −5/6 within T iterations. Note that the condition of the
lemma that demands Θ(n) frequencies to be within [1/6, 5/6] is satis�ed by our
assumption concerning the �rst half of the bits. Choosing α = T /(s2µ), we get
1/α ∈ o

(
log(n)

)
(since µ ∈ o

(√
n log(n)

)
and T ∈ Θ

(
min{µ,

√
n}

)
), whereby we

easily satisfy the assumption 1/α ∈ o(µ). As T ∈ O
(√
n
)

and s is constant, we
also satisfy the assumption α ∈ O

(√
n/µ

)
. Moreover, it holds that α ≤ γ < 1 by

de�nition. Now, Lemma 9.19 states that the probability of pj reaching a total
displacement of −5/6 (or hitting the lower border before) within the phase of

189

Chapter 9 Lower Bound of the UMDA on OneMax

length T is, for a constant ζ > 0, at least(
(|s |α)

1
2

κ
−
(|s |α)

3
2

κ3

)
1
√
2π

e−
κ2

2·|s |α −
ζ
√
αµ
. (9.11)

In order to bound the last expression from below, we distinguish between two
cases for µ.

If µ ≤
√
n, then α ∈ Ω(1) and term 9.11 is at least Ω(1), since T ∈ Ω(µ) ⊆

Ω
(
log(n)

)
⊆ ω(1).

If µ ≥
√
n, then we have T ∈ Ω

(√
n
)
. Since 1/α ∈ o

(
log(n)

)
, we estimate

term 9.11, for some ε ∈ o(1), from below by that there is a constant c1 > 0 and
an η ∈ o(1) such that

1√
ε ln(n)

· e−ε ln(n) − c1
ln(n)
n

1
4
≥ n−η .

Combining this with the probability of not exceeding 5/6, the probability of pj
hitting the lower border within T iterations is, in any case, Ω(n−η). Note that
this argumentation applies to every of the last n/2 bits, and, as explained in
Section 9.2.2, the bounds derived hold independently for all these bits. Hence,
by Cherno� bounds (Theorem 2.19), the number of frequencies from the second
half that hit the lower border within T iterations is Ω

(
n1−η

)
with a probability

of at least 1 − 2−c2n1−η , for some constant c2 > 0.
A frequency that has hit the lower border 1/n somewhere in the phase may

recover (that is, reach a larger value) by the end of the phase. However, for each
bit, the probability of not recovering is, for some η′ = o(1), at least, by using
Theorem 2.22, (

1 − 1
n

)T λ
≥ e−η′ ln(n)

= n−η
′

,

since we consider T ∈ O
(√
n
)

iterations and λ ∈ o
(√
n log(n)

)
samples per

iteration. Again applying Cherno� bounds leaves Ω(n1−η−η′) bits at the lower
border at iterationT with a probability of at least 1−2−c3n1−η−η′ , for some constant
c3 > 0. Making use of Lemma 9.7 yields the desired run time bound. �

190

Relaxing the Condition on the Population Size Section 9.4

9.4 Relaxing the Condition on the Population Size

Theorem 9.6 assumed that λ = (1 + β)µ for some constant β > 0. We think
that the lower bound of Ω

(
n log(n)

)
holds for all combinations of µ and λ. As a

step toward a proof of this conjecture, we extend our lower bound toward all
µ ≤ c log(n) for a su�ciently small constant c > 0. This includes the extreme
case of µ = 1, for which no matching upper bound has been proven up to date.

I Theorem 9.20. Let c1 > 0 be a su�ciently small constant, let c2 ∈ O(1),
let µ ≤ c1 ln(n), and let λ = nc2. Then the optimization time of the UMDA on
OneMax is Ω

(
λ + n log(n)

)
with high probability and in expectation. J

Proof. The lower bound λ follows since the UMDA will sample the optimum
in the �rst iteration only with a probability of 2−γ1n , for some constant γ1 > 0.
Thus, with high probability, all λ o�spring from the �rst generation need to be
evaluated. In the following, we assume λ ∈ O

(
n log(n)

)
since otherwise nothing

is left to show.
We now follow the ideas underlying the proof of Theorem 9.8 by showing

that the best µ individuals from the initial generation are still close to uniform,
resulting in many frequencies being set to their minimum 1/n. Note that the
mentioned theorem considered all λ individuals from the initial generation,
which are uniform on the search space. Here we focus on the best µ from the
initial population, which violates the independence.

By Cherno� bounds (Theorem 2.19), the probability that at least one of the λ
initial individuals has 3n/4 or more 1s is at most λe−γ2n = e−γ3n , for some
constants γ2,γ3 > 0. In the following, we condition on this not happening.

We consider an arbitrary individual of the λ initial individuals. Clearly, given
that it has k 1s, the actual distribution of 1s is uniform over all permutations of k
1s. This still applies to the selected best µ individuals since OneMax is unbiased
with respect to permutations, that is, it only depends on the number of 1s. Hence,
we get the following property (∗): if we consider an arbitrary individual from
the µ best, then every bit in it takes the value 1 with the same probability p∗ (not
necessarily independently of the other bits). Since the expected number of 1s is
bounded by 3n/4, we have that p∗ ≤ 3/4, otherwise, the expected value would
be larger, which we excluded.

Pessimistically assuming that all λ individuals have 3n/4 1s, we obtainp∗ = 3/4
and have established the property (∗) independently for all individuals (also
when arguing only about the best µ ones) but still not independently for all bits.

191

Chapter 9 Lower Bound of the UMDA on OneMax

We now consider an arbitrary bit position i ∈ [n] from one of the best µ
individuals. If bit i takes the value 0, then the 3n/4 1s have to be taken at
positions other than i and are uniformly distributed among these positions.
Hence, any bit j , i takes the value 1 with probability at most (3n/4)/(n − 1)
and 0 with probability at least 1 − (3n/4)/(n − 1) = (n/4 − 1)/(n − 1). Altogether,
independently of the outcome of i , bit j takes the value 0 with probability at
least min{1/4, (n/4 − 1)/(n − 1)} = (n/4 − 1)/(n − 1). We iterate this argument
over an arbitrary set S∗ consisting of at most n/8 bits (for example, the �rst n/8
positions). Hence, every of these bits takes the value 0 with probability at least

n
4 −

n
8

n − n
8
=

1
7 ,

independently of the other bits in S∗. As this applies independently to all µ best
individuals, each bit in S∗ is set to 0 in all µ best individuals with a probability of
at least (1/7)µ , independently of the other bits in S∗.

Due to the independence achieved by the estimations, we can now apply Cher-
no� bounds (Theorem 2.19) with respect to to the sum of the indicator random
variables associated with the events ›bit i is set to 0 in all µ best individuals‹ over
all i ∈ S∗. The expected number of such bits is at least ` B (n/8)(1/7)µ . If we
choose µ ≤ c1 ln(n) for a su�ciently small constant c1 > 0, we obtain, for a
constant c ′ > 0, that ` ≥ nc

′

/8. Moreover, the probability that fewer than nc
′

/9
bits take the value 0 in all µ best individuals is at most 2−γ4n then, where γ4 > 0
is a constant. We assume this to happen and note that the failure probability
altogether is at most 2−γ5n , for a constant γ5 > 0. Now Lemma 9.7 yields the
theorem. �

9.5 Conclusions

We analyzed the UMDA on OneMax and obtained the general bound Ω
(
λ +

µ
√
n + n log(n)

)
on its expected run time for combinations of µ and λ where

λ ∈ Θ(µ) or µ ≤ c log(n) (for a su�ciently small constant c). This lower-bound
analysis is the �rst of its kind and contributes advanced techniques, including
potential functions.

We note that our lower bound for the UMDA is tight in many cases, as has
been shown recently [LN17; Wit17]. We also note that although our main result

192

Conclusions Section 9.5

assumes λ ∈ Θ(µ), we do not think that larger values of λ can be bene�cial. If,
for α ∈ ω(1), we have λ = αµ, the progress due to 2nd-class individuals can
be by a factor of at most α bigger. However, also the computational e�ort per
generation would grow by this factor. Still, we have not presented a formal proof
for all such cases.

Further run time analyses of the UMDA or other EDAs for other classes of
functions are an obvious subject for future research. In this respect, we hope
that our technical contributions are useful and can be extended toward a more
general lower-bound technique at some point. For such considerations, it is
important to note that the behavior per iteration is quite di�erent for the UMDA
and the cGA/2-MMASIB – the common lower bound of Ω

(
n log(n)

)
is a result

on the expected number of �tness function evaluations. Consequently, a general
lower-bound technique has to be able to express these di�erences and most
likely focus heavily on how an algorithm works in each single iteration.

193

10
Upper Bounds of the sig-cGA

on LeadingOnes and OneMax

This chapter is based on joint work with Benjamin Doerr [DK18b]. Some parts
stem from an unpublished extension [DK18a]. Theorem 10.9 has been slightly ge-
neralized and the proof has been adjusted in order to consider the same parameter
setting as in Corollary 6.16.

In this chapter, we introduce a new EDA (Algorithm 2) and prove that it
optimizes OneMax, LeadingOnes, and BinVal each in O

(
n log(n)

)
function

evaluations in expectation and with high probability (Theorems 10.5 and 10.8
and Corollary 10.6, respectively). This result is so far unmatched by any other
EDA or EA. Further, we prove that the scGA from Section 6.4.1, which optimizes
LeadingOnes in O

(
n log(n)

)
too, has an exponential run time on OneMax in

its parameter K (Theorem 10.9).

10.1 Introduction

As we discussed in Chapter 6, it is a nontrivial task to determine how to choose
the step size of an EDA. On the one hand, if it is too large, then the frequencies
may accidentally reach a wrong border. On the other hand, if it is too small, it
may take the algorithm too long to update a frequency to the correct border.
Our results in Chapter 9 as well as the results by Sudholt and Witt [SW16a]
underline this point by proving lower bounds for various regimes of the step size.
Further, a recent result by Lengler et al. [LSW18] suggests a bimodal behavior of
the expected run time of the cGA on OneMax for medium step sizes.

All of these results draw the following picture: for a balanced EDA, there
exists some inherent noise in the update. Thus, if the parameter responsible for
the update of the probabilistic model is large and the speed of convergence high,
the algorithm only uses a few samples before it converges. During this time, the
noise introduced by the balance-property may not be overcome, resulting in the
probabilistic model converging to an incorrect one, as the algorithms are not
stable (Theorem 6.11). Hence, the parameter has to be chosen su�ciently small

195

Chapter 10 Upper Bounds of the sig-cGA on LeadingOnes and OneMax

in order to guarantee convergence to the correct model, resulting in a slower
optimization time.

As we shall argue in this chapter, the reason for this dilemma is that EDAs
only use information from a single iteration when performing an update. Thus,
the decision of whether and how a frequency should be changed has to be made
on the spot, which may result in harmful decisions.

In order to overcome these di�culties, we propose a conceptually new EDA
that has some access to the search history and updates the model only if there
is su�cient reason. The signi�cance-based compact genetic algorithm (sig-cGA,
see Algorithm 2) stores for each position the history of bits of good solutions so
far. If it detects that either statistically signi�cantly more 1s than 0s or vice versa
were sampled, it changes the corresponding frequency, otherwise not. Thus, the
sig-cGA only performs an update when it has proof that it makes sense. This
sets it apart from the other EDAs analyzed so far.

We prove that the sig-cGA is able to optimize LeadingOnes and OneMax
in O

(
n log(n)

)
function evaluations in expectation and with high probability

(Theorems 10.5 and 10.8, respectively), which has not been proven before for
any other EDA or classical EA (for further details, see Table 10.1).

We also observe that the analysis for LeadingOnes can easily be modi�ed to
also show an O

(
n log(n)

)
run time for the binary value function BinVal (Corol-

lary 10.6), which is a linear function with exponentially growing coe�cients.
This result is interesting in that it indicates that the sig-cGA has asymptotically
the same run time on BinVal and OneMax. In contrast, for the cGA, it is known
that the run times on OneMax and BinVal di�er signi�cantly [Dro06].

We further show that the scGA, which we proposed in Section 6.4.1 and
also optimizes LeadingOnes in O

(
n log(n)

)
, behaves poorly on OneMax (The-

orem 10.9). Its run time is at least 2c min{n,K } in expectation and with high
probability, where c > 0 is a constant and 1/K is the step size of the algorithm.

These results – the positive ones for the sig-cGA using a longer history of
the search process and the negative ones for other algorithms not exploiting a
longer history – suggest that a fruitful direction for the future development of
the �eld of evolutionary computation (EC; not restricted to theory) is the search
for algorithms that enrich the classic generational approaches with mechanisms
that pro�t from regarding more than one generation. We discuss this in more
detail in the conclusions of this paper. We note that, from the practical point of
view, our algorithm not only shows a performance not seen so far with other

196

I
n

t
r
o

d
u

c
t
i
o

n
S

e
c
t
i
o

n
1

0
.
1

Table 10.1: Expected run times (number of �tness evaluations) of various algorithms until they �rst �nd an optimum for the two functions OneMax
(equation (2.1)) and LeadingOnes (equation (2.2)). For optimal parameter settings, many algorithms have a run time of Θ

(
n log(n)

)
for OneMax and of

Θ
(
n2

)
for LeadingOnes. We note that the

(
1 + (λ, λ)

)
GA has a o

(
n log(n)

)
run time on OneMax (and even linear run time with a dynamic parameter

choice), but we do not see why it should have a performance better than quadratic on LeadingOnes.

Algorithm OneMax constraints LeadingOnes constraints
(1 + 1) EA Θ

(
n log(n)

)
[DJW02] none Θ

(
n2

)
[DJW02] none

(µ + 1) EA Θ
(
µn + n log(n)

)
[Wit06] µ ∈ O

(
poly(n)

)
Θ

(
µn log(n) + n2

)
[Wit06] µ ∈ O

(
poly(n)

)
(1 + λ) EA Θ

(
n log(n) + λn log(log(λ))

log(λ)

)
[DK15; JJW05]

λ ∈ O
(
n1−ε

)
, ε > 0 Θ

(
n2 + λn

)
[JJW05] λ ∈ O

(
poly(n)

)
(
1 + (λ, λ)

)
GA Θ

(
max

{
n log(n)

λ ,
nλ log(log(λ))

log(λ)

})
[DD18]

p = λ
n , c =

1
λ unknown –

CSA Ω(nc) [DK18a] c > 0 O
(
n log(n)

)
[MS17] µ ≥ 8 ln

(
(4n + 6)n

)
, restarts

UMDA/PBIL22 Ω
(
λ
√
n + n log(n)

)
[Theorem 9.6]

µ ∈ Θ(λ) O
(
nλ log(λ) + n2

)
[DL15; LN18]

λ ∈ Ω
(
log(n)

)
, µ ∈ Θ(λ)

O(λn) [LN17; Wit17] µ ∈ Ω
(
log(n)

)
∩O

(√
n
)
, λ ∈ Ω(µ) or

µ ∈ Ω
(√
n log(n)

)
, µ ∈ Θ(λ) or

µ ∈ Ω
(
log(n)

)
∩ o(n), µ ∈ Θ(λ)

cGA/2-MMASIB Ω
(√

n
ρ + n log(n)

)
[SW16a] 1

ρ ∈ O
(
poly(n)

)
unknown –

O
(√

n
ρ

)
[SW16a] 1

ρ ∈ Ω
(√
n log(n)

)
∩ O

(
poly(n)

)
1-ANT Θ

(
n log(n)

)
[NW09] ρ ∈ Θ(1) O

(
n2 · (6e)1/(nρ)

)
[Doe+11b] none

2c min{n,1/(nρ)} [Doe+11b] c ∈ Ω(1)

MMAS* O
(
n log(n)

ρ

)
[NSW09] ρ ∈ O(1) O

(
n2 +

n log(n)
ρ

)
[NSW09] ρ ∈ O(1)

Ω
(
n2 + n

−ρ log(2ρ)

)
[NSW09] ρ = 1

poly(n)

scGA (Section 6.4.1) 2c min{n,K }

[Theorem 10.9]
K ≥ β log(n), β ∈ Θ(1),
σ ∈ Θ

(1
K

)
,d ∈ Θ(1), c ∈ Ω(1)

O
(
n log(n)

)
[Corollary 6.16] K ≥ β log(n), β ∈ Θ(1),

σ ∈ Θ
(1
K

)
,d ∈ Θ(1)

sig-cGA (Algorithm 2) O
(
n log(n)

)
[Theorem 10.8]

ε > 12 O
(
n log(n)

)
[Theorem 10.5] ε > 12

22 The results shown for the PBIL are the results of the UMDA, since the latter is a special case of the former. Wu et al. [WKM17] also analyze the PBIL but with worse
results. The only exception to this is the result by Lehre and Nguyen [LN18], which is speci�cally for the PBIL.

1
9
7

Chapter 10 Upper Bounds of the sig-cGA on LeadingOnes and OneMax

algorithms, it also is easier to use, since, unlike with most other EDAs, the
delicate choice of the step size is obsolete.

10.2 Preliminaries

In our analysis, we regard the two classic benchmark functions OneMax and
LeadingOnes. When talking about run time, we always mean the number of
�tness function evaluations of an algorithm until an optimum is sampled for the
�rst time. We state in Table 10.1 the asymptotic run times of a few algorithms
on these benchmark functions. We note that

(i) the black-box complexity of OneMax is Θ
(
n/log(n)

)
[AW09; DJW06] and

(ii) the black-box complexity of LeadingOnes is Θ
(
n log(log(n))

)
[Afs+13].

However, all black-box algorithms witnessing these run times are highly arti�cial.
Consequently, Θ

(
n log(n)

)
appears to be the best run time to aim for for these

two benchmark problems.
Since random bit strings with independently sampled entries occur frequently

in this work, we shall regularly use the following well-known variance-based
additive Cherno� bounds.

I Theorem10.1 (Variance-basedAdditive Cherno�Bounds [Doe18, The-

orem 10.12, Corollary 10.13]). Let n ∈ N+ and let (Xi)i ∈[n] be independent
random variables such that, for all i ∈ [n], it holds that E[Xi]−1 ≤ Xi ≤ E[Xi]+1.
Further, let X =

∑n
i=1Xi and σ 2 =

∑n
i=1 Var[Xi] = Var[X]. Then, for all λ ≥ 0,

abbreviatingm = min{λ2/σ 2, λ}, it holds that

Pr
[
X ≥ E[X] + λ

]
≤ e−

1
3m and

Pr
[
X ≤ E[X] − λ

]
≤ e−

1
3m . J

Last, we use the ◦ operator to denote string concatenation. For a bit string
H ∈ {0, 1}∗, let |H | denote its length, and, for a k ∈ [|H |], let H [k] denote the
last k bits in H . In addition to that, let ∅ denote the empty string.

198

The Significance-based Compact Genetic Algorithm Section 10.3

Algorithm 2: The sig-cGA with parameter ε and signi�cance function
›sig‹ (equation (10.1)) optimizing f

1 t ← 0;
2 p(t) ← 1

2 ;
3 for i ∈ [n] do Hi ← ∅ ;
4 repeat

5 x ,y ← o�spring sampled with respect to p(t);
6 x ← winner of x and y with respect to f ;
7 for i ∈ [n] do
8 Hi ← Hi ◦ xi ;
9 if sig(p(t)i ,Hi) = up then p(t+1)i ← 1 − 1/n;

10 else if sig(p(t)i ,Hi) = down then p(t+1)i ← 1/n;
11 else p(t+1)i ← p(t)i ;
12 if p(t+1)i , p(t)i then Hi ← ∅;
13 t ← t + 1;
14 until termination criterion met;

10.3 The Significance-based Compact Genetic

Algorithm

Our new algorithm – the signi�cance-based compact genetic algorithm (sig-cGA;
Algorithm 2) – is a univariate EDA similar to the cGA in that it also samples
two o�spring each generation and performs the same selection procedure. More
speci�cally, let x and y denote both o�spring sampled by the frequency vector
during an iteration. Given a �tness function f , we rank x abovey if f (x) > f (y)
(as we maximize), and we ranky above x if f (y) > f (x). If f (x) = f (y), we rank
them uniformly at random. The higher-ranked individual is called the winner,
the other individual the loser.

In contrast to the cGA, the sig-cGA keeps a history of bit values of the winner
for each position and only performs an update when a statistical signi�cance
within a history occurs. This approach far better aligns with the intuitive rea-
soning that an update should only be performed if there is valid evidence for a
di�erent frequency being better suited for sampling good individuals. Note that

199

Chapter 10 Upper Bounds of the sig-cGA on LeadingOnes and OneMax

the sig-cGA is thus not an n-Bernoulli-λ-EDA, since it uses more information
than its frequency vector and its samples in order to perform an update.

The key idea behind the update procedure of the sig-cGA is to notice a bias in
its histories. More formally, consider a position i ∈ [n] and any two individuals x
and y that are identical except for position i . Assume that xi > yi . If the
probability that x is the winner of the selection is higher than y being the
winner, we speak of a bias in selection (for 1s) at position i . Analogously, we
speak of a bias for 0s if the probability that y wins is higher than the probability
that x wins. Usually, a �tness function introduces a bias into the selection and
thus into the update.

The sig-cGA performs an update as follows: for each bit position i ∈ [n], the
sig-cGA keeps a history Hi ∈ {0, 1}∗ of all the bits sampled by the winner of
each iteration since the last time pi changed – the last bit denoting the latest
entry. Observe that if there is no bias in selection at position i , the bits sampled
by pi follow a binomial distribution with a success probability of pi and |Hi |

tries. We call this our hypothesis. Now, if we happen to �nd a sequence (starting
from the latest entry) in Hi that signi�cantly deviates from the hypothesis, we
update pi with respect to the bit value that occurred signi�cantly, and we reset
the history. We only use the following three frequency values:

• 1/2: starting value;

• 1/n: signi�cance for 0s was detected;

• 1 − 1/n: signi�cance for 1s was detected.

We formalize signi�cance by de�ning the threshold for all ε, µ ∈ R+, where µ
is the expected value of our hypothesis and ε is an algorithm-speci�c parameter:

s(ε, µ) = ε max
{√
µ ln(n), ln(n)

}
.

We say, for an ε ∈ R+, that a binomially distributed random variableX deviates
signi�cantly from a hypothesis Y ∼ Bin(k,p), where k ∈ N+ and p ∈ [0, 1], if
there exists a c ∈ Ω(1) such that

Pr
[
|X − E[Y]| < s(ε,E[Y])

]
≤ n−c .

We now state our signi�cance function sig :
{ 1
n ,

1
2 , 1−

1
n

}
×{0, 1}∗ → {up, stay,

down}, which scans a history for a signi�cance. However, it does not scan the

200

The Significance-based Compact Genetic Algorithm Section 10.3

entire history but multiple subsequences of a history (always starting from
the latest entry). This is done in order to quickly notice a change from an
insigni�cant history to a signi�cant one. Further, we only check in steps of
powers of 2, as this is faster than checking each subsequence and we can be
o� from any length of a subsequence by a constant factor of at most 2. More
formally, for all H ∈ {0, 1}∗, we de�ne, with ε being a parameter of the sig-cGA
and recalling that H [k] denotes the last k bits of H , that

sig
(1
2 ,H

)
=


up if ∃m ∈ N : ‖H [2m]‖1 ≥ 2m

2 + s
(
ε, 2

m

2
)
,

down if ∃m ∈ N : ‖H [2m]‖0 ≥ 2m
2 + s

(
ε, 2

m

2
)
,

stay else.

sig
(
1 − 1

n
,H

)
=

{
down if ∃m ∈ N : ‖H [2m]‖0 ≥ 2m

n + s
(
ε, 2

m

n

)
,

stay else.

sig
(1
n
,H

)
=

{
up if ∃m ∈ N : ‖H [2m]‖1 ≥ 2m

n + s
(
ε, 2

m

n

)
,

stay else.
(10.1)

We stop at the �rst (minimum) length 2m that yields a signi�cance. Thus, we
check a history H in each iteration at most log2(|H |) times.

We now prove that the probability of detecting a signi�cance at a position
when there is no bias in selection (that is, a false signi�cance) is small. We use
this lemma in our proofs in order to argue that no false signi�cances are detected
with high probability.

I Lemma 10.2. For the sig-cGA, let ε ≥ 1. Consider a position i ∈ [n] of
the sig-cGA and an iteration such that the distribution X of 1s of Hi follows a
binomial distribution with k ∈ N+ trials and success probability pi , that is, there
is no bias in selection at position i . Then the probability that pi changes in this
iteration is at most n−ε/3 log2(k). J

Proof. In order for pi to change, the number of 0s or 1s in X needs to deviate
signi�cantly from the hypothesis, which follows the same distribution as X by
assumption. We use Theorem 10.1 in order to show that in such a scenario X
deviates signi�cantly from its expected value only with a probability of at most
n−ε/3 log2(k) for any number of trials at most k .

Let p ′i = min{pi , 1 − pi }. Note that in order for pi to change, a signi�cance of
values sampled with probability p ′i needs to be sampled. That is, for pi = 1/2,

201

Chapter 10 Upper Bounds of the sig-cGA on LeadingOnes and OneMax

either a signi�cant amount of 1s or 0s needs to occur; for pi = 1 − 1/n, a
signi�cant amount of 0s needs to occur; and, for pi = 1/n, a signi�cant amount
of 1s needs to occur. Further, let X ′ denote the number of values we are looking
for a signi�cance within k ′ ≤ k trials. That is, if pi = 1/2, then X ′ is either the
number of 1s or 0s; if pi = 1 − 1/n, then X ′ is the number of 0s; and if pi = 1/n,
then X ′ is the number of 1s.

Given the de�nition of p ′i , we see that E[X ′] = k ′p ′i and Var[X ′] = k ′pi (1 −
pi) ≤ k ′p ′i . Since we aim at apply Theorem 10.1, let λ = s(ε,E[X ′]) = s(ε,k ′p ′i)
and σ 2 = Var[X ′].

First, consider the case that λ = s(ε,k ′p ′i) = ε ln(n), that is, that
√
k ′p ′i ln(n) ≤

ln(n), due to the de�nition of s , which is equivalent to k ′ ≤ (1/p ′i) ln(n). Note
that λ2/σ 2 ≥ ε2 ln(n) ≥ ln(n), as ε ≥ 1. Thus, min{λ2/σ 2, λ} ≥ ε ln(n).

Now consider the case λ = s(ε,k ′p ′i) = ε
√
k ′p ′i ln(n), that is, that

√
k ′p ′i ln(n) ≥

ln(n), which is equivalent to k ′ ≥ (1/p ′i) ln(n). We see that λ ≥ ε ln(n) and
λ2/σ 2 ≥ ε2 ln(n). Hence, as before, we get min{λ2/σ 2, λ} ≥ ε ln(n).

Combining both cases and applying Theorem 10.1, we get

Pr
[
X ′ ≥ k ′p ′i + s(ε,k

′p ′i)
]
= Pr

[
X ′ ≥ E[X ′] + λ

]
≤ e−

1
3 min

{
λ2
σ 2 ,λ

}
≤ e−

ε
3 ln(n)

= n−
ε
3 .

That is, the probability of detecting a (false) signi�cance during k ′ trials is at
most n−ε/3. Since we look for a signi�cance a total of at most log2(k) times
during an iteration, we get by a union bound that the probability of detecting a
signi�cance within a history of length k is at most n−ε/3 log2(k). �

Lemma 10.2 bounds the probability of detecting a false signi�cance within a
single iteration if there is no bias in selection. The following corollary trivially
bounds the probability of detecting a false signi�cance within any number of
iterations.

I Corollary 10.3. Consider the sig-cGA (Algorithm 2) with ε ≥ 1 running
for k iterations such that, during each iteration, for each position i ∈ [n], a 1 is
added to Hi with probability pi . Then the probability that at least one frequency
changes during an interval of k ′ ≤ k iterations is at most k ′n1−ε/3 log2(k). J

202

The Significance-based Compact Genetic Algorithm Section 10.3

Proof. For any i ∈ [n] during any of the k iterations, by Lemma 10.2, the proba-
bility that pi changes is at most n−ε/3 log2(k). Via a union bound (Theorem 2.17)
over all k ′ relevant iterations and all n frequencies, the statement follows. �

10.3.1 E�icient Implementation of the sig-cGA

In order to reduce the number of operations performed (computational cost) of
the sig-cGA, we only check signi�cance in historic data of lengths that are a
power of 2. By saving the whole history but precomputing the number of 1s in
the power-of-two intervals, a signi�cance check can be done in time logarithmic
in the history length; the necessary updates of this data structure can be done
in logarithmic time (per bit-position) as well. With this implementation, the
main loop of the sig-cGA has a computational cost of O

(∑n
i=1 |Hi |

)
. Since the

histories are never longer than the run time (twice the number of iterations),
we see that the computational cost is at most O

(
nT log(T)

)
, when the run time

is T . Since for most EAs working on bit string representations of length n the
computational cost is larger than the run time by at least a factor of n, we see
that our signi�cance approach is not overly costly in terms of computational
cost.

What appears unfavorable though is the memory usage caused by storing the
full history. For this reason, we now sketch a way to condense the history so that
it only uses space logarithmic in the length of the full history. This approach
does not allow to access exactly the number of 1s (or 0s) in all power-of-two
length histories. However, it allows for each ` ∈ [|Hi |] to access the number of
1s in some interval of length `′ with `′ ∈ [`..2` − 1]. For reasons of readability,
we shall in the subsequent analyses nevertheless regard the original sig-cGA,
but it is quite clear that the mildly di�erent accessibility of the history in the
now-proposed condensed implementation will not change the asymptotic run
times shown in this work.

For our condensed storage of the history, we have a list of blocks, each storing
the number of 1s in some discrete interval [t1..t2] of length equal to a power of
two (including 1). When a new item has to be stored, we append a block of size 1
to the list. Then, traversing the list in backward direction, we check if there are
three consecutive blocks of the same size, and if so, we merge the two earliest
ones into a new block of twice the size. By this, we always maintain a list of
blocks such that, for a certain power 2k , there are between one and two blocks
of length 2j for all j ∈ [0..k − 1]. This structural property implies both that we

203

Chapter 10 Upper Bounds of the sig-cGA on LeadingOnes and OneMax

only have a logarithmic number of blocks (as we have k ∈ O
(
log(|Hi |)

)
) and

that we can (in amortized constant time) access all historic intervals consisting
of full blocks, which in particular implies that we can access an interval with
length in [2j ..2j+1 − 1] for all j ∈ [0..k].

10.3.2 Run Time Results for LeadingOnes and OneMax

We now prove our main results, that is, upper bounds of O
(
n log(n)

)
for the

expected run time of the sig-cGA on LeadingOnes and OneMax. Note that the
sig-cGA samples two o�spring each iteration. Thus, up to a constant factor of 2,
the expected run time is equal to the expected number of iterations until an
optimum is sampled. In our proofs, we only consider the number of iterations.

We mention brie�y that the sig-cGA is unbiased in the sense of Lehre and
Witt [LW12] and as explained in Chapter 5, that is, it treats bit values and bit
positions in a symmetric fashion. Consequently, all of our results hold not only
for OneMax and LeadingOnes but for the entire respective function classes.

In our proofs, we use the following lemma to bound probabilities split up by
the law of total probability (Theorem 2.1).

I Lemma 10.4. Let α , β,x ,y ∈ R such that x ≤ y and α ≤ β . Then

αx + (1 − α)y ≥ βx + (1 − β)y . J

We start with the expected run time of the sig-cGA on LeadingOnes.

LeadingOnes

We show that the frequencies are set to 1 − 1/n sequentially from the most
signi�cant bit position to the least signi�cant, that is, from left to right. With
high probability, no frequency is decreased until the optimization process is
�nished. Thus, a frequency pi will stay at 1/2 until all of the frequencies to its
left are set to 1 − 1/n. Then pi will become relevant for selection, as all of the
frequencies left to it will only sample 1s with high probability. This results in a
signi�cant surplus of 1s being saved at position i , and pi will be set to 1 − 1/n
within O

(
log(n)

)
iterations and remain there. Then frequency pi+1 becomes

relevant for selection. As we need to set n frequencies to 1 − 1/n, we get a run
time of O

(
n log(n)

)
.

204

The Significance-based Compact Genetic Algorithm Section 10.3

I Theorem 10.5. Consider the sig-cGA with ε > 12 being a constant. Its run
time on LeadingOnes is O

(
n log(n)

)
with high probability and in expectation.

J

Proof. We split this proof into two parts and start by showing that the run time
is O

(
n log(n)

)
with high probability. Then we prove the expected run time.

Run time with high probability. For the �rst part of the proof, we consider
the �rst O

(
n log(n)

)
iterations of the sig-cGA and condition on the event that

no frequency decreases during this time, that is, no (false) signi�cance of 0s is
detected. Note that for any position i ∈ [n], the probability of saving a 1 in Hi
is at least pi , as the selection with respect to LeadingOnes has a bias for 1s.
Thus, by Corollary 10.3, the probability that at least one frequency decreases
during O

(
n log(n)

)
iterations is at most O

(
n2−ε/3 log2(n)

)
, which is, as ε > 12,

in O
(
n−ε

′) , for an ε ′ > 2. Thus, with high probability, no frequency decreases
during O

(
n log(n)

)
iterations.

The main idea now is to show that the leftmost frequency that is di�erent
from 1 − 1/n has a signi�cant surplus of 1s in its history strong enough so that,
after a logarithmic number of iterations, we change such a frequency from its
initial value of 1/2 to 1 − 1/n. For the second part of the proof, we will use a
similar argument, but the frequency will be at 1/n, and it will take O

(
n log(n)

)
steps to get to 1 − 1/n. Since the calculations for both scenarios are very similar,
we combine them in the following.

In order to make this idea precise, we now consider an iteration such that
there is a frequency pi ∈ {1/n, 1/2} such that, for all j < i , we have p j = 1− 1/n.
We lower-bound the probability of saving a 1 in Hi in order to get an upper
bound on the expected time until we detect the signi�cance necessary to update
pi to 1−1/n. When considering position i , we assume an empty history although
it is most likely not. We can do so, since the sig-cGA checks for a signi�cance
in di�erent sub-histories of Hi (starting from the latest entry). Thus, we only
consider sub-histories that go as far as the point in time when all indices less
than i were at 1 − 1/n.

Let O denote the event that we save a 1 this iteration, and let A denote the
event that at least one of the two o�spring during this iteration has a 0 at a
position in [i − 1]. Note that event A means that the bit at position i of the
winning individual is not relevant for selection. Hence, if A occurs, we save
a 1 with probability pi ∈ {1/n, 1/2}. Otherwise, that is, the bit at position i is
relevant for selection, we save a 1 with probability 1 − p2

i (that is, if we do not

205

Chapter 10 Upper Bounds of the sig-cGA on LeadingOnes and OneMax

sample two 0s). Formally, by Theorem 2.1, we get

Pr[O] = Pr[A] · pi + Pr
[
A
]
· (1 − p2

i) ,

which is a convex combination of pi and 1 − p2
i . Thus, according to Lemma 10.4,

we get a lower bound if we decrease the factor of the larger term, namely, Pr
[
A
]
.

The event A occurs if and only if both o�spring have only 1s at the positions 1
through i − 1:

Pr
[
A
]
=

(
1 − 1

n

)2(i−1)
,

as we assumed that all frequencies at indices less than i are already at 1 − 1/n.
Note that this term is minimal for i = n. Thus, we get Pr

[
A
]
≥ e−2 by using the

well-known inequality (1 − 1/n)n−1 ≥ e−1 [AS65, Inequality 4.2.34]. Overall, we
get, noting that 1 − p2

i ≥ (3/2)pi for pi ∈ {1/n, 1/2},

Pr[O] ≥ (1 − e−2) · pi + e−2 · (1 − p2
i)

≥ (1 − e−2) · pi +
3
2e
−2pi

=

(
1 + 1

2e
−2

)
· pi .

Let X ∼ Bin
(
k, (1 + e−2/2)pi

)
denote a random variable that is stochastically

dominated by the real process of saving 1s at position i . In order to get a bound
on the number of iterations k ∈ N+ that we need for detecting a signi�cance
of 1s, we bound the probability of a signi�cance not occurring in a history of
length k , that is, we save fewer than kpi + s(ε,kpi) 1s. We get

Pr[X < kpi + s(ε,kpi)] ≤ Pr
[
X ≤ E[X] −

(
k

2 e
−2pi − s(ε,kpi)

)]
,

where the minuend is positive if (k/2)e−2pi > s(ε,kpi), which is the case for
k > (4/pi)e4ε2 ln(n) > ln(n), since we assume that ε > 12. Let c = (4/pi)e4ε2. For
k ≥ 4c ln(n), we get that (k/2)e−2pi − s(ε,kpi) ≥ (k/4)e−2pi C λ. By applying
Theorem 10.1 for any k ≥ 4c ln(n) and noting that Var[X] = kpi (1−pi) ≥ λ and,

206

The Significance-based Compact Genetic Algorithm Section 10.3

thus, λ2/Var[X] ≤ λ, we get, using Var[X] ≤ kpi ,

Pr[X < kpi + s(ε,kpi)] ≤ Pr
[
X ≤ E[X] − k

4 e
−2pi

]
≤ e−

1
3 ·

λ2
Var[X]

≤ e−
1
3 ·

k2e−4p2i
16kpi

= e−
1
3 ·

ke−4pi
16

≤ n−
1
3 ·

ce−4pi
4

= n−
ε2
3 .

Thus, with probability at least 1 − n−ε2/3, the frequency pi will be set to 1 − 1/n
after (4/pi)e4ε2 ln(n) ∈ O

(
(1/pi) log(n)

)
iterations. Further, via a union bound

(Theorem 2.17) over all n frequencies, the probability of any such frequency not
being updated to 1−1/n after O

(
(1/pi) log(n)

)
iterations is at mostn1−ε2/3 ≤ n−47,

as ε > 12. Hence, with high probability, all frequencies will be set to 1 − 1/n.
For the �rst part of this proof, that is, assuming that no frequency is at 1/n,

and taking together the results of all frequencies being updated to 1 − 1/n, each
in time O

(
(1/pi) log(n)

)
= O

(
log(n)

)
, and assuming that no frequency at 1/2 or

1−1/n decreases, all with high probability, yields that all frequencies reach 1−1/n
within O

(
n log(n)

)
iterations. Then the optimum is sampled with probability

(1 − 1/n)n ≥ 1/(2e) ∈ Ω(1) according to Theorem 2.22, that is, with constant
probability. Hence, we have to wait O

(
log(n)

)
additional iterations in order to

sample the optimum with high probability.
Expected run time. For the second part of this proof, that is, for the ex-

pected run time, we are left to bound the expected time if a frequency decreases
during the initial O

(
n log(n)

)
iterations, which only happens with a probability

of O
(
n−ε

′) , where ε ′ > 2, as we discussed at the beginning of the �rst part. Due
to Corollary 10.3, during t ∈ N+ iterations and considering an interval of length
t ′ ≤ t , no frequency decreases with a probability of at least 1 − t ′n1−ε/3 log2(t).
By assuming t ≤ n2n and t ′ ∈ Θ

(
n2 log(n)

)
, with high probability, no frequency

decreases during such an interval, as ε > 12.
By using the result calculated in the �rst part, we see that a leftmost fre-

quency pi at 1/n is increased to during O
(
(1/pi) log(n)

)
= O

(
n log(n)

)
iterations

207

Chapter 10 Upper Bounds of the sig-cGA on LeadingOnes and OneMax

with high probability. Thus, overall, the sig-cGA �nds the optimum during an
interval of length t ′ ∈ Θ

(
n2 log(n)

)
with high probability, as n frequencies need

to be increased to 1 − 1/n. We pessimistically assume that the optimum is only
found with a probability of at least 1/2 during t ′ iterations. Hence, the expected
run time in this case is 2t ′ ∈ Θ(t ′).

Last, we assume that we did not �nd the optimum during n2n iterations, which
only happens with a probability of at most 2−n2n/t ′ . Then, the expected run time
is at most nn by pessimistically assuming that all frequencies are at 1/n.

Combining all of the three di�erent regimes we just discussed, we see that
there is a constant c > 0 we can upper bound the expected run time by

cn log(n) + cn−ε ′ · t ′ + 2−n2n/t ′ · nn ∈ O
(
n log(n)

)
,

which concludes the proof. �

The proof of Theorem 10.5 shows us that the sig-cGA rapidly makes progress
when optimizing LeadingOnes. In fact, after O

(
i log(n)

)
iterations, with i ∈

[n], the sig-cGA �nds a solution with �tness i with high probability and in
expectation. Thus, from a �xed-budget perspective, the sig-cGA performs very
well on LeadingOnes.

The reason that the sig-cGA optimizes LeadingOnes so quickly is that the
probability of saving a 1 at position i is increased by a constant factor once
all frequencies at positions less than i are at 1 − 1/n. This boost is a result of
position i being the most relevant position for selection, assuming that all bits
at positions less than i are 1.

BinVal A very similar boost in relevance occurs when considering the func-
tion BinVal, which returns the bit value of a bit string. Formally, BinVal is
de�ned as

BinVal(x) =
n∑
i=1

2n−ixi .

Note that the most signi�cant bit is the leftmost.
BinVal imposes a lexicographic order from left to right on a bit string x , since

a bit xi has a greater weight than the sum of all weights at positions greater
than i . This is similar to LeadingOnes. The main di�erence is that, for BinVal,
a position i can also be relevant for selection when bits at positions less than i

208

The Significance-based Compact Genetic Algorithm Section 10.3

are 0. More formally, for LeadingOnes, position i is only relevant for selection
when all of the bits at positions less than i are 1, whereas position i is relevant
for selection for BinVal when all the bits at positions less than i are the same.
With this insight, we can adapt the proof of Theorem 10.5 for BinVal and get
the following corollary.

I Corollary 10.6. Consider the sig-cGA (Algorithm 2) with ε > 12 being a
constant. Its run time on BinVal is O

(
n log(n)

)
with high probability and in

expectation. J

Proof. We can use the same arguments as in the proof of Theorem 10.5. The
only di�erence is in how we de�ne the event A that position i ∈ [n], which is
the leftmost position not at 1 − 1/n, is not relevant for selection. As described
above, let A denote the event that there exists a position j ∈ [i − 1] such that,
for the two o�spring x and y sampled during the iteration we consider, xi , yi
holds. Further, let O denote again the event that we save a 1 this iteration. We
see that the following equation also holds for BinVal:

Pr[O] = Pr[A] · pi + Pr
[
A
]
· (1 − p2

i) .

Again, according to Lemma 10.4, we get a lower bound for Pr[O] if we get a
lower bound for Pr

[
A
]
. The event A occurs if all the bits sampled at positions

in [i − 1] have the same value. Thus, a subset of this event is that all of the bits
sampled at positions in [i − 1] are 1, which yields that

Pr
[
A
]
≥

(
1 − 1

n

)2(i−1)
.

This probability is minimized by choosing i = n. Hence, we get Pr
[
A
]
≥ e−2,

which is the same lower bound for A as in the proof of Theorem 10.5.
Since this is the only part of the proof where the �tness function comes into

play, the remaining proof is identical to the proof of Theorem 10.5. �

BinVal is often considered one extremal case of the class of linear functions,
as its weights impose a lexicographic order on the bit positions. The other
extreme is OneMax, where all weights are identical and basically no order
among the positions exists. Combining the result of Corollary 10.6 with the
result of Theorem 10.8, which we prove in the next section, we see that the

209

Chapter 10 Upper Bounds of the sig-cGA on LeadingOnes and OneMax

sig-cGA optimizes both functions in O
(
n log(n)

)
. It remains an open question

whether the sig-cGA is capable of optimizing any linear function in that time,
a feat that the (1 + 1) EA, a classical EAs, is known to be capable of [DJW02].
Contrary to that, it was proven for the cGA, which is an EDA, that it performs
worse on BinVal than on OneMax [Dro06]. Especially, Witt [Wit18] recently
proved a bound of Ω

(
n2

)
for the cGA without a margin on LeadingOnes. Thus,

a uniform performance on the class of linear functions would be a great feat for
an EDA.

We would like to note that the result of Droste [Dro06] considered the cGA
without a margin, that is, the frequencies could reach values of 0. Once this is
the case, the algorithm is stuck (as it only samples 0 at this position) and the
optimization fails. It is unknown up to date whether the cGA still performs
worse on BinVal when the frequencies are bound to the interval [1/n, 1 − 1/n].
However, the main idea of Droste’s proof that frequencies drop very low remains.
Thus, if su�ciently many frequencies were to drop to 1/n, the cGA would still
perform badly on BinVal. Note that this is exactly the problem that the sig-cGA
circumvents with its update rule, resulting in its run time of O

(
n log(n)

)
.

OneMax

For our next result, we make use of the following lemma based on a well-known
estimate of binomial coe�cients close to the center. A proof was given by, for
example, Doerr and Winzen [DW14b]. We use it to show how likely it is that
two individuals sampled from the sig-cGA have the same OneMax value.

I Lemma 10.7 ([DW14b, Lemma 8]). For c ∈ Θ(1), ` ∈ N+, letk ∈ [`/2±c
√
`]

and let X ∼ Bin(1/2, `). Then Pr[X = k] ∈ Ω
(
1/
√
`
)
. J

The next theorem shows that the sig-cGA is also able to optimize OneMax
within the same asymptotic time like many other EAs. For the proof, we show
that during all of the O

(
n log(n)

)
iterations, each position can become relevant

for selection with a decent probability of Ω
(
1/
√
n
)
. In contrast to LeadingOnes,

there is no sudden change in the probability that 1s are saved. Thus, it takes
O

(
n log(n)

)
iterations to set a frequency to 1 − 1/n. However, this is done for all

frequencies in parallel. Thus, the overall run time remains O
(
n log(n)

)
.

I Theorem 10.8. Consider the sig-cGA with ε > 12 being a constant. Its run
time on OneMax is O

(
n log(n)

)
with high probability and in expectation. J

210

The Significance-based Compact Genetic Algorithm Section 10.3

Proof. We �rst show that the run time holds with high probability. Then we
prove the expected run time.
Run time with high probability. We consider the �rst O

(
n log(n)

)
itera-

tions and condition on the event that no frequency decreases during that time.
This can be argued in the same way as at the beginning in the proof of Theo-
rem 10.5.

The main idea now is to show that, for any frequency at 1/2, O
(
n log(n)

)
iterations are enough in order to detect a signi�cance in 1s. This happens in
parallel for all frequencies. For our argument to hold, it is only important that
all the other frequencies are at 1/2 or 1 − 1/n, which we condition on.

Similar to the proof of Theorem 10.5, when proving the expected run time, we
use that if all frequencies start at 1/n, they are set to 1−1/n with high probability
within O

(
n2 log(n)

)
iterations in parallel. Thus, we combine both cases in the

following.
Let s ∈ {1/2, 1/n} denote the starting value of a frequency. Formally, during

any of the O
(
(n/s) log(n)

)
iterations, let ` ∈ [n] denote the number of frequencies

at s . Then n − ` frequencies are at 1 − 1/n. Further, consider a position i ∈ [n]
with pi = s . We show that such a position will sample 1s signi�cantly more
often than the hypothesis by a factor of Θ

(
1/
√
`
)
. Then pi will be updated to

1 − 1/n within O
(
(`/s) log(n)

)
iterations.

In order to show that 1s are signi�cantly more often saved than assumed, we
proceed as follows: we consider that all bits but bit i of both o�spring during
any iteration have been sampled. If the number of 1s of both o�spring di�ers by
more than one, bit i cannot change the outcome of the selection process – bit i
will be 1 with probability pi . However, if the number of 1s di�ers by at most one,
then the outcome of bit i in both o�spring has an in�uence on whether a 1 is
saved or not – this introduces a bias toward saving a signi�cant amount of 1s.

Let O denote the event to save a 1 at position i this iteration, and let A denote
the event that the numbers of 1s (excluding position i) of both o�spring di�er by
at least two during that iteration. Then the probability to save a 1, conditional
on A, is pi .

In the case of A, we make a case distinction with respect to the absolute
di�erence of the number of 1s of both o�spring, excluding position i . If the
di�erence is zero, then a 1 will be saved if not both o�spring sample a 0, which
happens with probability 1 − p2

i . If the absolute di�erence is one, then a 1
will be saved if the winner (with respect to all bits but bit i) samples a 1 (with

211

Chapter 10 Upper Bounds of the sig-cGA on LeadingOnes and OneMax

probability pi) or if it samples a 0, the loser samples a 1, and the loser is chosen
during selection, which happens with probability (1/2)pi (1 − pi) ≥ (1/4)pi .
Overall, the probability that a 1 is saved is at least pi + (1/4)pi = (5/4)pi in the
case of A, as this is less than 1 − p2

i for pi ∈ {1/2, 1/n}.
Combining both cases and using Theorem 2.1, we see that

Pr[O] ≥ Pr[A] · pi + Pr
[
A
]
·
5
4pi ,

which we lower-bound by determining a lower bound for Pr
[
A
]
, according to

Lemma 10.4.
With respect to Pr

[
A
]
, we �rst note that the probability of all n−` frequencies

at 1− 1/n sampling a 1 for both o�spring is (1− 1/n)2(n−`) ≥ e−2, as n− ` ≤ n− 1.
Similarly, all frequencies at 1/n (but pi) will sample a 0 for both o�spring with a
probability of at least (1 − 1/n)2(n−1) ≥ e−2, too.

Now we only consider the di�erence of 1s sampled with respect to `′ ≤ ` − 1
(for ` ≥ 2) positions with frequencies at 1/2, that is, all remaining positions but i
we did not consider so far. Since all of these frequencies are at 1/2, the expected
number of 1s is `′/2. Due to Theorem 10.1 (or, alternatively, Chebyshev’s in-
equality), the probability of deviating from this value by more than

√
`′/2 is at

most a constant c < 1. Conditional on sampling a number of 1s in the range of
`′/2±

√
`′/2, the probability to sample k ∈ [`′/2−

√
`′/2..`′/2+

√
`′/2] 1s is, due

to Lemma 10.7, Ω
(
1/
√
`′

)
, since all `′ frequencies are at 1/2. Thus, by the law

of total probability (Theorem 2.1), the probability that both o�spring have the
same number of 1s or di�er only by one, that is, Pr[A], is, for a constant d > 0,
at least d/

√
`′. Hence, we get, for a su�ciently small constant d ′ > 0, factoring

in the probability of 1 − c of the number of 1s being concentrated around `′/2
and the remaining n − ` positions only sampling 1s, that

Pr[O] ≥
(
1 − e−4(1 − c) d√

`′

)
· pi + e−4(1 − c)

d
√
`′
·
5
4pi

≥

(
1 + d ′
√
`

)
pi .

This means that the sig-cGA expects 1s to occur with probability pi , but they
occur with a probability of at least (1 + d ′/

√
`)pi . Note that for the case ` = 1,

that is, `′ = 0, conditional on the remaining n − ` positions only sampling 1s,

212

The Significance-based Compact Genetic Algorithm Section 10.3

we have Pr
[
A
]
= 1 and hence Pr[O] ≥ (1− e−2) ·pi + e−2 · (5/4)pi . Thus, we use

(1 + d ′/
√
`)pi as a lower bound for Pr[O] in all cases for `, for an appropriately

chosen d ′.
Analogous to the proof of Theorem 10.5, letX ∼ Bin

(
k, (1+d ′/

√
`)pi

)
denote a

random variable that is stochastically dominated by the real process of saving 1s
at position i . We bound the probability of not detecting a signi�cance of 1s
after k iterations, that is,

Pr
[
X < kpi + s(ε,kpi)

]
≤ Pr

[
X ≤ E[X] −

(
kd ′
√
`
pi − s(ε,kpi)

)]
.

Let k ≥ 4(ε2/d ′2)(`/pi) ln(n). Then (kd ′/
√
`)pi − s(ε,kpi) ≥

(
kd ′/(2

√
`)

)
pi C λ.

By noting that Var[X] = kpi (1 − pi) ≥ λ for d ′ su�ciently small and, thus,
λ2/Var[X] ≤ λ, we get by applying Theorem 10.1 and using Var[X] ≤ kpi , that

Pr
[
X < kpi + s(ε,kpi)

]
≤ Pr

[
X ≤ E[X] − kd ′

2
√
`
pi

]
≤ e−

1
3 ·

k2d′2p2i
4`kpi

= e−
1
3 ·

kd′2
4` pi

≤ e−
1
3 ε

2 ln(n)

= n−
1
3 ε

2
.

Thus, with a probability of at least 1 − n−ε2/3, frequency pi is set to 1 − 1/n after
4(ε2/d ′2)(`/pi) ln(n) ∈ O

(
(`/pi) log(n)

)
iterations. Further, via a union bound

over all n frequencies, the probability of any such frequency not being updated
to 1 − 1/n after O

(
(`/pi) log(n)

)
iterations is at most n1−ε2/3 ≤ n−47, as ε > 12.

Hence, with high probability, all frequencies are set to 1 − 1/n.
Since our argument for position i was made for an arbitrary i and independent

of the other positions, and since all n frequencies start at 1/2 (that is, ` = n), we
have to wait at most O

(
n log(n)

)
iterations until all frequencies are set to 1− 1/n

with high probability. Then, with a probability of at least (1 − 1/n)n ≥ 1/(2e) ∈
Ω(1), the optimum is sampled. Hence, after O

(
log(n)

)
additional iterations, the

optimum is sampled with high probability.
Expected run time. The expected run time can be proven similarly as argued

213

Chapter 10 Upper Bounds of the sig-cGA on LeadingOnes and OneMax

in the second part of the proof of Theorem 10.5. The main di�erence here is that,
assuming all frequencies are at 1/n, with high probability, all frequencies will
increase during O

(
n2 log(n)

)
iterations (in parallel, not sequentially), as we just

discussed. Further, since ε > 12, no frequency will decrease during an interval
of such length with high probability. �

Note that although the expected run time of the sig-cGA is asymptotically
the same on LeadingOnes and OneMax, the reason is quite di�erent: for
LeadingOnes, the sig-cGA sets its frequencies quickly consecutively to 1 − 1/n,
as it only needs O

(
log(n)

)
iterations per frequency in expectation. This is due to

the bias for saving 1s being very large (constant, in fact) when all frequencies
to the left are at 1 − 1/n, that is, when it is very likely that bit i is relevant for
selection. In Section 6.4.1, we exploited this fact in the analysis (and design) of
the scGA heavily, which is why it, too, has an expected run time of O

(
n log(n)

)
on LeadingOnes. However, when not all frequencies to the left of a position
are at 1 − 1/n, the bias is almost negligible, as it is necessary that bits sampled
with frequencies of at most 1/2 have to sample the same value. Thus, in this
case, the probability of this happening declines exponentially in the number of
frequencies to the left not being at 1 − 1/n.

For OneMax, the situation is di�erent. The bias in selection only gets strong
(that is, increases by a constant additive term) when a constant number of
frequencies is left at 1/2 and has not reached 1 − 1/n. More general, when `
frequencies are still at 1/2, the bias only adds a term of roughly 1/

√
`. Thus,

it takes longer in expectation in order to detect a signi�cance for a position.
However, the bias is constantly there and, even for ` = n, very large when
compared to the bias for LeadingOnes for a position whose frequencies to the
left are not all at 1 − 1/n. Hence, for OneMax, the frequencies can be increased
in parallel. This is the major di�erence to LeadingOnes, where the frequencies
are increased sequentially.

10.4 Run Time Analysis for the scGA

Being the closest competitor to the sig-cGA in that it also optimizes LeadingOnes
in O

(
n log(n)

)
in expectation is the scGA, which we introduced in Section 6.4.1.

Recall that the scGA has two additional parameters to the cGA: the bias σ , which
makes sure that frequencies are more likely to move toward 1/2, and the con�-

214

Run Time Analysis for the scGA Section 10.4

dence border d , which is su�cient in order to set a frequency to 1 − 1/n (and
1 − d for 1/n, conversely).

The intention of the scGA is that each frequency stays around 1/2 as long as
there is no strong bias toward either bit value for its respective position. Once
the bias is strong enough, the algorithm is willing to �x the bits for that position.
While this approach works well when there is a strong bias in a position (as in
LeadingOnes; Corollary 6.16), it fails when the bias is only weak (as in OneMax;
Theorem 10.9).

We prove that the scGA is not able to optimize OneMax as fast as the sig-cGA,
as it is not able to detect the comparably small bias of 1/

√
n for OneMax when

compared to the strong bias of Θ(1) for LeadingOnes for a frequency whose
frequencies to the left are at 1 − 1/n. Note that the assumptions in Theorem 10.9
for ρ and d are the same as the ones made in Corollary 6.16 in order to prove
the expected run time of O

(
n log(n)

)
of the scGA on LeadingOnes.

I Theorem 10.9. Let α , c > 0 be constants, and let β ∈ Ω(1) be su�ciently
large. Consider the scGA with K = α/σ ≥ β ln(n), and 1/2 < d ≤ 5/6 being a
constant. Its run time on OneMax is at least 2c min{n,K } in expectation and with
high probability. J

Proof. We only show that the run time is at least 2c min{n,K } with high probability.
The statement for the expected run time follows by lower-bounding the terms
that occur with a probability of o(1) with 0.

We �rst prove the bound of 2cK . We do so by showing that each frequency
stays in the non-empty interval (1 − d,d) ⊂ [1/6, 5/6] with high probability.
Although OneMax introduces a bias into updating a frequency, it is too tiny in
order to compensate the strong drift toward 1/2 in the update. This proof is very
similar to the one of Theorem 6.15.

We lower-bound the expected time it takes the scGA to optimize OneMax by
upper-bounding the probability it takes a single frequency to leave the interval
(1 − d,d). Thus, we condition during the entire proof implicitly on the event
that all frequencies are in the interval (1 − d,d). Note that, in this scenario, the
probability to sample the optimum during an iteration is at most (5/6)n , which
is exponentially small, even for a polynomial number of iterations.

Consider an index i ∈ [n] with pi ∈ (1 − d,d). We only upper-bound the
probability it takes pi to reach d . Note that the probability of pi reaching 1 − d
is at most that large, as OneMax introduces a bias for 1s into the selection

215

Chapter 10 Upper Bounds of the sig-cGA on LeadingOnes and OneMax

process. Hence, we could argue optimistically for pi reaching 1 − d as we do
for pi reaching d by swapping 1s for 0s and considering 1 − pi instead.

Let T denote the �rst point in time t ∈ N such that p(t)i ≥ d . We aim at
applying Theorem 3.22 and show that it is unlikely for pi to reach d within 2cK
iterations. Hence, we consider the process (Xt)t ∈N with Xt B

(
1 − p(t)i

)
K . Note

that at the beginning, pi is at 1/2, that is, X0 = K/2. We stop once p(t)i ≥ d ,
which is equivalent to Xt ≤ (1 − d)K . Thus, we consider an interval of length
` B K/2 − (1 − d)K = (d − 1/2)K ∈ Θ(K), as d > 1/2 is a constant.

We now argue how an update to pi is performed in order to estimate its
expected value after an update, which is necessary in order to apply Theorem 3.22.
Consider, similar to the proof of Theorem 10.8, that the bits of both o�spring
x and y for all positions but position i have been determined. If the di�erence
of the number of 1s of both o�spring without position i is at least 2, then the
outcome of neither xi nor yi can change the outcome of the selection process.
Thus, pi increases with probability pi (1 − pi), as the winner o�spring needs to
sample a 1 and the loser a 0. Analogously, in this case, the probability that pi
decreases is pi (1 − pi), too.

If the di�erence of the number of 1s of both o�spring without position i is
one, then, in order to increase pi , the winner (with respect to all bits but bit i)
needs to sample a 1 and the loser a 0, or the winner needs to sample a 0, the
loser a 1, and the loser wins. The �rst case has a probability of pi (1 − pi), the
second of (1/2)pi (1 − pi), due to the uniform selection when the o�spring have
equal �tness. In order to decrease pi , the winner needs to sample a 0, the loser
a 1, and the winner has to win, which has a probability of (1/2)pi (1 − pi).

If the di�erence of the number of 1s of both o�spring without position i is
zero, then pi is increased if any o�spring samples a 1 and the other samples a 0.
This has probability 2pi (1−pi). In this case, it is not possible that pi is decreased.

In order to estimate the probabilities of when pi increases or decreases, we
need to estimate the probabilities that the number of 1s of both o�spring di�er
by at least two, di�er by exactly one, and di�er by exactly zero. Let q1 denote
the probability that this di�erence is one, and let q0 denote the probability that
the di�erence is zero. We now bound these probabilities.

Assume that o�spring x has k 1s, where k ∈ [0..n − 1], since we assume
that bit i has not been sampled yet. For q0, the o�spring y needs to sample
k 1s as well, and for q1, y needs to sample k − 1 or k + 1 1s (such that the
result is still in [0..n − 1]). Due to Lemma 9.2, the probability for y to have

216

Run Time Analysis for the scGA Section 10.4

this many 1s is O
(
1/
√
n
)
, as we assume that all frequencies are in the interval

(1 − d,d) ⊂ [1/6, 5/6]. Hence, by the law of total probability (Theorem 2.1), we
get q0 ∈ O

(
1/
√
n
)

and q1 ∈ O
(
1/
√
n
)

and, thus, there is a constant γ > 0 such
that q0 ≤ γ/

√
n and q1 ≤ γ/

√
n.

We now consider the drift of X in any iteration t ∈ N such that 1/2 < p(t)i < d ,
that is, we show that condition (a) of Theorem 3.22 holds. If p(t)i increases, it
changes by 1/K , and if it decreases, it changes by 1/K + σ .

E
[
Xt+1 − Xt

��� p(t)i]
= K · E

[
p(t)i − p

(t+1)
i

��� p(t)i]
= K

((
1
K
+ σ

) (
(1 − q0 − q1)p(t)i

(
1 − p(t)i

)
+ q1 ·

1
2p
(t)
i

(
1 − p(t)i

))
−

1
K

(
(1 − q0 − q1)p(t)i

(
1 − p(t)i

)
+ q1 ·

3
2p
(t)
i

(
1 − p(t)i

)
+ q0 · 2p(t)i

(
1 − p(t)i

)))
= Kp(t)i

(
1 − p(t)i

) ((1
K
+ σ

) (
1 − q0 −

1
2q1

)
−

1
K

(
1 + q0 +

1
2q1

))
= Kp(t)i

(
1 − p(t)i

) (1
K
(−2q0 − q1) + σ

(
1 − q0 −

1
2q1

))
.

For the negative terms with factor σ , by using that σ = α/K and by applying
the bounds on q0 and q1, we get

E
[
Xt+1 − Xt

��� p(t)i]
≥ Kp(t)i

(
1 − p(t)i

) (α
K
−

1
K

(
(2 + α)q0 +

(
1 + α2

)
q1

))
≥ p(t)i

(
1 − p(t)i

) (
α − (3 + 2α) γ√

n

)
.

Due to α ∈ Θ(1) and γ/
√
n ∈ o(1), there is a su�ciently small constant β > 0

such that α − (3 + 2α)γ/
√
n ≥ β . Thus, we get

E
[
Xt+1 − Xt

��� p(t)i]
≥ βp(t)i

(
1 − p(t)i

)
≥ β ·

1
6 ·

5
6 ,

217

Chapter 10 Upper Bounds of the sig-cGA on LeadingOnes and OneMax

which is constant.
We now show that condition (b) of Theorem 3.22 holds. Hence, assume an

iteration t ∈ N such that Xt > (1 − d)K , which is equivalent to p(t)i < d . Since
the step size of the scGA is independent of the �tness function, we can use the
same arguments as in the proof of Theorem 6.15. Thus, we de�ne r (`) = 1 + α
and δ = (1 + α)1/(1+α) − 1 > 0. Note that 1 ≤ r (`) ∈ o

(
`/log(`)

)
= o

(
K/log(K)

)
holds, as K ∈ ω(1). Since p(t)i can change by at most 1/K + σ , the value Xt can
change by at most 1 + α . Thus, we only need to bound Pr

[
|Xt+1 − Xt | ≥ j

�� p(t)i]
for j ∈ [0..1 + α]. For all of these cases, r (`)/

(
(1 + δ)j

)
≥ 1. For j > 1 + α , the

probability of a change is 0. Thus, condition (b) holds for all j ∈ N.
Overall, by applying Theorem 3.22 and since ` ∈ Θ(K) and K ≥ β ln(n) for a

su�ciently large value β , there are constants c1, c2, c3 > 0 such that

Pr
[
T ≤ 2

c1`
r (`)

]
= Pr

[
T ≤ 2cK

]
≤ 2−c2K

≤
1

nc3+1
.

Thus, with a probability of at most n−(c3+1), the frequency pi reaches d within
2cK iterations. Via a union bound (Theorem 2.17), the probability of at least
one frequency reaching d within 2cK iterations is at most n−c3 . Consequently,
with high probability, no frequency reaches d within 2cK iterations. Since the
probability to sample the optimum during any of these iterations is at most
(5/6)n , as discussed at the beginning of the proof, the optimum is not sampled
within 2cK iterations with subconstant probability if 2cK ∈ o

(
(5/6)n

)
. Hence,

the unconditional probabilities remain asymptotically the same.
If 2cK ∈ Ω

(
(5/6)n

)
, we choose 2cn as a run time bound instead. This concludes

the proof. �

10.5 Conclusions

We introduced a new algorithm – the sig-cGA – that is able to optimize both
OneMax and LeadingOnes in time O

(
n log(n)

)
with high probability and in

expectation, which is the �rst result of this kind for an EDA or even an EA. The
sig-cGA achieves these run times by only performing an update to its frequency

218

Conclusions Section 10.5

vector once it notices a signi�cance in its history of samples. In contrast to that,
typical theoretically investigated EDAs or EAs do not save the entire history of
samples but only a small part thereof: EAs save some samples in their population
whereas EDAs store information implicitly in their frequency vector.

Since it is quite memory-consuming to store all samples seen so far the longer
the sig-cGA runs, we proposed a way of e�ciently saving all of the necessary
information for the algorithm, which is the number of 1s or 0s seen so far. Cur-
rently, the sig-cGA saves new information every iteration. However, whenever
both o�spring sample the same value, the algorithm does not learn anything.
Thus, an even more memory-e�cient approach would be to only save a bit value
if the one of the winning o�spring di�ers from the respective bit value of the
loser. This is how the cGA actually performs an update. However, since the
intention of the sig-cGA is to keep its frequencies as long as possible at 1/2 until
it detects a (hopefully correct) signi�cance, this approach reduces the memory
necessary only by a constant factor of 2, due to classical Cherno� bounds.

Overall, the sig-cGA trades slightly increased memory (due to its history) for
reduced run times, which is appears to be a very good payo�. In this �rst work,
as often in the theory of evolutionary algorithms, we only regarded the two
unimodal benchmark functions OneMax and LeadingOnes. Since it has been
observed, for example, recently by Doerr et al. [Doe+17], that insights derived
from such analyses can lead to wrong conclusions for more di�cult functions,
an interesting next step would be to analyze the performance of the sig-cGA on
objective functions that have true local optima or that have larger plateaus of
equal �tness. Two benchmark functions have been suggested in this context,
namely jump functions [DJW02], having an easy to reach local optimum with
a scalable basin of attraction, and plateau functions [AD18], having a plateau
of scalable diameter around the optimum. We are vaguely optimistic that our
sig-cGA has a good performance on these as well. We expect that the sig-cGA,
as when optimizing OneMax, quickly �xes a large number of bits to the correct
value and then, di�erent from classic EAs, pro�ts from the fact that the missing
bits are sampled with uniform distribution, leading to a much more e�cient
exploration of the small subhypercube formed by these undecided bits. Needless
to say, transforming this speculation into a formal proof would be a signi�cant
step forward to understanding the sig-cGA.

From a broader perspective, our work shows that by taking into account a
longer history and only updating the model when the history justi�es it, the

219

Chapter 10 Upper Bounds of the sig-cGA on LeadingOnes and OneMax

performance of a classic EDA can be improved and its usability can be increased
(since the di�cult choice of the model update strength is now obsolete). An
interesting question from this viewpoint would be to what extent similar ideas
can be applied to other well-known EDAs.

From a very broad perspective, our work suggests that, generally, EC could
pro�t from enriching the iterative evolutionary process with mechanisms that
collect and exploit information over several iterations. So far, such learning-
based concepts are rarely used in EC. The only theoretical works in this direction
propose a history-based choice of the mutation strength [DDY16a] and analyze
hyperheuristics that stick to a chosen subheuristic until its performance over
the last τ iterations (τ being a parameter of the algorithms) appears insu�cient
(see, for example, the work by Doerr et al. [Doe+18] and the references therein).

220

11 Conclusions & Outlook

In this thesis, we furthered the theoretical understanding of univariate estimation-
of-distribution algorithms in two ways. First, we analyzed structural properties of
an important subclass, which we called n-Bernoulli-λ-EDAs and which subsumes
all commonly theoretically investigated EDAs. We gave di�erent characteri-
zations of when these algorithms are unbiased with respect to the problem
encoding, and we proved that the update process of the probabilistic model,
given a constant function, cannot stay close to a uniform distribution (stable)
for a long time while also not changing in expectation (balanced).

Second, we analyzed the run times of certain EDAs in noisy and unnoisy
scenarios. For the noisy setting, we proved for two algorithms that there exist
parameter setups such that the run time of each algorithm scales polynomially
in the variance of the noise, which is in contrast to mutation-only EAs, which
cannot cope with high noise levels [Fri+17]. For the unnoisy setting, all of
our results rely on our prior insight that balanced EDAs are prone to random
noise from the sampling process (genetic drift). We proved a lower bound for
the UMDA on the benchmark function OneMax by showing that either the
genetic drift is too strong and the optimization is slowed down by converging
to a wrong probabilistic model, or the impact of the genetic drift is reduced
by only allowing small updates to the model which, consequently, slows down
the optimization time as well. Further, we proposed two new algorithms that
are stable for a longer period than the commonly investigated EDAs and, thus,
can handle genetic drift better. We analyzed these algorithms each on OneMax
and LeadingOnes and showed that one of them optimizes both in O

(
n log(n)

)
,

which is the �rst result of this kind for EDAs and EAs (see Table 10.1), while the
other only does so on LeadingOnes and performs badly on OneMax.

Our results suggest the following key insight: di�erent from mutation-only
EAs (which usually have a low mutation rate), the frequency vector of a univari-
ate EDA allows for a great initial exploration phase, due to the frequencies all
having constant values. The willingness to change a frequency and, thus, the
length of this phase is determined by the step size of the algorithm. During this

221

Chapter 11 Conclusions & Outlook

phase, the algorithm has to pick up the signal from the �tness function in order
to optimize it e�ciently. However, this process is counteracted by the genetic
drift (or other noise). In order to reduce the impact of these wrong signals, the
step size can be reduced. This leads to a scenario in which the step size takes
two roles, as it determines

1. the willingness to adjust the model and

2. how prone the algorithm is to genetic drift.

These roles are somewhat con�icting, since the step size should not be too
small for point 1, but it should not bee too large, due to point 2. This con�ict is at
the core of all of our run time results, and our analyzes show di�erent methods
of how to cope with this behavior. Note that the observation above even holds
true for the best algorithm we analyzed – the sig-cGA (Algorithm 2) –, whose
parameter ε directly impacts both points. The main di�erence of the sig-cGA to
the other EDAs is that it reduces the impact of the genetic drift by using data
from multiple iterations.

We would like to mention that the dependency between both points is more
complicated than we sketched, as the results by Lengler et al. [LSW18] suggest
a bimodal behavior in the run time of the cGA on OneMax with respect to its
step size. The reason for this is that a larger step size (large willingness to adjust
the model) also means that a wrong update can be reverted more quickly.

Outlook. Although we went in this thesis into detail about di�erent aspects
of EDAs, this research area is still young and there are multiple opportunities
for future research that we discuss brie�y.

One important area is to expand the run time analysis to more functions than
OneMax and LeadingOnes, especially in order to better compare EDAs with
EAs, for which far more functions have been analyzed. With respect to upper
bounds, canonical candidates are linear functions or the Jump function [DJW02].
Recently, a �rst step toward this direction has been taken with a result by
Hasenöhrl and Sutton [HS18], who analyzed the run time of the cGA on Jump.

Regarding lower run time bounds, mainly OneMax has been analyzed so far
(see Table 10.1). Analyzing other functions such as LeadingOnes or BinVal
(in the hope that parts from the proofs for OneMax carry over) would be very
insightful, especially in order to see if the sig-cGA remains the only EDA with
an O

(
n log(n)

)
run time on OneMax that is also able to optimize LeadingOnes

222

and BinVal in O
(
n log(n)

)
. For example, Witt [Wit18] recently showed that

the cGA (without a margin) has a run time of Ω
(
n2

)
on BinVal. Similarly, a

general lower bound for unbiased EDAs – at least for the subclass of ρ-bounded
locally updating n-Bernoulli-λ-EDAs – for OneMax or LeadingOnes would
be helpful and result in a more rigorous comparison of EDAs and EAs with
univariate variation operators, which have an unbiased black-box complexity of
Ω

(
n log(n)

)
[LW12].

Tying in with the last point, combining results for the cGA and the 2-MMASIB
(which are both ρ-bounded and locally updating) would be a major next step
in the theory of EDAs, as these two algorithms seem to behave very similarly
(see Table 10.1). However, oftentimes only the cGA is analyzed, since its fre-
quencies only take �nitely many values. This begs the question whether there
is a di�erence in these algorithms or whether their results can be translated
into one another. An extension to this problem would be to combine the results
of all EDAs mentioned in Section 4.3. For example, the results by Lengler et
al. [LSW18] suggest a bimodal run time behavior of the cGA on OneMax, where
this suggestion is based on assuming that run time results of the UMDA (namely,
the results by Witt [Wit17]) carry over to the cGA.

Further, our results from Chapters 7 and 8 suggest that EDAs are well suited
to cope with noise. However, more results are needed in order to make such
a general claim. Potential candidates for future research are the UMDA or the
sig-cGA.

Last, all theoretical results so far only consider univariate EDAs. Expanding the
analysis to multivariate EDAs, which are designed to model dependencies, seems
challenging but would greatly advance the theoretical �eld of EDAs. A starting
point could be to analyze multivariate EDAs that model linear dependencies on
LeadingOnes, such as the algorithm MIMIC by Bonet et al. [BJV96].

223

11Bibliography

[AAT15] Youhei Akimoto, Sandra Astete-Morales, and Olivier Teytaud. Analysis
of runtime of optimization algorithms for noisy functions over

discrete codomains. Theoretical Computer Science 605 (2015), 42–50.
doi: 10.1016/j.tcs.2015.04.008 (see page 131).

[AD18] Denis Antipov and Benjamin Doerr. Precise runtime analysis for plat-

eaus. In: Proceedings of the 15th International Conference on Parallel Prob-
lem Solving from Nature (PPSN XV). 2018, 117–128. doi: 10.1007/978-3-
319-99259-4_10 (see page 219).

[Afs+13] Peyman Afshani, Manindra Agrawal, Benjamin Doerr, Carola Doerr,
Kasper Green Larsen, and Kurt Mehlhorn. The query complexity of

�nding a hidden permutation. In: Space-E�cient Data Structures,
Streams, and Algorithms. Springer-Verlag Berlin Heidelberg, 2013, 1–11.
doi: 10.1007/978-3-642-40273-9_1 (see pages 13, 198).

[Arb+16] Dídac Rodríguez Arbonès, Boyin Ding, Nataliia Y. Sergiienko, and Markus
Wagner. Fast and e�ectivemulti-objective optimisation of submerg-

ed wave energy converters. In: Proceedings of the 14th International
Conference on Parallel Problem Solving from Nature (PPSN XIV). 2016, 675–
685. doi: 10.1007/978-3-319-45823-6_63 (see page 2).

[AS65] Milton Abramowitz and Irena A. Stegun. Handbook of mathematical

functions with formulas, graphs, and mathematical tables. Dover
Publications, 1965. isbn: 978-0-486-61272-0 (see pages 120, 206).

[AW09] Gautham Anil and R. Paul Wiegand. Black-box search by elimination

of �tness functions. In: Proceedings of the 10th ACM/SIGEVO Workshop
on Foundations of Genetic Algorithms (FOGA X). 2009, 67–78. doi: 10.1145/
1527125.1527135 (see pages 70, 198).

[Bal94] Shumeet Baluja.Population-Based Incremental Learning: amethod

for integrating genetic search based function optimization and

competitive learning. Tech. rep. CMU-CS-94-163. Pittsburgh, PA, USA:
Carnegie Mellon University, 1994 (see page 64).

[BE65] Bengt von Bahr and Carl-Gustav Esseen. Inequalities for the r th ab-

solute moment of a sum of random variables, 1 5 r 5 2. The An-
nals of Mathematical Statistics 36:1 (1965), 299–303. doi: 10.1214/aoms/
1177700291 (see page 117).

225

https://doi.org/10.1016/j.tcs.2015.04.008
https://doi.org/10.1007/978-3-319-99259-4_10
https://doi.org/10.1007/978-3-319-99259-4_10
https://doi.org/10.1007/978-3-642-40273-9_1
https://doi.org/10.1007/978-3-319-45823-6_63
https://doi.org/10.1145/1527125.1527135
https://doi.org/10.1145/1527125.1527135
https://doi.org/10.1214/aoms/1177700291
https://doi.org/10.1214/aoms/1177700291

[Bey00] Hans-Georg Beyer.Evolutionary algorithms innoisy environments:

theoretical issues and guidelines for practice. Computer Methods in
Applied Mechanics and Engineering 186:2–4 (2000), 239–267. doi: 10.1016/
S0045-7825(99)00386-2 (see page 126).

[Bia+09] Leonora Bianchi, Marco Dorigo, Luca Maria Gambardella, and Walter J.
Gutjahr. A survey on metaheuristics for stochastic combinatorial

optimization. Natural Computing 8:2 (2009), 239–287. doi: 10 . 1007 /
s11047-008-9098-4 (see page 113).

[Bil95] Patrick Billingsley. Probability and measure. 3rd ed. John Wiley &
Sons, Inc., 1995. isbn: 978-81-265-1771-8 (see page 168).

[BJV96] Jeremy S. De Bonet, Charles L. Isbell Jr., and Paul A. Viola. MIMIC: �nd-

ing optima by estimating probability densities. In: Proceedings of
the 9th International Conference on Neural Information Processing Systems
(NIPS’96). 1996, 424–430. url: http://papers.nips.cc/paper/1328-mimic-
�nding-optima-by-estimating-probability-densities (see page 223).

[BLS14] Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. Unbiased black-

box complexity of parallel search. In: Proceedings of the 13th Interna-
tional Conference on Parallel Problem Solving from Nature (PPSN XIII). 2014,
892–901. doi: 10.1007/978-3-319-10762-2_88 (see page 71).

[BOS02] Hans-Georg Beyer, Markus Olhofer, and Bernhard Sendho�. On the

behavior of (µ/µ1,λ)-ES optimizing functions disturbed by gene-

ralized noise. In: Proceedings of the 7th ACM/SIGEVO Workshop on Foun-
dations of Genetic Algorithms (FOGA VII). 2002, 307–328 (see page 114).

[BP83] Philip J. Boland and Frank Proschan. The reliability of K out of N
systems. The Annals of Probability 11:3 (1983), 760–764. doi: 10.1214/
aop/1176993520 (see page 145).

[BQT18] Chao Bian, Chao Qian, and Ke Tang. Towards a running time analysis

of the (1+1)-EA for OneMax and LeadingOnes under general bit-

wise noise. In: Proceedings of the 15th International Conference on Parallel
Problem Solving from Nature (PPSN XV). 2018, 165–177. doi: 10.1007/978-
3-319-99259-4_14 (see page 133).

[BS07] Hans-Georg Beyer and Bernhard Sendho�. Robust optimization – a

comprehensive survey. Computer Methods in Applied Mechanics and
Engineering 196:33–34 (2007), 3190–3218. doi: 10.1016/j.cma.2007.03.003
(see page 114).

[Bul15] Peter Bullen. Dictionary of inequalities. 2nd ed. Taylor & Francis
Group, 2015. isbn: 978-1-4822-3761-0 (see page 122).

226

https://doi.org/10.1016/S0045-7825(99)00386-2
https://doi.org/10.1016/S0045-7825(99)00386-2
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1007/s11047-008-9098-4
http://papers.nips.cc/paper/1328-mimic-finding-optima-by-estimating-probability-densities
http://papers.nips.cc/paper/1328-mimic-finding-optima-by-estimating-probability-densities
https://doi.org/10.1007/978-3-319-10762-2_88
https://doi.org/10.1214/aop/1176993520
https://doi.org/10.1214/aop/1176993520
https://doi.org/10.1007/978-3-319-99259-4_14
https://doi.org/10.1007/978-3-319-99259-4_14
https://doi.org/10.1016/j.cma.2007.03.003

[BW16] Rabi Bhattacharya and Edward C. Waymire. A basic course in pro-

bability theory. 2nd ed. Springer International Publishing, 2016. isbn:
978-3-319-47972-9 (see page 32).

[CCM11] Seok-Ho Chang, Pamela C. Cosman, and Laurence B. Milstein. Cherno�-
type bounds for the Gaussian error function. IEEE Transactions on
Communications 59:11 (2011), 2939–2944. doi: 10.1109/TCOMM.2011.
072011.100049 (see page 116).

[CDG08] Gianni A. Di Caro, Frederick Ducatelle, and Luca M. Gambardella. The-
ory and practice of ant-based routing in dynamic telecommuni-

cations networks. In: Re�exing Interfaces: The Complex Coevolution of
Information Technology Ecosystems. 2008, 185–216. doi: 10.4018/978-1-
59904-627-3.ch012 (see page 133).

[Che+07] Tianshi Chen, Ke Tang, Guoliang Chen, and Xin Yao. On the analysis of

average time complexity of estimation of distribution algorithms.
In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC’07).
2007, 453–460. doi: 10.1109/CEC.2007.4424506 (see page 149).

[Che+09a] Tianshi Chen, Per Kristian Lehre, Ke Tang, and Xin Yao. When is an

estimation of distribution algorithm better than an evolutionary

algorithm? In: Proceedings of the IEEE Congress on Evolutionary Compu-
tation (CEC’09). 2009, 1470–1477. doi: 10.1109/CEC.2009.4983116 (see
pages 65, 149).

[Che+09b] Tianshi Chen, Ke Tang, Guoliang Chen, and Xin Yao. Rigorous time

complexity analysis of Univariate Marginal Distribution Algori-

thm with margins. In: Proceedings of the IEEE Congress on Evolutionary
Computation (CEC’09). 2009, 2157–2164. doi: 10.1109/CEC.2009.4983208
(see pages 65, 149).

[Che+10] Tianshi Chen, Ke Tang, Guoliang Chen, and Xin Yao. Analysis of com-

putational time of simple estimation of distribution algorithms.
IEEE Transactions on Evolutionary Computations 14:1 (2010), 1–22. doi:
10.1109/TEVC.2009.2040019 (see pages 65, 149).

[Chr76] Nicos Christo�des. Worst-case analysis of a new heuristic for the

Travelling Salesman Problem. Tech. rep. 388. Pittsburgh, PA, USA:
Carnegie Mellon University, 1976 (see page 1).

[Cor+09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord
Stein. Introduction to algorithms. 3rd ed. The MIT Press, 2009. isbn:
978-0-262-03384-8 (see pages 11, 172, 187).

227

https://doi.org/10.1109/TCOMM.2011.072011.100049
https://doi.org/10.1109/TCOMM.2011.072011.100049
https://doi.org/10.4018/978-1-59904-627-3.ch012
https://doi.org/10.4018/978-1-59904-627-3.ch012
https://doi.org/10.1109/CEC.2007.4424506
https://doi.org/10.1109/CEC.2009.4983116
https://doi.org/10.1109/CEC.2009.4983208
https://doi.org/10.1109/TEVC.2009.2040019

[Cor+14] Dogan Corus, Duc-Cuong Dang, Anton V. Eremeev, and Per Kristian
Lehre. Level-based analysis of genetic algorithms and other search

processes.Computing Research Repository (arXiv) (2014). url: http://arxiv.
org/abs/1407.7663 (see pages 30, 34).

[DD18] Benjamin Doerr and Carola Doerr. Optimal static and self-adjusting

parameter choices for the (1+(λ,λ)) genetic algorithm. Algorithmica
80:5 (2018), 1658–1709. doi: 10.1007/s00453-017-0354-9 (see page 197).

[DDK14] Benjamin Doerr, Carola Doerr, and Timo Kötzing. The unbiased black-

box complexity of partition is polynomial. Arti�cial Intelligence 216
(2014), 275–286. doi: 10.1016/j.artint.2014.07.009 (see page 71).

[DDK15] Benjamin Doerr, Carola Doerr, and Timo Kötzing. Unbiased black-box

complexities of Jump functions. Evolutionary Computation 23:4 (2015),
641–670. doi: 10.1162/EVCO_a_00158 (see page 71).

[DDY16a] Benjamin Doerr, Carola Doerr, and Jing Yang.k-bit mutation with self-

adjusting k outperforms standard bit mutation. In: Proceedings of
the 14th International Conference on Parallel Problem Solving from Nature
(PPSN XIV). 2016, 824–834. doi: 10.1007/978- 3- 319- 45823- 6_77 (see
page 220).

[DDY16b] Benjamin Doerr, Carola Doerr, and Jing Yang. Optimal parameter choi-

ces via precise black-box analysis. In: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO’16). 2016, 1123–1130. doi:
10.1145/2908812.2908950 (see page 71).

[DG13] Benjamin Doerr and Leslie A. Goldberg. Adaptive drift analysis. Al-
gorithmica 65:1 (2013), 224–250. doi: 10.1007/s00453-011-9585-3 (see
pages 31, 49, 103, 117).

[DHK12] Benjamin Doerr, Ashish Ranjan Hota, and Timo Kötzing. Ants easily
solve stochastic shortest path problems. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO’12). 2012, 17–24. doi:
10.1145/2330163.2330167 (see pages 114, 134).

[DJW02] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of

the (1+1) evolutionary algorithm. Theoretical Computer Science 276:1–
2 (2002), 51–81. doi: 10.1016/S0304-3975(01)00182-7 (see pages 70, 134,
197, 210, 219, 222).

[DJW06] Stefan Droste, Thomas Jansen, and Ingo Wegener. Upper and lower

bounds for randomized search heuristics in black-box optimiza-

tion. Theory of Computing Systems 39:4 (2006), 525–544. doi: 10.1007/
s00224-004-1177-z (see pages 69, 70, 150, 198).

228

http://arxiv.org/abs/1407.7663
http://arxiv.org/abs/1407.7663
https://doi.org/10.1007/s00453-017-0354-9
https://doi.org/10.1016/j.artint.2014.07.009
https://doi.org/10.1162/EVCO_a_00158
https://doi.org/10.1007/978-3-319-45823-6_77
https://doi.org/10.1145/2908812.2908950
https://doi.org/10.1007/s00453-011-9585-3
https://doi.org/10.1145/2330163.2330167
https://doi.org/10.1016/S0304-3975(01)00182-7
https://doi.org/10.1007/s00224-004-1177-z
https://doi.org/10.1007/s00224-004-1177-z

[DJW12] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative

drift analysis. Algorithmica 64:4 (2012), 673–697. doi: 10.1007/s00453-
012-9622-x (see pages 30, 49).

[DK15] Benjamin Doerr and Marvin Künnemann. Optimizing linear functions

with the (1 +λ) evolutionary algorithm—di�erent asymptotic run-

times for di�erent instances. Theoretical Computer Science 561 (2015),
3–23. doi: 10.1016/j.tcs.2014.03.015 (see page 197).

[DK18a] Benjamin Doerr and Martin S. Krejca. Signi�cance-based estimation-

of-distribution algorithms.Computing Research Repository (arXiv) (2018).
url: http://arxiv.org/abs/1807.03495 (see pages 93, 195, 197).

[DK18b] Benjamin Doerr and Martin S. Krejca. Signi�cance-based estimation-

of-distribution algorithms. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO’18). 2018, 1483–1490. doi: 10.
1145/3205455.3205553 (see pages 93, 149, 195).

[DKW11] Benjamin Doerr, Timo Kötzing, and Carola Winzen. Too fast unbiased

black-box algorithms. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’11). 2011, 2043–2050. doi: 10 . 1145 /
2001576.2001851 (see page 75).

[DL15] Duc-Cuong Dang and Per Kristian Lehre. Simpli�ed runtime analysis

of estimation of distribution algorithms. In: Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO’15). 2015, 513–
518. doi: 10.1145/2739480.2754814 (see pages 60, 65, 149, 150, 197).

[DL16] Duc-Cuong Dang and Per Kristian Lehre. Runtime analysis of non-

elitist populations: from classical optimisation to partial informa-

tion. Algorithmica 75:3 (2016), 428–461. doi: 10.1007/s00453-015-0103-x
(see page 133).

[DL17] Carola Doerr and Johannes Lengler. OneMax in black-box models

with several restrictions. Algorithmica 78:2 (2017), 610–640. doi: 10.
1007/s00453-016-0168-1 (see page 71).

[Doe+11a] Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Per Kristian Lehre,
Markus Wagner, and Carola Winzen. Faster black-box algorithms

through higher arity operators. In: Proceedings of the 11th ACM/SIG-
EVO Workshop on Foundations of Genetic Algorithms (FOGA XI). 2011,
163–172. doi: 10.1145/1967654.1967669 (see pages 71, 76).

[Doe+11b] Benjamin Doerr, Frank Neumann, Dirk Sudholt, and Carsten Witt. Run-
time analysis of the 1-ANT Ant Colony optimizer. Theoretical Com-
puter Science 412:17 (2011), 1629–1644. doi: 10.1016/j.tcs.2010.12.030 (see
page 197).

229

https://doi.org/10.1007/s00453-012-9622-x
https://doi.org/10.1007/s00453-012-9622-x
https://doi.org/10.1016/j.tcs.2014.03.015
http://arxiv.org/abs/1807.03495
https://doi.org/10.1145/3205455.3205553
https://doi.org/10.1145/3205455.3205553
https://doi.org/10.1145/2001576.2001851
https://doi.org/10.1145/2001576.2001851
https://doi.org/10.1145/2739480.2754814
https://doi.org/10.1007/s00453-015-0103-x
https://doi.org/10.1007/s00453-016-0168-1
https://doi.org/10.1007/s00453-016-0168-1
https://doi.org/10.1145/1967654.1967669
https://doi.org/10.1016/j.tcs.2010.12.030

[Doe+13] Benjamin Doerr, Thomas Jansen, Dirk Sudholt, Carola Winzen, and Chris-
tine Zarges. Mutation rate matters even when optimizing mono-

tonic functions. Evolutionary Computation 21:1 (2013), 1–27. doi: 10.
1162/EVCO_a_00055 (see page 64).

[Doe+17] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen.
Fast genetic algorithms. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’17). 2017, 777–784. doi: 10.1145/3071178.
3071301 (see page 219).

[Doe+18] Benjamin Doerr, Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair
Warwicker. On the runtime analysis of selection hyper-heuristics

with adaptive learning periods. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO’18). 2018, 1015–1022. doi:
10.1145/3205455.3205611 (see page 220).

[Doe18] Benjamin Doerr. Probabilistic tools for the analysis of randomized

optimization heuristics. Computing Research Repository (arXiv) (2018).
url: https://arxiv.org/abs/1801.06733 (see page 198).

[Dro04] Stefan Droste. Analysis of the (1+1) EA for a noisy OneMax. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GEC-
CO’04). 2004, 1088–1099. doi: 10 .1007/978- 3- 540- 24854- 5_107 (see
page 114).

[Dro06] Stefan Droste. A rigorous analysis of the Compact Genetic Algori-

thm for linear functions. Natural Computing 5:3 (2006), 257–283. doi:
10.1007/s11047-006-9001-0 (see pages 68, 118, 149, 196, 210).

[DS04] Marco Dorigo and Thomas Stützle. Ant Colony Optimization. 1st ed.
The MIT Press, 2004. isbn: 978-0-262-04219-2 (see page 133).

[Dur19] Rick Durrett.Probability: theory and examples. Cambridge University
Press, 2019. isbn: 978-1-108-47368-2 (see pages 39, 51).

[DW14a] Benjamin Doerr and Carola Winzen. Playing Mastermind with con-

stant-size memory. Theory of Computing Systems 55:4 (2014), 658–684.
doi: 10.1007/s00224-012-9438-8 (see page 71).

[DW14b] Benjamin Doerr and Carola Winzen. Ranking-based black-box com-

plexity. Algorithmica 68:3 (2014), 571–609. doi: 10.1007/s00453- 012-
9684-9 (see pages 71, 210).

[DW14c] Benjamin Doerr and Carola Winzen. Reducing the arity in unbiased

black-box complexity. Theoretical Computer Science 545 (2014), 108–
121. doi: 10.1016/j.tcs.2013.05.004 (see page 71).

[ER63] Paul Erdős and Alfréd Rényi.On two problems of information theory.
Magyar Tud. Akad. Mat. Kutató Int. Kőzl 8 (1963), 229–243 (see page 70).

230

https://doi.org/10.1162/EVCO_a_00055
https://doi.org/10.1162/EVCO_a_00055
https://doi.org/10.1145/3071178.3071301
https://doi.org/10.1145/3071178.3071301
https://doi.org/10.1145/3205455.3205611
https://arxiv.org/abs/1801.06733
https://doi.org/10.1007/978-3-540-24854-5_107
https://doi.org/10.1007/s11047-006-9001-0
https://doi.org/10.1007/s00224-012-9438-8
https://doi.org/10.1007/s00453-012-9684-9
https://doi.org/10.1007/s00453-012-9684-9
https://doi.org/10.1016/j.tcs.2013.05.004

[Fel68] William Feller. An introduction to probability theory and its appli-

cations. 3rd ed. Vol. 1. John Wiley & Sons, Inc., 1968. isbn: 978-0-471-
25708-0 (see page 186).

[Fel71] William Feller. An introduction to probability theory and its appli-

cations. 2nd ed. Vol. 2. John Wiley & Sons, Inc., 1971. isbn: 978-0-471-
25709-7 (see page 168).

[FK13] Matthias Feldmann and Timo Kötzing. Optimizing expected path leng-

ths with Ant Colony Optimization using �tness proportional up-

date. In: Proceedings of the 12th ACM/SIGEVOWorkshop on Foundations of
Genetic Algorithms (FOGA XII). 2013, 65–74. doi: 10.1145/2460239.2460246
(see pages 114, 134).

[FKK16] Tobias Friedrich, Timo Kötzing, and Martin S. Krejca. EDAs cannot be
balanced and stable. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’16). 2016, 1139–1146. doi: 10 . 1145 /
2908812.2908895 (see pages 59, 93, 149).

[FKK18] Tobias Friedrich, Timo Kötzing, and Martin S. Krejca. Unbiasedness of
estimation-of-distribution algorithms. Theoretical Computer Science
(2018). doi: 10.1016/j.tcs.2018.11.001 (see pages 59, 69).

[Fri+16] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, and Andrew M. Sut-
ton. Robustness of Ant Colony Optimization to noise. Evolutionary
Computation 24:2 (2016), 237–254. doi: 10 .1162/EVCO_a_00178 (see
pages 113, 133).

[Fri+17] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, and Andrew M. Sutton.
The Compact Genetic Algorithm is e�cient under extreme Gaus-

sian noise. IEEE Transactions on Evolutionary Computations 21:3 (2017),
477–490. doi: 10.1109/TEVC.2016.2613739 (see pages 9, 113–115, 130, 131,
221).

[GK16] Christian Gießen and Timo Kötzing. Robustness of populations in

stochastic environments. Algorithmica 75 (2016), 462–489. doi: 10 .
1007/s00453-015-0072-0 (see pages 114, 133).

[Gol+17] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski,
John Karro, and David Sculley. Google Vizier: a service for black-box
optimization. In: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’17). 2017,
1487–1495. doi: 10.1145/3097983.3098043 (see page 1).

[GP96] Walter J. Gutjahr and Georg Ch. P�ug. Simulated annealing for noisy

cost functions. Journal of Global Optimization 8:1 (1996), 1–13. doi:
10.1007/BF00229298 (see page 114).

231

https://doi.org/10.1145/2460239.2460246
https://doi.org/10.1145/2908812.2908895
https://doi.org/10.1145/2908812.2908895
https://doi.org/10.1016/j.tcs.2018.11.001
https://doi.org/10.1162/EVCO_a_00178
https://doi.org/10.1109/TEVC.2016.2613739
https://doi.org/10.1007/s00453-015-0072-0
https://doi.org/10.1007/s00453-015-0072-0
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1007/BF00229298

[GR07] Izrail S. Gradshteyn and Iosif M. Ryzhik. Table Of integrals, series,

and products. 7th ed. Elsevier Science Publishers, 2007. isbn: 978-0-12-
373637-6 (see page 119).

[GS01a] Geo�rey R. Grimmett and David R. Stirzaker. One thousand exercises

in probability. 2nd ed. Oxford University Press, 2001. isbn: 978-0-19-
857221-3 (see page 22).

[GS01b] Geo�rey R. Grimmett and David R. Stirzaker. Probability and random

processes. 3rd ed. Oxford University Press, 2001. isbn: 978-0-19-857222-0
(see pages 14, 15, 18, 20–22, 27, 32, 33, 97).

[Had75] F. Hadlock. Finding a maximum cut of a planar graph in polyno-

mial time. SIAM Journal on Computing 4 (1975), 221–225. doi: 10.1137/
0204019 (see page 1).

[Haj82] Bruce Hajek. Hitting-time and occupation-time bounds implied by

drift analysis with applications. Advances in Applied Probability 14:3
(1982), 502–525. doi: 10.2307/1426671 (see page 29).

[HLG99] Georges R. Harik., Fernando G. Lobo, and David E. Goldberg. The Com-

pact Genetic Algorithm. IEEE Transactions on Evolutionary Computa-
tions 3:4 (1999), 287–297. doi: 10.1109/4235.797971 (see pages 5, 67).

[HP11] Mark Hauschild and Martin Pelikan. An introduction and survey of

estimation of distribution algorithms. Swarm and Evolutionary Com-
putation 1:3 (2011), 111–128. doi: 10.1016/j.swevo.2011.08.003 (see pages 2,
4).

[HR97] Markus Höhfeld and Günter Rudolph.Towards a theory of Population-

Based Incremental Learning. In: Proceedings of the IEEE Congress on
Evolutionary Computation (CEC’97). 1997, 1–5 (see page 64).

[HS18] Václav Hasenöhrl and Andrew M. Sutton. On the runtime dynamics of

the Compact Genetic Algorithm on Jump functions. In: Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO’18). 2018,
967–974. doi: 10.1145/3205455.3205608 (see page 222).

[HY01] Jun He and Xin Yao. Drift analysis and average time complexity of

evolutionary algorithms. Arti�cial Intelligence 127:1 (2001), 57–85. doi:
10.1016/S0004-3702(01)00058-3 (see pages 29, 36).

[HY04] Jun He and Xin Yao. A study of drift analysis for estimating com-

putation time of evolutionary algorithms. Natural Computing 3:1
(2004), 21–35. doi: 10.1023/B:NACO.0000023417.31393.c7 (see pages 29,
36).

232

https://doi.org/10.1137/0204019
https://doi.org/10.1137/0204019
https://doi.org/10.2307/1426671
https://doi.org/10.1109/4235.797971
https://doi.org/10.1016/j.swevo.2011.08.003
https://doi.org/10.1145/3205455.3205608
https://doi.org/10.1016/S0004-3702(01)00058-3
https://doi.org/10.1023/B:NACO.0000023417.31393.c7

[Jan13] Thomas Jansen. Analyzing evolutionary algorithms: the computer

science perspective. Natural Computing Series. Springer-Verlag Berlin
Heidelberg, 2013. isbn: 978-3-642-17338-7. doi: 10.1007/978-3-642-17339-
4 (see page 64).

[JB05] Yaochu Jin and Jürgen Branke. Evolutionary optimization in uncer-

tain environments—a survey. IEEE Transactions on Evolutionary Com-
putations 9 (2005), 303–317. doi: 10.1109/TEVC.2005.846356 (see page 113).

[JJW05] Thomas Jansen, Kenneth A. De Jong, and Ingo Wegener. On the choice

of the o�spring population size in evolutionary algorithms. Evolu-
tionary Computation 13 (2005), 413–440. doi: 10.1162/106365605774666921
(see page 197).

[Joh10] Daniel Johannsen. Random combinatorial structures and randomiz-

ed search heuristics. PhD thesis. Universität des Saarlandes, 2010. url:
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/26072
(see pages 30, 45).

[JZ14] Thomas Jansen and Christine Zarges. Performance analysis of ran-

domised search heuristics operating with a �xed budget. Theoreti-
cal Computer Science 545 (2014), 39–58. doi: 10.1016/j.tcs.2013.06.007 (see
page 131).

[KF09] Daphne Koller and Nir Friedman.Probabilistic graphicalmodels: prin-

ciples and techniques. The MIT Press, 2009. isbn: 978-0-262-01319-2
(see page 2).

[KGV83] Scott Kirkpatrick, C. D. Gelatt, and Mario P. Vecchi. Optimization by

Simulated Annealing. Science 220:4598 (1983), 671–680. doi: 10.1126/
science.220.4598.671 (see page 1).

[KK18] Timo Kötzing and Martin S. Krejca. First-hitting times under additive

drift. In: Proceedings of the 15th International Conference on Parallel Prob-
lem Solving from Nature (PPSN XV). 2018, 92–104. doi: 10.1007/978-3-319-
99259-4_8 (see pages 29, 39).

[KM12] Timo Kötzing and Hendrik Molter.ACOBeats EAon adynamic pseudo-

Boolean function. In: Proceedings of the 12th International Conference
on Parallel Problem Solving from Nature (PPSN XII). 2012, 113–122. doi:
10.1007/978-3-642-32937-1_12 (see page 134).

[Köt+11] Timo Kötzing, Frank Neumann, Dirk Sudholt, and Markus Wagner. Sim-

ple Max-Min Ant Systems and the optimization of linear pseudo-

Boolean functions. In: Proceedings of the 11th ACM/SIGEVO Workshop
on Foundations of Genetic Algorithms (FOGA XI). 2011, 209–218. doi:
10.1145/1967654.1967673 (see page 134).

233

https://doi.org/10.1007/978-3-642-17339-4
https://doi.org/10.1007/978-3-642-17339-4
https://doi.org/10.1109/TEVC.2005.846356
https://doi.org/10.1162/106365605774666921
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/26072
https://doi.org/10.1016/j.tcs.2013.06.007
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/978-3-319-99259-4_8
https://doi.org/10.1007/978-3-319-99259-4_8
https://doi.org/10.1007/978-3-642-32937-1_12
https://doi.org/10.1145/1967654.1967673

[Köt16] Timo Kötzing. Concentration of �rst hitting times under additive

drift. Algorithmica 75:3 (2016), 490–506. doi: 10.1007/s00453-015-0048-0
(see pages 31, 55).

[KP15] Janusz Kacprzyk and Witold Pedrycz, eds. Springer handbook of com-

putational intelligence. Springer-Verlag Berlin Heidelberg, 2015. doi:
10.1007/978-3-662-43505-2 (see pages 2, 236).

[KW18a] Martin S. Krejca and Carsten Witt. Lower bounds on the run time

of the Univariate Marginal Distribution Algorithm on OneMax.
Theoretical Computer Science (2018). doi: 10.1016/j.tcs.2018.06.004 (see
pages 65, 149).

[KW18b] Martin S. Krejca and Carsten Witt. Theory of estimation-of-distribu-

tion algorithms. Computing Research Repository (arXiv) (2018). url:
http://arxiv.org/abs/1806.05392 (see page 4).

[Len17] Johannes Lengler. Drift analysis. Computing Research Repository (arXiv)
(2017). url: http://arxiv.org/abs/1712.00964 (see pages 29, 30, 34, 45).

[LL02] Pedro Larrañaga and Jose A. Lozano. Estimation of distribution algo-

rithms: a new tool for evolutionary computation. Springer US, 2002.
doi: 10.1007/978-1-4615-1539-5 (see page 2).

[LN17] Per Kristian Lehre and Phan Trung Hai Nguyen. Improved runtime

bounds for the Univariate Marginal Distribution Algorithm via

anti-concentration. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO’17). 2017, 1383–1390. doi: 10.1145/3071178.
3071317 (see pages 6, 10, 65, 149, 150, 192, 197).

[LN18] Per Kristian Lehre and Phan Trung Hai Nguyen. Level-based analysis

of the Population-Based Incremental Learning algorithm. In: Pro-
ceedings of the 15th International Conference on Parallel Problem Solving
from Nature (PPSN XV). 2018, 105–116. doi: 10.1007/978-3-319-99259-4_9
(see pages 64, 149, 197).

[LS18] Johannes Lengler and Angelika Steger. Drift analysis and evolution-

ary algorithms revisited. Combinatorics, Probability and Computing
27:4 (2018), 643–666. doi: 10.1017/S0963548318000275 (see page 49).

[LSW18] Johannes Lengler, Dirk Sudholt, and Carsten Witt. Medium step sizes

are harmful for the Compact Genetic Algorithm. In: Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO’18). 2018,
1499–1506. doi: 10.1145/3205455.3205576 (see pages 7, 68, 94, 103, 149,
195, 222, 223).

234

https://doi.org/10.1007/s00453-015-0048-0
https://doi.org/10.1007/978-3-662-43505-2
https://doi.org/10.1016/j.tcs.2018.06.004
http://arxiv.org/abs/1806.05392
http://arxiv.org/abs/1712.00964
https://doi.org/10.1007/978-1-4615-1539-5
https://doi.org/10.1145/3071178.3071317
https://doi.org/10.1145/3071178.3071317
https://doi.org/10.1007/978-3-319-99259-4_9
https://doi.org/10.1017/S0963548318000275
https://doi.org/10.1145/3205455.3205576

[LW12] Per Kristian Lehre and Carsten Witt. Black-box search by unbiased

variation. Algorithmica 64:4 (2012), 623–642. doi: 10.1007/s00453-012-
9616-8 (see pages 8, 70, 71, 75, 204, 223).

[LW13] Per Kristian Lehre and Carsten Witt. General drift analysis with tail

bounds. Computing Research Repository (arXiv) abs/1307.2559 (2013). url:
http://arxiv.org/abs/1307.2559 (see page 49).

[LW14] Per Kristian Lehre and Carsten Witt. Concentrated hitting times of

randomized search heuristics with variable drift. In: Proceedings
of the 25th International Symposium on Algorithms and Computation
(ISAAC’14). 2014, 686–697. doi: 10.1007/978- 3- 319- 13075- 0_54 (see
page 30).

[LW16] Andrei Lissovoi and Carsten Witt.MMAS versus population-based EA

on a family of dynamic �tness functions. Algorithmica 75:3 (2016),
554–576. doi: 10.1007/s00453-015-9975-z (see page 134).

[Mit64] Dragoslav S. Mitrinović. Elementary inequalities. P. Noordho� Ltd.,
1964 (see page 119).

[MP96] Heinz Mühlenbein and Gerhard Paaß. From recombination of genes to

the estimation of distributions I. binary parameters. In: Proceedings
of the 4th International Conference on Parallel Problem Solving from Nature
(PPSN IV). 1996, 178–187. doi: 10.1007/3-540-61723-X_982 (see pages 5,
65).

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms.
Cambridge University Press, 1995. isbn: 978-0-521-47465-8 (see pages 27,
35).

[MRC09] Boris Mitavskiy, Jonathan E. Rowe, and Chris Cannings. Theoretical
analysis of local search strategies to optimize network communi-

cation subject to preserving the total number of links. International
Journal of Intelligent Computing and Cybernetics 2:2 (2009), 243–284. doi:
10.1108/17563780910959893 (see page 45).

[MS17] Alberto Moraglio and Dirk Sudholt. Principled design and runtime

analysis of abstract convex evolutionary search. Evolutionary Com-
putation 25:2 (2017), 205–236. doi: 10.1162/EVCO_a_00169 (see page 197).

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and computing: ran-

domized algorithms and probabilistic analysis. 1st ed. Cambridge
University Press, 2005. isbn: 978-0-521-83540-4 (see pages 11, 13, 18, 21,
26, 50, 54, 182, 184).

235

https://doi.org/10.1007/s00453-012-9616-8
https://doi.org/10.1007/s00453-012-9616-8
http://arxiv.org/abs/1307.2559
https://doi.org/10.1007/978-3-319-13075-0_54
https://doi.org/10.1007/s00453-015-9975-z
https://doi.org/10.1007/3-540-61723-X_982
https://doi.org/10.1108/17563780910959893
https://doi.org/10.1162/EVCO_a_00169

[Müh92] Heinz Mühlenbein. How genetic algorithms really work: mutation

and hillclimbing. In: Proceedings of the 2nd International Conference on
Parallel Problem Solving from Nature (PPSN II). 1992, 15–26 (see pages 4,
12, 149).

[NSW09] Frank Neumann, Dirk Sudholt, and Carsten Witt. Analysis of di�er-
ent MMAS ACO algorithms on unimodal functions and plateaus.
Swarm Intelligence 3:1 (2009), 35–68. doi: 10.1007/s11721-008-0023-3 (see
page 197).

[NSW10] Frank Neumann, Dirk Sudholt, and Carsten Witt.Afewants are enough:

ACOwith iteration-best update. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO’10). 2010, 63–70. doi: 10.1145/
1830483.1830493 (see pages 65, 66, 149).

[NW09] Frank Neumann and Carsten Witt. Runtime analysis of a simple Ant

Colony Optimization algorithm. Algorithmica 54:2 (2009), 243–255.
doi: 10.1007/s00453-007-9134-2 (see page 197).

[Oll+17] Yann Ollivier, Ludovic Arnold, Anne Auger, and Nikolaus Hansen. Infor-
mation-geometric optimization algorithms: a unifying picture via

invariance principles. Journal of Machine Learning Research 18 (2017),
18:1–18:65. url: http://jmlr.org/papers/v18/14-467.html (see page 60).

[OW11] Pietro Simone Oliveto and Carsten Witt. Simpli�ed drift analysis for

proving lower bounds in evolutionary computation. Algorithmica
59:3 (2011), 369–386. doi: 10.1007/s00453-010-9387-z (see pages 31, 54).

[OW12] Pietro Simone Oliveto and Carsten Witt. Erratum: simpli�ed drift

analysis for proving lower bounds in evolutionary computation.
Computing Research Repository (arXiv) (2012). url: http://arxiv.org/abs/
1211.7184 (see page 54).

[OW15] Pietro Simone Oliveto and Carsten Witt. Improved time complexity

analysis of the Simple Genetic Algorithm. Theoretical Computer Sci-
ence 605 (2015), 21–41. doi: 10.1016/j.tcs.2015.01.002 (see page 176).

[Pai+15] Tiago Paixão, Golnaz Badkobeh, Nick Barton, Doğan Çörüş, Duc-Cuong
Dang, Tobias Friedrich, Per Kristian Lehre, Dirk Sudholt, Andrew M.
Sutton, and Barbora Trubenová. Toward a unifying framework for

evolutionary processes. Journal of Theoretical Biology 383 (2015), 28–43.
doi: 10.1016/j.jtbi.2015.07.011 (see page 60).

[PHL15] Martin Pelikan, Mark Hauschild, and Fernando G. Lobo. Estimation

of distribution algorithms. In: Springer Handbook of Computational
Intelligence [KP15]. Springer-Verlag Berlin Heidelberg, 2015, 899–928. doi:
10.1007/978-3-662-43505-2_45 (see page 2).

236

https://doi.org/10.1007/s11721-008-0023-3
https://doi.org/10.1145/1830483.1830493
https://doi.org/10.1145/1830483.1830493
https://doi.org/10.1007/s00453-007-9134-2
http://jmlr.org/papers/v18/14-467.html
https://doi.org/10.1007/s00453-010-9387-z
http://arxiv.org/abs/1211.7184
http://arxiv.org/abs/1211.7184
https://doi.org/10.1016/j.tcs.2015.01.002
https://doi.org/10.1016/j.jtbi.2015.07.011
https://doi.org/10.1007/978-3-662-43505-2_45

[PRS15] Adam Prügel-Bennett, Jonathan Rowe, and Jonathan Shapiro. Run-time

analysis of Population-BasedEvolutionaryAlgorithm innoisy en-

vironments. In: Proceedings of the 13th ACM/SIGEVO Workshop on Foun-
dations of Genetic Algorithms (FOGA XIII). 2015, 69–75. doi: 10 .1145/
2725494.2725498 (see page 132).

[PSC06] Martin Pelikan, Kumara Sastry, and Erick Cantú-Paz. Scalable optimiza-

tion via probabilistic modeling: from algorithms to applications.
Vol. 33. Studies in Computational Intelligence. Springer-Verlag Berlin
Heidelberg, 2006. doi: 10.1007/978-3-540-34954-9 (see page 2).

[RS14] Jonathan E. Rowe and Dirk Sudholt. The choice of the o�spring popu-
lation size in the (1,λ) evolutionary algorithm. Theoretical Computer
Science 545 (2014), 20–38. doi: 10.1016/j.tcs.2013.09.036 (see pages 45, 46).

[Rud76] Walter Rudin. Principles of mathematical analysis. 3rd ed. McGraw-
Hill Education, 1976. isbn: 978-0-07-085613-4 (see page 46).

[Rud97] Günter Rudolph. Convergence properties of evolutionary algori-

thms. Verlag Dr. Kovač, 1997. isbn: 978-3-86064-554-3 (see page 12).
[RV11] Jonathan E. Rowe and Michael D. Vose. Unbiased black box search

algorithms. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’11). 2011, 2035–2042. doi: 10.1145/2001576.2001850
(see pages 70, 76).

[SGL07] Kumara Sastry, David E. Goldberg, and Xavier Llorà.Towards billion-bit

optimization via a parallel estimation of distribution algorithm.
In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’07). 2007, 577–584. doi: 10.1145/1276958.1277077 (see page 113).

[SH00] Thomas Stützle and Holger H. Hoos. MAX-MIN Ant System. Future
Generation Computer Systems 16:8 (2000), 889–914. doi: 10.1016/S0167-
739X(00)00043-1 (see pages 65, 133, 134).

[Sha06] Jonathan L. Shapiro. Diversity loss in general estimation of distri-

bution algorithms. In: Proceedings of the 9th International Conference
on Parallel Problem Solving from Nature (PPSN IX). 2006, 92–101. doi:
10.1007/11844297_10 (see page 60).

[Sim13] Dan Simon. Evolutionary optimization algorithms. John Wiley &
Sons, Inc., 2013. isbn: 978-0-470-93741-9 (see page 2).

[ST03] Mikhail A. Semenov and Dmitri A. Terkel. Analysis of convergence of
an evolutionary algorithmwith self-adaptation using a stochastic

Lyapunov function. Evolutionary Computation 11:4 (2003), 363–379. doi:
10.1162/106365603322519279 (see page 30).

237

https://doi.org/10.1145/2725494.2725498
https://doi.org/10.1145/2725494.2725498
https://doi.org/10.1007/978-3-540-34954-9
https://doi.org/10.1016/j.tcs.2013.09.036
https://doi.org/10.1145/2001576.2001850
https://doi.org/10.1145/1276958.1277077
https://doi.org/10.1016/S0167-739X(00)00043-1
https://doi.org/10.1016/S0167-739X(00)00043-1
https://doi.org/10.1007/11844297_10
https://doi.org/10.1162/106365603322519279

[ST12] Dirk Sudholt and Christian Thyssen. A simple ant colony optimizer

for stochastic shortest path problems. Algorithmica 64:4 (2012), 643–
672. doi: 10.1007/s00453-011-9606-2 (see pages 114, 134).

[Sud13] Dirk Sudholt. A newmethod for lower bounds on the running time

of evolutionary algorithms. IEEE Transactions on Evolutionary Com-
putations 17:3 (2013), 418–435. doi: 10.1109/TEVC.2012.2202241 (see
page 12).

[SW16a] Dirk Sudholt and Carsten Witt. Update strength in EDAs and ACO:

how to avoid genetic drift. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO’16). 2016, 61–68. doi: 10.1145/
2908812.2908867 (see pages 5–7, 10, 66, 68, 91, 94, 103, 149, 150, 154, 169,
195, 197).

[SW16b] Dirk Sudholt and Carsten Witt. Update strength in EDAs and ACO:

how to avoid genetic drift.Computing Research Repository (arXiv) (2016).
url: http://arxiv.org/abs/1607.04063 (see pages 154, 161).

[War16] Lutz Warnke. On the method of typical bounded di�erences. Com-
binatorics, Probability and Computing 25:2 (2016), 269–299. doi: 10.1017/
S0963548315000103 (see page 33).

[Wil91] David Williams. Probability with martingales. Cambridge University
Press, 1991. isbn: 978-0-521-40605-5 (see page 51).

[Wit06] Carsten Witt. Runtime analysis of the (µ + 1) EA on simple pseudo-

Boolean functions. Evolutionary Computation 14 (2006), 65–86. doi:
10.1162/evco.2006.14.1.65 (see page 197).

[Wit13] Carsten Witt. Tight bounds on the optimization time of a rando-

mized search heuristic on linear functions. Combinatorics, Probabi-
lity and Computing 22:2 (2013), 294–318. doi: 10.1017/S0963548312000600
(see page 12).

[Wit17] Carsten Witt. Upper bounds on the runtime of the Univariate Mar-

ginal Distribution Algorithm on OneMax. In: Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO’17). 2017, 1415–
1422. doi: 10.1145/3071178.3071216 (see pages 6, 7, 10, 65, 149, 150, 192,
197, 223).

[Wit18] Carsten Witt. Domino convergence: why one should hill-climb on

linear functions. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO’18). 2018, 1539–1546. doi: 10.1145/3205455.
3205581 (see pages 68, 149, 210, 223).

238

https://doi.org/10.1007/s00453-011-9606-2
https://doi.org/10.1109/TEVC.2012.2202241
https://doi.org/10.1145/2908812.2908867
https://doi.org/10.1145/2908812.2908867
http://arxiv.org/abs/1607.04063
https://doi.org/10.1017/S0963548315000103
https://doi.org/10.1017/S0963548315000103
https://doi.org/10.1162/evco.2006.14.1.65
https://doi.org/10.1017/S0963548312000600
https://doi.org/10.1145/3071178.3071216
https://doi.org/10.1145/3205455.3205581
https://doi.org/10.1145/3205455.3205581

[WKM17] Zijun Wu, Michael Kolonko, and Rolf H. Möhring. Stochastic runtime

analysis of the Cross-Entropy Algorithm. IEEE Transactions on Evo-
lutionary Computations 21:4 (2017), 616–628. doi: 10.1109/TEVC.2017.
2667713 (see page 197).

239

https://doi.org/10.1109/TEVC.2017.2667713
https://doi.org/10.1109/TEVC.2017.2667713

11List of Publications

Articles in Refereed Journals

[1] Escaping local optima using crossover with emergent diversity.
IEEE Transactions on Evolutionary Computations 22:3 (2018), 484–497.
doi: 10.1109/TEVC.2017.2724201. Joint work with Duc-Cuong Dang,
Tobias Friedrich, Timo Kötzing, Per Kristian Lehre, Pietro S. Oliveto,
Dirk Sudholt, and Andrew M. Sutton.

[2] Unbiasedness of estimation-of-distribution algorithms. Theoreti-
cal Computer Science (2018). doi: 10.1016/j.tcs.2018.11.001. Joint work
with Tobias Friedrich and Timo Kötzing.

[3] Robustness ofAntColonyOptimization tonoise. Evolutionary Com-
putation 24:2 (2016), 237–254. doi: 10.1162/EVCO_a_00178. Joint work
with Tobias Friedrich, Timo Kötzing, and Andrew M. Sutton.

[4] TheCompactGeneticAlgorithm is e�cient under extremeGaus-

sian noise. IEEE Transactions on Evolutionary Computations 21:3 (2017),
477–490. doi: 10 .1109/TEVC.2016 .2613739. Joint work with Tobias
Friedrich, Timo Kötzing, and Andrew M. Sutton.

[5] Routing for on-street parking search using probabilistic data. AI
Communications (2019). doi: 10.3233/AIC-180574. Joint work with To-
bias Friedrich, Ralf Rothenberger, Tobias Arndt, Danijar Hafner, Thomas
Kellermeier, Simon Krogmann, and Armin Razmjou.

[6] Lower bounds on the run time of the Univariate Marginal Distri-

bution Algorithm on OneMax. Theoretical Computer Science (2018).
doi: 10.1016/j.tcs.2018.06.004. Joint work with Carsten Witt.

Articles in Refereed Conference Proceedings

[7] Probabilistic routing for on-street parking search. In: Proceedings
of the 24th Annual European Symposium on Algorithms (ESA’16). 2016,

241

https://doi.org/10.1109/TEVC.2017.2724201
https://doi.org/10.1016/j.tcs.2018.11.001
https://doi.org/10.1162/EVCO_a_00178
https://doi.org/10.1109/TEVC.2016.2613739
https://doi.org/10.3233/AIC-180574
https://doi.org/10.1016/j.tcs.2018.06.004

6:1–6:13. doi: 10.4230/LIPIcs.ESA.2016.6. Joint work with Tobias Arndt,
Danijar Hafner, Thomas Kellermeier, Simon Krogmann, Armin Razmjou,
Ralf Rothenberger, and Tobias Friedrich.

[8] Memory-restricted routing with tiled map data. In: Proceedings
of the IEEE International Conference on Systems, Man, and Cybernetics
(SMC’18). 2018, 3347–3354. doi: 10.1109/SMC.2018.00567. Joint work
with Thomas Bläsius, Jan Eube, Thomas Feldtkeller, Tobias Friedrich,
J. A. Gregor Lagodzinski, Ralf Rothenberger, Julius Severin, Fabian Som-
mer, and Justin Trautmann.

[9] Escaping local optima with diversity mechanisms and crossover.
In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’16). 2016, 645–652. doi: 10.1145/2908812.2908956. Joint work
with Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Per Kristian
Lehre, Pietro S. Oliveto, Dirk Sudholt, and Andrew M. Sutton.

[10] Emergence of diversity and its bene�ts for crossover in genetic

algorithms. In: Proceedings of the 14th International Conference on Par-
allel Problem Solving from Nature (PPSN XIV). 2016, 890–900. doi: 10.
1007/978-3-319-45823-6_83. Joint work with Duc-Cuong Dang, Tobias
Friedrich, Timo Kötzing, Per Kristian Lehre, Pietro Simone Oliveto, Dirk
Sudholt, and Andrew M. Sutton.

[11] Signi�cance-based estimation-of-distribution algorithms. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GEC-
CO’18). 2018, 1483–1490. doi: 10.1145/3205455.3205553. Joint work with
Benjamin Doerr.

[12] EDAs cannot be balanced and stable. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO’16). 2016, 1139–1146.
doi: 10.1145/2908812.2908895. Joint work with Tobias Friedrich and
Timo Kötzing.

[13] Robustness ofAntColonyOptimization to noise. In: Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO’15). 2015,
17–24. doi: 10.1145/2739480.2754723. Joint work with Tobias Friedrich,
Timo Kötzing, and Andrew M. Sutton.

242

https://doi.org/10.4230/LIPIcs.ESA.2016.6
https://doi.org/10.1109/SMC.2018.00567
https://doi.org/10.1145/2908812.2908956
https://doi.org/10.1007/978-3-319-45823-6_83
https://doi.org/10.1007/978-3-319-45823-6_83
https://doi.org/10.1145/3205455.3205553
https://doi.org/10.1145/2908812.2908895
https://doi.org/10.1145/2739480.2754723

[14] The bene�t of recombination in noisy evolutionary search. In:
Proceedings of the 26th International Symposium onAlgorithms andCom-
putation (ISAAC’15). 2015, 140–150. doi: 10 .1007/978- 3- 662- 48971-
0_13. Joint work with Tobias Friedrich, Timo Kötzing, and Andrew M.
Sutton.

[15] Graceful scaling on uniformversus steep-tailed noise. In: Proceed-
ings of the 14th International Conference on Parallel Problem Solving from
Nature (PPSN XIV). 2016, 761–770. doi: 10 . 1007 / 978 - 3 - 319 - 45823 -
6_71. Joint work with Tobias Friedrich, Timo Kötzing, and Andrew M.
Sutton.

[16] Fast building block assembly by Majority Vote crossover. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GEC-
CO’16). 2016, 661–668. doi: 10.1145/2908812.2908884. Joint work with
Tobias Friedrich, Timo Kötzing, Samadhi Nallaperuma, Frank Neumann,
and Martin Schirneck.

[17] First-hitting times for �nite state spaces. In: Proceedings of the 15th
International Conference on Parallel Problem Solving from Nature (PPSN
XV). 2018, 79–91. doi: 10.1007/978-3-319-99259-4_7. Joint work with
Timo Kötzing.

[18] First-hitting times under additive drift. In: Proceedings of the 15th
International Conference on Parallel Problem Solving from Nature (PPSN
XV). 2018, 92–104. doi: 10.1007/978-3-319-99259-4_8. Joint work with
Timo Kötzing.

[19] Lower bounds on the run time of the Univariate Marginal Distri-

bution Algorithm on OneMax. In: Proceedings of the 14th ACM/SIG-
EVO Workshop on Foundations of Genetic Algorithms (FOGA XIV). 2017,
65–79. doi: 10.1145/3040718.3040724. Joint work with Carsten Witt.

243

https://doi.org/10.1007/978-3-662-48971-0_13
https://doi.org/10.1007/978-3-662-48971-0_13
https://doi.org/10.1007/978-3-319-45823-6_71
https://doi.org/10.1007/978-3-319-45823-6_71
https://doi.org/10.1145/2908812.2908884
https://doi.org/10.1007/978-3-319-99259-4_7
https://doi.org/10.1007/978-3-319-99259-4_8
https://doi.org/10.1145/3040718.3040724

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Scope of this Thesis
	1.1.1 State of the Art

	1.2 Contribution and Outline

	2 Preliminaries
	2.1 Notation
	2.1.1 Fitness Functions

	2.2 Probability Theory
	2.2.1 Probability Spaces and Events
	2.2.2 Random Variables
	2.2.3 Expected Values
	2.2.4 Filtrations, Adapted Processes, and Stopping Times

	2.3 Probabilistic Inequalities

	3 Drift Theory
	3.1 Introduction
	3.2 Terms and Tools
	3.3 Additive Drift
	3.3.1 A Very Formal Approach
	3.3.2 Upper Bounds
	3.3.3 Lower Bound

	3.4 Variable Drift
	3.4.1 Below the Target
	3.4.2 Hitting the Target

	3.5 Multiplicative Drift
	3.5.1 Below the Target
	3.5.2 Hitting the Target

	3.6 Drift Without Drift
	3.7 Negative Drift

	4 The n-Bernoulli-lambda-EDA Framework
	4.1 Introduction
	4.2 The n-Bernoulli-lambda-EDA
	4.2.1 Special Update Schemes
	4.2.2 Margins

	4.3 Classifying Existing EDAs
	4.3.1 PBIL
	4.3.2 UMDA
	4.3.3 lambda-MMAS_IB
	4.3.4 cGA

	5 Unbiasedness of n-Bernoulli-lambda-EDAs
	5.1 Introduction
	5.2 Automorphisms of the Hypercube
	5.3 Unbiased EDAs
	5.4 Decomposability
	5.4.1 An Unbiased Non-decomposable EDA
	5.4.2 Unbiased Decomposable EDAs

	5.5 Locally Updating EDAs
	5.6 Conclusions

	6 n-Bernoulli-lambda-EDAs Cannot be Balanced and Stable
	6.1 Introduction
	6.2 Preliminaries
	6.3 Balanced Versus Stable
	6.4 Solving LeadingOnes Efficiently
	6.4.1 The Stable cGA

	6.5 Conclusions

	7 Upper Bound of the cGA on Noisy OneMax
	7.1 Introduction
	7.2 Preliminaries
	7.3 Formal Analysis
	7.4 Conclusions

	8 Upper Bound of the MMAS-fp on Noisy Linear Functions
	8.1 Introduction
	8.2 Preliminaries
	8.2.1 MMAS-fp

	8.3 Formal Analysis
	8.3.1 Non-Gaussian Noise

	8.4 Conclusions

	9 Lower Bound of the UMDA on OneMax
	9.1 Introduction
	9.2 Preliminaries
	9.2.1 Selecting Individuals
	9.2.2 The Number of 2nd-Class Individuals

	9.3 Lower Bound on OneMax
	9.3.1 Small Population Sizes
	9.3.2 Large Population Sizes
	9.3.3 Medium Population Sizes
	9.3.4 Proof of the Lower Bound

	9.4 Relaxing the Condition on the Population Size
	9.5 Conclusions

	10 Upper Bounds of the sig-cGA on LeadingOnes and OneMax
	10.1 Introduction
	10.2 Preliminaries
	10.3 The Significance-based Compact Genetic Algorithm
	10.3.1 Efficient Implementation of the sig-cGA
	10.3.2 Run Time Results for LeadingOnes and OneMax

	10.4 Run Time Analysis for the scGA
	10.5 Conclusions

	11 Conclusions & Outlook
	Bibliography
	List of Publications

