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Abstract

In 1990 Fulk [14] proved that partially set-drivenness (rearrangement-
independence) does not weaken the power of unrestricted computational language
learning. The question arises whether this result still holds if paired with various
learning restrictions. We investigate the influence of two main categories of such
restrictions, namely content-based and delayable ones. An adaption of Fulk’s
theorem is verified for content-based learning and some delayable restrictions
regarding U-shaped learning. On the other hand, we give an example criterion
of delayable learning—explanatory learning from text by a strongly monotone
scientist—for which partially set-drivenness does reduce the learning power.
Additionally, the interdependence of these restrictions with several other interaction
operators and success criteria are explored.
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List of Symbols

Whenever a variable ranges over a certain domain, all its variants—with or without
possible decorations such as sub- or superscripts—are intended to range over the
same domain if not explicitly stated otherwise.

N = {0; 1; 2; . . . } set of all natural numbers
e; i; j; k;m;n; t;x; y numbers (elements of N)

# pause symbol

A;B sets (subsets of N)
D finite set (finite subset of N)
Pfin(N) collection of all finite sets

N∗ set of all finite sequences of natural numbers
[n] = (0; 1; . . . ;n− 1) initial sequence of the first n natural numbers
σ; τ finite sequences (elements of (N ∪ {#})∗)

content(·) content
v prefix
� concatenation
|·| cardinality; length

∅ empty set; empty sequence
∈ element of

∩ intersection
∪ union
\ set difference
× Cartesian product

⊆ subset
⊂fin finite subset
( proper subset

∧ logical and
∨ logical or
⇒ logical consequence

∃ there is at least one
∃∞ there are infinitely many
∀ for all
∀∞ for all but finitely many



+ plus
− minus
≤ less than or equal to
< strictly less than

= equal to
6= unequal to

E collection of all r.e. sets of natural numbers
L class of languages (subset of E)
L language (element of E)
W effective numbering of all r.e. sets

R set of all total numerical functions
P set of all partial numerical functions
p; q infinite sequences (elements of P)

dom(·) domain
range(·) range
◦ composition

7→ mapped to
→ total mapping
 partial mapping

T text (mapping N→ N ∪ {#})
T [n] initial sequence of text T of length n (mapping [n]→ N ∪ {#})
Txt set of all texts
Txt(L) set of all texts for language L

R set of all total recursive functions
P set of all partial recursive functions
f ; g;h partial recursive functions (elements of P)

〈·; ·〉 pairing function
〈·〉 coding function
pad padding function

ϕ acceptable programming system
Φ complexity measure associated with ϕ
ϕi(x)↓ computation converges
ϕi(x)↑ computation diverges

[I] collection of all I-learnable classes of languages

� end of definition
� end of theorem
qed end of proof



1 Introduction

1.1 Inductive Inference

Inductive inference, or empirical inquiry [17], is the art and science of concluding
general principles from observable instances. This discipline of epistemology aims
to abstract from the actual given environment and the incomplete, sometimes
contradictory data it provides. The ultimate goal is a deep insight into the laws
defining nature. Although, as opposed to deductive reasoning, the truth of these
insights can not be guaranteed, inductive inference is an indispensable tool of
human comprehension. In fact, virtually any human knowledge has its source in
abstraction from our shallow, incomplete perception of reality. We call this learning.
Throughout the history many philosophers asked the same question:

How can human beings reach thorough understanding of their surroundings from
just limited, personal contact?

Learning theory, at the boundary of philosophy, psychology, neuroscience and
sociology, tries to give a scientific explanation. Unfortunately though, the vast
majority of cognitive processes in human knowledge is still widely unknown.
Computational learning theory, that is, inductive inference by algorithmic devices,
adds to this discussion a somehow mechanical point of view. It is based on a model
of learning that is portraying a learner as a mere apparatus transforming the data
it perceives to a stream of guesses about the world we live in. This stream, in
case of success, may stabilize to an explanation of the phenomena all around. Just
like a child reaches a stable idea of the grammar of the English language or a
scientist reaches a formula describing planetary movement over time. Computational
learning theory is divided into two main branches, algorithmic function learning
and algorithmic language learning. This thesis investigates a certain topic in the
latter. We want to know what information is necessary to enable a machine to
recognize languages, human as well as artificial ones, what set of instruments an
algorithm needs to succeed in the task of language identification. As we only
examine hypothetical inference machines, we have to place our reasoning on a
theoretical foundation. For this, we will utilize the mathematical theory of recursive
computability.

We would like to take this opportunity to express our sincere thanks to our advisor
Dr. Timo Kötzing. He was the one introducing us to the theory of computation
and algorithmic learning in the first place and he stood, with word and deed, at our
side all through the preparation and composition of this thesis. Thank you.

We will use the remainder of this preliminary section to summarize the
computational background necessary for algorithmic learning. In section 2 we
establish a first criterion of formal language learning. This is then generalized
to a classification scheme of computational learning due to Kötzing [20]. In
the same section a seminal result of Fulk [14] regarding language learning is
shown. In the last two sections we present our own research. We are investigating
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rearrangement-independent learning paired with several additional restrictions. One
of these restrictions, strongly monotone learning, stood out to us and is examined
intensively in section 4.

1.2 Computational Preliminaries

We give a brief overview on the mathematical foundations we need to argue about
language learning. As the name suggests, in order to formalize computational
learning the theory of recursive computability can be taken to good use. It provides
us with a developed framework as well as a widely accepted language and notation.
We expect the reader to have some background in the field since we can only mention
the upmost important definitions and theorems. For an extensive treatment of the
matter we strongly recommend Rogers [28]. Regarding recursive functions we will
follow his notational conventions. A general list of symbols be found at the beginning
of this work.

Let N = {0; 1; 2; . . . } be the set of all non-negative integers and let such numbers
e; i; j; k;m;n serve as indices, t as a measure (of time or of length) and x; y as further
set members or function inputs. For each at most countable set A, let A∗ denote the
set of all finite sequences of elements of A. For any index n, [n] = (0; 1; 2; · · · ;n−1)
shall be the initial sequence of the first n natural numbers. Symbols σ; τ ∈N∗ stand
for finite sequences of natural numbers. The number of elements of a sequence σ, its
length, is denoted |σ| and the set of all natural numbers appearing in σ, its content,
is denoted content(σ). It will be useful sometimes to conceive finite sequences as
partial functions with finite domain [|σ|], so σ(i) is referring to the i-th entry of
σ. The concatenation of sequences σ; τ (in this order) is written σ � τ , multiple
concatenations of the same sequence is denoted, for example, σ � τ t. The set N∗ is
partially ordered by the prefix relation: A sequence τ vσ is a prefix just in case
|τ | ≤ |σ| and ∀i≤ |τ | : τ(i) =σ(i). Intuitively, the sequence σ “starts with” prefix τ .

Symbols f ; g;h, with or without subscripts denote (possibly partial) numerical
functions N N. P andR, respectively, denote the collections of all partial and total
numerical functions. Most of the time the functions we speak of will be computable
ones. So let R be the collection of all total computable (recursive) functions and
P be the set of all partial recursive functions. Let dom(f) and range(f) denote
the domain and range of function f , respectively. Throughout this work we fix an
acceptable programming system ϕ [28], e.g. the Gödel numbering of all deterministic
multi-tape Turing machines. That means, we write ϕi(x)↓ just in case the i-th
Turing machine holds on input x and ϕi(x)↑ otherwise. Via ϕ natural numbers
become both inputs of and (codings of) programs of computable functions. Note
that {ϕi}i∈N forms a numbering of all partial recursive functions, but each one of
them has infinitely many ϕ-indices. Furthermore, we fix a complexity measure Φ
associated with ϕ [6]. Φi(x) can be thought of as a clockwork counting the number
of steps the i-th Turing machine takes on calculating the value ϕi(x). It is important
to note that, for each i;x and t, Φi(x)≤ t is decidable, while ϕi(x)↓ is not (Halting
Problem). Slightly abusing notation, we will also write p(x)↓ indicating that some
partial but maybe non-recursive function p∈P is defined at point x.

Let 〈·; ·〉 : N×N→ N be a total recursive onto pairing function. By
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left-association of 〈·; ·〉 we indeed get a total recursive onto coding function 〈·〉.
It is possible to code any finite set or sequence of natural numbers and even finite
collections thereof into N [28]. W.l.o.g. we can assume this coding to be monotone,
that is, τ v σ implies 〈τ〉≤ 〈σ〉. To put this the other way around, via 〈·〉 we can
conceive any set of sequences as a subset of N and therefore to be well-ordered.
The same goes for finite sets D⊂finN, i.e. D⊆D′ ⇒ 〈D〉≤ 〈D′〉. Whenever a
function with arity greater than 1 is used, we tacitly consider the input to be coded,
e.g. f(x; y) = f(〈x; y〉). Note that these pairing and coding functions are recursive
isomorphisms, thus, computably invertible. For example, there is a total recursive
function π1 ∈R such that ∀x; y : π1(〈x; y〉) = x.

There are some basic but useful theorems about recursive functions such as
the Parameter Theorem (s-m-n Theorem), Kleene’s Recursion Theorem (KRT), cf.
Rogers [28], and the Operator Recursion Theorem (ORT) due to Case [7]. We
will only mention them here and omit their proofs.

Theorem 1.1 (Parameter Theorem, s-m-n Theorem; cf. Rogers [28]):
For any partial recursive function f ∈P, there is a total recursive s∈R such that

∀x; y : ϕs(x)(y) = f(x; y).

Moreover, s can be chosen to be one-one and strictly monotone increasing.
�

Theorem 1.2 (Kleene’s Recursion Theorem, KRT; cf. Rogers [28]):
For any partial recursive f ∈P, there is an index e such that

∀x : ϕe(x) = f(e;x).

�

For full understanding of the Operator Recursion Theorem one should define the
notion of an effective operator in sufficient rigor first. However, for our purpose it
is enough to think of an operator as any computable mapping Θ: P→P between
(partial, not necessarily recursive) numerical functions. That is, whenever a Turing
machine is successively fed the graph of a function f as input and outputs the graph
of another function, say g, this transformation is regarded as an application of an
effective operator, Θ(f) = g.

Theorem 1.3 (Operator Recursion Theorem, ORT; Case [7]):
For any effective operator Θ, there is a total recursive e∈R such that

∀i;x : ϕe(i)(x) = Θ(e)(i;x).

Moreover, e can be chosen to be one-one and strictly monotone increasing.
�

Intuitively speaking, when using multiple inputs for a computation, the Parameter
Theorem allows us to code all the information stored in the first input directly to
a program which then carries out this very computation on the remaining inputs.
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Thus, the s-m-n Theorem is a tool for building new computational functions from
the ones we already know. The two recursion theorems are even more powerful:
They deploy the mentioned self-referential characteristics of computation—natural
numbers both as programs and inputs of recursive functions—to gain programs
that are in some sense aware of themselves and the functions they are computing.
While KRT hands us a single such index applying a given computation onto itself,
ORT even allows us to use infinitely many of them, each one equally aware of all
others. Moreover, Kleene’s theorem refers to codings of programs while the Operator
Recursion Theorem is employed directly on the level of recursive functions. Since
learners are conceived as partial recursive mappings, the extensive use of ORT is
very common in computational learning theory. Most of the time the operator will
only be stated implicitly and will heavily rely on the context of the computation.
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2 Computational Language Learning

In this thesis we are concerned with an algorithmic model of language acquisition.
It should be equally able to depict aspects of both child learning and scientific
discovery. For the latter, one may have to extend one’s understanding of a language:
We have already seen that natural numbers can stand as ciphers for arbitrary objects
of interest, as long as they are drawn from an at most countable universe. As
a matter of fact, this includes measuring physical quantities as well. Even real
numbers, members of a denumerable domain, can be approximated and eventually
coded using natural numbers [17]. Once one accepts a set of natural numbers as
a language, applications of language learning appear in all disciplines of science.
Unfortunately though, since we limit ourself to computational learning, not all sets
of natural numbers can serve as target languages likewise. We will approach this
issue below. As we mentioned before, inductive inference in terms of computational
theory provides us with an already developed collection of ideas. In this section we
will outline this environment to an extent we find useful for the presentation of our
own work in the following chapters.

2.1 Gold-style Explanatory Learning from Text

Following Jain et al. [17], every learning paradigm has to implement five essential
concepts, namely:

• a theoretically possible reality

• intelligible hypotheses

• the data available about any given reality, were it actual

• a scientist

• successful behavior by a scientist working in a given, possible reality

To establish the foundations of computational language learning we will also draw
on the great work of Gold, who, in his seminal paper Language Identification in
the Limit [16], founded this branch of research. We will employ these frameworks
to define the most common paradigm in algorithmic language learning, Gold-style
explanatory language identification from text (TxtGEx-learning, cf. [20]). It will
exemplify the usual techniques of defining and modifying learning paradigms. For
naming and grading concrete criteria we will use the unified approach of Kötzing
[20] in turn.

We are investigating language acquisition or, more precisely, learning of formal
languages. This means any recursively enumerable (r.e.) set of natural numbers.
A set A⊆N is called recursively enumerable if there is a partial recursive function
f ∈P satisfying that f(x) = 1 if and only if x∈A. A well-known proposition in
the theory of computation states that a set is r.e. just in case it is the domain
of a partial recursive function [28]. For any index i, Wi = dom(ϕi) shall denote
the domain of the i-th partial recursive function. This is a numbering onto E , the
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collection of all r.e. sets, thus, E = {Wi}i∈N. This sets up our theoretically possible
realities and a space of intelligible hypotheses [17] at the same time. Recall that,
from the ambiguity of system ϕ, every single r.e. set has infinitely many W -indices.
In fact, there is even a total recursive padding function pad ∈R strongly monotone
increasing such that, for all i and x, Wpad(i;x) =Wi [28]. Again, pad is recursively
invertible.

It remains open what a scientist—we prefer the term learner—really is and how
it can witness information about its learnee. Gold’s idea [16] was to present a
formal language L∈E as a text, an infinite stream of positive examples of members
of L.

Definition 2.1 (Gold [16]):

(I) A text is any mapping T : N→ N ∪ {#}.

(II) The content of a text T is the set of natural numbers appearing in T and is
denoted content(T ).

(III) A text T is for a language L∈E if content(T ) = L.

(IV) The collection of all texts is denoted Txt. For any language L∈E , the set of
all texts for L is denoted Txt(L).

�

So texts for languages are (not necessarily recursive) enumerations of their elements,
possibly stretched by a special symbol #, read pause. Such enumerations could list
certain members arbitrarily often while others appear only once, as long as the
whole set is shown eventually. The content of a text extends the notion of the
content of a finite sequence in a natural way, ignoring pause symbols. Some further
discussion revolves around pauses in texts since they do not provide any additional
information about the target language. As a consequence, some authors suggested
deviant definitions of texts making pauses obsolete. This problem arises particularly
in the field of function learning, see, for example, Blum & Blum [5] or Fulk [15].

Since the essence of learning—as we see it—is to find a finite representation
of an infinite object in a finite amount of time, a text cannot be presented to a
learner as a whole. Instead, we use longer and longer initial sequences (elements
of (N ∪ {#})∗) as input. This is acknowledging the fact that a learner might need
more and more information, and more and more time, in order to identify a certain
language. Therefore, symbols σ; τ will from now on comprise sequences including
pause symbols.

Definition 2.2 (Gold [16]):
Suppose T ∈Txt to be a text. For each n, let

T [n] : {0; . . . ;n−1} → N ∪ {#}; i 7→ T (i)

be the initial sequence (prefix) of T of length n.
�
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The symbol #, of course, can be coded as a natural number. This allows us to
conceive finite sequences T [n] to be coded into N as well. Therefore, they are eligible
inputs for recursive functions. We can now straightforwardly define learners to be
computational mappings from initial sequences of texts to hypotheses for formal
languages.

Definition 2.3:
A learner is any partial recursive mapping (N ∪ {#})∗  N.
By coding, the collection of all learners equals P .

�

We still need to define what successful learning shall mean in our setting.

Definition 2.4 (Gold [16]; cf. Kötzing [20]):

(I) A learner h∈P TxtGEx-identifies a text T if

∃e ∀∞n : h(T [n])↓ = e ∧We = content(T ).

In this case h is said to converge to e on T .

(II) A learner h∈P TxtGEx-identifies a language L∈E if it TxtGEx-identifies
every text for L, written L∈TxtGEx(h).

(III) A learner h∈P TxtGEx-identifies a class L⊆E of languages if h
TxtGEx-identifies every element L∈L, written L⊆TxtGEx(h).
In this case L is said to be TxtGEx-identifiable.

(IV) [TxtGEx] := {L⊆E | ∃h∈P : L⊆TxtGEx(h)} is the collection of all
TxtGEx-identifiable classes of languages.

�

To converge on a text T it is necessary for a learner to be undefined on at most
finitely many initial sequences T [n]. W.l.o.g. we even can assume TxtGEx-learners
to be defined on all initial sequences of texts for languages they identify [17]. As
we mentioned above, the name of the criterion derives from Gold-style explanatory
learning from text [20]. It requires the learner to finally yield a sole explanation
of the learnee (a W -index of it), the learner is given access to the whole input
sequence, which was first investigated by Gold [16], and the language is presented
as a text. The intuition behind Definition 2.4 is that finitely many initial guesses
of a learner might as well be wrong, but in order to be successful the learner must
from one point on repeatedly output the same correct hypothesis for the target
language. This setting therefore was originally named Language Identification in
the Limit [16]. Every singleton subset of E is trivially identifiable by a constant
learner which just happen to output a correct index of the target language. In
this case no real inference takes place. That is why we are interested in classes of
languages learnable by a single scientist. A TxtGEx-learner keeps on suggesting
hypotheses as it perceives more and more data. It does not need to be aware of its
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own success, that is, its own convergence. One can even show that learners that are
forced to acknowledge their own success can identify strictly less classes of languages.
See Freivalds & Wiehagen [13] for an according result. This shift of attention
from confirmed knowledge of success to mere successful identification is the focal
point Gold added to the psychology of learning [16]. This has opened the field to
formal analysis, thus, founding computational learning theory.

The next theorem states an important technical property of TxtGEx-learners
which is used in virtually any proof regarding Gold-style explanatory learning.

Definition 2.5 (Blum & Blum [5]):
Suppose L∈E to be a language and h∈P a learner. A sequence σ with
content(σ)⊆L is said to be a locking sequence for h on L if, for all sequences
τ ∈ (L ∪ {#})∗, h(σ) = h(σ � τ) and Wh(σ) = L.

�

That means, from the moment on a learner sees a locking sequence it outputs a
correct hypothesis and no data from the target language can ever make it change
its mind again. Of course, a locking sequence is a very handy thing to have and it
would be great if they would appear quite regularly.

Theorem 2.6 (Locking Lemma; Blum & Blum [5]):
Suppose h∈P to be a learner, L∈TxtGEx(h) an identifiable language and σ a
finite sequence with content(σ)⊆L. There is an extension σv τ such that τ is a
locking sequence for h on L.

�

Necessarily this extension’s content is in L as well. Note that this theorem
solely depends on the characteristics of explanatory learning and is not affected
by any further restrictions as introduced below. Blum & Blum proved that every
compatible sequence can be extended to a locking sequence. Unfortunately though,
this extension can not hoped to be computable.

2.2 Classification of Learning Criteria

We have established a first learning paradigm step by step by implementing the
concepts of inductive inference stated by Jain et al. [17]. We used the modular
approach of Kötzing [20] to name the criterion. Moreover, said approach is also
a blueprint to design new paradigms. The main idea is to split a given setting
into fragments, assessing how each one of them affects the distinct outcome. The
particles gained this way naturally correspond with the concepts of Jain et al. as
well.

First, we consider different classes of admissible learners. Our original choice were
partially recursive numerical functions, drawn from P . Observe that this particular
option is not marked in the name of the criterion. Other possible collections of
scientists may be all total recursive functions (R) or even non-recursive total or
partial functions, i.e. R or P. One might wonder now whether it is a restriction to
language learning forcing the learner to be total.
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It is a well-known fact that this is not the case.

Theorem 2.7 (cf. Jain et al. [17]):
Every TxtGEx-learnable class of languages can be so learned by a total recursive
scientist, thus, [RTxtGEx] = [TxtGEx].

�

On the other hand, our assumption of a learner to be recursive is indeed a severe
restriction to learning. For a discussion of that matter, see [17].

Besides different classes of scientist there may also be different ways to present
a formal language to a specific learner. In this work we will only consider learning
from texts, which is why we will always use the particle Txt. Other possibilities
are learning from informants, cf. e.g. Gold [16] again, or from good examples, see
Lange et al. [23]. For more ways of presentation and their respective abbreviations,
see Kötzing [20].

The next particle denotes how the learner conceives the presented information,
it corresponds with the data available about any given reality [17]. This is modeled
using so-called sequence generating operators [20].

Definition 2.8 (Kötzing [20]):
Suppose C ⊆P to be an admissible class of learners. A sequence generating operator
(interaction operator) is any mapping C ×Txt→P, matching pairs of learners and
texts to infinite (possibly partial) sequences of hypotheses.

�

We already know an example of an interaction operator from Definition 2.4.(I),
namely Gold-style learning :

G : P×Txt→ P; (h;T ) 7→ (n 7→ h(T [n])).

This is also called full-information learning for obvious reasons.

Definition 2.9 (Wexler & Culicover [30], Schäfer-Richter [29];
cf. Kötzing [20]):
Suppose h∈P to be a learner, n a natural number and T ∈Txt a text.
We define the following sequence generating operators.

(I) Partially set-driven learning: Psd(h;T )(n) = h(content(T [n]);n);

(II) Set-driven learning: Sd(h;T )(n) = h(content(T [n]));

(III) Iterative learning: It(h;T )(n) =

{
h(∅), if n = 0;

h(It(h;T )(n− 1);T (n− 1)), otherwise.

�

The symbol h(∅) denotes the initial hypothesis of learner h in the absence of any
input data. A set-driven learner can only access the content of the sequence seen
so far. It can neither use the order in which the elements were presented nor their
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multiplicity. A partially set-driven learner at least has the additional information of
how many (not necessarily different) elements already have been shown. Iterative
learning models an extreme case of memory limitation as the scientist can only
depend on its last guess and the current data point. Set-drivenness and iterativeness
were both introduced to inductive inference by Wexler & Culicover [30],
partially set-drivenness was first investigated by Schäfer-Richter [29]. The
latter paradigm is discussed in more detail in the next section.

One may like to impose further constraints on the strategy of learning. These
restrictions can involve limitation of time and of memory, as we examined above,
but might as well concern eligible hypotheses [17] or update constraints [22]. These
constraints can be implemented as predicates on the sequences outputted by the
interaction operators and the texts used to generate them.

Definition 2.10 (Kötzing [20]):
A learning restriction is any predicate P×Txt→{0; 1}.

�

For ease of notation, we sometimes identify a restriction δ with the pre-image
δ−1(1) = {(p;T ) | δ(p;T ) = 1} and then write δ⇒ δ′ for δ−1(1)⊆ (δ′)−1(1). Once
again Definition 2.4.(I) gives us an impression of a learning restriction. In this case
it is used to formulate a success criterion, explanatory learning :

Ex : P×Txt→ {0; 1}; (p;T ) 7→ (∃e ∀∞n : p(n) = e ∧We = content(T )).

We will almost always use this criterion throughout this work. The sole exception
is section 4.2 where we will take a short excursion to behaviorally correct inference.
We tacitly tighten both success criteria by forcing the learner to be defined on all
initial sequences of texts for languages it learns (for the case of Ex, see also above).
Multiple restrictions can be used in conjunction. This appears in the name as a
juxtaposition of the according particles. Learning restrictions may be applied to the
general behavior of the learner or only on texts for languages it identifies. This is
reflected in the notion of global and class constraints found in Jain et al. [17].

The difference of the two concepts shall be illustrated by the following example:
Requiring a scientist to include in his hypotheses all the knowledge about his subject
previously acquired, appears to be a quite reasonable constraint. This leads to the
notion of a consistent learner.

Definition 2.11 (Angluin [1]; cf. Kötzing [20]):
Suppose p∈P to be a (possible partial) sequence of hypotheses and T a text.
We define the following learning restriction, consistency, as

Cons(p;T )⇔ p ∈ R ∧ ∀n : content(T [n]) ⊆ Wp(n).

�

In this case we explicitly force consistent learning sequences to be total. For
a discussion of conditional consistency—the hypotheses need to be consistent
whenever they are defined—see Jain et al. [17]. The totality of successful learning
sequences has some consequences for the application of this restriction.
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Definition 2.12 (Kötzing [20]):
Suppose h∈P to be a learner and L⊆E a class of languages.

(I) Learner h is said to TxtGConsEx-identify L if it TxtGEx-learns L and is
consistent on all texts T ∈Txt(L), for each L∈L.

(II) Learner h is said to τ(Cons)TxtGEx-identify L if it TxtGEx-learns L and
is consistent on all texts T ∈Txt.

�

Globally consistent learner are necessarily total, while locally consistent ones may be
undefined (or inconsistent) on input data for languages they cannot identify. Either
case of consistency is known to be a severe reduction of learning power.

Theorem 2.13 (Angluin [1], Bārzdiņš [3]):
The following chain of learning criteria holds:

[τ(Cons)TxtGEx] ( [RTxtGConsEx] ( [TxtGConsEx] ( [TxtGEx]

�

Now we have all the building blocks to assemble various learning criteria, natural
and rather artificial ones likewise. It comes all together in the next definition.

Definition 2.14 (Kötzing [20]):

(I) A learning criterion is a tuple (α; C; β; δ) consisting of:

• two learning restrictions, α; δ : P×Txt→{0; 1}
• a class C ⊆P of admissible learners

• a sequence generating operator β : C ×Txt→P

(II) Let I = (α; C; β; δ) be a learning criterion.
A learner h∈P I-learns no language at all if h /∈C is not admissible or there
is a text T ∈Txt such that α(β(h;T );T ) does not hold.

Otherwise, h I-learns the set

I(h) = τ(α)CTxtβδ(h) = {L ∈ E | ∀T ∈ Txt(L) : δ(β(h;T );T )}.

(III) [I] = [τ(α)CTxtβδ] = {L⊆E | ∃h∈C : L⊆ τ(α)CTxtβδ(h)}
denotes the collection of all I-learnable classes of languages.

�

In other words, an admissible learner, drawn from C, is fed information about its
learnee using the interaction operator β. To learn a certain class of languages L the
scientist has to respect the global restriction α on arbitrary texts and additionally
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the local restriction δ on texts for languages L∈L. We use the following notational
convention regarding learning criteria: For the sake of readability, default choices—
like the class P of partial recursive learners or the restriction T which is always
true—does not appear in the name of a concrete criterion. As an illustration,
recall the definition of our first learning paradigm. Regarding the class of learnable
languages we have [TxtGEx] = [τ(T)PTxtGEx]. For the same reasons, we will
often write I = TxtGEx instead of I = (T;P ;G;Ex) when naming the criterion
itself.

2.3 Fulk Normal Form

Since, in the late 1960’s, Gold [16] established formal language learning, the
possibilities and limits of this setting have been explored extensively [1, 3, 5, 15, 17].
However, with the introduction of new ways to present languages to learners a new
question arose:

What information does a learner need to identify a certain class of languages?

In this work we will primarily examine the paradigms of partially set-driven learning.
Recall that Psd-learner is given the collection of all input data and additionally the
number of examples (and pause symbols) shown so far. In 1990 Fulk reached
a breakthrough in the theory of inductive inference as he was able to prove
that partially set-drivenness does not weaken unrestricted Gold-style learning [14].
Meaning that every TxtGEx-learnable class of languages can be inferred by a
partially set-driven scientist. We will show his findings in the remainder of this
section. The way Fulk presented his result was to verify that a TxtGEx-learner
can be assumed to have several additional properties easing the process of learning.
This leads to the notion of a learner in Fulk normal form. Before we can understand
Fulk’s theorem we have to introduce some new concepts as well as some technical
terms.

We can preorder the collection of interaction operators. This order derives from
the observation that certain operators can be simulated by others.

Definition 2.15 (Case & Kötzing [9]):
Suppose β; β′ to be two sequence generating operators. We say β-learners can be
translated to β′-learners, written β� β′, if, for every β-learner h, there is a β′-learner
h′ such that

∀T ∈ Txt : β(h;T ) = β′(h′;T ).

�

For example, set-driven learners can sure be simulated by partially set-driven
scientist ignoring the additional information of the length of the input sequence.
On the other hand, the latter can be emulated using full information.

Theorem 2.16 (Case & Kötzing [9]):
We have Sd ≺ Psd ≺ G and It ≺ G.

�
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The idea of translating one learner into another carries over to the level of learnable
classes. This is giving us a first set of relations between learning criteria.

Theorem 2.17 (Case & Kötzing [9]):
Suppose I = (α; C; β; δ) and I ′ = (α′; C ′; β′; δ′) to be two learning criteria such that
C ⊆C ′, β� β′, α⇒α′ and δ⇒ δ′. Then we have [I]⊆ [I ′].

�

In this work we will extensively use the following instance of the above theorem:

[TxtSdδEx] ⊆ [TxtPsdδEx] ⊆ [TxtGδEx] ⊆ [TxtGEx].

Although sequence generating operator It is incomparable with both Sd and Psd,
there is a connection between the respective collections of identifiable classes.

Theorem 2.18 (Kinber & Stephan [19]):
We have [TxtItEx]( [TxtSdEx].

The fact that many interaction operators can be emulated by G-learners leads to
the notion of a starred learner as a first step towards a normal form.

Definition 2.19 (Case & Kötzing [9]):
Suppose β�G to be a sequence generating operator and h∈P a β-learner.
Let h∗ ∈P denote the G-learner to simulate h as given by Definition 2.15.

In particular, for every sequence σ,

(I) if h is a Sd-learner: h∗(σ) = h(content(σ));

(II) if h is a Psd-learner: h∗(σ) = h(content(σ); |σ|);

(III) if h is an It-learner: h∗(σ) =

{
h(∅), if σ = ∅;
h(h∗(σ−); last(σ)), otherwise.

�

Hereby, last(σ) = σ(|σ|−1) denotes the last element of sequence σ or ∅ if σ = ∅.
Accordingly, σ− denotes the prefix of σ without its last element.

The following concepts will only regardG-learners. This is justified by the above
definition, a β-learner is said to have a certain property just in case its starred learner
has it. A learner does not need to converge to the same natural number, if any, on
every text for a target language L. Even if a scientist identifies L, the order in which
its elements are presented as well as the number of pauses in between may affect
the particular outcome. It is desirable to disregard these differences. Meaning that
a successful learning sequence shall converge to the same index for every text for a
language.
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Definition 2.20 (Blum & Blum [5]):
A learner h∈P is said to be order-independent if, for all L∈TxtGEx(h) and any
two texts T ;T ′ ∈Txt(L) for L, we have

lim
n→∞

h(T [n]) = lim
n→∞

h(T ′[n]).

�

Another way of abstraction aims to abstain from the particular succession in which
the examples are presented to the learner.

Definition 2.21 (Blum & Blum [5]):
A learner h∈P is said to be rearrangement-independent if, for any two sequences
σ; τ such that content(σ) = content(τ) and |σ|= |τ |, we have h(σ) = h(τ).

�

The next theorem is evident.

Theorem 2.22:
Suppose L⊆E to be class of languages. L can be TxtGEx-identified by a
rearrangement-independent scientist just in case L∈ [TxtPsdEx].

�

We will use partially set-driven and rearrangement-independent learning as
synonyms in turn, unless it is necessary to explicitly distinguish between a
Psd-learner and its starred counterpart. Now let L denote a language identifiable
by some learner h. Though the Locking Lemma (Theorem 2.6) states that each
initial sequence of any text for L can be extended to a locking sequence for h on L,
this extension might deviate from the text it derives from. As a result, there may
be texts such that no initial sequence serves as a locking sequence. Fixing this flaw
simplifies both the process of learning itself and the structure of proofs in learning
theory [9].

Definition 2.23 (Kötzing & Palenta [22]):
A learner h∈P is said to be strongly locking if, for all L∈TxtGEx(h) and any text
T ∈Txt(L) for L, there is an index n0 such that T [n0] is a locking sequence for h
on L.

�
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We have now the notation to discuss Fulk’s seminal result.

Definition 2.24 (Fulk [14]):
A learner h∈P is said to be in Fulk normal form if (I) to (V ) hold.

(I) The learner h is order-independent.

(II) The learner h is rearrangement-independent.

(III) If h TxtGEx-identifies a language L∈E from some text for L, then h
TxtGEx-identifies L (from any text for L).

(IV) If there is a locking sequence for h on some language L∈E , then h
TxtGEx-identifies L.

(V) The learner h is strongly locking.

�

Theorem 2.25 (Fulk [14]):
For every class of languages L∈ [TxtGEx], there is a learner in Fulk normal form
TxtGEx-identifying L. Moreover, we can assume the learner to be total.

Unlike with the other theorems, we will show the proof to Fulk’s result below. It
emphasizes another major technique, besides Theorem 2.17, of linking up partially
set-driven learning with its full-information equivalent.

Proof: (Of Theorem 2.25.) Suppose L= TxtGEx(h) to be a class of languages
w.l.o.g. identifiable by a total learner h∈R (cf. Theorem 2.7).

For any finite set D⊂finN and any natural number t, let

D≤t = {σ ∈ (N ∪ {#})∗ | content(σ) ⊆ D ∧ |σ| ≤ t}

be the set of all sequences with content in D and length at most t. Again for any
D and t, we define a set

M(D; t) = {σ ∈D≤t | ∀τ ∈D≤t : h(σ � τ) = h(σ)}.

Intuitively, M(D; t) collects candidates for possible locking sequences. By coding,
M(D; t) can be considered as a set of natural numbers and is therefore well-ordered.
Note that, as a subset of D≤t, M(D; t) is always finite and a description of it can
be computed from D and t. Now consider the following partially set-driven learner:

h′(D; t) =

{
h(minM(D; t)), if M(D; t) 6= ∅;
0, otherwise.

As h is total, so is h′. Suppose L∈L to be a learnable language and T ∈Txt(L)
a text for L. Let M denote the set of all locking sequences for h on L
and σ= minM (the Locking Lemma states that M is non-empty). By the
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minimality of σ, for all sequences τ with 〈τ〉< 〈σ〉, there is an index n such that
∀n′≥n : τ /∈M(content(T [n′]);n′). Let n0 be the maximum of these (finitely many)
numbers. W.l.o.g. content(σ)⊆ content(T [n0]) and |σ| ≤n0. Finally, we get

∀n′≥n0 : h′(content(T [n′]);n′) = h(σ).

It is now easy to see that h′ identifies L and (I) to (V ) of Definition 2.24 hold for
the starred learner (h′)∗.

qed

Corollary 2.26:
We have [RTxtPsdEx] = [TxtPsdEx] = [TxtGEx].

�

In this section a first paradigm of computational language learning has been
defined. We generalized the approach to a full-grown grading scheme of algorithmic
learning. The application of standard techniques has enabled us to conclude
a first set of relations between the criteria we are interested in. In the next
section we will use this preparation to present our own work in the field of
rearrangement-independent inference paired with several restrictions.
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3 Restricted Partially Set-Driven Learning

The main information missing in partially set-driven inference is the particular order
in which the data was presented. Fulk [14] indeed showed that taking away this
a priori knowledge does no harm, as long as one’s only objective is to identify a
certain class of languages in the limit. If a target collection is unidentifiable by a
rearrangement-independent learner, the reasons preventing successful learning are
immanent to the framework of inductive inference itself, and are not due to the
special trait of rearrangement-independence. As a remark, it is interesting that
these reasons can be separated into two major groups: First, computational limits,
as some concept classes are unidentifiable by a recursive learner, but are easily
inferred using arbitrary functions; second, topological reasons, where the structure
of the class itself impedes its learning. For a discussion, see e.g. Jain et al. [17] or
Case & Kötzing [10].
As opposed to this, we will try to investigate the possibilities and limits
partially set-driven learning adds to the theory of computational language learning.
Unrestricted Gold-style learning was treated exhaustively in the last section, but
from Fulk’s theorem yet a new question immediately arises.

Is rearrangement-independent inference equally powerful as Gold-style learning
even if paired with various learning restrictions?

This question will guide the further investigation presented in this work. Recall that
every Psd-learner can be expressed usingG-learning. Theorem 2.17 now states that,
for arbitrary learning restrictions α; δ, we have

[τ(α)TxtPsdδEx] ⊆ [τ(α)TxtGδEx].

So partially set-driven learning can be at most as powerful as its full-information
complement. It remains unknown, whether strictly less classes of languages can
be inferred using certain learning restrictions. We are primarily interested in two
categories of such restrictions, namely content-based and delayable ones.

3.1 Content-Based Learning Restrictions

The first collection of restrictions imposes constraints on the choice of potential
conjectures. In content-based inference there might be, in every step, some
unavailable hypotheses as they would infringe a desired strategy of learning. Not
unexpectedly, content-based constraints derive from the content of the data the
learner has seen so far.

Definition 3.1:
A learning restriction δ : P×Txt→{0; 1} is said to be content-based if there is
a predicate P : N×Pfin(N)→{0; 1}, on pairs of natural numbers and finite sets
thereof, such that, for all infinite sequences p∈P and texts T ∈Txt,

δ(p;T )⇔ p ∈ R ∧ ∀n : P (p(n); content(T [n])).

�
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Again we require successful content-based learning sequences to be total. Please
notice that predicate P needs not to be recursive. Quite the opposite, in most
of the cases found in literature P will be recursively isomorphic to the Halting
Problem (see also below). The conjunction of two content-based restrictions is again
content-based. We already know a prominent example of this category, consistency.
Recall Definition 2.11, the restriction is content-based as witnessed by predicate

P (i;D)⇔ D ⊆ Wi.

The main result, presented in the following proposition, is that partially
set-drivenness does not weaken content-based learning either.

Proposition 3.2:
For any content-based learning restriction δ, we have [TxtPsdδEx] = [TxtGδEx].
Moreover, any TxtGδEx-identifiable class of languages can be so learned
order-independently and strongly locking.

The main idea is to verify that Fulk’s [14] original construction preserves
content-based learning. We adjust the proof of Theorem 2.25 to comprise partial
learners. This is necessary as content-based learning cannot assumed to be total
(Theorem 2.13).

Proof: (Of Proposition 3.2.) As the other inclusion is trivial, it is sufficient to
show that every TxtGδEx-learnable class of languages can be so learned partially
set-driven. Suppose h∈P to be a learner and L= TxtGδEx(h) a concept class.

Again, for any finite set D and any natural number t, let D≤t denote the set of all
sequences with content in D and length at most t and

M(D; t) = {σ ∈D≤t |h(σ)↓ ∧ ∀τ ∈D≤t : h(σ � τ)↓ = h(σ)}

shall be the collection of candidate locking sequences on input (D; t). If h is defined
on every sequence in D≤2t, once more a description of M(D; t) can be computed
from D and t. Furthermore, let σtD ∈D≤t denote the sequence listing D in increasing
order up to length t, possibly padded with repeating occurrences of maxD.

We define the following partially set-driven learner h′:

h′(D; t) =


h(minM(D; t)), if ∀σ ∈D≤2t : h(σ)↓ ∧M(D; t) 6= ∅;
h(σtD), if ∀σ ∈D≤2t : h(σ)↓ ∧M(D; t) = ∅;
↑, otherwise.

Learner h′ is partial recursive as the condition ∀σ ∈D≤2t : h(σ)↓ is semi-decidable.
If h is total, so is h′.
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Claim 1: Learner h′ identifies L order-independently and strongly locking.

Suppose L∈L to be a language and T ∈Txt(L) a text for L. Learner h is defined
on every initial sequence of T by assumption. Then the same holds for h′. The rest
of the claim follows as in Theorem 2.25.

Claim 2: Learner h′ respects restriction δ on texts for languages in L.

Let P be a predicate for δ as given in Definition 3.1; again let L∈L and
T ∈Txt(L). In stage n, suppose D = content(T [n]). P (h(σnD);D) holds since n
is sufficiently large such that content(σnD) =D and h TxtGδEx-learns L from text
σnD �T ∈Txt(L).
It is left to prove that, for any number n and any sequence σ ∈M(content(T [n]);n),
predicate P (h(σ); content(T [n])) holds as well. This, however, follows directly from
the definition of M(content(T [n]);n): We have h(σ) = h(σ � τ) for all extensions
τ ∈ (content(T [n]))≤n, especially for those with content(σ � τ) = content(T [n]), and
P (h(σ � τ); content(σ � τ)) holds since σ � τ �T is a text for L.

qed

The above proof, together with the observation that consistency is content-based,
yields some interesting corollaries.

Corollary 3.3:
For every content-based learning restriction δ, we have

(i) [RTxtPsdδEx] = [RTxtGδEx],

(ii) [τ(δ)TxtPsdEx] = [τ(δ)TxtGEx].

Proof: This can be straightforwardly verified using the above construction.
qed

Corollary 3.4:
The following statements hold:

(i) [TxtPsdConsEx] = [TxtGConsEx],

(ii) [RTxtPsdConsEx] = [RTxtGConsEx],

(iii) [τ(Cons)TxtPsdEx] = [τ(Cons)TxtGEx],

(iv) [τ(Cons)TxtPsdEx]( [RTxtPsdConsEx]( [TxtPsdConsEx].

�

Proposition 3.2 also reproves Fulk’s original result without the assumption of a
total learner. This can easily be seen by noticing that T, the learning restriction
which is always true, is of course content-based.

Jain et al. pointed out another restriction from this category—they are using
the wider term constraints on potential conjectures [17]—namely accountability.
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A learner is said to be accountable if it generalizes from the input with every
hypothesis. Meaning that each conjectured set have to contain an unseen data
point.

Definition 3.5 (cf. Jain et al. [17]):
We define the learning restriction accountability as follows:
Suppose p∈P to be an infinite sequence and T ∈Txt a text,

Acc(p;T )⇔ p ∈ R ∧ ∀n : Wp(n)\ content(T [n]) 6= ∅.

�

To require a learner to predict new data in every step is making its hypotheses
falsifiable by future observations and, hence, is implementing a common strategy
for scientific progress. For a further discussion of accountability in the psychology
of learning and the theory of science itself see Jain et al. [17] and Popper [26, 27].
Accountable language learning turns out to be very restrictive. It is clear that no
finite language can be inferred by an accountable scientist. This restriction, at least
in the setting of Gold-style explanatory learning, is even equivalent to forcing a
learner to only output hypotheses for infinite languages. On the other hand, there
are classes of infinite languages which are not accountably learnable either. For
both, see [17] again.

Content-based learning can be done rearrangement-independently as we have
shown above. However, if we go back one more step in the hierarchy of interaction
operators, this is no longer true: There is a content-based constraint such that
set-driven scientists can infer strictly less classes of languages with respect to this
restriction.

Proposition 3.6:
There is a class of languages consistently identifiable by a rearrangement-independent
learner, which cannot be learned by any set-driven scientist. Particularly, we have
[TxtSdConsEx]( [TxtPsdConsEx].

Proof: Again the inclusion is obvious. The concept class below was used
by Schäfer-Richter [29] to separate full-information learning from set-driven
inference. The proposition now follows from the observation that this class can even
be learned consistently by a rearrangement-independent scientist.

Suppose collection L to contain language Le = {〈e; y〉 | y ∈N}, whenever ϕe(0)↑, and
language L′e = {〈e; y〉 | y≤ϕe(0)} instead, if ϕe(0)↓.

Claim 1: L∈ [TxtPsdConsEx].

Recall that π1 ∈R denotes the total recursive function defined by
∀x; y : π1(〈x; y〉) = x and Φ is the complexity measure associated to ϕ. Let p0 be a
W -index for the empty set, i.e. Wp0 = ∅. Using the Parameter Theorem, there are
total recursive functions p; ind ∈R such for all e and each finite set D⊂finN,

Wp(e) = Le and Wind(D) =D.
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We consider the Psd-learner h∈P defined as follows for finite sets D and numbers t:

h(D; t) =


p0, if D = ∅;
p(π1(minD)), else, if Φπ1(minD)(0) > t;

ind(D), otherwise.

On any text T for a language Le or L′e in L, π1(minD) defaults to index e as soon
as T shows the first element. So consistency immediately follows: After this point
h only conjectures the input set D itself or the proper superset Le.
It remains to show that h infers L.

Case 1: ϕe(0)↑.

Let T ∈Txt(Le) be a text for language Le. For all indices n, we have
Φπ1(min content(T [n]))(0) = Φe(0)>n. Therefore, h constantly outputs the correct
hypothesis p(e).

Case 2: ϕe(0)↓.

Now let T ∈Txt(L′e) be a text for the finite set L′e. In this case there is
an n′ sufficiently large such that L′e = content(T [n′]) and Φe(0)≤n′. We get
h(content(T [n]);n) = ind(L′e) for each n≥n′, which implies the claim.

Claim 2: L /∈ [TxtSdEx].

By way of contradiction assume otherwise.
Suppose L⊆TxtSdEx(h′) to be identifiable by some set-driven learner h∈P . With
Kleene’s Recursion Theorem (KRT) we get an index e such that, for every input x,
ϕe(x) is the first number m found by a particular search satisfying

〈e;m+ 1〉 ∈ Wh′({〈e;y〉 | y≤m}),

if there is any, and undefined otherwise.

Case 1: ϕe(0)↑.

We have that ∀m : 〈e;m+ 1〉 /∈Wh′({〈e;y〉 | y≤m}). Hence, h′ cannot learn Le from text
T (n) = 〈e;n〉 as it never makes a correct guess.

Case 2: ϕe(0)↓=m.

Now scientist h′ cannot learn the finite language L′e from any text since we know
from the convergence of ϕe(0) that 〈e;m+ 1〉 ∈Wh′({〈e;y〉 | y≤m}) =Wh′(L′e) 6= L′e

qed

Corollary 3.7:
We have [TxtSdConsEx]( [TxtGConsEx].

�
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3.2 Delayable Learning Restrictions

There are more learning restrictions found in literature [1, 2, 17, 18, 31]. They
impose constraints on the relation between conjectures [17] also known as update
constraints [22]. Case and Kötzing (among others) realized that many of them
share a common trait, they are delayable [8, 9, 20, 22]. Intuitively, a delayable
learning restriction allows to postpone the output of a certain conjecture arbitrarily,
given that the hypothesis will occur in the limit eventually.

Definition 3.8 (Kötzing & Palenta [22]):
Suppose ~R to be the set of all non-decreasing numerical functions r : N→ N such
that, for each m, we have ∀∞n : r(n)≥m.

A learning restriction δ : P×Txt→{0; 1} is said to be delayable if, for all texts
T ;T ′ ∈Txt with content(T ) = content(T ′), all infinite sequences p∈P and all
functions r∈ ~R, we have

δ(p;T ) ∧ ∀n : content(T [r(n)]) ⊆ content(T ′[n]) ⇒ δ(p ◦ r;T ′).

�

There is a special case of Definition 3.8 noteworthy: Above condition holds if the
texts T = T ′ are equal and ∀n : r(n)≤n [22]. This reflects the initial idea of deferring
hypotheses a learner h outouts working on text T . Particularly, the conjecture
h(T [r(n)]) is “delayed” until step n.

The essence of delayable learning becomes clear with more illustrating examples
of according restrictions: A strongly monotone (SMon) scientist may only grow its
conjectured sets [18]; a weakly monotone (WMon) one has to behave that way at
least while consistent with the incoming data [24]. A conservative (Conv) learner
even has to stay with its current hypothesis as long it is consistent [1]. In monotone
(Mon) learning only incorrect data may be removed [31]. A cautious (Caut)
learner is forbidden to ever conjecture a proper subset of a previously supposed set,
cf. [17]. Non-U-Shaped or strongly non-U-shaped (NU/SNU) scientists will never
semantically (syntactically) abandon a correct hypothesis [2, 11]. Complementary,
in decisive and strongly decisive (Dec/SDec) learning a hypothesis once abandoned
will never again be repeated semantically (syntactically) [17, 21]. More formally, we
have the following definitions.
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Figure 1: Relations between delayable learning restrictions.
(Taken from [22] with permission by the authors.)

Definition 3.9 (Kötzing & Palenta [22]):
Suppose p∈P to be an infinite sequence and T ∈Txt a text.

Conv(p;T )⇔ ∀i : content(T [i+ 1]) ⊆ Wp(i) ⇒ p(i) = p(i+ 1);

Caut(p;T )⇔ ∀i; j : Wp(i) ( Wp(j) ⇒ i < j;

NU(p;T )⇔ ∀i; j; k : (i ≤ j ≤ k ∧Wp(i) = Wp(k) = content(T ))⇒ Wp(i) = Wp(j);

Dec(p;T )⇔ ∀i; j; k : (i ≤ j ≤ k ∧Wp(i) = Wp(k))⇒ Wp(i) = Wp(j);

SNU(p;T )⇔ ∀i; j; k : (i ≤ j ≤ k ∧Wp(i) = Wp(k) = content(T ))⇒ p(i) = p(j);

SDec(p;T )⇔ ∀i; j; k : (i ≤ j ≤ k ∧Wp(i) = Wp(k))⇒ p(i) = p(j);

SMon(p;T )⇔ ∀i; j : i ≤ j ⇒ Wp(i) ⊆ Wp(j);

Mon(p;T )⇔ ∀i; j : i ≤ j ⇒ Wp(i) ∩ content(T ) ⊆ Wp(j) ∩ content(T );

WMon(p;T )⇔ ∀i; j : (i ≤ j ∧ content(T [j]) ⊆ Wp(i))⇒ Wp(i) ⊆ Wp(j).

�

One verifies that all of the above restrictions are indeed delayable. Moreover, the
restriction T and the success criterion Ex are also members of this category. The
conjunction of two delayable restrcitions is again delayable. In general content-
based restrictions are not delayable since they enforce an immediate behavior of the
current hypothesis. It is easy to see that there are intimate relations between the
restrictions named in Definition 3.9. These are presented in Figure 1: A solid black
line indicates that the lower restriction implies the higher one. The conditionals
directly carry over to the level of learnable classes via Theorem 2.17. There is a
very helpful technical lemma concerning these restrictions. It outlines another basic
property of delayable learning, at least in the case of full information:
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Delayable Gold-style learning is total.

Theorem 3.10 (Kötzing & Palenta [22]):
For any delayable learning restriction δ, we have [TxtGδ] = [RTxtGδ].

�

This corresponds with Theorem 2.7 as Ex is delayable. There are more
properties of Fulk’s normal form that, in parts, carry over to delayable learning:
Whenever a delayable criterion allows for rearrangement-independent learning we
can additionally assume order-independence.

Proposition 3.11:
Rearrangement-independent delayable learning is order-independent. Particularly,
for every delayable restriction δ, the following two statements hold:

(i) Every TxtSdδEx-learner is order-independent.

(ii) Every TxtPsdδEx-learnable class of languages can be so learned order-
independently.

Proof:
For part (i): Suppose h∈P to be a learner and L∈TxtSdδEx(h) an identifiable
language. Using the Locking Lemma, let σ be a locking sequence for the starred
learner h∗ on L. For every text T ∈Txt(L), there is an index n0 such that

∀n ≥ n0 : content(T [n]) ⊇ content(σ).

Then, for every sufficiently large n, there is a sequence τn ∈L∗ such that
content(σ � τn) = content(T [n]) and thus

∀n ≥ n0 : h(content(T [n])) = h∗(σ � τn) = h∗(σ)

as learner h is set-driven. So h is order-independent by the arbitrary choice of σ.

For part (ii): Let L= TxtPsdδEx(h) for some learner h∈P . Consider the
Psd-learner defined by h′(D; t) = h(D; 2t) for every finite set D and number t.

Claim 1: Learner h′ infers L with respect to δ.

Suppose L∈L to be a learnable language and T ∈Txt(L) a text for L.
Let T ′ derive from T by inserting a pause symbol at every other position:
∀i : T ′(2i) = T (i)∧T ′(2i+ 1) = #. So T ′ is a text for L as well. Let, for every
n, r(n) = 2n, thus, r∈ ~R. By construction, we have

∀n : content(T ′[r(n)]) = content(T [n]) ∧Psd(h′;T )(n) = Psd(h;T ′)(r(n)).

Scientist h learns L from T ′, hence, δEx(Psd(h;T ′);T ′). It follows that
δEx(Psd(h′;T );T ) as δEx is delayable. To put it another way, h′ identifies L
from T with respect to δ.
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Claim 2: Learner h′ is order-independent on languages in L.

Using the Locking Lemma we get again a locking sequence σ for h∗ on L∈L.
For every T ∈Txt(L), there is an index n0 such that

∀n ≥ n0 : content(T [n]) ⊇ content(σ) ∧ n ≥ |σ| − |content(σ)|.

From this we get, for sufficiently large n,

|content(T [n])\ content(σ)|+ |σ| = |content(T [n])| − |content(σ)|+ |σ| ≤ 2n.

The last inequality is due to |content(T [n])| ≤n. So there is a sequence τn
listing content(T [n])\ content(σ), possibly padded with symbol #, such that
content(σ � τn) = content(T [n]) and |σ � τn|= 2n. In conclusion, we get

∀n ≥ n0 : h′(content(T [n]);n) = h(content(T [n]); 2n) = h∗(σ � τn) = h∗(σ),

which implies the claim.
qed

However, the answer to the question whether partially set-drivenness reduces the
power of delayable language learning is not as clear as for content-based learning.
For some of the above restriction is has already been proven that according scientists
can w.l.o.g. assumed to be rearrangement-independent [9]. On the other hand, in the
next section, we will present a delayable criterion for which Psd-learners can learn
strictly less classes of languages than their full-information counterparts. The next
proposition is a mere summary of theorems that have already been stated by Case &
Kötzing in [9], combined with the initial result by Fulk [14] (Theorem 2.25).

Proposition 3.12:
The following learning criteria are all extensionally equivalent:

(i) [TxtGEx]

(ii) [TxtGSNUEx]

(iii) [TxtGNUEx]

(iv) [TxtPsdEx]

(v) [TxtPsdSNUEx]

(vi) [TxtPsdNUEx]

Moreover, in all cases the learners can be assumed to be total.

Proof: The following chains of inclusions obviously hold for the total and partial
case, respectively:

[RTxtPsdSNUEx] ⊆ [TxtPsdSNUEx] ⊆ [TxtPsdNUEx] ⊆ [TxtPsdEx];

[TxtPsdSNUEx] ⊆ [TxtGSNUEx] ⊆ [TxtGNUEx],
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Additionally, they are all contained in [TxtGEx] of course.

We have already seen that Gold-style learning without restrictions can be done
rearrangement-independently, thus, [TxtPsdEx] = [TxtGEx]. The finding of
Case & Kötzing [9] that partially set-driven learning is w.l.o.g. total and strongly
non-U-shaped ([RTxtPsdSNUEx] = [TxtPsdEx]) now completes the proof.

qed

For (strongly) non-U-shaped learning rearrangement-independence again is no
weakness. The reason for this is simply that neither NU nor SNU mean any
constraint for Gold-style learning whatsoever. As opposed to this, in the next section
we will identify strong monotony (SMon) to be quite a severe restriction. This will
yield a first criterion for which Psd-learning will be strictly weaker.

Like we did in the case of content-based learning, one can investigate whether
rearrangement-independent delayable learning can even be done solely by set-driven
scientists. An affirmative answer would give immediate new results regarding
the question we asked at the beginning of this section: According to a theorem
by Kinber & Stephan [19] (see Theorem 3.14 below) all set-driven learning is
properly contained in conservative inductive inference. So if delayable Psd-learning
could be done by set-driven scientists, then these learners could not even infer
all classes contained in [TxtGConvEx], let alone the criteria higher above in the
hierarchy shown in Figure 1. However, for almost all delayable restrictions it can be
proven that set-driven learner can infer strictly less classes of languages than their
partially set-driven analogons. The proof is presented below. Note SMon again
taking the role of a significant exception. We will need the following two theorems.

Theorem 3.13 (Kötzing & Palenta [22]):
The following relations hold for set-driven delayable learning:

(i) [TxtSdSMonEx]( [TxtSdMonEx]( [TxtSdEx].

(ii) For any restriction δ ∈{Conv; Caut; NU; Dec; SNU; SDec; WMon},
learning with respect to δ does not weaken set-driven learning, thus,
[TxtSdEx] = [TxtSdδEx].

�

Theorem 3.14 (Kinber & Stephan [19]):
Set-driven learning is properly contained in conservative learning with full
information, thus, we have [TxtSdEx]( [TxtGConvEx].

�

Proposition 3.15:
For δ ∈{Conv; Caut; NU; Dec; SNU; SDec; Mon; WMon}, we have
[TxtSdδEx]( [TxtPsdδEx].

Proof: All inclusions are trivial. The separations are shown in several cases.
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Case 1: δ = NU or δ = SNU.

We already know that neither form of non-U-shapedness is a restriction
to rearrangement-independent learning (Proposition 3.12). By the above
Theorem 3.13, the same holds for set-driven learning. So this case is obvious:
Unrestricted partially set-driven inference equals Gold-style learning (Theorem 2.25)
while set-driven learning is strictly less powerful (Theorem 3.14).

Case 2: δ ∈{Conv; Caut; WMon}.

Kinber & Stephan [19] used the construction presented below to separate
set-driven learning from Gold-style conservative learning (see also Theorem 3.14
above). In fact, the learner they considered is rearrangement-independent and infers
the target class not only conservatively, but also cautiously and weakly monotone.

Suppose ψ ∈P to be a {0; 1}-valued partial recursive function which has no total
recursive extension [28]. Let

G = {〈x;ψ(x)〉 |x ∈ dom(ψ)} ⊆ N

denote its graph. W.l.o.g. ψ(0)↓= 1, hence, 〈0; 1〉 ∈G. Since G is r.e., we fix a
procedure to enumerate it. For any number t, let Gt be the finite subset of G which
is enumerated this way within t steps. A finite set D is said to be incompatible with
Gt just in case there is a point x such that 〈x; 0〉; 〈x; 1〉 ∈D ∪Gt. Accordingly, D is
said to be incompatible with G if there is a stage t such that D is incompatible with
Gt. For some fixed t, it is decidable whether some set D is compatible with Gt.
Now suppose L to consist of G and all finite sets which are incompatible with G.

Claim 1: L∈ [TxtPsdConvCautEx].

Let e be an index for G and again ind ∈R be such that Wind(D) =D. We define the
Psd-learner h as follows:

∀D; t : h(D; t) =

{
e, if D is compatible with Gt;

ind(D), otherwise.

Clearly h identifies L: For each D⊂finG and arbitrary t, we have h(D; t) = e. For
a finite language L incompatible with G and a text T ∈Txt(L) for L, there is an
index n0 sufficiently large such that content(T [n0]) = L and L is incompatible with
Gn0 , implying ∀n≥n0 : h(content(T [n]);n) = ind(content(T [n]) = ind(L).

It is left to show that h is both conservative and cautious on texts for languages in
L. The first mindchange of h from G to some set D occurs only if D is incompatible
with G, thus, D*G. From this point on, h solely conjectures canonical indices for
the current input set itself. Hence, h is conservative (and hence weakly monotone).
The learner is cautious for the same reason as it never returns to a proper subset of
a prior hypothesis.
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Claim 2: L /∈ [TxtSdEx].

By way of contradiction assume otherwise.
Suppose L⊆TxtSdEx(h′) for some learner h′ ∈P . Class L is dense: Recall that
w.l.o.g. 〈0; 1〉 ∈G. So D∪{〈0; 0〉} ∈L for every finite set D. Therefore, h′ has
to be total. Let e be an index for G and D0⊂finG such that h′(D) = e for all
D0⊆D⊂finG. D0 exists as h′ learns G by assumption. Now we define a function f
as follows:

∀x : f(x) =

{
0, if h′(D0 ∪ {〈x; 0〉}) = e;

1, otherwise.

As h′ is total recursive, so is f . If ψ(x)↓= 0, then 〈x; 0〉 ∈G and
thus h′(D0 ∪{〈x; 0〉}) = e. If ψ(x)↓= 1, then D0 ∪{〈x; 0〉} ∈L \ {G}. So
h′(D0 ∪{〈x; 0〉}) 6= e as h′ has to infer this language. Putting these two facts
together, we see that f is a total recursive extension of ψ, a contradiction to the
choice of ψ.

Case 3: δ ∈{Dec; SDec; Mon}.

To show this separation we can draw on a construction first introduced by
Osherson, Stob & Weinstein [25]. They originally used it to separate
unrestricted Gold-style learning from cautious inference. Kötzing & Palenta [22]
extended it to comprise (strongly) decisive learning. Notation follows the latter.

Consider the Psd-learner h∈P defined by, h(D; t) = ϕmaxD(t) for all finite sets
D and numbers t. Let L= TxtPsdSDecMonEx(h) be the class of languages h
infers. Thus, L is a self-learning class [9] as it is only implicitly defined by its
learner h. By Theorem 3.14 above, it is now sufficient to show that L cannot be
learned conservatively.

By way of contradiction assume otherwise.
Suppose L⊆TxtGConvEx(h′) to be identifiable w.l.o.g by some total learner
h′ ∈R (Theorem 3.10). We now fix an uniform procedure to enumerate r.e. sets
and, for any index i, let W t

i denote the finite subset of Wi enumerated after t steps.
We define a recursive predicate Q on sequences σ and numbers t:

Q(σ; t)⇔ content(σ) ( W t
h′(σ).

Using the Operator Recursion Theorem (ORT), we get an index p and a total
recursive function e∈R strongly monotone increasing such that

Wp = range(e);

∀n; t : ϕe(n)(t) =

{
ind(content(e[n+ 1])), if Q(e[n+ 1]; t);

p, otherwise.

If Q(e[n + 1]; t) is false for any n and t, then L= range(e)∈L since h constantly
outputs the correct conjecture p on texts for L.
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On the other hand, h′ does not learn L from text e as content(e[n + 1]) is never a
proper subset of Wh′(e[n+1]) although the target language is infinite.

Now consider the case that Q(e[n + 1]; t) is true for some n and t. Let n0 be
minimal such that some t satisfy Q(e[n0 + 1]; t) and, accordingly, t0 minimal such
that Q(e[n0 + 1]; t0) holds. This implies Q(e[n0 + 1]; t) for all t≥ t0 as well.
It follows that L′ = content(e[n0 + 1]) is in L: Suppose T ∈Txt(L′) to be a text for
L′. From the strong monotony of e we get maxL′ = e(n0) and there is an index
n′ minimal such that e(n0)∈ content(T [n′]). W.l.o.g. n′≥ t0, hence, for all n≥n′,
h(content(T [n]);n) = ϕe(n0)(n) = ind(content(e[n0 + 1])). Before that, h working on
T solely outputted index p by the minimality of n0. So SDec and Mon both hold.
But scientist h′ does not learn L′ conservatively from any text starting with prefix
e[n0+1]: As we know from predicateQ, L′ = content(e[n0 + 1])(Wh′(e[n0+1]). Hence,
h′ can never change its conjecture back to a correct guess, a contradiction.

qed

Corollary 3.16:
For δ ∈{Conv; Caut; NU; Dec; SNU; SDec; Mon; WMon}, we have
[TxtSdδEx]( [TxtGδEx].

�

Just like for content-based learning, for almost all delayable restrictions
set-drivenness does weaken learning power. It is an open question whether
Proposition 3.15 can be extended to comprise strongly monotone learning. There
are some hints that it does and a sub-case of it is proven in the next section. We will
provide further evidence there that strongly monotone inference takes an exceptional
position among the delayable criteria.
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4 Strongly Monotone Learning

On several occasions throughout this thesis we obtained the impression that strongly
monotone language learning is somehow special. We will use the present section
to explore this anomaly. As a strategy of learning, SMon seems to be quite a
severe constraint, forcing a learner to only increase the conjectured set in size, never
abandon a single data point once included. Furthermore, this implies that, on texts
for identifiable languages, a strongly monotone learner always supposes a subset of
the language to learn. Maybe these are mere fragments, but all elements contained
in a hypothesis are certain to appear in the target language. Ultimately, we found
the paradigm of explanatory language learning from text by a strongly monotone
scientist to be sensitive to whether the learner perceives the input as a full sequence
or only its content and length. This, Proposition 4.1, is the main result. To our
knowledge TxtGSMonEx is the very first learning criterion in literature to which
Fulk’s theorem is not applicable. Besides that, in this section we will investigate
strongly monotone learning when paired with different interaction operators and
using an alternative success criterion.

4.1 Explanatory Learning

The next proposition is the main result of this thesis.

Proposition 4.1:
There is a language identifiable by an iterative, strongly monotone learner, which
cannot be so learned partially set-driven.
Thus, we have [TxtItSMonEx]* [TxtPsdSMonEx].

Proof: Recall that iterative scientists rely solely on their last hypothesis and the
current data point to infer a language.

The Operator Recursion Theorem yields a total recursive function a∈R strongly
monotone increasing such that, for all finite sets D and numbers y; z, we have

ϕa(D)(y; z) = ind(D ∪ {a(D)}).

From the strong monotony of a we get that range(a) is recursive and a is recursively
invertible, i.e. we can regain the full information about D from value a(D). W.l.o.g.
0 /∈ range(a). We define some auxiliary functions for finite sequences σ:

xσ =

{
0, if content(σ) ⊆ {0};
σ(i∗), otherwise, with i∗ minimal such that σ(i∗) ∈ N\{0}.

yσ =

{
0, if |content(σ)| ≤ 1;

1, otherwise;

zσ =

{
0, if content(σ) ∩ range(a) = ∅;
min(content(σ) ∩ range(a)), otherwise.
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Intuitively, xσ is the first non-zero element appearing in σ, yσ tests whether the
sequence’s content comprises at least two elements and zσ searches for the minimal
value of function a. Observe that all these functions are total and can be computed
iteratively. The computation of function y may need an intern variable which is
either empty or stores the first natural number occurring in σ for comparison with
the current data point. Let pad ∈R denote a total recursive padding function and
p0 be a W -index for the empty set.
So there is an It-learner h∈P whose starred learner h∗ satisfies the following
condition:

h∗(σ) =


pad(p0; 0; 0; 0), if content(σ) ⊆ {0};
pad(ϕxσ(yσ; zσ); xσ; yσ; zσ) else, if ϕxσ(yσ; zσ)↓;
↑, otherwise.

Let L= TxtItSMonEx(h) denote the class of languages h infers.

By way of contradiction assume L⊆TxtPsdSMonEx(g) for some learner g ∈P .
Again let g∗(σ) = g(content(σ); |σ|) denote the starred learner of g.

The Parameter Theorem gives us another function union ∈R such that, for each
index i and all finite setsD, we haveWunion(i;D) = Wi∪D. Now using ORT once more,
there is an index p, a total recursive function e∈R with range(a)∩ range(e) = ∅ as
well as 0 /∈ range(e), and a computable sequence (σi)i∈N of sequences such that the
following construction holds:

The sequences σi are defined recursively,

σ0 = ∅;

∀i : σi+1 = σi �

{
e(2i)t, for t minimal such that g∗(σi)↓ 6= g∗(σi � e(2i)t)↓;
e(2i+ 1)t, for t minimal such that g∗(σi)↓ 6= g∗(σi � e(2i+ 1)t)↓,

for whatever case is detected first by a particular search, if any. This is possible
since both conditions are semi-decidable and can be tested iteratively in parallel for
increasing parameter t. Index p shall be such that

Wp =
⋃

i∈N; σi↓

content(σi).

Meaning that, at stage i. sequence σi is computed first and, if this computation
halts, then content(σi) is enumerated. Furthermore, we have, for all sequences σ,
and every index i,

ϕe(i)(y; z) =


ind({e(i)}), if y = 0;

union(p; {e(i)}), else, if z = 0;

union(p;D∗ ∪ {a(D∗)}), otherwise, with z = a(D∗).

Case 1: Language L=
⋃
i∈N content(σi) is infinite.
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Meaning sequence σi is defined for every i. Then we have L∈L: Let T ∈Txt(L)
be a text for L and i′ such that xT = e(i′)—the first element of L to appear in text
T . The learner h working on T first conjectures the empty set ∅ and changes its
mind to the singleton {e(i′)} when it sees e(i′) the first time. From this point on,
h semantically behaves the same as ϕe(i′). It reaches its final and correct guess
Wp ∪{e(i′)} as soon as it sees the first member of the (infinite) set L different from
e(i′). All these mind changes are permitted using SMon. From L∩ range(a) = ∅
and |L|> 1, we get that h also syntactically converges to hypothesis

pad(union(p; {e(i′)}); e(i′); 1; 0).

Scientist g cannot learn L from text
⋃
i∈N σi as it makes infinitely many mind changes

by definition.

Case 2: Language L=
⋃
i∈N content(σi) is finite.

Hence, from one point on, sequences σi are undefined. Let σk be the last one
defined. Then both of the following languages are in L:

L1 = content(σk) ∪ {e(2k); a(content(σk) ∪ {e(2k)})}
L2 = content(σk) ∪ {e(2k + 1); a(content(σk) ∪ {e(2k + 1)})}

Suppose T ∈Txt(L1) to be a text for L1. For ease of notation, let
D∗ = content(σk) ∪ {e(2k)}. We have either xT = a(D∗) or xT = e(i′) for some i′.
So learner h behaves like ϕa(D∗) or ϕe(i′), respectively. In both cases it semantically
converges to the correct conjecture Wunion(p;D∗∪{a(D∗)}) =Wp ∪D∗ ∪ {a(D∗)}= L1.
This is because a(D∗) is the sole (and therefore minimal) member of L1 ∩ range(a)
and L1 has at least two elements. In both cases the resulting sequence of hypotheses
suffices SMon. Again h also syntactically converges on T to

pad(union(p;D∗ ∪ {a(D∗)}); xT ; 1; a(D∗)).

The reasoning for L2 is the same.

Additionally, for every i, the singleton set {e(i)} is in L since it can be inferred
by function ϕe(i). By assumption, we get {e(i)}∈TxtPsdSMonEx(g). Therefore,
there are a numbers t(i) minimal such that e(i)∈Wg∗(e(i)t(i)) for every index i. In
particular, from the strong monotony of g, we get

e(2k) ∈ Wg∗(e(2k)t(2k) � σk) and e(2k + 1) ∈ Wg∗(e(k+1)t(2k+1) � σk).

By definition of the sequences σi and the rearrangement-independence of g, we have

g∗(e(2k)t(2k) � σk) = g∗(σk) = g∗(e(2k + 1)t(2k+1) � σk)

In conclusion, g can learn neither L1 nor L2 strongly monotone from texts starting
with prefix σk, a contradiction.

qed
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Corollary 4.2:
We have [TxtPsdSMonEx]( [TxtGSMonEx].

Proof: The inclusion again is trivial. On the other hand, the above proposition
implies [TxtGSMonEx]* [TxtPsdSMonEx] as every iterative learner can be
simulated by a G-learner.

qed
So strongly monotone learning is different. Not only does it give us the first (and
up until now sole) criterion for which Psd-learning is strictly weaker, among all
delayable restrictions we considered, SMon is also the only one for which a result
similar to Proposition 3.15 could not be obtained yet. A significant intermediate
result though is proven next.

Proposition 4.3:
There is a class of languages which is rearrangement-independently learnable by a
strongly monotone scientist, but cannot be inferred by a total set-driven scientist.
Particularly, we have [RTxtSdSMonEx]( [TxtPsdSMonEx].

Proof: For the separation we define a Psd-learner h: Let p0 be an index of the
empty set. For all finite sets D and numbers t, we have

h(D; t) =

{
p0, if D = ∅;
ϕmaxD(D; t), otherwise.

Let L= TxtPsdSMonEx(h) be the collection of languages identified by h. It is
now sufficient to prove L to be unidentifiable by any total set-driven learner.

By way of contradiction assume L⊆TxtSdEx(h′) for some learner h′ ∈R. With
ORT we get an index p and a total recursive function e∈R with 0 /∈ range(e) such
that, for all i,

Wp = {e(0)} ∪ {e(i) | ∀0 < j ≤ i : h′({e(0); . . . ; e(j − 1)} 6= h′({e(0); . . . ; e(j)})};

ϕe(0)(D; t) = p;

ϕe(i+1)(D; t) =

{
p, if h′({e(0); . . . ; e(i)}) 6= h′({e(0); . . . ; e(i+ 1)});
union(p;D), otherwise.

Case 1: Wp is infinite.

Then language Wp = range(e) is in L: As 0 /∈ range(e), for every
∅ 6=D⊂fin range(e) and arbitrary t, we have ϕmaxD(D; t) = p since the condition
h′({e(0); . . . ; e(i)}) 6= h′({e(0); . . . ; e(i+ 1)}) always holds.

Scientist h′ cannot learn Wp from text e as it makes infinitely many mindchanges.
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Case 2: Wp is finite.

In this case there is some k such that Wp = content(e[k + 1]) and both finite sets
L1 =Wp and L2 =Wp ∪{e(k + 1)} are in L. The reasoning for L1 is the same
as in the first case. Now let T ∈Txt(L2) be a text. There is some index n0

minimal such that L2 = content(T [n]) for all n≥n0. By the strong monotony of
e, e(k + 1) = max content(T [n]) holds for these n. This implies

∀n ≥ n0 : h(content(T [n]);n) = ϕe(k+1)(L2;n) = union(p;L2).

This is because L2 is finite and h′({e(0); . . . ; e(k)}) = h′({e(0); . . . ; e(k + 1)}) by
assumption. Prior to n0 the learner h working on T conjectured the subsets Wp,
before the first occurrence of e(k + 1), and Wp ∪ content(T [n])⊆L2 after it. These
mindchanges suffice SMon.

Again h′ cannot learn both L1 and L2 as we know from the definition of Wp that
h′(L1) = h′(L2), a contradiction.

qed

4.2 Behaviorally Correct Learning

In all the the previous work we only discussed explanatory language learning,
requiring a learner to syntactically converge to a single explanation of the learnee.
This is the oldest and most common setting in computational learning. But it is
not the only one. Instead, one may ask for mere semantical convergence. Meaning
that, from one point on, the scientist only gives correct conjectures. This idea is
formalized in the notion of a behaviorally correct learner.

Definition 4.4 (Bārzdiņš [4]; cf. Kötzing [20]):
Suppose p∈P to be an infinite sequence and T ∈Txt a text.
We define the following learning restriction, behavioral correctness :

Bc(p;T )⇔ ∀∞n : Wp(n) = content(T )

�

Evidently Bc-learning is an extension of explanatory learning and is delayable as
well. There is a result in the field of function identification stating that behaviorally
correct scientists can identify strictly more concept classes, it carries over to the case
of language learning.

Theorem 4.5 (Case & Smith [12]):
We have [TxtGEx]( [TxtGBc].

�

The new freedom of convergence, however, is counteracted if paired with some
of the delayable restrictions of Definition 3.8.
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Definition 4.6 (Kötzing & Palenta [22]):
Suppose p∈P to be a partial function and T ∈Txt a text.
For every p, we define the following two sets:

Sem(p) = {p′ ∈ P | ∀i : p(i)↓ ⇒ (p′(i)↓ ∧Wp(i) = Wp′(i))}
Mc(p) = {p′ ∈ P | ∀i : p(i)↓ = p(i+ 1)↓ ⇒ p′(i)↓ = p′(i+ 1)↓}

A learning restriction δ : P×Txt→{0; 1} is said to be semantic if, for all p and T ,
the following condition holds

δ(p;T )⇒ ∀p′ ∈ Sem(p) : δ(p′;T )

and pseudo-semantic if

δ(p;T )⇒ ∀p′ ∈ Sem(p) ∩Mc(p) : δ(p′;T ).

�

Intuitively, a restriction is semantic if it allows all hypotheses to be replaced
by semantically equivalent ones. A restriction is pseudo-semantic if such an
alternation is required not to bring new mindchanges. The conjunction of two
(pseudo-)semantic restrictions is again (pseudo-)semantic [22]. All restrictions
considered in this thesis—content-based and delayable ones, as well as all success
criteria—are pseudo-semantic and all but Conv, SNU, SDec and Ex are semantic.
The next theorem can be obtained by realizing that pseudo-semantic restrictions
which are not semantic enforce additionally syntactical update constraints. So the
equalities stated below are already established on the level of learning restrictions.

Theorem 4.7:
For each sequence generating operator β, the following three equalities hold:

(i) [TxtβConvBc] = [TxtβConvEx]

(ii) [TxtβSNUBc] = [TxtβSNUEx]

(iii) [TxtβSDecBc] = [TxtβSDecEx]

�

Corollary 4.8:
We have [TxtPsdSNUBc] = [TxtGSNUBc] = [TxtGEx].

Proof: Immediate from Proposition 3.12.
qed

This excursion to behaviorally correct learning provides us with the concepts
needed to illustrate a special trait of the result shown in Proposition 4.1. Recall
that TxtβSMonEx was the first scheme of learning criteria for which it makes a
difference whether the order of the input is available or not. Surprisingly so, this
is no longer true when one only requires semantical convergence. In fact, now the
mere set of shown examples is sufficient to identify a language.
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Proposition 4.9:
Every class of languages identifiable by a strongly monotone behaviorally
correct learner, can be so learned by a set-driven scientist. Thus, we have
[TxtSdSMonBc] = [TxtPsdSMonBc] = [TxtGSMonBc].

Moreover, we can assume the learners to be total.

Proof: It remains to show that every concept class in [TxtGSMonBc] can be so
learned by a total and set-driven scientist.

So let h∈R be a total learner (Theorem 3.10) and L= TxtGSMonBc(h). For
every finite set D, let again D≤t denote the set of all sequences with content in D
and length at most t. Using s-m-n, there is a partial recursive function h′ such that,
for all D,

Wh′(D) =
⋃
t∈N

⋃
σ∈D≤t

Wh(σ).

As h is total, so is h′.

Claim 1: Learner h′ Bc-identifies L.

Suppose L∈L to be a language and T ∈Txt(L) a text for L. As h learns L from
T behaviourally correctly there is an index n0 such that

∀n ≥ n0 : Wh(T [n]) = Wh(T [n0]) = L.

Observe that T [n]∈ (content(T [n]))≤n, for any n. From the strong monotony of h,
i.e. Wh(σ)⊆L for all σ ∈ (L ∪ {#})∗, we now get

∀n ≥ n0 : Wh′(content(T [n])) =
⋃
t∈N

⋃
σ∈(content(T [n]))≤t

Wh(σ) = L.

Claim 2: The learner h′ is strongly monotone on texts for languages in L.

By way of contradiction assume otherwise.
Let L∈L and D⊆D′⊂fin L be such that Wh′(D)*Wh′(D′). That means, there is
some number t′ and sequence σ ∈D≤t′ satisfying

Wh(σ)*
⋃
t∈N

⋃
τ∈(D′)≤t

Wh(τ).

The latter is equivalent to Wh(σ)*Wh(τ), for any τ ∈ (D′)≤t and any t, especially
those τ wσ extending σ. This is a contradiction to h being a strongly monotone
learner for language L.

qed

It becomes clear that the separation shown in the case of explanatory learning
(Proposition 4.1), as well as the difficulties to settle the relation of set-driven
and rearrangement-independent SMon-learning really depend on the syntactical
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convergence of successful explanatory learning sequences. Moreover, behaviorally
correct, strongly monotone learning can even be done by iterative learners. A class
of inference machines normally considered to be even less powerful than set-driven
scientists (compare Theorem 2.18).

Proposition 4.10:
Suppose a learning restriction δ to be semantic. Every class of languages identifiable
with respect to δ can be so learned iteratively. Thus, we have [TxtItδ] = [TxtGδ].

Proof: It is sufficient to show that every TxtGδ-learnable class of languages can
be inferred by an iterative scientist with respect to δ. Let h∈P be a learner and
L= TxtGδ(h) the class of languages h identifies.

Let pad ∈R denote a padding function strictly monotone increasing and
R3 unpad2 : pad(e;σ) 7→σ its total recursive inversion. Furthermore, let p0 be an
index for the empty set. Consider the following It-learner h′ ∈P :

h′(∅) = p0;

h′(e;x) = pad(h(unpad2(e) � x); unpad2(e) � x).

Intuitively speaking, h′ unpads the previous input sequence σ = unpad2(e) stored in
its last conjecture and uses this information to simulate the computation of h(σ �x)
in the next step with x being the new data point. The new guess again is padded
with the updated input σ �x. This is possible as semantic learning does not require
syntactical convergence and σ �x is always finite, thus, an eligible padding input. If
h is total, so is h′. It is easy to see that h′ identifies L with respect to δ since by
construction h and h′ produce semantically equivalent sequences of hypotheses. We
get, for any language L∈L and all texts T ∈Txt(L),

∀i : WIt(h′;T )(i) = WG(h;T )(i).

qed

Corollary 4.11:
We have [TxtItSMonBc] = [TxtGSMonBc].

Proof: Immediate from the observation that SMonBc is a semantic restriction.
qed

For behaviorally correct strongly monotone learning all considered interaction
operators are equally powerful. This has two main reasons as outlined in the two
propositions: Mere semantical convergence allows, in every stage, to unify previously
conjectured sets with the current guess to ensure strong monotony. Furthermore,
Bc-learning, via padding, enables a learner to use all its hypotheses as extern
memory in fact providing it with full information.
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4.3 Conclusion

In this thesis we examined the question to what extent Fulk’s result—that
rearrangement-independence does not reduce the power of Gold-style language
learning from text—can be transferred to learning with various learning restrictions.
We certified content-based learning to have Fulk’s property. For delayable learning,
however, we found a more complex situation. While some of the restrictions
allowed for partially set-driven learning, strongly monotone explanatory learning
is crucially depending on the knowledge of the order in which the members of
the target language is presented. Moreover, we were able to prove that this
dependency is due to the characteristics of explanatory learning, more precisely,
the characteristics of syntactical convergence. The question whether restricted
set-driven learning is equally powerful was solved negatively for almost all considered
restrictions. Notwithstanding, still many questions remain unanswered. For
many delayable restrictions including decisiveness, conservatism and the weaker
variations of monotony it is still unknown whether strictly less concept classes can be
inferred by rearrangement-independent learners. For strongly monotone explanatory
inference the power of iterative and set-driven learners has to be examined more
deeply. We are confident that a solution for these questions will soon be found.

The presented work was able to further clarify, at least for computational
learning, what information is necessary to successfully recognize certain classes
of languages. This knowledge will hopefully be useful for various applications of
algorithmic language learning in the future.
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