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Abstract. Verification and traceability of supply-chain data is a com-
mon example for public analysis of confidential data. Finding the correct
balance between confidentiality and utility often is anything but trivial.
In order to ensure confidentiality and thus protect companies’ competi-
tive advantages, existing approaches employ probabilistic output obfus-
cation. However, it is known that this form of obfuscation might render
a system subject to averaging attacks. In these attacks, an adversary
repeatedly queries for the same analysis and combines the probabilistic
outputs, thus implementing an estimator that eliminates the obfuscation.
A clear picture on the performance of such attacks is missing, informa-
tion that is crucial for mitigating averaging attacks.

Our contributions are threefold: First, using an existing supply-chain
verification protocol (RVP) as a particularly efficient example of proto-
cols with output obfuscation, we extensively analyze the risk posed by
averaging attacks. We prove rigorously that such attacks perform excep-
tionally well if obfuscation is based on random values sampled inde-
pendently in every query. We generalize our analysis to all protocols
that employ probabilistic output obfuscation. Second, we propose the
paradigm of data-dependent deterministic obfuscation (D3O) to prevent
such attacks. Third, we present mRVP, a D3O-based version of RVP,
and empirically demonstrate practicality and effectiveness of D3O. The
results show that our mitigations add negligible runtime overhead, do
not affect accuracy, and effectively retain confidentiality.

Keywords: Averaging attacks · output obfuscation ·
confidentiality-utility tradeoff, runtime bounds, homomorphic
encryption

1 Introduction

Analysis of confidential data is a ubiquitous problem of our age. Prominent
examples comprise the computation of salary statistics from human-resource
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data [17], extraction of demographic statistics from census data [3,13], processing
patient records for pharmaceutical research [23], cross-company benchmarks [4,
24], and supply-chain verification [2,5,10,28,36].

Many existing solutions to such problems rely on privacy-enhancing technolo-
gies like (fully) homomorphic encryption to ensure the confidentiality of inputs
and intermediate results. Fully homomorphic encryption enables addition and
multiplication of encrypted data. While addition and multiplication also imply
subtraction, division of encrypted data remains anything but trivial.

However, division is crucial for many of the above-mentioned scenarios, such
as ratio computation for supply-chain verification. An efficient Ratio Verification
Protocol (RVP) was proposed in [5]. The protocol performs privacy-preserving
division by combining output obfuscation with client-aided computation. The
output obfuscation function includes additive and multiplicative blinding. RVP
computes division orders of magnitude faster than previous protocols due to the
fact that its circuit has a multiplicative depth of 1. We describe RVP in detail in
Sect. 2.3. Its efficiency enables numerous use cases for disguised division in the
first place. For example, [5] applies RVP to a supply-chain verification scenario
where it enables the computation of the ratio between different kinds of cobalt
ore. Besides that, RVP can be applied to any scenario that requires the computa-
tion of ratios of confidential values, such as the verification of the amount of gold
in an alloy or the percentage of fair-trade palm oil in groceries. Unfortunately,
RVP’s construction for output obfuscation turns out to be vulnerable to aver-
aging attacks, which repeat similar computations and average out the random
blinding values to obtain the confidential inputs. Moreover, the randomness used
for additive blinding in the output obfuscation function is subject to leaking the
difference between the dividend and the divisor, which in combination with their
ratio, yields the exact dividend and divisor.

We extensively demonstrate and formally analyze averaging attacks and pro-
pose suitable mitigations. As a result, we propose mRVP, a modified version of
RVP that effectively prevents these attacks, not just for its initial purpose of
verifying ratios of commodities in consumer products. Instead, mRVP can be
applied to any use case for releasing quotients over homomorphically encrypted
data, i.e., privacy-preserving computations where the result is a quotient. More
over, our analysis and mitigations are universal and can be applied to all classes
of privacy-preserving protocols with probabilistic output obfuscation.

1.1 Contributions

Our contributions are threefold. First, we demonstrate averaging attacks against
RVP in order to infer confidential information through repeated queries. We then
conduct a formal analysis of the risk of leaking information through repeated
queries in RVP and generalize our findings to all protocols that use probabilistic
output obfuscation. We find that even in a general scenario, an adversary learns
the confidential inputs exponentially fast in the number of queries if the ran-
domness used for obfuscation is sampled independently. For instance, already
15 queries can be sufficient to infer confidential inputs with probability at least
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99% and confidence 1. We further demonstrate for RVP how the additive blind-
ing used for hiding the confidential dividend and divisor can be removed with
a single query. Second, building on the findings of Denning [13] and Francis et
al. [17], we propose to use data-dependent deterministic randomness to miti-
gate averaging attacks. Aiming for utility and confidentiality, we build on the
information-theoretic definition of uncertainty [12] and introduce the following
paradigm.

Definition 1 (Data-Dependent Deterministic Obfuscation (D3O)).
Given a secret x and a sequence of pseudorandom values r̄ “ (r1, . . . , rt), an
obfuscation function takes x and r̄ as input to add uncertainty to x. An obfusca-
tion function is data-dependent deterministic if the values in r̄ are computed by
a one-way function f , such that f takes the value x as input (data-dependent)
and f always returns the same output for the same x (deterministic).

We further propose a first instantiation of D3O. Third, we present mRVP, a mod-
ified version of RVP that effectively and efficiently prevents the described attacks
based on D3O and further modifications. We empirically investigate mRVP in the
real-world scenario of cobalt supply-chain verification. Compared to the original
RVP protocol presented in [5] as well as a second baseline, we find that mRVP
achieves high accuracy and effectively mitigates averaging attacks. The necessary
modifications only add negligible runtime overhead.

1.2 Related Work

To the best of our knowledge, the idea of using data-dependent randomness to
prevent averaging out (zero-mean) random values with repeated queries was first
proposed by Denning in [13]. She suggests a new inference control, referred to
as Random Sample Queries, to protect confidentiality of data in query-based
systems. She provides a formal analysis of averaging attacks for repeated similar
queries. In order to mitigate certain classes of attacks, she suggests distorting
computed outputs, e.g., via rounding or by adding pseudorandom values with
mean zero. She points out that using the same pseudorandom value for similar
results, by making the noise data-dependent, is preferable. Most notably, Den-
ning’s formal analysis is restricted to systems that use Random Sample Queries.

In [17], Francis et al. propose Diffix, an SQL proxy that adds data-dependent
sticky noise to query results in order to hinder complex analyses of outputs. The
security and shortcomings of Diffix with respect to certain kinds of attacks as well
as potential defenses were investigated in [7,18]. Furthermore, their randomized
algorithms are restricted to query-based systems and SQL proxies.

An analysis of the success probability of averaging attacks against bounded
perturbation algorithms is presented by Asghar et al. [3]. They apply their attacks
to TableBuilder, a tool for analysing census data. TableBuilder performs the same
perturbation for queries whose responses involve the same set of individuals. This
determinism is modeled through a noise dictionary. Notably, they point out the
NP-hardness of query auditing for detecting maliciously crafted queries [25].
However, their considerations are restricted to counting queries.
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Additionally, we note that the overall concept of obfuscation by adding noise
to data is widely used in differential privacy [15].

The aforementioned systems and methods focus on scenarios where data ana-
lysts aim to query confidential data in a privacy-preserving form. Our paradigm
of data-dependent deterministic obfuscation is not limited to such scenarios and,
therefore, is not limited in terms of query syntax. Furthermore, mRVP, which
we use in Sect. 5 to demonstrate applicability and effectiveness of D3O, targets
confidentiality of single attributes rather than privacy of data owners. That is,
it does not aim to hide whose confidential inputs contributed to a computation.

The chance of inferring confidential data from probabilistically obfuscated
outputs has been discussed in the past. Kerschbaum [24] empirically analyzes
the leakage of a homomorphic-encryption-based system where participants have
access to multiple samples of additively and multiplicatively blinded data. He
emphasizes the difficulty of estimating the probability of a particular leakage
and, therefore, instead empirically demonstrates substantial leakage in terms of
lost entropy. We complement this empirical analysis with a formal analysis for
averaging attacks. Pipernik et al. [32] studied the potential of inverse optimiza-
tion in the well-known JELS model, which does not use output obfuscation.
Similar to our results, they found that a party can infer knowledge about the
secret input of another party even though the computations are performed in a
secure fashion.

2 Preliminaries

2.1 Homomorphic Encryption

Asymmetric cryptosystems are tuples CS “ (G,E,D) consisting of a probabilis-
tic key-generation algorithm G(·) that generates pairs of a (public) encryption
key pk and a (secret) decryption key sk, a (probabilistic) encryption algorithm
E(·), and a decryption algorithm D(·). We denote the plaintext and ciphertext
space by M and C, respectively. Homomorphic encryption (HE) schemes provide
at least one operation “◦” on C that corresponds to an operation “•” on M such
that E(m1, pk)◦E(m2, pk) results in an encryption of the operation m1 •m2 for
two plaintexts m1,m2. We fomalize this as follows.

D(E(m1, pk) ◦ E(m2, pk), sk) “ m1 • m2

Partially homomorphic encryption (PHE) schemes enable either addition [31]
or multiplication [33] of underlying plaintexts. Fully homomorphic encryption
(FHE) schemes [9,11,16,20] offer both addition and multiplication and, thus,
enable evaluation of arbitrary arithmetic functions over confidential data.

2.2 Proxy Re-encryption

Re-encryption is an operation that transforms ciphertexts ci “ E(m, pki)
encrypted under one key into ciphertexts cj “ E(m, pkj �“i) encrypted under
a different key while preserving the underyling plaintext. Proxy re-encryption
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(PRE) [6] ensures confidentiality even if this transformation is performed by an
untrusted party, i.e., without intermediate decryption. A default way to con-
struct PRE from FHE is described in Gentry’s seminal work [19].

2.3 Overview of RVP

The RVP protocol uses a tree-like representation of the supply-chain transactions
graph, which is considered public industry knowledge [5]. Confidential supply-
chain data is homomorphically encrypted at transaction time under the supply-
chain participant Pj ’s key and stored in a public distributed ledger DL. Upon
request by a consumer C, a central party R reads the encrypted data from DL,
re-encrypts the ciphertexts to bring them under the same key, and homomor-
phically aggregates the encrypted data to compute encrypted sums of differ-
ent kinds of ingredients, e.g., artisanally mined (ASM) and industrially mined
(LSM) cobalt. The central party uses additive and multiplicative blinding for
output obfuscation in order to protect confidential aggregates. This blinding
is based on two numbers 0 < r2 ! r1 that are sampled uniformly at random
for each request. The encrypted, obfuscated aggregates are then decrypted by
a separate decryption party D and returned to the requesting consumer C as
SASM “ (ΣASM ) ·r1`r2 and STotal “ (ΣASM`LSM ) ·r1`r2. Then, C computes

ρ “ SASM

STotal
, (1)

which causes the random blindings r1, r2 to cancel out with negligible error and
yields a close approximation of the ratio.

3 Averaging Attacks Against Obfuscation Protocols

In this section, we demonstrate how the probabilistic output obfuscation of RVP
can be exploited to infer confidential information through averaging attacks. We
complement this with a formal analysis of the risk of averaging attacks against
RVP and all other protocols that employ probabilistic output obfuscation based
on the standard approaches of additive and multiplicative blinding of aggregates.

We show that these blinding functions are highly vulnerable to attacks based
on results of the concentration around the expected value. In particular, we prove
rigorously that information about the confidential aggregates gets revealed expo-
nentially fast in the number of queries. This applies to all scenarios that may
arise as long as each query draws the blinding values independent from values
drawn in other queries. Our argumentation follows a case distinction depending
on which blinding function is used. First, we study the case of a target func-
tion which outputs a fraction of aggregates, as in RVP, that is multiplicatively
blinded. Second, we argue on the case of general target functions with obfusca-
tion by additive blinding. Third, we argue on the case that both additive and
multiplicative blinding may be employed for general target functions. We gener-
alize our findings to all protocols that use additive or multiplicative blinding, a
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combination of both, or even random noise with changing distribution. For a pos-
itive integer n, we denote the set {1, . . . , n} by [n] in accordance with standard
notation.

3.1 Adversary Model

For the averaging attacks described in this section, we assume honest-but-curious
adversaries [27]. They act as consumers and query the obfuscating central party
R to run verifications. The adversary may collude with a subset of producers
aiming to infer non-colluding producers’ confidential data.

3.2 Averaging Attacks Against RVP

The adversary runs averaging attacks by repeatedly requesting ratio verifica-
tions for the same product and caches the results. Given a sufficient amount
of verification results, the adversary combines the obfuscated results in order to
reconstruct the random blindings and infer the plaintext aggregates. Given these
aggregates and the inputs of colluding producers, the adversary can infer infor-
mation about the confidential inputs of non-colluding producers. The remainder
of this section focuses on the question: How many repeated verification requests
are necessary to gain sufficient knowledge about the blinding values?

We assume a set of n supply-chain participants Pj with set of confidential
information {xAj

, xBj
}, e.g., ASM and ASM+LSM cobalt amounts. These par-

ties are honest but curious, which yields the possibility that a party - w.l.o.g.
assumed to be P1 - uses the output and its private information {xA1 , xB1} in
order to obtain additional information on {xAj

, xBj
} for any j P [n] with j �“ 1.

The output of RVP is given by a modification, e.g., ρ, of the target function

f(x̄A, x̄B) “
∑

j xAj
∑

j xBj

, (2)

where standard ways of modifications (blinding) were combined to render a
reverse optimization infeasible. We study these modifications individually in the
following, where we distinguish between a deterministically correct fraction and
a random output that approximates the correct fraction with high probability.

In order to study the possibility for reverse optimization, we assume the
minimal case of two input producing parties P1 and P2. The reason for this
minimal case is its worst-case characteristic. The case n “ 1 is of no interest
since every party has full information about their own input. We later argue on
the generalization of our findings to the general case with n > 2 parties.

A Special Case - Removing the Additive Blinding in RVP. Before we
continue with our formal analysis of averaging attacks, we show that the con-
struction of its output obfuscation function renders RVP subject to a special
case of this class of attacks that does not require repeated queries.
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Recall that the output of RVP is the ratio between a blinded dividend and a
blinded divisor. Both are multiplicatively blinded with the same r1 and additively
blinded with the same r2 such that 0 < r2 ! r1, i.e., y “ x1·r1`r2

x2·r1`r2
. Using the

same r1 ensures that the ratio of x1 and x2 is preserved despite the obfuscation.
In contrast, r2 is supposed to prevent attacks that remove the multiplicative
blinding through factorization. However, choosing the same r2 for dividend and
divisor allows for a simple attack. An adversary can subtract the blinded divisor
from the blinded dividend, which causes the r2 to cancel out. This yields the
dividend and the divisor that are now only multiplicatively blinded and therefore
vulnerable to factorization. We formally describe this attack in Appendix A.2.

This attack can be effectively prevented by choosing different additive blind-
ing values for the dividend and the divisor, i.e., y “ x1·r1`r2

x2·r1`r3
such that

0 < r2, r3 ! r1.

3.3 Deterministically Correct

We focus on a target function with output that is a fraction of aggregates as
in Eq. (2), skip the trivial case of un-obfuscated outputs, and start our analysis
with the case of multiplicatively blinded fractions.

Multiplicative Blinding. We turn towards the usage of a random multiplica-
tive factor r used to blind the information in the two sums

∑
j xAj

and
∑

j xBj
.

There is a large variety of possibilities to generate the factor r randomly. We
initialize the study with the choice where in every query k the factor rk is taken
uniformly at random out of [ν] with ν P Z

`
>0, i.e., rk is a positive integer. We

argue how changing the distribution affects our findings afterwards.
Party P1 can use the knowledge about the protocol to infer partial knowledge

in a straight-forward manner. Let r be the random factor used to blind the sums∑
j xAj

and
∑

j xBj
, where we denote by A(r) the value r · ∑j xAj

and by B(r)
the value r · ∑

j xBj
. In the setting under study, Party P1 has access to the

blinded sums A(r) and B(r). Given access to the factor r, party P1 can infer
the precise private input of P2. The factor r is an integer in [ν] and a common
divisor of A(r) and B(r). Computing D, i.e., the set of common divisors of A(r)
and B(r), P1 has a chance of |D|´1 to draw r uniformly at random out of D.
This motivates a choice of a very large positive integer ν in order to generate a
multiplicative factor r with a large set of artificial divisors used to blow up the
set D. However, even a large set D is not enough to hinder P1 from inferring
almost perfect knowledge when P1 can repeat the query. In order to show the
existence of a very effective procedure used for reverse optimization, we start
with the following classic result by Mertens [30].

Lemma 1. Let ν be a positive integer. If r1 and r2 are taken uniformly at
random out of [ν], then the probability that r1 and r2 are coprime is at least
6 · π´2.

By Lemma 1, we observe that it is unlikely to produce two random multi-
plicative factors r1 and r2 with multiple common divisors. Every multiplicative
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factor rk yields the greatest common divisor Dk of A(rk) and B(rk), which
is rk · gcd

(∑
j xAj

,
∑

j xBj

)
. If two factors r1 and r2 are coprime, then the

gcd(D1,D2) is equal to the greatest common divisor of the two unmodified sums∑
j xAj

and
∑

j xBj
. With access to this greatest common divisor and D1, party

P1 can then calculate r1 by simple division.
Consequently, P1 gets access to r1 and this is sufficient to infer the private

input {xA2 , xB2} of party P2. In general, the gcd(D1,D2) is equal to the prod-
uct of gcd(r1, r2) and gcd

(∑
j xAj

,
∑

j xBj

)
. This allows for an iterative algo-

rithm by consecutively requesting sums modified by a new independent factor
rk, computing the greatest common divisor of consecutive query outputs until
only the greatest common divisor of the sums remains. More precisely, starting
with D∗ “ D1 at step i “ 1, party P1 requests at step i ` 1 the modified sums
A(ri`1) and B(ri`1), computes Di`1, and computes the gcd(D∗,Di`1) stored as
the new D∗. If at least two multiplicative factors are coprime, then D∗ is equal
to the greatest common divisor of the two sums.

It remains to study how many times P1 has to repeat the query in order to
obtain a tuple of coprime multiplicative factors.

Proposition 1. For a positive integer ν, let r1, r2, . . . , rκ be a sequence of inte-
gers taken independently uniformly at random out of [ν]. Given, for every k P [κ],
the sum rk · ∑

j xAj
denoted by A(rk), the sum rk · ∑

j xBj
denoted by B(rk),

and its private input {xA1 , xB1}, party P1 can infer the private input {xA2 , xB2}
of party P2 with probability at least

1 ´ exp(´π´2 · (3 · (κ ´ 1))).

For the proof of Proposition 1, we apply the well-known Chernoff Bounds.

Theorem 1 (Chernoff Bound). Let X1, . . . , Xk be a sequence of independent
and identically distributed Bernoulli trials with P [Xi “ 1] “ p. Then, for every
δ P [0; 1],

P

[
k∑

i“1

Xi ď (1 ´ δ) · p · k

]

ď exp
(

´δ2

2
· p · k

)

.

Proof (Proof of Proposition 1). We recall the definition of D∗ and that it remains
to estimate the number of trials κ needed to obtain an instance k in which r1 and
r2 are coprime. This serves as an upper bound on the number of trials needed
such that D∗ is equal to the greatest common divisor of the two sums. With
this information, party P1 can infer the random factor r1 and, consequently, the
private input of party P2.

For every k in [κ] with k > 1, we define the Bernoulli trial Xk P {0, 1} with
Xk “ 1 if r1 and rk are coprime, else Xk “ 0. By Lemma 1, we have that
P [Xk “ 1] ě 6 · π´2.
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We obtain a sequence of κ ´ 1 independent Bernoulli trials, which are all
unsuccessful if and only if their sum is 0. By Theorem 1 with δ “ 1, we deduce

P

[
κ´1∑

i“1

Xi ď 0

]

ď exp
(

´6 · (κ ´ 1)
2 · π2

)

.

This serves as a valid upper bound on the probability that D∗ is equal to the
greatest common divisor of the two sums because we argued on the greatest com-
mon divisor of two elements contrary to all κ elements. The result follows from
the fact that the probability under study is lower bounded by the probability to
have at least one k with Xk > 1. ��
By Proposition 1, we observe that the probability of an error in the procedure
drops exponentially fast, e.g., already after κ “ 9 queries the probability that
P1 inferred the correct input {xA2 , xB2} of party P2 is larger than 0.91 and after
κ “ 16 queries the probability is larger than 0.99.

As a final remark regarding multiplicative blinding, we argue on the impact of
changing the distribution that the factor r is taken from. So far we let r be taken
uniformly from [ν], a finite subspace of the positive integers, where the knowledge
about the protocol was sufficient to bypass the blinding function by observing
the set of common divisors. As long as the factors are integers and drawn inde-
pendently, the results remain valid regardless of the distribution. The reason is
Dirichlet’s classic result stating that the density of ordered coprime pairs (r1, r2)
in N

2 is asymptotically 6 ·π´2 (see e.g. Hardy and Wright [21]). Also a consider-
ation of rational values r P Q does not introduce meaningful countermeasures as
party P1 can artificially scale the A(r), B(r) by a large enough factor such that
the effect is as if r were an integer.

3.4 Random Output

We now consider averaging attacks on arbitrary output functions. The second
class of modifications used in RVP uses randomly generated noise to blind the
correct information from an adversary. More precisely, if the output of the pro-
tocol is the functionf(x̄), where x̄ is any ordered set of private information, the
protocol outputs f(x̄) ` s, where s is a random variable drawn from some dis-
tribution such that it does not perturb the function too much. Obvious choices
for the distributions are the normal (or Gaussian) distribution and the Laplace
distribution, which can both be tailored easily such that the distribution is con-
centrated around its expected value. However, this desired concentration can be
used by an adversary to infer knowledge about private information in a very
similar way as in the previous subsection by repeatedly querying the protocol.
This information’s probability of correctness increases then exponentially fast in
the number of queries, rendering the modification (almost) useless. We will show
these results in the following.

The normal distribution with expected value μ P R and variance σ2 > 0 is
denoted by N (μ, σ2). We denote a random variable X to be drawn from N (μ, σ2)
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by X ∼ N (μ, σ2). Similarly, the Laplace distribution with expected value μ P R

and scale b P R>0 is denoted by Lap(μ, b). We denote a random variable X to
be drawn from Lap(μ, b) by X ∼ Lap(μ, b).

We assume for the sake of clarity that the distributions under study are cho-
sen with expected value μ “ 0, which appears plausible as it does not introduce
a large perturbation of the function value f(x̄). The results are not affected by
this assumption because one can replace the random variable X with the random
variable X ´ μ.

We reasoned in the previous subsection that the adversary P1 can infer
knowledge of the private input of party P2 once P1 has access to f(x̄). The
adversary P1 can infer knowledge of the private input of party P2 with increas-
ing correctness by initializing repeated queries, forcing the protocol to gener-
ate new random additive noise which concentrates around the expected value
μ “ 0. In particular, let P1 query the protocol κ > 0 times and f(x̄) ` Xk

be the output of the k-th query for k P [κ]. Party P1 observes the average
κ´1 · ∑κ

k“1(f(x̄) ` Xk) “ f(x̄) ` κ´1 · ∑κ
k“1 Xk. If κ´1 · ∑κ

k“1 Xk is highly con-
centrated around the expected value μ equal to 0, then P1 infers knowledge of
the private input of P2 with small error.

Observation 2. Let f(x̄) be a functional value of private inputs of party P1

and P2. Let X1, . . . , Xκ be a sequence of independent and identically distributed
random variables with expected value μ “ 0. Given fk “ f(x̄) ` Xk for 1 ď
k ď κ and any real number t > 0, party P1 can infer f(x̄) to be in the interval
(f(x̄) ´ t, f(x̄) ` t) with probability

P

[∣
∣
∣
∣
∣
κ´1 ·

κ∑

k“1

Xk

∣
∣
∣
∣
∣
< t

]

which is

1 ´ P

[∣
∣
∣
∣
∣
κ´1 ·

κ∑

k“1

Xk

∣
∣
∣
∣
∣

ě t

]

.

The obvious choices of a normal distribution and a Laplace distribution
(see e.g. [14,15]) belong to a large class of distributions called sub-exponential
and sub-Gaussian, which allow for a concentration bound known as Hoeffding’s
inequality (see e.g. [35]). In the following, we provide a full technical argumenta-
tion culminating in Corollary 2; the very curious reader may skip to this corollary.

Definition 2. A random variable X with finite expected value μ is called sub-
exponential if there exists a pair of non-negative parameters (ν, b) such that

E [exp(λ · (X ´ μ))] ď exp
(

ν2 · λ2

2

)

, for all |λ| <
1
b
. (3)

In the case that Eq. (3) holds for all λ, then X is called sub-Gaussian and has
parameter ν.
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The Hoeffding bounds are concentration bounds of sub-Gaussian and sub-
exponential random variables. They can be found in [35]. Utilizing these, a stan-
dard application of the union bound yields the following well-known corollary,
which states concentration bounds of the sum of identically distributed random
variables provided that these are either sub-Gaussian or sub-exponential.

Corollary 1. Let X1, . . . , Xκ be a sequence of independent and identically dis-
tributed random variables with finite expected value μ. Further, let X be the
random variable with X “ ∑κ

k“1 Xk.

1. If Xk is sub-Gaussian with parameter ν, then for all t ě 0

P [|X| ě κ · (μ ` t)] ď 2 · exp
(

´ t2 · κ

2 · ν2

)

;

2. if Xk is sub-exponential with parameters (ν, b), then

P [|X| ě κ · (μ ` t)] ď
{

2 · exp
(

´ t2·κ
2·ν2

)
, if 0 ď t ď ν2

κ·b ;

2 · exp
(´ t·κ

2·b
)
, for t ě ν2

κ·b .

The following lemma states the well-known fact that normal distributed random
variables are sub-Gaussian and Laplace distributed random variables are sub-
exponential. For the sake of completeness, we provide a short proof.

Lemma 2. Let X be a random variable.

1. If X ∼ N (μ, σ2), then X is sub-Gaussian with parameter ν that is equal to
σ;

2. if X ∼ Lap(0, b), then X is sub-exponential with parameters (ν, b′), where
ν “ 2 · b and b′ “ √

2 · b.

Proof. The first case follows immediately from the definition of a sub-Gaussian
random variable. For the second case, we observe that (1´x)´1 ď 1`2 ·x holds
for every x with 0 ď x ď 2´1. Since 1 ` x ď exp(x) holds for all real numbers x,
we obtain for the pair of real numbers b and λ with 0 ď b2 · λ2 ď 2´1

1
1 ´ b2 · λ2

ď exp
(
2 · λ2 · b2

) “ exp
(

ν2 · λ2

2

)

. (4)

By X ∼ Lap(0, b), we have that, for |λ| < b´1, the moment-generating function
satisfies E [exp(λ · X)] “ (1 ´ b2 ·λ2)´1 (see [26, Equation (2.1.10)]). By Eq. (4),
we conclude, for |λ| < (

√
2 · b)´1, that the moment generating function satisfies

E [exp(λ · X)] ď exp
(

ν2 · λ2

2

)

.

��
Corollary 1 in conjunction with Lemma 2 now yields the following.
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Corollary 2. Let X1, . . . , Xκ be a sequence of independent and identically dis-
tributed random variables with expected value μ equal to 0. Let X be the random
variable with X “ κ´1 · ∑κ

k“1 Xk.

1. If Xk ∼ N (0, σ2) then

P [|X| ě t] ď 2 · exp
(

´ t2 · κ

2 · σ2

)

;

2. if Xk ∼ Lap(0, b) then

P [|X| ě t] ď
⎧
⎨

⎩

2 · exp
(

´ t2·κ
8·b2

)
, if 0 ď t ď 2·√2·b

κ ;

2 · exp
(

´ t·κ
2·√2·b

)
, for t ě 2·√2·b

κ .

Example 1. Let Xk ∼ N (0, 1) and the desired maximal error be smaller than
t equal to 1, then after κ “ 10 queries, the probability for an error of at least
1 is at most 2 · exp(´5) < 0.014, and thus party P1 observes an error smaller
than 1 with probability at least 0.986. For an additive noise Xk ∼ Lap(0, b),
we have to be a bit more careful as to which bound applies. For instance, with
b equal to 1 and the same maximal error bound t after κ equal to 10 queries,
we have to apply the second bound, which yields a less powerful probability
bound of 2 · exp(´5 · (

√
2)´1) < 0.059. However, after κ equal to 15 queries,

the probability for an error of at least 1 is smaller than 0.01, and thus party P1

observes an error smaller than 1 with probability at least 0.99.

General Practical Scenario: Bounded Noise. The probabilities computed
in Corollary 2 and in Proposition 1 depend on explicit characteristics of the
used probability distribution that the noise is drawn from. There is a property
shared by every random noise applied in any practical scenario: The noise X
lies in a finite interval [a; b] in R. Boundedness is a strong enough property to
obtain concentration bounds. The reason is that a bounded random variable is
sub-Gaussian, a result known as Hoeffding’s lemma (see e.g. [29]).

From Hoeffding’s lemma, Corollary 2, and a centralization X ′ “ X ´ μ, we
obtain the following result, which is referred to as Hoeffding’s inequality.

Corollary 3 (Hoeffding’s Inequality). Let X1, . . . , Xκ be a sequence of
identically distributed independent random variables with finite range [a; b] con-
tained in R and expected value μ. Let X be the random variable X “ κ´1 ·∑κ

k“1 Xk, then for all t larger than 0

P [|X| ě (μ ` t)] ď 2 · exp
(

´ 2 · t2 · κ

(b ´ a)2

)

.

For instance, taking random noise Xk uniformly at random in [0; 2�] party
P1 needs κ equal to 5

2 · 22·� queries in order to observe the same error of at least
t equal to 1 with the same probability bound of at most 2 · e´5 as it did already
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after κ equal to 10 queries when Xk ∼ N (0, 1). The Laplace and the normal
distribution are usually much stronger concentrated around their expected value.
Nonetheless, asymptotically the behaviour is the same: The probability that the
average is in a given confidence interval around the mean grows exponentially
fast in κ.

The following example illustrates how a scenario of uniform noise translates
to the setting studied.

Example 2. Assume a protocol hides a function value f(x̄) with a multiplicative
noise X, where X is drawn uniformly at random from [0; 2�] with fixed non-
negative integer 
. Moreover, assume party P1 has knowledge of the range [a; b] �

Rě0 of the function f(·) for any possible input. Then, the output Y “ f(x̄) · X
is a bounded random variable with range [0; 2� · b] and expected value f(x̄) · μ,
where μ is the expected value of X.

Combination of Noise. In order to blind a function value f(x̄), a protocol
generates two independently generated random variables X and X ′ and outputs
the random variable Y , where Y “ X ·f(x̄)`X ′. Due to the additive noise X ′, the
attacks studied in Sect. 3.3 are invalid. However, in any practical application both
X and X ′ have to be bounded random variables and thus Y is also a bounded
random variable. With knowledge of the possible range of f(x̄), Corollary 3 is
applicable similar to Example 2. However, this line of attack is very suboptimal
as it does not exploit the fact that X and X ′ are independent from each other.

Let Y1, . . . , Yκ be multiple outputs of the protocol hiding the same function
value f(x̄), where for k P [κ], Xk and X ′

k are two independent random variables
and Yk “ Xk · f(x̄) ` X ′

k. We apply the same attack method of observing the
average κ´1 · ∑κ

k“1 Yk and its concentration around the expected value. By the
independence of Xk and X ′

k and by

1
κ

·
κ∑

k“1

Yk “ f(x̄) · 1
κ

·
κ∑

k“1

Xk ` 1
κ

·
κ∑

k“1

X ′
k

we are allowed to observe the partial sums using the same method. Doing so,
the partial errors will add up.

Compared to the straightforward application of Corollary 3 on Y this has
the benefit of allowing to use concentration results specific to the individual
distributions that X and X ′ are drawn from.

Example 3. Let the range of the function value f(x̄) be [0; 1] and Y1, . . . , Yκ be
multiple outputs of the same protocol, where Xk and X ′

k are two independent
random variables and Yk “ Xk ·f(x̄)`X ′

k. Moreover, let Xk be taken uniformly
at random from [0; 24] and X ′

k ∼ N (0, 1).
As in Example 2, the function value f(x̄) can be neglected. Observing

κ´1 ·∑κ
k“1 Xk with Corollary 3, party P1 observes after κ equal to 40 ·24 queries

an error of less than t equal to 1 with probability at least 1´2·e´5 > 0.9865. Due
to the different distribution of the X ′

k and Corollary 2, we obtain a far better
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concentration of κ´1 ·∑κ
k“1 X ′

k. Party P1 observes after κ equal to 40 ·24 queries
an error of less than t′ equal to 10´4 with probability larger than 0.99999. Sum-
ming up, party P1 observes for κ´1 ·∑κ

k“1 Yk an error of less than t` t′ “ 1.0001
with probability larger than (1 ´ 2 · e´5) · 0.99999 > 0.9865.

3.5 General Case

In the general case, the distribution of the random noise Xk may change in k.
As long as the random variables are drawn independently, the same attack as
employed before will leak information. Assuming every Xk is a bounded ran-
dom variable in [a; b] ⊂ R, we still have a sequence of independent random
variables, which are by Hoeffding’s lemma sub-Gaussian albeit with possibly
different parameters. The general form of Hoeffding’s inequality [35] (see also
Appendix A.3) also gives in this case the same type of concentration result: The
probability that the average is in a given confidence interval around the mean
grows exponentially fast in κ.

An increasing number n of input-producing parties reduces the individual
contribution and, thus, it becomes increasingly difficult for party P1 to infer
information about the input of any party Pj . Hence, generalizing this attack to
scenarios with n > 2 parties, an adversary that colludes with less than n ´ 1
parties is not able to infer precise knowledge but will learn relations of private
inputs, clearly reducing entropy.

4 Data-Dependent Deterministic Obfuscation

We showed in Sect. 3 that the standard blinding functions reveal information
exponentially fast in the number of queries on the same value to be blinded.
The used concentration bounds are applicable as long as the noise is drawn
independently. Therefore, blinding values based on input-specific knowledge are
an important measure against the described class of attacks.

We propose to use data-dependent blinding values.To mitigate the described
class of attacks, we suggest to always use the same, i.e., deterministic, blind-
ing values to blind the same confidential data. This ensures that adversaries
do not gain additional knowledge through repeated queries. However, differ-
ent confidential inputs should always be blinded with different blinding values.
Furthermore, blinding values should be impossible to guess or compute given
only public knowledge, except with negligible probability. The paradigm of data-
dependent deterministic obfuscation (D3O), given by Definition 1, incorporates
these requirements.

4.1 A D3O Instantiation

We focus on obfuscation functions that involve multiplicative and additive blind-
ing, respectively. Without loss of generality, we assume an obfuscation function
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y “ x · r1 ` r2. The core of our D3O protocol is the construction of determin-
istic random values ri with i P {1, 2} that can be used for multiplicatively and
additively blinding x. Hence, it works similarly for other obfuscation functions.
Following the analysis for multiplicative blinding in [24], we further require the
ri to have random, but fixed, magnitude li to hide the length of the confidential
value x. Both ri are constructed in the same way.

We follow the general definitions for cryptographic, i.e., collision-resistant,
hash functions and cryptographically secure pseudorandom generators (PRG).
Let H(·) be a cryptographic hash function, x be the secret value that is supposed
to be obfuscated, and Ki be a uniformly chosen but fixed secret key known only
to an obfuscating party R. We first compute a hash hi as follows.

hi “ H(Ki, x) (5)

As we will demonstrate in Sect. 4.2, the hash computation can incorporate fur-
ther details like query attributes. If we model H(·) as a random oracle and
require Ki to be known only to R, we can assume hi to be distributed uniformly
at random and hard to guess [22].

Given a cryptographically secure PRG G(·) with outputs that are normally
distributed, have (fixed) expected value μi, and standard deviation σi, we gen-
erate the length li by

li “ G(μi, σi;hi), (6)

where hi acts as the seed. As hi was generated uniformly at random and is known
only to R, li is pseudorandom [22].

We assume that the length of hi is reasonably larger than μi and define ri

as the first li bits of hi, denoted by

ri “ [hi]li´1
0 . (7)

The resulting ri is a pseudorandom value of normally distributed length con-
sisting of uniformly distributed bits. hi is computed deterministically because
all inputs of H(·) in Eq. (5) are fixed for the secret value x. Hence, for the fixed
μi and σi, Eq. (6) outputs a deterministic li.

Consequently, each ri is a deterministic value with uniformly distributed
bits and depends on x and a secret key Ki. The obfuscation of x such that
y “ x · r1 ` r2 meets Definition 1. Since the lengths of the ri are normally
distributed (but deterministic), y does not leak the length of x.

4.2 mRVP - Modified Ratio Verification Protocol with D3O

Recall the cobalt ratio verification function from Eq. (1) as used in the RVP
protocol (see Sect. 2.3). For ratio verification of a transaction θ, RVP computes
the (approximate) ratio ρ for any party Pj ’s amounts xjASM

of artisanally mined
(ASM) and xjLSM

of industrially mined (LSM) cobalt used to manufacture a
particular product. The amounts xj are stored in a distributed ledger DL and
can be encrypted under different keys, denoted by E(xj , pkj). The central party
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R first re-encrypts them under a common key, homomorphically computes the
two encrypted aggregates of ASM and ASM+LSM amounts, obfuscates them
homomorphically with two random blinding values, and forwards the resulting
ciphertexts to a decryption party D. D decrypts them and returns the resulting
blinded aggregates to the consumer C. C divides the two values to obtain a
close approximation ρ of the ratio. An additional outer layer of additive blinding
is used to prevent D from learning the ratio. The required blinding values are
samples from D’s plaintext space MD. This form of output obfuscation hides
the aggregates but preserves their ratio.

We now show how our D3O instantiation of Sect. 4.1 can be used to defend
RVP against averaging of attacks. Additionally, we modify the additive blinding
for the divisor as suggested in Sect. 3.2 to mitigate attacks that remove the
additive blinding values that prevent factorization. The result is our modified
Ratio Verification Protocol mRVP, given in Algorithm 1.

Algorithm 1: mRVP - Modified Ratio Verification Protocol
Data: θ, ..., rkj→D, ..., pkD, skD

Result: ρ
1 C sends to R:
2 θ

3 rs1 , rs2
U← MD

4 R reads from DL and re-encrypts:
5 (..., ED(xj) “ RE(Ej(xj), rkj→D), ...)
6 R computes:

7 ED(SASM ) “ ED

(∑m
j“1 xjASM

)
“ ⊕m

j“1 ED(xjASM )

8 ED(STotal) “ ED

(∑m
j“1 xj

)
“ ⊕m

j“1 ED(xj)

9 ∀i P {1, 2, 3} : hi “ H(Ki, θ||...||Ej(xj)||...)
10 li “ G(μi, σi; hi)

11 ri “ [hi]
li´1
0

12 ED(S′
ASM ) “ ED(SASM · r1 ` r2) “ (ED(SASM ) � ED(r1)) ⊕ ED(r2)

13 ED(S′
Total) “ ED(STotal · r1 ` r3) “ (ED(STotal) � ED(r1)) ⊕ ED(r3)

14 R computes and sends to D:
15 ED(S′′

ASM ) “ ED(S′
ASM ` rs1) “ ED(S′

ASM ) ⊕ ED(rs1)
16 ED(S′′

Total) “ ED(S′
Total ` rs2) “ ED(S′

Total) ⊕ ED(rs2)
17 D computes and sends to C:
18 S′′

ASM “ DD(ED(S′′
ASM ))

19 S′′
Total “ DD(ED(S′′

Total))
20 C computes:

21 ρ “ S′
ASM

S′
Total

“ S′′
ASM ´rs1

S′′
Total

´rs2

Let “||” denote concatenation, “⊕” and “
” denote homomorphic addition
and multiplication, and a

U← D denote sampling some a from a uniform distri-
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bution D. For the sake of readability, we further denote encryption of m with
pkj by c “ Ej(m) and decryption of c with skj by m “ Dj(c).

Upon a consumer’s request for ratio verification of a transaction θ, the
obfuscating party R proceeds as follows. Each ri with i P {1, 2, 3} is com-
puted separately. Given fixed, secret keys K1,K2,K3, the party R computes
hi “ H(Ki, θ||...||E(xj , pkj)||...) for all encrypted amounts that are incorpo-
rated in the aggregates as well as the transaction index θ (see Eq. (5)). Then,
given fixed μi, σi, the obfuscating party computes li “ G(μi, σi;hi) (see Eq. (6))
and truncates the hi accordingly to obtain r1, r2, r3 (see Eq. (7)). Using different
μi and σi for each ri ensures that r1, r2, r3 satisfy 0 < r2, r3 ! r1. Blinding the
aggregates results in two deterministically obfuscated aggregates that are not
subject to averaging attacks.

Making use of hardware acceleration for H(·) and given the fact that R only
needs to store three secret keys K1,K2,K3 as well as six distribution param-
eters μ1, μ2, μ3, σ1, σ2, σ3, which can be public, our D3O instantiation ensures
both computational and storage efficiency. We demonstrate the performance
and applicability in the following evaluation.

5 Evaluation of Performance and Applicability

To evaluate practicality and applicability of D3O as our mitigation against aver-
aging attacks in mRVP, we chose cobalt ratio verification as a real-life scenario
as in [5]. We require the solution to leak as little information about confidential
transactions as possible. We first measure the performance of our D3O instanti-
ation in terms of obfuscation runtime. This allows us to quantify the computa-
tional overhead that it adds compared to obfuscation with independent random
numbers. We then investigate how it affects the accuracy of the protocol outputs
and quantify accuracy in terms of deviation from the actual cobalt ratio.

5.1 mRVP and Baselines

Our implementation of mRVP generates values with uniformly distributed bits
and a length which follows a Gaussian distribution by incorporating the prod-
uct’s transaction ID as data-dependent input. Similar to the original construction
of RVP, mRVP uses a distributed ledger DL to store public supply-chain data.

The plain RVP protocol as proposed in [5] acts as our first baseline. Addition-
ally, we implemented another and somewhat extreme alternative protocol that
relies on local differential privacy (LDP) using Laplace noise to protect the con-
fidential data (see Appendix A.1), instead of homomorphic encryption. In this
protocol, the supply-chain data is published via a distributed ledger DL in the
form of noisy plaintexts rather than ciphertexts. Upon request by a consumer
C, the central party R aggregates the noisy data and returns the aggregates
to the consumer C, who then computes ρ. As no data encryption is involved,
this protocol does not involve a decryption party D. We refer to this protocol
as the LDP protocol. Using LDP as a second baseline allows us to investigate
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the overhead caused by the homomorphic encryption and proxy re-encryption
operations. Furthermore, it allows us to include an additional perspective: the
privacy-utility trade-off, with the utility being ratio computation. LDP seems
intuitive for settings where participants can add noise locally before publishing
the data. Differential privacy gives quantifiable privacy guarantees and allows
to compute the risk of leaking information based on the ε parameter. One can
reasonably assume the LDP protocol to have better performance than RVP and
mRVP due to the absence of expensive homomorphic operations.

5.2 Experimental Setup

The three protocols were implemented in Go and C++. We used a permissionless
Multichain as our distributed ledger and the PALISADE [1] implementation of
the fully homomorphic BFV scheme [8,16].

We deployed the central party R in an industry-scale cloud instance with 488
GiB of memory and 64 vCPUs and used a moderately sized machine with 16
GiB of memory and 4 vCPUs for the requesting consumer. For RVP and mRVP,
we deployed the additional decryption party D in a cloud instance with 16 GiB
of memory and 4 vCPUs. All three machines were distributed with a distance
of several hundred kilometers for a life-like communication scenario.

For our runtime and accuracy comparison, we take the effect of different
parameters into account. The first parameter is the number of inputs n, which
we chose to be n P {100, 250, 400, 550, 700, 850, 1000}. We assume the runtime to
increase for larger n. For the LDP protocol, we set ε P {0.1, 1, 2, 3}, as common
in the literature, and expect the accuracy of the LDP protocol to increase with
growing ε. Furthermore, we investigated what effect different distributions of
the confidential input data might have. For this, we used inputs that follow
(a) Uniform distributions as a baseline, (b) Gaussian distributions to model
mine outputs dominated by large mines, (c) Gaussian Mixtures to model mine
outputs dominated by both very small and very large mines, and (d) Power-
Law distributions, with the latter being the closest to the actual distribution of
sourced cobalt amounts, as the mine outputs from [34] indicate. Each of these
distributions was parameterized to meet a life-like ASM-to-LSM ratio in the
pool of inputs. For each combination of the four input distributions, seven input
sizes, and four ε values (for LDP), we ran each protocol 100 times.

5.3 Runtime Evaluation

We start by investigating the computational overhead of our D3O instantiation
as part of output obfuscation. We consider the time required for obfuscation
with data-dependent deterministic values in mRVP and compare it to the effort
of obfuscation with randomly sampled blinding values in RVP. Even though
we assume the blinding-value computation to take longer in mRVP due to the
more complex construction compared to random number sampling, we expect
the D3O procedure to have small effect on the overall output obfuscation, which
is dominated by homomorphic multiplication and addition.
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Table 1. Total obfuscation runtime for RVP and mRVP

Protocol Obfuscation runtime in ms Confidence interval in ms

RVP 25.893 [25.764, 26.021]

mRVP 26.297 [26.139, 26.456]

Table 1 shows the total obfuscation runtime for both protocols in millisec-
onds. The 95% confidence intervals in the rightmost column show that the over-
head of D3O computation is in the order of microseconds and therefore hardly
measurable. Hence, the protocols perform equally well, which meets our expec-
tations.

Next, we investigate the total runtime of all three protocols relatively to
the number of confidential inputs. Due to the previous runtime comparison, we
expect RVP and mRVP to perform similarly. We assume the LDP protocol to
perform and scale better due to the absence of expensive homomorphic opera-
tions, especially re-encryptions, which mostly leaves plaintext summations.

Fig. 1. Total runtimes for RVP,
mRVP, and LDP

Fig. 2. Accuracy of RVP and mRVP
for different input distributions

In fact, Fig. 1 shows that mRVP exhibits a performance that is similar to
that of RVP while the LDP protocol performs substantially better. It further
reveals the proportion between different parts of the ratio computation. Those
parts are the ledger traversal for reading the encrypted or noisy input data, the
summation of that data, and the blinding computation, i.e., output obfuscation,
bottom to top. Summation and blinding, however, are hardly visible as their
impact is negligible. For RVP and mRVP, the total runtime additionally contains
communication with the decryption party D. In this scenario, ledger traversal
remains the main bottleneck, whereas summation and blinding are computed
highly efficiently. The effect of the D3O computation in this scenario is negligible.

The runtime of summation in RVP and mRVP, including re-encryptions,
appears to be constant. We presume that this is caused by the high paralleliz-
ability of homomorphic additions and re-encryptions used for aggregation.
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5.4 Accuracy Evaluation

We investigate the accuracy of the three protocols by comparing the computed
ratio to the actual ratio as reflected in the supply-chain transactions (see Eq. (1)).
Given 0 < r2, r3 ! r1, we expect the blinding values to almost perfectly cancel
out and cause very high accuracy in RVP and mRVP. We expect less accurate
results for the LDP protocol due to the effect of the Laplace noise used to perturb
the confidential inputs.

Figure 2 shows that, with an average deviation of approximately 2 · 10´6%,
RVP and mRVP achieve very high accuracy with negligible deviation from the
actual cobalt ratio. Furthermore, the different input distributions appear to have
negligible effect on the accuracy.

The results for the LDP protocol are depicted in Fig. 3. We observe that the
overall deviation is orders of magnitude higher than for the other two protocols,
being in the range of several percent. We observe that the input distribution
heavily affects the accuracy. For uniformly distributed inputs, we observed a
deviation of approximately 6% as well as 10% for normally distributed inputs,
116% for Gaussian mixtures, and 21% for inputs that follow a power-law distribu-
tion. Furthermore, Fig. 4 depicts the deviation relatively to the LDP parameter
ε. It demonstrates that if ε increases, so does the accuracy.

Fig. 3. Accuracy of LDP for different
input distributions

Fig. 4. Accuracy of LDP for different
LDP-ε values

5.5 Summary

We found that our D3O instantiation adds negligible runtime overhead and does
not affect the accuracy of ratio computation, with accuracy negligibly close to
100%. Even though the LDP-based protocol has better performance, its accuracy
is substantially worse than that of our mRVP protocol. Hence, in the scenario of
cobalt ratio verification, mRVP is preferable. However, in scenarios with loose
accuracy requirements where inputs follow a uniform distribution, the LDP-
based protocol might be a valid choice.
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6 Conclusion and Future Work

Analysis of confidential data is gaining importance, with public verification and
traceability of supply-chain data being a prominent example. In this work, we
investigated the security of the Ratio Verification Protocol (RVP) proposed
in [5]. RVP stands out due to its efficient approach to dividing homomorphi-
cally encrypted data. We were able to show that its probabilistic output obfus-
cation renders RVP vulnerable to averaging attacks. We proved rigorously that
such attacks against RVP perform exceptionally well if obfuscation is based on
random values sampled independently for every query. We generalized our for-
mal attack analysis to all protocols that employ probabilistic output obfuscation
based on additive or multiplicative blinding of aggregates. A clear picture on the
performance of such attacks was missing before.

We introduced the paradigm of data-dependent deterministic obfuscation
(D3O) to prevent averaging attacks and proposed an instantiation of D3O. We
presented mRVP, a D3O-based modified version of RVP, and demonstrated its
practicality and effectiveness in the real-world scenario of cobalt supply-chain
verification. We were able to show that D3O adds negligible runtime overhead.
It does not affect the accuracy of outputs and effectively prevents averaging
attacks.

Our mRVP protocol allows one single form of queries and thus achieves mini-
mal expressiveness. Hence, it is not subject to typical query-system attacks that
try to tailor queries which are semantically equal but not syntactically [17]. How-
ever, we note that protocols that use our D3O instantiation might still be subject
to more sophisticated attacks similar to the class of attacks described in [18]. An
adversary who requests verifications that involve the same or almost the same
aggregates but based on different inputs would learn obfuscated outputs based
on fresh randomness for each request. This makes the system vulnerable similar
to the analysis in Sect. 3. We emphasize that adding the same noise also for
nearly identical confidential data leaks more information than adding different
noise. Furthermore, these attacks are scenario-specific. An adversary needs to
corrupt almost all producers contributing to the product of interest, or other-
wise gain a deep understanding of a major part of the encrypted supply-chain
details (to gather a sufficiently large amount of similar query combinations lead-
ing to similar outputs). For the considered supply-chain scenario, we deem this
class of attacks highly unlikely.

Some of the defenses suggested in [3,18], e.g., query throttling and audit-
ing, can help reduce the risk of sophisticated attacks. However, we note that in
general, query auditing is NP-hard [25].
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A Appendix

A.1 Local Differential Privacy

Local differential privacy (LDP) [14] is an adaptation of differential privacy
(DP) to a local anonymization scenario, where individuals do not fully trust
the data controller and, therefore, anonymize their data locally, on their own,
before handing it to the controller. The setting is as follows. Consider a set of
data providers each wishing to protect private data Xi P X on their own. A
randomized anonymization mechanism A is a mechanism that maps Xi randomly
to Yi, where the Yi’s are the anonymized versions of Xi’s, the data each individual
will send to the controller. For any pair of input values x, x′ P X , and for all
O ⊆ range(A), we say A satisfies ε-LDP with ε > 0, if

P [A(x) P O] � exp(ε) P [A(x′) P O] . (8)

One of the primary approaches to designing LDP mechanisms is through
the addition of Laplace noise [15]. The Laplace mechanism AL masks the actual
private data x by adding noise L distributed according to a Laplace distribution,
and then it returns the randomized response AL(x) “ x ` L.

A.2 Averaging Attacks Against Obfuscation Protocols:
Formalization of the Special Case

Recall that the outputs of RVP are two values x1, x2 that are multiplicatively
blinded with r1 and additively blinded with r2, i.e.,

x1 · r1 ` r2

x2 · r1 ` r2

They are used for computing the target function

ρ “ x1 · r1 ` r2
x2 · r1 ` r2

where 0 < r2 ! r1 ensures
ρ ≈ x1

x2
.
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Given that both the dividend and the divisor are additively blinded with the
same r2, an adversary can subtract one from the other in order for r2 to cancel
out, as follows.

(x1 · r1 ` r2) ´ (x2 · r1 ` r2)
“ x1 · r1 ` r2 ´ x2 · r1 ´ r2

“ x1 · r1 ´ x2 · r1

“ r1(x1 ´ x2)

This causes a reduction to multiplicative blinding and renders the quotient sub-
ject to factorization in order to obtain

δ “ x1 ´ x2.

Consequently, δ “ x1 ´ x2 and ρ ≈ x1
x2

together yield x1 and x2 as follows.

x1 ≈ ρ · x2

δ ≈ ρ · x2 ´ x2

δ ≈ x2 · (ρ ´ 1)

x2 ≈ δ

ρ ´ 1

Given that r1 is exponentially larger than r2, the computed values are close
approximations with negligible deviation.

A.3 Averaging Attacks Against Obfuscation Protocols: Omitted
Statement

The precise concentration bounds are given below. The proof can be found in [35].

Theorem 3. Let X1, . . . , Xκ be a sequence of independent random variables
with, for k P [κ], expected value E [Xk] equal to μk. Further, let X be the random
variable X “ κ´1 · ∑κ

k“1(Xk ´ μk).

1. If for every k P [κ] the random variable Xk is sub-Gaussian with parameter
σk, then

P [|X| ě t] ď 2 · exp
(

´ t2 · κ2

2 · ∑κ
k“1 σ2

k

)

.

2. If for every k P [κ] the random variable Xk is sub-exponential with parameters
(νk, bk), then with

ν∗ “
√
√
√
√

κ∑

k“1

ν2
k

κ
and b∗ “ max

kP[κ]
bk

it holds

P [|X| ě t] ď
⎧
⎨

⎩

2 · exp
(

´ t2·κ
2·ν2∗

)
, if 0 ď t ď ν2

∗
b∗

;

2 · exp
(

´ t·κ
2·b∗

)
, for t ě ν2

∗
b∗

.
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