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Abstract

We consider competitive facility location as a two-
stage multi-agent system with two types of clients.
For a given host graph with weighted clients on the
vertices, first facility agents strategically select ver-
tices for opening their facilities. Then, the clients
strategically select which of the opened facilities
in their neighborhood to patronize. Facilities want
to attract as much client weight as possible, clients
want to minimize congestion on the chosen facility.

All recently studied versions of this model assume
that clients can split their weight strategically. We
consider clients with unsplittable weights but al-
low mixed strategies. So clients may randomize
over which facility to patronize. Besides modeling
a natural client behavior, this subtle change yields
drastic changes, e.g., for a given facility placement,
qualitatively different client equilibria are possible.

As our main result, we show that pure subgame per-
fect equilibria always exist if all client weights are
identical. For this, we use a novel potential func-
tion argument, employing a hierarchical classifi-
cation of the clients and sophisticated rounding in
each step. In contrast, for non-identical clients, we
show that deciding the existence of even approxi-
mately stable states is computationally intractable.
On the positive side, we give a tight bound of 2 on
the price of anarchy which implies high social wel-
fare of equilibria, if they exist.

1 Introduction

In classical facility location (Cornuéjols, Nemhauser, and
Wolsey 1983; Korte and Vygen 2006), a central authority
places facilities in some underlying space to serve a set of
clients optimally. While this might be realistic for applica-
tions like the construction of public hospitals, in many other
domains facilities are placed by selfish agents competing for
clients’ attention. For example, supermarkets, pubs, or fast
food restaurants aim to maximize profits by trying to attract
nearby clients.

Beginning with the seminal model by Hotelling (1929) and
Downs (1957) in which facilities compete for clients on a line

and clients always patronize their closest facility, many vari-
ants of competitive facility location models have been inves-
tigated, see (Eiselt, Laporte, and Thisse 1993; ReVelle and
Eiselt 2005; Brenner 2011) for an overview. However, a no-
table feature of most competitive facility location models is
that clients do not influence each other, i.e., their behavior
only depends on the location of the facilities but not on the
behavior of the other clients. Thus, facility agents face strate-
gic decisions but the clients do not.

In contrast to these one-sided variants, recently two-
sided versions featuring a client subgame have been intro-
duced (Krogmann, Lenzner, Molitor, et al. 2021; Krogmann,
Lenzner, and Skopalik 2023), making it a sequential two-
stage game. In the first stage, the facility agents simultane-
ously select a location for their facilities, while in the second
stage, the clients simultaneously select which facilities to pa-
tronize. In these models, the clients do interact with each
other, because the client weight at a facility influences the
waiting time which is the cost that the clients aim to min-
imize. In the previously studied models, clients are non-
atomic, so they may distribute their weight among multiple
facilities. The induced client subgame is a non-atomic con-
gestion game with an essentially unique client Nash equilib-
rium for any given facility placement. This yields a two-stage
facility location game where the facilities can perfectly pre-
dict the behavior of the clients. As a consequence, subgame
perfect equilibria, the suitable solution concept for sequential
games, are comparatively easy to reason about.

We take this line of work to the next level by considering
atomic clients, which cannot split their weights among mul-
tiple facilities. However, clients are allowed to play mixed
strategies, meaning that they can randomize over which facil-
ity to patronize. Given a facility placement, the induced client
subgame is then still a well-studied game, namely a singleton
congestion game (Rosenthal 1973; Fotakis et al. 2009). Ar-
guably, this setting is more realistic in many scenarios, like
supermarket shopping or restaurant visits. The reason is that
clients, conditioned on selecting one specific facility, con-
tribute with their full weight to the congestion of the chosen
facility. For example, a mixed strategy of an atomic client
could represent selecting different facilities on different days.

Besides capturing a wide range of realistic facility location
settings, a consequence of introducing atomic clients is the
existence of multiple, potentially different Nash equilibria in
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the client subgame for a given facility placement. These dif-
ferent equilibria may also yield different congestion at facili-
ties, so the client behavior is harder to predict for the facility
agents. As a consequence, the two-stage game considered in
this paper requires more involved techniques for reasoning
about subgame perfect equilibria and their existence.

We develop such techniques to analyze this arguably more
complex two-stage competitive facility location setting and
we believe that our approach will prove versatile for under-
standing other multi-stage models as well. One key technique
is a novel potential argument that exploits the two-staged na-
ture of our model and the multiplicity of equilibria in the sec-
ond stage. In particular, we use a hierarchical classification
of the clients and sophisticated rounding in each step. This
ensures that for any improving strategy change by a facility,
we can carefully select a new suitable client equilibrium to
sustain this improvement in the potential function value.

1.1 Model and Preliminaries

The Basics. We consider the two-stage facility location
game with atomic clients, atomic 2-FLG for short, where a set
of k facility agents F and a set of n client agents V interact on
a given vertex-weighted directed host graph H = (V,E,w),
with weight functionw : V → Q+ that assigns every vertex a
positive rational weight. In Section 3, we consider all clients
v to be unweighted, i.e., w(v) = 1. We let the total weight of
the vertices in X ⊆ V be w(X) :=

∑

v∈X w(v).
The vertices of H correspond to the client agents but at

the same time, they also serve as possible locations for the
facility agents. The weight of a vertex can be understood
as the purchasing power or expected revenue of the corre-
sponding client agent or location. Every facility agent f ∈ F
can choose to locate her facility at a vertex v ∈ V , however
for facility agent f , the feasible vertices may be restricted to
U(f) ⊆ V . By U : F → 2V we denote the function that
maps facility agents to feasible vertices. Thus, an instance
of the atomic 2-FLG is specified by the triple (H,U, k). If
U(f) = V for every facility agent f then we say that the
instance is unrestricted and we will omit U in this case.

The Sequential Game. The atomic 2-FLG consists of two
stages. First, each facility agent f selects a location sf ∈
U(f) ⊆ V for opening a facility on host graph H . Let
s = (s1, . . . , sk) denote the vector of chosen facility lo-
cations for some ordering of the facility agents. Note that
sf = sg is possible for different facilities f, g ∈ F . We
say that s is the facility placement profile (FPP). Moreover,
let S ∈ V k denote the set of all possible FPPs. In the sec-
ond stage, given a FPP, each client agent v ∈ V strategi-
cally decides which facility to patronize. A client agent v can
only patronize a facility f that is located in her neighborhood
N(v) = {v} ∪ {u | (v, u) ∈ E}, so if sf ∈ N(v). Let
Ns(v) = {f ∈ F | sf ∈ N(v)} denote the set of facili-
ties that client v can potentially patronize, for a given FPP s.
Conversely, we define the attraction range of a facility f to be
As(f) = {v ∈ V | f ∈ Ns(v)}. We overload this function
for a set of facilities X ⊆ F , i.e., As(X) =

⋃

f∈X As(f),

and Ns(X) =
⋃

v∈X Ns(v), for a set of clients X ⊆ V .

A main distinguishing feature of this work is that we con-
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Figure 1: Instance with four atomic clients (= vertices) with weights
3, 1, 0, 0. Depicted are the three client equilibria for one given FPP
where the two facilities (= colored bullets) each select a 0-weight
node as location. The (mixed) client strategies of the clients with
weights 3 and 1 are shown as pie charts within the client nodes, e.g.,
on the right, both clients select each facility with probability 1

2
.

sider atomic clients. That means that a client v ∈ V , when
patronizing a facility f ∈ Ns(v), uses her full purchasing
power w(v) exclusively on facility f . However, client agents
can play mixed strategies, i.e., client agents are allowed to
randomize which facilities to visit.

Feasible Client Strategies. For a given FPP s, we will de-
note by σ(s) a client profile. The strategy of a client v ∈ V
is σ(s)v , which is a probability distribution on Ns(v), the set
of facilities that client v can patronize. By σ(s)v,f ∈ [0, 1]
we denote the probability that client v patronizes facility
f ∈ Ns(v). For given s, no facility might be available for
some clients v, i.e., Ns(v) = ∅. In this case, such clients
do not patronize any facility. We therefore define a strategy
profile, for given FPP s, as a function σ(s) : V → [0, 1]k that
has to fulfill the feasibility conditions: For each client v ∈ V ,

(i) σ(s)v,f = 0, for all f /∈ Ns(v), and

(ii) if Ns(v) 6= ∅ then
∑

f∈Ns(v)
σ(s)v,f = 1.

Since we have a sequential game with two stages, the strategy
of the client agents must be specified for all possible FPPs s.
Thus, the full client profile is defined by a function σ : S ×
V → [0, 1]k. Such a full client profile σ is feasible if σ(s) is
feasible for every s ∈ S. Moreover, let Σ denote the set of
all feasible full client profiles and let Σs denote the set of all
feasible client profiles for a given FPP s.

Objectives. An outcome of the atomic 2-FLG on a given
host graph H is defined by the tuple (s, σ), where s ∈ S and
σ ∈ Σ. Any outcome entails expected facility loads, where
the expected facility load of facility f in outcome (s, σ) is

ℓf (s, σ) =
∑

v∈V
σ(s)v,f · w(v).

Thus, ℓf(s, σ) captures the expected demand that is realized
at facility f under client behavior σ. Naturally, we assume
that facility agents seek a facility placement to maximize this
expected demand. From the viewpoint of the clients, how-
ever, the expected facility loads are seen as congestion, i.e.,
as waiting time at the given facility. We assume that clients
want to minimize their expected waiting time Lv(s, σ), being

Lv(s, σ) = w(v) +
∑

f∈Ns(v)
σ(s)v,f · ℓ−v,f (s, σ),

where ℓ−v,f(s, σ) =
∑

u6=v σ(s)u,f · w(u) is the expected

load of facility f contributed by all client agents other than v.
We also call ℓ−v,f (s, σ) the v-excluded load of facility f .

Equilibria. For a given FPP s, we say that σ(s) is a client
equilibrium, if no client v ∈ V has an alternative client strat-
egy σ′(s)v such that Lv(s, (σ

′(s)v, σ(s)−v)) < Lv(s, σ(s)),



where, as usual, σ(s)−v denotes the strategies of all clients
except v. See Figure 1 for examples.

A state (s, σ) is a subgame perfect equilibrium (SPE) if

(1) σ(s′) is a client equilibrium for each FPP s
′ and

(2) for no facility f there exists a location s′f such that

ℓf ((s
′
f , s−f ), σ) > ℓf (s, σ).

For an α-approximate SPE, we replace (2) with the following
relaxation: For no facility f there exists a location s′f such

that ℓf ((s
′
f , s−f ), σ) > α · ℓf (s, σ), for some α ≥ 1.

Social Welfare. We measure the social welfare of a facil-
ity placement profile s using the weighted participation rate
w(s) =

∑

v:Ns(v) 6=∅
w(v), which is the total client weight

covered by at least one facility. With this, we define the price
of anarchy (PoA) (Koutsoupias and Papadimitriou 1999) as

PoA = max
H,U,k

w(OPT(H,U, k))

w(worstSPE(H,U, k))
,

where OPT(H,U, k) is the FPP with the highest weighted
participation rate and worstSPE(H,U, k) the FPP s for the
SPE (s, σ) with the lowest weighted participation rate. We
also define the price of stability (PoS) (Anshelevich et al.
2004) as

PoS = max
H,U,k

w(OPT(H,U, k))

w(bestSPE(H,U, k))
,

where bestSPE(H,U, k) is the FPP s for the SPE (s, σ) with
the highest weighted participation rate. Observe that the PoA
and the PoS are only well-defined if a SPE exists with a
weighted participation rate greater than 0.

1.2 Related Work

For one-sided competitive facility location, the Hotelling-
Downs model was also analyzed on graphs (Pálvölgyi 2011;
Fournier 2019; Fournier and Scarsini 2019), where the clients
reside on the edges. A discrete version of this is the Voronoi
game (Ahn et al. 2004; Dürr and Nguyen 2007), with facil-
ities and clients placed on the nodes of an underlying net-
work. Also, graph-based models with limited attraction range
of facilities have been studied (Feldman, Fiat, and Obraztsova
2016; Shen and Wang 2017; Cohen and Peleg 2019), where
clients patronize facilities only within a certain distance and
split their weight equally among them. Other non-cooperative
variants have been investigated, e.g., (Vetta 2002; Cardinal
and Hoefer 2010; Sabán and Moses 2012).

To the best of our knowledge, the first model where
the clients also face strategic decisions was proposed by
Kohlberg (1983). In this model, the clients’ cost function is
a linear combination of distance and waiting time. Kohlberg
shows the existence of a SPE for two facilities. Later, Peters,
Schröder, and Vermeulen (2018) extended this to four and six
facilities, if the cost function is heavily tilted towards waiting
time, and Feldotto et al. (2019) investigate approximate SPE.

Closest to our work are the models by Krogmann, Lenzner,
Molitor, et al. (2021) and Krogmann, Lenzner, and Skopa-
lik (2023). They consider non-atomic clients that split their
weights among nearby facilities to either minimize (1) their
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Figure 2: Instance with unit weight clients (= vertices) and FPP s

for three facilities (= colored bullets). Left: client equilibrium with
non-atomic clients. The facilities receive equal load, e.g., red facility
f receives the full demand of u, and 2

3
of the demand of v. This is

also a mixed client profile for atomic clients, but not an equilibrium
as client v can improve by increasing her probability of patroniz-
ing f . Right: A possible client equilibrium for atomic clients.

maximum waiting time or (2) their total waiting time. While
for (1) SPE exist, for (2) deciding SPE existence is NP-hard
but approximate SPE can be computed efficiently. In con-
trast to both variants, we consider clients who cannot split
their weight among multiple facilities. However, clients may
use randomized strategies. This subtle difference is impor-
tant since it yields different equilibria, i.e., randomizing over
atomic strategies is not the same as non-atomic weight split-
ting, see Figure 2. Moreover, we also allow agent-dependent
restrictions for the placement of facilities, which makes our
model more general.

However, also clients with different types that aim for a
certain type-distribution at their selected facility have been
considered (Gadea Harder et al. 2023) and this is closely re-
lated to Hedonic Diversity Games (Bredereck, Elkind, and
Igarashi 2019).

Besides the analysis of competitive facility location, many
recent works (Kanellopoulos, Voudouris, and Zhang 2022;
Walsh 2022; Deligkas, Filos-Ratsikas, and Voudouris 2022;
Ma et al. 2023) consider a mechanism design point of view.
There, clients submit their locations to a mechanism that se-
lects positions for opening facilities. See (Chan et al. 2021)
for an overview.

1.3 Our Contribution

To the best of our knowledge, the two-stage facility location
game with atomic, i.e., unsplittable clients has not been con-
sidered before. It is more complex than the earlier considered
two-stage facility location games with splittable clients, as
client equilibria are no longer unique, and may even be qual-
itatively different with respect to their facility loads. We first
prove the existence of subgame perfect equilibria for clients
with unit weights, by using a modified best response dynamic.
For clients with arbitrary weights, we show that the existence
of subgame perfect equilibria is not guaranteed, and that it is
even NP-complete to decide if a φ-approximate subgame per-
fect equilibrium exists, for the golden ratio φ ≈ 1.618. Using
the utilitarian social welfare of the facilities, which equals the
weighted participation rate, we also prove a tight bound of 2
on the price of anarchy, given that an equilibrium exists.

2 Client Equilibria

Given a FPP s, the client subgame is an example of the
well-studied (weighted) singleton congestion game. The un-
weighted version has the finite improvement property and



thus an improving response dynamic always converges to a
pure Nash equilibrium (Rosenthal 1973). For the weighted
version, Fotakis et al. (2009) show that pure Nash equilibria
always exist and can be computed efficiently.

We first observe that in a (mixed) client equilibrium a client
v only patronizes certain facilities in her shopping range.

Observation 1 (Client Patronage Set). A client profile σ(s) ∈
Σs is a client equilibrium for a given FPP s if and only if
for each v ∈ V , the set of her patronized facilities {f ∈
F | σ(s)v,f > 0} contains only facilities with minimal v-
excluded load within her shopping range Ns(v).

Thus, we may check in polynomial time if a client profile
is a client equilibrium. Client equilibria are however not nec-
essarily unique and might induce different facility loads.

Observation 2 (Qualitatively Different Client Equilibria).
For a given facility placement profile, the number of client
equilibria is not necessarily bounded and different client
equilibria may induce different facility loads.

Proof. Consider an unweighted instance with a single node v
and k = 2 facility agents placed on v. For every γ ∈ [0, 1],
the client profile σ(s) with σ(s)v = (γ, 1 − γ) is a client
equilibrium. Furthermore, the expected facility loads γ and
1− γ differ for every value of γ.

3 Subgame Perfect Equilibria

We now prove the existence of SPE for the unweighted atomic
2-FLG via slightly modified improving response dynamics
for the facility agents. We use the sorted vector of facility
loads as a potential function, but after each facility move, we
also select a new full client equilibrium. This is necessary be-
cause there exist improving facility moves that decrease the
value of the potential function. We prevent these moves by
changing to a full client equilibrium that consistently favors
the facilities that already receive more load. We show that
this change does not affect the value of the potential function.

3.1 Rounded Client Profiles

To determine suitable candidates for strategy profiles that
yield SPE, we first partition the set of clients and the set of
facilities into classes. To that end, we implicitly employ a
process that repeatedly removes those facilities that have the
least (average) number of clients in their range. To achieve
this, we define the minimum neighborhood set1 as the set of
facilities that has the smallest average number of clients in its
attraction range for a given subset of clients and facilities.

Definition 1 (Minimum Neighborhood Set (MNS)). For a
facility placement profile s, a subset F ∗ ⊆ F and another
subset V ∗ ⊆ V , we denote the minimum neighborhood set
MNSs(F

∗, V ∗) as the largest subset of F ∗ with

MNSs(F
∗, V ∗) ∈ arg min

T⊆F∗

w(As(T ) ∩ V ∗)

|T |
.

1We note the difference to the definition of Krogmann, Lenzner,
Molitor, et al. (2021), as we ensure uniqueness of the MNS. Further-
more, the explicit definition of Fi and Vi allows for easier recursion.

ℓ(C1) = 2.5 ℓ(C2) = 4

Figure 3: In this unweighted instance, the class set contains the
shown two classes for the given facility placement profile.

We now repeatedly remove a MNS and its associated set of
clients from the game and assign both sets to a class.

Definition 2 (Class Set). For i ≥ 1, the class Ci = (Fi, Vi)
is inductively defined by

Fi = MNSs

(

F \

i−1
⋃

j=1

Fj , V \

i−1
⋃

j=1

Vj

)

and Vi = As(Fi) \

i−1
⋃

j=1

Vj .

For class Ci, denote its average load ℓ(Ci) := w(Vi)
|Fi|

. For

a FPP s, we call C := {C1, C2, . . .} the class set of s. For
a client v, let C(v) be the class of v, i.e., C(v) = Ci with
v ∈ Ci. Similarly, C(f) is the class containing facility f .

An example is shown in Figure 3. We note that due to min-
imum neighborhood sets being of maximal cardinality, the
loads of classes are pairwise different and increasing.

Corollary 1 (Uniqueness of Class Set). For an instance of
the 2-FLG and the FPP s, the class set is unique. Moreover,
we have ℓ(Ci) < ℓ(Ci+1) for all i ≥ 1.

Since a client is added to a class the first time one of the
facilities in her shopping range is added to a class, she is in
the lowest class in her neighborhood.

Corollary 2 (Clients in Lowest Class of Neighborhood).
Each client v is in class C(v) = Cj with j = min{i |
Ci ∩Ns(v) 6= ∅}.

Krogmann, Lenzner, Molitor, et al. (2021) give an algo-
rithm to compute a MNS2 which we use repeatedly to com-
pute the class set.

Corollary 3 (Class Set Computation). For a FPP s, the class
set and the average loads may be computed efficiently.

We now introduce rounded client profiles which we ob-
tain by assigning the clients to facilities within each class Ci.
Note, that the definition only allows pure client strategies.

Definition 3 (Rounded Client Profile). For a FPP s, a client
profile σ(s) is called rounded if for all f ∈ F it holds that

ℓf (s, σ) ∈ {⌊ℓ(Ci)⌋ , ⌈ℓ(Ci)⌉}

and that each client is assigned to exactly one facility in her
class. That is, for each v ∈ Vi there is exactly one g ∈ Fi

with σ(s)v,g = 1. We call a full client profile σ rounded if
σ(s) is rounded for each s ∈ S.

We observe that every rounded client profile is stable.

Lemma 1. A rounded client profile is a client equilibrium.

Proof. Assume for the sake of contradiction that σ(s) is not
a client equilibrium. Hence, there exists some client v that is

2We show in the appendix, why their algorithm is applicable de-
spite the different definitions.
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V all
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Figure 4: Right: An intermediate state of the algorithm to compute a
rounded client equilibrium in Theorem 1 for the instance on the left.
The dashed edges denote current client assignments to facilities. The
red paths mark two (out of many) augmenting paths for Step 2.

assigned to facility f , and there is another facility g ∈ Ns(v)
with ℓg(s, σ) + 1 < ℓf(s, σ). Let Ci be the class of v and f .
Since ℓg(s, σ) + 1 < ℓf(s, σ), facility g has to be in a class
Cj with j < i and ℓ(Cj) < ℓ(Ci). However, by definition
of the class sets, v should have been assigned to class Cj and
not Ci, which yields the contradiction.

We now establish the existence of a rounding scheme that
yields rounded client profiles, thereby proving their existence.
In particular, this implies that pure client equilibria exist.

Theorem 1 (Existence of Rounded Profiles). For every un-
weighted instance of the atomic 2-FLG and facility placement
profile s, there exists a rounded client profile σ(s).

Proof. We compute a rounded client profile by appropriately
assigning the clients to facilities for each class separately:

For each class Ci, we define the directed, bipartite residual
graph Ri based on a current (pure) client profile σ(s). Let
Ri = (Vi ∪ Fi, Ei) with (f, v) ∈ Ei if σ(s)v,f = 0 and v ∈
As(f), and the reverse edge in (v, f) ∈ Ei if σ(s)v,f = 1.
We start with all clients unassigned and repeat the following
steps until all clients of Ci are assigned:

1. Let F ∗ ⊆ Fi be the facilities of Ci with lowest current
load.

2. In the residual graph Ri, find a simple path from set F ∗

to the set of unassigned clients in Vi, i.e., the result is a
path between some facility of current minimal load and
some unassigned client.

3. Use the path to augment the client assignment, i.e, if
there is an edge (f, v) in the path, then assign v to f and
if there is an edge (v, f), then unassign v from f .

Figure 4 shows an intermediate state of an example run of
this procedure. Step 3 keeps the facility loads constant for all
facilities except for the first one in the path. By the choice of
F ∗, we maintain the invariant that the maximum difference of
facility loads is 1. Hence in the end the loads must be ⌊ℓ(Ci)⌋
or ⌈ℓ(Ci)⌉ and the result is a rounded client equilibrium.

It remains to show that the path in Step 2 always exists
in each iteration. Assume towards contradiction that there
is no such path, but an unassigned client. Let F all be the
set of all facilities reachable from the set F ∗ (with F ∗ ⊆
F all) and let V all be the set of clients currently assigned to any
facility in F all. We have V all = As(F

all) ∩ Vi as there is no
unassigned client reachable from F ∗ and any assigned client
in As(F

all)∩Vi has an edge to her assigned facility, meaning

Figure 5: The following rounded full client equilibrium produces the
given best response cycle for the facilities in this instance: Clients
prefer locations in clockwise order so that the facility in the preferred
location receives load 2 and the other facility load 1.

that her facility is also in F all. Now Fi \ F
all 6= ∅, because

the unassigned client is in the attraction range of some facility
in Fi. Since all facilities in Fi \ F

all have a load higher than
the average of F all, we get

w(As(F
all) ∩ V \

⋃i−1
j=1 Vj)

|F all|
<

w(As(Fi) ∩ V \
⋃i−1

j=1 Vj)

|Fi|

which contradictsFi being a minimum neighborhood set.

We later use the lexicographic increasingly sorted vector of
facility loads ℓsort as a potential function. By construction of
the class set and by definition of rounded client profiles, we
immediately get the following.

Observation 3 (Identical Load Vector for Rounded Profiles).
For an instance of the unweighted atomic 2-FLG and a facil-
ity placement profile s, let σ(s) and σ′(s) denote two rounded
client profiles for s. Then, ℓsort(s, σ) = ℓsort(s, σ

′).

This enables switching between distinct rounded client
equilibria without changing the value of the potential func-
tion ℓsort.

3.2 Favoring Client Equilibria

We later seek to find a SPE by means of a sequence of im-
proving facility moves. However, it turns out, that it is not
sufficient to do so with an arbitrary (rounded) full client equi-
librium. Due to differences in the rounding in σ for differ-
ent FPPs s, there might exist an improvement sequence that
cycles through a sequence of FPPs s1, s2, . . . , sm, s1, while
ℓsort(si, σ) = ℓsort(sj , σ) for all i, j. See Figure 5.

To circumvent cycling, we need to ensure that rounding
is consistent between FPPs. We solve that by making sure
that the clients favor facilities based on a specifically chosen
ordering of the facilities. Therefore, for a given permutation π
of the set of facilities, let us first define a π-favoring rounded
equilibrium as follows.

Definition 4 (π-favoring). For a fixed permutation π of the
set of facilities, let ℓπ :=

(

ℓπ(1)(s, σ), . . . , ℓπ(k)(s, σ)
)

. A

rounded client equilibrium σ(s) is π-favoring if it maximizes
the vector ℓπ lexicographically among all rounded client pro-
files for s. Similarly, a full client equilibrium σ is π-favoring
if σ(s′) is a π-favoring client equilibrium for every s′ ∈ S.

As our key technical ingredient, we next show that any im-
proving facility move from (s, σ) increases the vector ℓsort
lexicographically if σ is π-favoring for a specific permutation
π. In particular, for this π the entries of ℓπ are non-increasing.

Lemma 2 (Lexicographical Potential Increase). Let s be a fa-
cility placement profile. Every improving facility move away



from (s, σ) strictly increases ℓsort lexicographically if σ is π-
favoring for a permutation π with the following property: For
all f, g ∈ F , if ℓf(s, σ) > ℓg(s, σ), then π−1(f) < π−1(g).

Proof. Assume for the sake of contradiction that some facil-
ity f can improve, changing the state from s to s

′ but without
increasing ℓsort lexicographically. Let C = {C1, C2, . . .} and
C′ = {C′

1, C
′
2, . . .} be the class sets for s and s

′, respectively.

Since the load of f increased but ℓsort did not increase lex-
icographically, there exists a facility d ∈ F with

ℓd(s
′, σ) < ℓd(s, σ) and ℓd(s

′, σ) ≤ ℓf (s, σ). (1)

As σ is a rounded full client profile, by Definition 3, we have

⌊ℓ(C′(d))⌋ ≤ ℓd(s
′, σ) ≤ ℓd(s, σ)− 1 ≤ ⌊ℓ(C(d)⌋. (2)

For our analysis, we construct the following reassignment
graph G that captures the difference in client assignment
between σ(s) and σ(s′). This is a directed, multigraph
G = (F,E) where we add an edge (f1, f2) for every v
with σ(s)v,f1 = 1 and σ(s′)v,f2 = 1. As the load of d has
decreased, the out-degree of d is strictly larger than her in-
degree in G. Therefore, there exists a directed path p from d
to a facility g which has an in-degree that is strictly larger than
her out-degree. Comparing the assignments of the clients that
determine the edges of p between σ(s) and σ(s′), we observe
that the difference only affects the loads of d and g. Hence
for this facility g, we have

ℓg(s, σ) < ℓg(s
′, σ). (3)

Again, by Definition 3, we have

⌊ℓ(C(g))⌋ ≤ ℓg(s, σ) ≤ ℓg(s
′, σ)− 1 ≤ ⌊ℓ(C′(g))⌋. (4)

For any two consecutive facilities a, b on the path p, there is
a client v that is assigned to a in s and b in s

′. By Corollary 2
we conclude that ℓa(s, σ) ≤ ℓb(s, σ) and ℓa(s

′, σ) ≥
ℓb(s

′, σ). This implies for the average load of the respective
classes ℓ(C(a)) ≤ ℓ(C(b)) and ℓ(C′(a)) ≥ ℓ(C′(b)) which
yields

ℓ(C(d)) ≤ ℓ(C(g)) and ℓ(C′(d)) ≥ ℓ(C′(g)). (5)

We now distinguish two cases.

Case 1: g 6= f . Combining (4) with (2) and (5) results in

⌊ℓ(C′(d))⌋ ≤ ⌊ℓ(C(d))⌋ ≤ ⌊ℓ(C(g))⌋

≤ ⌊ℓ(C′(g))⌋ ≤ ⌊ℓ(C′(d))⌋.
(6)

And, hence, the above holds with equality. By (1), (3), and
Definition 3, we get that

ℓg(s, σ) + 1 = ℓd(s
′, σ) + 1 = ℓg(s

′, σ) = ℓd(s, σ). (7)

By (6) and (7), we have that both assignments of the clients
that determine the path p yield a feasible rounded client
equilibrium for both s and s

′. As d is preferred in σ(s), we
must have π−1(d) > π−1(g), however, from σ(s′), we get
that π−1(g) > π−1(d), which yields the contradiction.

Algorithm 1: findFavoringEquilibrium(H , s, π)

1 G← (F ∪ V ∪ {s, t}, EN ∪ Es ∪ Et ∪ Eadd);
2 Es ← {(s, v, 1, 0) | v ∈ V };
3 EN ← {(v, f, 1, 0) | C(v) = C(f) ∧ f ∈ Ns(v)};

4 Et ← {(f, t, ⌊ℓ(C(f))⌋, 2k) | f ∈ F};

5 Eadd ← {(f, t, 1, 2
k−π−1(f)) | f ∈ F};

6 compute integral s-t-MAXCOSTFLOW on G;
7 for v ∈ V do
8 assign v to facility f with nonzero flow on (v, f);

Case 2: g = f . Using (5), Definition 3, and (1) we have

⌊ℓ(C′(f))⌋ ≤ ⌊ℓ(C′(d))⌋ ≤ ℓd(s
′, σ) ≤ ℓf (s, σ). (8)

By f improving from s to s
′ and Definition 3:

ℓf(s, σ) < ℓf (s
′, σ) ≤ ⌊ℓ(C′(f))⌋+ 1, (9)

which implies equality for

⌊ℓ(C′(f))⌋ = ⌊ℓ(C′(d))⌋ = ℓd(s
′, σ)

= ℓf(s, σ) = ℓf(s
′, σ) − 1.

(10)

Together with (1) we get ℓd(s, σ) > ℓf (s, σ) which im-

plies π−1(d) < π−1(f) by the additional property of the
lemma. This, however, contradicts σ(s′) being π-favoring.
In σ(s′), assigning the clients that determine path p as in
σ(s) lexicographically increases ℓπ since the load of d in-
creases by 1 while the load of f decreases by 1.

Observe that this still yields a feasible rounded client pro-
file as the loads of all facilities except d and f did not
change and we have that ℓf(s

′, σ) = ⌊ℓ(C′(f))⌋ + 1 and
since ℓ(C′(d)) ≥ ℓ(C′(f)) and ⌊ℓ(C′(d))⌋ = ℓd(s

′, σ)
also ℓd(s

′, σ) + 1 = ⌈ℓ(C′(d))⌉.

In both cases we reached a contradiction, hence such a facility
d cannot exist. The lemma follows.

The existence of π-favoring client equilibria and π-
favoring full client equilibria follows directly from
Theorem 1 and Definition 4. Moreover, we show that
a π-favoring full client equilibrium can be computed in
polynomial time. Algorithm 1 computes π-favoring client
equilibria by employing a reduction to integral MAXCOST-
FLOW, where for each client a demand of 1 flows to the
facilities of her class in her shopping range and then to a sink
node t.

Figure 6 shows an example of the construction. Each fa-
cility f has one edge with capacity ⌊ℓ(C(f))⌋ and cost 2k to

t and a second edge to t with capacity 1 and cost 2k−π−1(f).
This ensures that each facility receives an allowed value of
load for a rounded client equilibrium, while the cost of the
edges with capacity 1 prefers facilities appearing earlier in π.

Theorem 2 (π-favoring Equilibria Complexity). For any FPP
s and any π, a π-favoring client equilibrium σ can be com-
puted in polynomial time.

Proof. First, we show that the result σ(s) of the algorithm is
a rounded client profile.



v1 f1

v2 f2

v3

s t

v1

v2

v3

f1

f2

1, 0

1, 0

1, 0

⌊ℓ(C(f1))⌋, 2
k

1, 2k−π−1(f1)

⌊ℓ(C(f2))⌋, 2
k

1, 2k−π−1(f2)

1, 0

1, 0

1, 0

1, 0

Figure 6: Algorithm 1 creates the graph G on the right from the
host graph and facility placement profile on the left. The edges are
labeled with capacity, cost and k is the number of facility agents.

Note that since we compute an integral flow, each client is
assigned to only one facility. By the setup of Es, a client only
puts weight on facilities that are both in her class and in her
shopping range. Observe that the maximum cost contributed
by edges in Eadd is 2k − 1 smaller than sending a single unit
of flow through an edge in Et. There cannot be a facility
that receives a load of less than ⌊ℓ(C(f))⌋, because then the
total flow cost is lower than

∑

f∈F ⌊ℓ(C(f))⌋2k. Convert-

ing an arbitrary rounded client profile (which is guaranteed
to exist by Theorem 1) to a flow achieves a cost of at least
∑

f∈F ⌊ℓ(C(f))⌋2k. If ℓ(C(f)) is an integer, then no clients

are leftover to provide flow through edges in Eadd and other-
wise, these edges limit the load of a facility to ⌈ℓ(C(f))⌉.

Assume towards contradiction that there is a rounded client
profile σ′(s) for which ℓπ(σ) >lex ℓπ(σ). Let i be the first
spot in which these vectors differ with the facility f = π(i)
receiving load ⌊ℓ(C(f))⌋ in σ(s) and ⌈ℓ(C(f))⌉ in σ′(s).
The corresponding flows have the same cost for edges in Et

and edges (g, t) in Eadd with π−1(g) < i. For σ′(s) the edge
(f, t) provides a cost of 2k−i higher than the maximum pos-
sible total cost 2k−i − 1 of all remaining edges Eadd with
π−1(g) > i, so the flow corresponding to σ(s) was not a
maximum cost flow.

The algorithm needs the class set for the construction of
the graph G, which can be computed in polynomial time by
Corollary 3. A MAXCOSTFLOW can be computed using the
algorithm by Gabow and Tarjan (1989).

3.3 Constructing a Subgame Perfect Equilibrium

We now prove the existence of SPEs by providing an algo-
rithm that computes one. We start with an arbitrary FPP s

and full client profile σ. If (s, σ) is not a SPE, i.e., there is a
facility that can improve resulting in a profile (s′, σ), we de-
termine a possibly different full client profile σ′ that satisfies
the conditions of Lemma 2 for a possibly different π′. We re-
peat this process until we find a SPE. This process terminates
as by Lemma 2 in each step the value of ℓsort increases.

Theorem 3 (Existence of SPE). Every instance of the un-
weighted atomic 2-FLG admits a subgame perfect equilib-
rium with a pure full client equilibrium.

Proof. We show that Algorithm 2 computes a SPE. By
Theorem 1, an initial rounded profile σ exists. A π-favoring
full client equilibrium exists by Theorem 1 and Definition 4.
It remains to show that this algorithm terminates. To that end,
we show that in each iteration except the first, the vector of
sorted facility loads increases lexicographically.

Algorithm 2: findSPE(H, U, k)

1 s← arbitrary facility placement profile;
2 σ ← arbitrary rounded full client profile;
3 while (s, σ) is not a SPE do
4 s← execute arbitrary improving facility move;
5 π ← facilities sorted by decreasing loads in σ(s);
6 σ ← a π-favoring full client equilibrium;
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Figure 7: For two facility agents, an instance without SPE (left) and
an instance without (φ− ǫ)-approximate SPE (right).

The conditions of Lemma 2 are satisfied by the permu-
tation π in Line 5, so for every improving facility move in
Line 4 with the facility placement profiles s and s

′ before and
after the move, the value of ℓsort lexicographically increases:

ℓsort(s
′, σ) >lex ℓsort(s, σ).

By Observation 3, ℓsort does not change when switching to a
different rounded full client equilibrium in Line 6 while keep-
ing the FFP s fixed. Since the number of possible facility
placement profiles is finite, the algorithm terminates.

Regarding the complexity of computing a SPE, we note
that a full client equilibrium requires exponential space be-
cause there are exponentially many FPPs for which clients
need to specify a client profile. However, for certifying the
existence of a SPE and for Algorithm 2, it is sufficient to
specify the client equilibria for the chosen state s and all
states s′ with only a single facility deviation. With that caveat,
each iteration of Algorithm 2 can be performed in polynomial
time. However, the number of iterations needed is an open
problem.

4 SPE in the Weighted Game

We now turn to instances with weighted clients. Here, SPE
do not exist in all instances and it is even NP-complete to
decide whether an approximate SPE exists that has a ratio
smaller than the golden ratio φ. In Figure 7, we show a simple
instance with no SPE and another one that does not admit a
(φ − ǫ)-approximate SPE. In the appendix, we give detailed
proof of the non-existence.

Theorem 4 (Nonexistence of Weighted SPE). Weighted in-
stances of the atomic 2-FLG might not admit SPE.

Theorem 5 (Approximate Weighted SPE Lower Bound).
Weighted instances of the atomic 2-FLG might not admit
(φ− ǫ)-approximate SPE for any ǫ > 0.

It is open if this bound is tight. Note that a k-approximate
SPE always exists: Place each facility on the single vertex
with the highest total client weight in her attraction range,
and let the clients use equal probabilities for each facility.



Observation 4 (Approximate SPE Upper Bound). Each in-
stance of the 2-FLG admits a k-approximate SPE.

We can even show that deciding whether a (φ − ǫ)-
approximate SPE exists is NP-complete via a reduction from
SAT. Membership in NP is given by the fact that a FPP and
client equilibria for only the polynomially many neighboring
FPPs are sufficient to verify the existence of a SPE.

Theorem 6 (Complexity of Approximate Weighted SPE).
Let α ∈ [1, φ) denote some multiplicative approximation ra-
tio. It is NP-complete to decide whether a weighted instance
of the atomic 2-FLG admits an α-approximate SPE.

Proof. Let α ∈ (1, φ) denote some approximation ratio. We
reduce from SAT. Let an instance of SAT consisting of a
set of t clauses C and a set of m binary variables x =
{x1, . . . , xm}, where we assume t ≥ 4 for simplicity. We
construct an instance (G1 ∪ G2 ∪ G3, U, k) of 2-FLG which
depends on the instance of SAT. We create G1 = (V1, E1)
with V1 = V yes ∪ V no ∪ C ∪ B with |B| = (m − 1)t,
V yes = {y1, . . . , ym} and V no = {n1, . . . , nm}. We set all
weights for v ∈ V1 to w(v) = m

m(t+2)−1 . E1 contains the

following edges:

(ni, yi), (yi, ni) for i = 1, . . . ,m,

(b, y) for each b, y ∈ B × V yes,

(b, n) for each b, n ∈ B × V no,

(c, yi) for each literal xi ∈ c, c ∈ x and

(c, ni) for each literal ¬xi ∈ c, c ∈ x.

For G2 we use the graph on the right in Figure 7, which does
not admit any (φ−ǫ)-approximate SPE for two facility agents
(Theorem 5) and choose a sufficiently small ǫ. For G3 we use
the graph in Figure 8.

v7α v8
2

φ·α

Figure 8: Component G3 of the weighted instance reduced from
SAT in Theorem 6.

We use the set of facilities F = Q ∪ {g, h} with the set Q
consisting of m facilities and with the following restrictions:

∀q ∈ Q : U(q) = V1 ∪ {v7},

U(g) = {v1, v2, v3, v4, v5, v6} and

U(h) = {v1, v2, v3, v4, v5, v6, v8}.

We now show that this instance admits an α-approximate SPE
if and only if there is a satisfying assignment to the variables
of x. Assume that there exists a satisfying assignment to the
variables of x and let z denote one such assignment. Then we
set the facility placement profile s such that sg = v1, sh = v8
and for each zi ∈ z we assign a facility q ∈ Q to

sq =

{

yi if zi is true,

ni if zi is false.

We construct a pure client profile σ(s) such that all facilities
in Q receive equal load. This is possible because the number

of clients in V1 is completely covered by facilities in Q, is
divisible by |Q| = m and we chose the size of B which is
accessible for all facilities placed in V1 sufficiently large to
equalize skewed distributions of the clients in C. We also set
σ such that a facility q ∈ Q which individually deviates to a
vertex in V1 receives the same utility as in (s, σ), which we
can control through the assignment of the clients in B again.

To prove that (s, σ) is an α-approximate SPE, it suffices to
show that none of the facility agents can improve by a factor
α by moving away from s in the facility game induced by
σ. First note that g and h cannot improve, since the maximal
available utility of every vertex they can move to is smaller
than their current load. Next, note that the sum of the loads
of facilities the facilities in Q is m(t + 2) · m

m(t+2)−1 > m

and, thus, the loads on facilities in Q are strictly larger than 1.
This means that a facility agent q ∈ Q moving to v7 improves
by a factor smaller than α. Thus, no facility can improve
by a factor of at least α, so we conclude that (s, σ) is an α-
approximate SPE.

Now assume that there exists no satisfying assignment for
the instance of SAT, and assume by contradiction that an α-
approximate SPE (s, σ) exits. Theorem 5 shows that no α-
approximate facility equilibrium exists with exactly two fa-
cilities located on the vertices of G2. Since g and h are the
only facilities able to pick any vertex on G2 as their location,
and g can only pick these vertices, h must be on sh = v8.

Next, note that sg 6= v5, as this would allow g to improve
by a factor φ > α by moving to v1. It follows that h can
attain a load of 2

φ
by moving to v5. By assumption, this move

does not increase the load on h by a factor α, i.e., ℓh(s, σ) >
2

φ·α . Thus, client v7 puts weight on fh, which implies that no

facility is located on v7. We conclude that facilities in Q are
all located on V1.

Since there is no satisfying assignment for the instance of
SAT, a set of m facilities cannot cover all clients in V1 for any
possible client profile. The sum of the loads on facilities in Q
is therefore at most (m(t + 2) − 1) · m

m(t+2)−1 = m. Thus,

there is some facility agent q ∈ Q with load at most 1, who
can improve her load by a factor α by moving to v7. Hence,
s is not an α-approximate facility equilibrium; a contradic-
tion. We conclude that the problem of deciding whether an
instance of 2-FLG admits an α-approximate SPE is NP-hard.

Even though the size of a SPE is exponential, a partial ap-
proximate SPE (s, σpartial) of polynomial size is sufficient for
verification, where σpartial contains only the client equilibria
for s and the facility placement profiles with exactly one fa-
cility deviation from s. As established in Section 2, all other
facility placement profiles also have client equilibria. Verify-
ing that (s, σpartial) is in fact a partial approximate SPE may
be done in polynomial time by testing all possible facility de-
viations and checking if Observation 1 holds.

5 Equilibrium Efficiency

Note that the weighted participation rate captures both the
social welfare of the clients and the facilities. Note that for
the clients the waiting time is not taken into account, only
whether they are served at all. We prove that the PoA is
exactly 2. This improves the upper bound of Krogmann,



Lenzner, Molitor, et al. (2021) that only holds for instances
where each facility may choose any location. In comparison
to their Theorem 6, our lower bound is tight, which relies on
the specific behavior of our atomic clients, however.

Theorem 7 (Price of Anarchy). For the weighted atomic 2-
FLG, the price of anarchy regarding the utilitarian social
welfare of the facility agents is 2 for k ≥ 2 facility agents.

Proof. We consider an instance (H,U, k) of 2-FLG with k ≥
2, and let (s, σ) denote some SPE. Let V un(s) denote the set
of uncovered clients with no facility in their shopping range
for s. We say a subset V ′ ⊆ V un(s) is an f -cluster if they can
all be covered by facility f at the same time, i.e., if there exists
a vertex v ∈ U(f) such that V ′ ⊆ N(v). Since s is a facility
equilibrium, the maximum weight of an f -cluster is ℓf (s, σ),
as otherwise, f could improve by at least the complete weight
of the f -cluster by moving to v.

For each f ∈ F , let V f denote an f -cluster of maximal
weight. Then the total weight of clients in V un(s) covered
by an alternative FPP is at most

∑

f∈F w(V f ). Any such

alternative FPP may still cover all previously covered clients,
so we bound W (OPT) as follows: W (OPT) ≤
∑

f∈F

(

ℓf(s, σ) + w(V f )
)

≤
∑

f∈F

(ℓf (s, σ) + ℓf(s, σ)) = 2W (s).

Therefore, the price of anarchy is at most 2.
Now, we show that this bound is tight even for unweighted

and unrestricted instances. To this end, let (H, k) be an unre-
stricted instance of unweighted atomic 2-FLG with k ≥ 2
We set the host graph to be H = (V core ∪ V out, A) with
V core = {c1, . . . , ck}, V

out = {o1, . . . , ok} and

A = {(ci, cj) | i, j ≤ k, i 6= j} ∪ {ci, oi | i ≤ k}.

The host graph for k = 3 is shown in Figure 9.

c1

c2

c3

o1

o2

o3

Figure 9: The host graph for the lower bound in Theorem 7 for k =
3 facility agents.

Consider facility placement profiles sopt :=
(o1, o2, . . . , ok) and s = (v1, v2, . . . , vk). Note that
sopt covers all clients, and is thus a social optimum profile,
while s covers exactly half of the clients. To prove the tight-
ness of the bound, it suffices to find a full client equilibrium
σ such that (s, σ) is a SPE.

For σ(s) we let each client put her weight on the facil-
ity on her own vertex. In a facility placement profile s

′

where any facility f deviates to any vertex c ∈ V core, we
set σ(s′) = σ(s), so that all facilities receive the same
weight from the exact same client. For a deviation to a vertex
o ∈ V out, we set σ(s′)o,f = 1 and let the client on the previ-
ous location of f put her weight on an arbitrary facility other
than f . We keep all other weights identical to σ(s) and pick
arbitrary client equilibria for all yet undefined FPPs. In both
cases f does not increase her load, so profitable deviations
from s are impossible.

Additionally, Krogmann, Lenzner, Molitor, et al. (2021)
give a lower bound on the price of stability for a very similar
model to ours. See Appendix A for how to adapt their proof
for our model.

Theorem 8 (Price of Stability). For the weighted atomic 2-
FLG, the price of stability regarding the utilitarian social
welfare of the facility agents is at least 2− 1

k
.

6 Conclusion

Even though two-stage facility location games with atomic
clients may have qualitatively distinct client equilibria, we
demonstrate that SPE exist for the case of unweighted clients,
and that this no longer holds for non-uniform clients. Our
proof of existence via modified best response dynamics in-
troduces several novel ideas that may be useful also beyond
facility location. For the weighted case, the conjecture that φ-
approximate SPE always exist remains an open problem. We
believe our work serves as a starting point for further research
into more complex competitive facility location models.
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Appendix

A Transferring Results from the 2-FLG by

Krogmann, Lenzner, Molitor, et al. (2021)

Corollary 3 (Class Set Computation). For a FPP s, the class
set and the average loads may be computed efficiently.

Proof. We show that the algorithm to compute a MNS as de-
fined by Krogmann, Lenzner, Molitor, et al. (2021) may be
used to compute an MNS for our definition as well. To com-
pute the minimum neighborhood set for an instance with the
host graph H , the set of facilities F and the facility place-
ment profile s according to our definition with the given sets
F ∗ and V ∗, we create an instance with the host graph H ′ be-
ing the subgraph of H induced by the vertices V ∗ and use
the set of facilities F ′ = F ∗. Then, we use Algorithm 2
of Krogmann, Lenzner, Molitor, et al. (2021). Even though
their definition of MNS does not demand that the MNS is the
largest possible subset of F ∗ with the given ratio, their al-
gorithm produces this property anyway. To see this, assume
towards contradiction that there is a facility f /∈ R which is
in M = MNSs(F

∗, V ∗). Then the algorithm found an aug-
menting path in Line 15 and therefore, the facilities in M can
receive a total load higher than w(As(M) ∩ V ∗), which is a
contradiction.

By Corollary 1 we get the unique class set through repeated
computation of minimum neighborhood sets.

Theorem 8 (Price of Stability). For the weighted atomic 2-
FLG, the price of stability regarding the utilitarian social
welfare of the facility agents is at least 2− 1

k
.

Proof. We reuse the construction for the graph G by Krog-
mann, Lenzner, Molitor, et al. (2021) and then add x − 1
nodes to the star around vk, such that in total the star has
k(x + 1) nodes (including the center). This ensures that all
facilities choosing vk is the only SPE. Then we get

PoS ≥
k(x+ 1) + (k − 1)x

k(x+ 1)
=

2kx+ k − x

kx+ k

with

lim
x→∞

(

2kx+ k − x

kx+ k

)

=
2k − 1

k
= 2−

1

k
.

B SPE Counterexamples

Theorem 4 (Nonexistence of Weighted SPE). Weighted in-
stances of the atomic 2-FLG might not admit SPE.

Proof. Let (H, 2) be an unrestricted instance of 2-FLG with
the host graph H shown on the left in Figure 7. To show
that this instance has no subgame perfect equilibrium, we first
find the set of client equilibria for each induced client game.
An exhaustive list of all client equilibria is given in Table 1.
We consider the facility game induced by some arbitrary σ ∈
Σ for which we give the payoff matrix in Table 2 in which
the diagonal entries depend on σ. For each of the six off-
diagonal strategy profiles, some agent can improve by moving
to another off-diagonal strategy profile.

Next, consider the diagonal strategy profiles:

Table 1: All client equilibria for each facility placement profile of
the instance on the left in Figure 7.

s possible client equilibria facility loads

(1, 1) ∀γ ∈ [0, 1] :
(

(γ, 1− γ), (0, 0), (0, 0)
)

(γ, 3− γ)
(1, 2)

(

(1,0), (0,1), (0,0)
)

(3, 2)

(1, 3)
(

(1,0), (0,0), (0,1)
)

(3, 1)

(2, 1)
(

(0,1), (1,0), (0,0)
)

(2, 3)

(2, 2)
(

(0,1), (1,0), (0,0)
)

, (2, 3)
(

(1,0), (0,1), (0,0)
)

, (3, 2)
(

(0.5,0.5), (0.5,0.5), (0,0)
)

(2.5, 2.5)

(2, 3)
(

(0,1), (1,0), (0,1)
)

(2, 4)

(3, 1)
(

(0,1), (0,0), (1,0)
)

(1, 3)

(3, 2)
(

(1,0), (0,1), (1,0)
)

(4, 2)

(3, 3)
(

(0,1), (0,0), (1,0)
)

, (1, 3)
(

(1,0), (0,0), (0,1)
)

, (3, 1)
(

(0.5,0.5), (0,0), (0.5,0.5)
)

(2, 2)

Table 2: The payoff matrix for the strategies of the facility game
played on the instance on the left in Figure 7.

w1 w2 w3

w1 a1,1, b1,1 3, 2 3, 1
w2 2, 3 a2,2, b2,2 2, 4
w3 1, 3 4, 2 a3,3, b3,3

• For (w1, w1) to be stable, we require a1,1 ≥ 2 and
b1,1 ≥ 2 which contradicts a1,1 + b1,1 = 3.

• For (w2, w2) to be stable, we require a2,2 ≥ 4 and
b2,2 ≥ 4 which cannot be satisfied.

• For (w3, w3) to be stable, we require: a3,3 ≥ 3 and
b2,2 ≥ 3 which cannot be satisfied.

Thus, there exists an instance that does not admit a subgame
perfect equilibrium.

Theorem 5 (Approximate Weighted SPE Lower Bound).
Weighted instances of the atomic 2-FLG might not admit
(φ− ǫ)-approximate SPE for any ǫ > 0.

Proof. Let (H, 2) be an unrestricted instance of 2-FLG with
the host graph H shown on the right in Figure 7. We first es-
tablish that the client equilibrium is unique if sf 6= sg, for
the two facilities f and g. For any such facility placement
profile, the number of clients in the attraction range of both
facilities is at most one. Thus, there is at most one client with
a choice. We define the reach ρ(v) of a vertex v to be the
sum of the weights of all clients in the attraction range of a
facility placed on v. Since the reach is distinct for every facil-
ity location, the unique client equilibrium by Observation 1 is
the client profile where the client in the intersection (if there
is one) exclusively considers the facility with smaller reach.
Table 3 gives the reach of all vertices.

Let σ denote some arbitraryfull client equilibrium. We
show that for all facility placement profiles s, one of the fa-
cility agents can improve their load by a factor strictly larger



Table 3: Reach (as defined in the proof of Theorem 5) of each vertex
in the instance on the right in Figure 7.

vertex exact reach rounded reach

v1 2 2
v2 2− ǫ 2− ǫ
v3 φ 1.618

v4
φ2

2 1.309

v5
2
φ

1.236

v6 2− 2
φ

0.764

than φ − ǫ by moving. By symmetry, it suffices to show this
for {(vi, vj) ∈ S | i ≤ j}. We first consider facility place-
ment profiles (sf , sg) with sf 6= sg:

• For s ∈ {(v1, v2), (v1, v3), (v1, v4), (v2, v3), (v2, v4),
(v3, v4)}, the load on f is at most 2 − 2

φ
= 2

φ2 . Fa-

cility f can improve by a factor of at least φ by moving
to v5, since this results in a load of ρ(v5) =

2
φ

.

• For s ∈ {(v2, v5), (v3, v5), (v4, v5)}, the load on facility
f is exactly 2

φ
. Facility f can improve by factor φ by

moving to v1, since this results in a load of ρ(v1) = 2.

• For s = (v1, v5), the load on g is ρ(v5) = 2
φ

. g can

improve by factor φ(1 − ǫ
2 ) > φ − ǫ by moving to v2,

since this results in a load of ρ(v2) = 2− ǫ.

• For s = (vi, v6), i ∈ {1, 2, 3, 4, 5}, the load on g is
2− 2

φ
. Facility g can improve by a factor of at least φ by

moving to either v1 or v5 (depending on sf ).

Next, we show that for all v ∈ V , the state ((v, v), σ) is not
a (φ − ǫ)-approximate SPE. When both facilities are located
on the same vertex v, one of the facilities has a load of at most
ρ(v)
2 . Thus, it suffices to show that for all v ∈ V , there is a

vertex u ∈ V such that the load of the moving facility f is

ℓf ((u, v), σ) > (φ − ǫ)ρ(v)2 . Table 4 lists the best response
locations u corresponding to each profile s with sf = sg.

Table 4: Best facility response for each profile with both facilities
on the same vertex in the instance on the right in Figure 7.

vertex v ρ(v)
2 best response u ℓf ((u, v), σ)

v1 1 v2 2− ǫ
v2 1− ǫ

2 v3 φ

v3
φ
2 v4

φ2

2

v4
φ2

4 v5
2
φ
= 1.89 · φ

2

4

v5
1
φ

v1 2

v6 1− 1
φ

v2 2− ǫ

This concludes the proof.
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