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Abstract. Given a public transportation network of stations and con-
nections, we want to find a minimum subset of stations such that each
connection runs through a selected station. Although this problem is
NP-hard in general, real-world instances are regularly solved almost com-
pletely by a set of simple reduction rules. To explain this behavior, we
view transportation networks as hitting set instances and identify two
characteristic properties, locality and heterogeneity. We then devise a
randomized model to generate hitting set instances with adjustable prop-
erties. While the heterogeneity does influence the effectiveness of the re-
duction rules, the generated instances show that locality is the significant
factor. Beyond that, we prove that the effectiveness of the reduction rules
is independent of the underlying graph structure. Finally, we show that
high locality is also prevalent in instances from other domains, facilitat-
ing a fast computation of minimum hitting sets.

Keywords: Transportation networks · Hitting set · Graph algorithms ·
Random graph models

1 Introduction

A public transportation network is a collection of stations along with a set of
connections running through these stations. But beyond its literal definition, via
bus stops and train lines, it also carries some of the geographical, social, and
economical structure of the community it serves. Given such a network, we want
to select as few stations as possible to cover all connections, i.e., each connection
shall contain a selected station. This and similar covering problems arise from
practical needs, e.g., when choosing stations for car maintenance, but their solu-
tions also reveal some of the underlying structure of the network. Despite the fact
that minimizing the number of selected stations is NP-hard, there is a surpris-
ingly easy way to achieve just that on real-world instances: Weihe [20] showed for
the German railroad network that two straightforward reduction rules simplify
the network to a very small core which can then be solved by brute force. This is
not a mere coincidence. Experiments have shown the same behavior on several
other real-world transportation networks. Subsequently, the reduction rules be-
came the standard preprocessing routine for many different covering problems.
See the work of Niedermeier and Rossmanith [13], Abu-Khzam [1], or Davies and



Bacchus [6], to name just a few. This raises the question as to why these rules
are so effective. Answering this question would not only close the gap between
theory and practice for the specific problem at hand, but also has the potential
to lead to new insights into the networks’ structure and ultimately pave the way
for algorithmic advances in bordering areas.

Our methodology for approaching this question is as follows. We first identify
two characteristic properties of real-world transportation networks: heterogene-
ity and locality ; see Section 2.2 for more details. Then we propose a model that
generates random instances resembling real-world instances with respect to het-
erogeneity and locality. We validate our model by showing empirically that it
provides a good predictor for the effectiveness of the reduction rules on real-
world instances. Finally, we draw conclusions on why the reduction rules are so
effective by running experiments on generated instances of varying heterogeneity
and locality. Moreover, we show that our results extend beyond transportation
networks to related problems in other domains.

For our model, we regard transportation networks as instances of the hitting
set problem. From this perspective, connections are mere subsets of the universe
of stations and we need to select one station from each set. Note that this disre-
gards some of the structure inherent to transportation networks: A connection is
not just a set of stops but a sequence visiting the stops in a particular order. In
fact, the sequences formed by the connections are paths in an underlying graph,
which itself has rich structural properties inherited from the geography. Focusing
on these structural properties, we also consider the graph-theoretic perspective.
The working hypothesis for this perspective is that the underlying graphs of
real-world transportation networks have beneficial properties that render the
instances tractable. We disprove this hypothesis by showing that the underly-
ing graph is almost irrelevant. This validates the hitting set perspective, which
disregards the underlying graph.

In Section 2, we formally state our findings on the graph-theoretic as well
as the hitting set perspective. We study the hitting set instances of European
transportation networks in Section 3, identifying heterogeneity and locality as
characteristic features. In Section 4, we define and evaluate a model generating
instances with these features. Section 5 extends our findings to other domains
and Section 6 concludes this work.

2 Preliminary Considerations

Before discussing the results regarding the two different perspectives, we fix
some notations and state the reduction rules introduced by Weihe [20]. A public
transportation network (or simply a network) N = (S,C) consists of a set S of
stations and a set C of connections which are sequences of stations. That is, each
connection c ∈ C is a subset of S together with a linear ordering of its elements.
Two stations s1, s2 ∈ S are connected in N if there exists a sequence of stations
starting with s1 and ending in s2 such that each pair of consecutive stations
shares a connection. The subnetworks induced by this equivalence relation are



called the connected components of N . Given N = (S,C), the Station Cover
problem is to find a subset S′ ⊆ S of minimum cardinality such that each connec-
tion is covered, i.e., S′∩ c 6= ∅ for every c ∈ C. The reduction rules by Weihe [20]
are based on notions of dominance, both between stations and connections. For
two different stations s1, s2 ∈ S, s1 dominates s2 if every connection containing
s2 also contains s1. If so, there is always an optimal station cover without s2,
so it is never worse to select s1 instead. Thus, removing s2 from S and from
every connection in C yields an equivalent instance. Similarly, for two different
connections c1, c2 ∈ C, c1 dominates c2 if c1 ⊆ c2. Every subset of S cover-
ing c1 then also covers c2. Removing c2 does not destroy any optimal solutions.
Weihe’s algorithm can thus be summarized as follows. Iteratively remove dom-
inated stations and connections until this is no longer possible. The remaining
instance, the core1, is solved using brute force. Each connected component can
be solved independently and the running time is exponential only in the number
of stations. Thus, the complexity of an instance denotes the maximum number
of stations in any of its connected components.

The proofs of this section can be found in the full version of this paper [4].

2.1 Graph-Theoretic Perspective

One way to represent a network N = (S,C) is via an undirected graph GN
defined as follows. The stations S are the vertices of GN ; for each connection
(s1, . . . , sk) ∈ C, GN contains the edges {si, si+1}1≤i<k. The basic hypothesis
of the graph-theoretic perspective is that certain properties of GN make the
real-world Station Cover instances easy.

Consider a leaf u in GN , i.e., a degree-1 vertex. If there is a connection that
contains only u, then this dominates all other connections containing u. Other-
wise, all connections that contain u also contain its unique neighbor. Thus, u is
dominated and removed by the reduction rules. We obtain the following propo-
sition. The 2-core is the subgraph obtained by iteratively removing leaves [16].

Proposition 1. The reduction rules reduce any Station Cover instance N
to an equivalent instance N ′ such that GN ′ is a subgraph of the 2-core of GN ,
with additional isolated vertices.

Proposition 1 identifies the number of vertices in the 2-core of GN as an upper
bound for the core complexity. The following theorem shows that this bound is
arbitrarily bad. Supporting this assessment, we will see in Section 3 that the
2-cores of the graphs of real-world instances are rather large, while their core
complexity is significantly smaller.

Theorem 1. For every graph G, there exist two Station Cover instances N1

and N2 with G = GN1
= GN2

such that the core of N1 has complexity 1 while
the core of N2 corresponds to the 2-core of G.

1 We note that the core is unique up to automorphisms. In particular, its size is
independent of the removal order.



Theorem 1 disproves the working hypothesis of the graph-theoretic perspective.
For any connected graph that has no leaves, there is a Station Cover instance
that is completely solved by the reduction rules, and another instance on the very
same graph that is not reduced at all. Furthermore, unless the 2-core is small,
the theorem shows that it is impossible to tell whether or not the reduction rules
are effective on a given instance by only looking at the graph.

So far, we have only focused on Weihe’s algorithm. While our main goal
is to explain the performance of this algorithm, one could argue that other
methods exploiting different graph-theoretic properties are better suited to solve
real-world instances. The next theorem, however, indicates that this is not the
case. Even on “tree-like” graph classes Station Cover remains NP-hard. The
reduction used to prove this theorem was originally given by Jansen [9].

Theorem 2 ([9], Theorem 5). Station Cover is NP-hard even if the cor-
responding graph has treewidth 3 or feedback vertex number 2.

2.2 Hitting Set Perspective

Another way to represent a network N is by an instance of the Hitting Set
problem. Here, the connections C ⊆ 2S are regarded only as sets of stations
(ignoring their order). An optimal cover is a minimum-cardinality subset of S
that has a non-empty intersection with all members of C. This perspective turns
out to be much more fruitful. In the next section, we analyze the Hitting Set
instances stemming from 12 real-world networks. To summarize our results, we
observe that the instances are heterogeneous, i.e., the number of connections con-
taining a given station varies heavily. Moreover, the instances exhibit a certain
locality, which probably has its origin in the stations’ geographic positions.

In more detail, for a station s ∈ S, let the number of connections in C that
contain s be the degree of s. Conversely, for c ∈ C, |c| is its degree. The connection
degrees of the real-world instances are rather homogeneous, i.e., every connection
has roughly the same size. Although there are different types of connections they
appear to have a similar number of stops. The station degrees, on the other hand,
vary strongly. In fact, we observe that the station degree distributions roughly
follow a power law. This is in line with observations that, e.g., the sizes of cities
are power-law distributed [7]. To quantify the locality of an instance, we use a
variant of the so-called bipartite clustering coefficient [15].

We conjecture that heterogeneity of stations and locality of the network are
the crucial factors that make the reduction so effective. If the station degrees
vary strongly, chances are that some high-degree station exists that dominates
many low-degree ones. Moreover, if locality is high, there tend to be several
connections differing only in few stations and stations appearing in similar sets
of connections. This increases the likelihood of dominance among the elements
of both S and C. To verify this hypothesis empirically, we propose a model for
generating instances of varying heterogeneity and locality. Our findings suggest
that higher heterogeneity decreases the core complexity, but the deciding factor
is the locality. Finally, we observe that locality is also prevalent in other domains.
As predicted by our model, preprocessing also greatly reduces these instances.



Data Set |S| |S|
|C| δS β KS κ 2-core core

sncf 1742 4.0 2.2 3.3 0.03 0.47 70% 0.3%
nl 4558 13.2 1.5 3.8 0.04 0.40 70% 2.8%
kvv 2115 8.0 2.1 3.5 0.03 0.48 72% 0.8%
vrs 5491 10.7 1.9 3.5 0.03 0.27 83% 0.1%
rnv 705 12.4 1.4 4.2 0.06 0.38 54% 0.1%
athens 5729 24.4 1.8 3.9 0.04 0.30 89% 4.7%
petersburg 4264 6.5 2.5 4.0 0.03 0.31 86% 8.3%
warsaw 3944 13.0 1.8 5.9 0.05 0.29 80% 5.9%
luxembourg 2484 7.3 2.7 2.9 0.02 0.25 84% 0.2%
switzerland 22 535 5.6 2.0 4.5 0.02 0.33 71% 1.7%

vbb 3031 16.5 1.4 12.4 0.05 0.38 73% 1.8%
db 514 0.9 15.7 2.0 0.07 0.28 78% 0.2%

Table 1: Transportation networks with atypical instances separated. Shown are
the number |S| of stations, the station-connection ratio |S|/|C|, average station
degree δS , estimated power-law exponent β, corresponding KS distance, bipartite
clustering coefficient κ, relative 2-core size, and the relative core complexity.

3 Analysis of Real-World Networks

We examined several public transportation networks from different cities (athens,
petersburg, warsaw), rural areas (sncf, kvv, vrs, rnv, vbb), and countries
(nl, luxembourg, switzerland, db). The networks are taken from the transit-
feeds.com repository. The raw data has the General Transit Feed Specification
(GTFS) format. It stores multiple connections for the same route, one for each
time a train actually drives that route. For each route, only one connection was
used. Table 1 gives an overview of the relevant features of the resulting networks.

We reduced each instance to its largest component. For most of them, only a
small fraction of stations and connections are disconnected from this component.
A notable exception is the vbb-instance, representing the public transportation
network of the city of Berlin, Germany. In total, it has 13 424 stations while its
largest component has only 3031. The reason is that different modes of transport
are separated in the raw data. As a result, vbb has rather uncommon features.
Another unusual case is the db-instance of the German railway network. Table 1
shows that most instances have a station-connection ratio |S|/|C| of roughly 10.
For db, however, this ratio is at 0.9 much smaller.

Heterogeneity. The average station degree δS of the investigated networks
is a small constant around 2, independent of the instances’ complexity. The
only exception is the db-network. This can be explained by the atypical value
for |S|/|C|, and that each station is contained in much more connections. The
average connection degree δC = δS · |S|/|C| (not explicitly given in the table) is
roughly 20, due to the station-connection ratios all being of the same order.
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Fig. 1: (left) The blue line is the CCDF of station degrees for the data set kvv.
The red line is the estimated power-law distribution. (right) The histogram of
connection degrees for the data set kvv.

Beyond small average degree, almost all instances exhibit strong hetero-
geneity among the degrees of different stations. We take a closer look at the
kvv-instance as a prototypical example, representing the public transportation
network of Karlsruhe, Germany. Figure 1 (left) shows the complementary cumu-
lative distribution function (CCDF) of the station degrees in a log-log plot. For
a given value x, the CCDF describes the share of stations that have degree at
least x. The CCDF closely resembles a straight line (in log-log scaling), indicating
a power-law distribution. That means, there exists a real number β, the power-law
exponent, such that the number of stations of degree x is roughly proportional
to x−β . We estimated the power-law exponents using the python package pow-

erlaw [2]. For kvv, the exponent β is approximately 3.5. The goodness of fit
is measured by the Kolmogorov–Smirnov distance (KS distance), which is the
maximum absolute difference between the CCDFs of the measurement and of the
assumed distribution. The KS distance for the kvv is 0.05. Table 1 reports both
the power-law exponents and the corresponding KS distances. The estimated
values of β, excluding the outlier vbb, indicate a high level of heterogeneity. As a
side note, the power-law exponent for vbb is 4.1 with a KS distance of 0.03 when
considering the whole network instead of the largest component. In contrast, the
connection degrees are rather homogeneous, cf. e.g. kvv in Figure 1 (right). A
possible explanation is that long-distance trains stop less frequently.

Locality. To measure locality, we adapt the bipartite clustering coefficient [15].
Intuitively, it states how likely it is that two stations which share a connection
are also contained together in a different connection, or that two connections
containing the same station also have another station in common. For a formal
definition, first note that we can interpret a Hitting Set instance (S,C) as a
bipartite graph with the two partitions S and C and an edge joining s ∈ S and
c ∈ C iff s ∈ c. Let #P3

denote the number of paths of length 3 and #C4
the

number of cycles of length 4 in this graph. The bipartite clustering coefficient κ



then is defined as κ = 4 ·#C4
/#P3

. It is the probability that a uniformly chosen
3-path is contained in a 4-cycle. Before computing κ, we normalize the bipartite
graph by reducing it to its 2-core, which removes any attached trees. In doing
so, the measure becomes more robust for our purpose, as attached trees do not
impact the difficulty of an instance (they get removed by the reduction rules)
while they decrease the clustering coefficient.

The clustering coefficients are reported in Table 1. All instances have a clus-
tering coefficient of at least 0.25, which indicates a high level of locality. A pos-
sible explanation are the underlying geographic positions of the stations, with
nearby stations likely appearing in the same connection.

Degree of Reduction. We measure the effectiveness of the reduction rules
using the relative core complexity. It is the percentage of stations that remain
after exhaustively applying the preprocessing. Table 1 shows that the resulting
relative core complexity is very low for all 12 instances. This is in line with the
original findings of Weihe [20], who applied the reduction rules on a few select
European train networks. Moreover, it generalizes these results to networks of
different scales, from urban to national. On the other hand, the 2-core is typically
not much smaller than the original instance. This shows that Proposition 1 can-
not explain the effectiveness of the reduction rules, which supports our previous
assessment that the graph-theoretic perspective is not sufficient.

Judging from Table 1, we believe that heterogeneity of the stations and
high locality are the crucial properties rendering the preprocessing so effective.
Notwithstanding, it is also worth noting that the reduction rules work well on all
instances, including vbb which is not very heterogeneous. The clustering on the
other hand is high for all instances, indicating that locality is more important.
Also, the db and vbb outliers seem to show that the influence of the station-
connection ratio and the average station degree is limited. Though looking at
these 12 networks can provide clues to what features are most important, it is not
sufficient to draw a clear picture. In the following, we thoroughly test the effect
of different properties on the effectiveness of the reduction rules by generating
instances with varying properties.

4 Analysis of Generated Instances

This section discusses the generation and analysis of artificial Hitting Set in-
stances. First, we present our model of generation which is based on the geometric
inhomogeneous random graphs [5]. It allows creating networks with varying de-
gree of heterogeneity and locality. We then analyze these instances with respect
to the degree of reduction.

4.1 The Generative Model

In the field of network science, it is generally accepted that vertex degrees in real-
istic networks are heterogeneous [18]. A power-law distribution can be explained,



inter alia, by the preferential attachment mechanism [3]. Beyond the generation
of heterogeneous instances, different models have been proposed to also account
for locality. The latter models typically use some kind of underlying geometry.
One of the earliest works in that direction is by Watts and Strogatz [19]. More
recently, and closer to our aim, Papadopoulos et al. [14] introduced the concept
of popularity vs. similarity, making the creation of edges more likely, the more
popular and similar the connected vertices are. They also observed that these two
dimensions are naturally covered by the hyperbolic geometry, leading to hyper-
bolic random graphs [11]. Bringmann, Keusch, and Lengler [5] generalized this
concept to geometric inhomogeneous random graphs (GIRGs). There, each ver-
tex has a geometric position and a weight. Vertices are then connected by edges
depending on their weights and distances. Despite a plethora of models for gen-
erating graphs, we are not aware of models generating heterogeneous Hitting
Set instances. The closest is arguably the work by Giráldez-Cru and Levy [8],
who generate SAT instances using the popularity vs. similarity paradigm.

To generate Hitting Set instances with varying heterogeneity and locality,
we formulate a randomized model based on GIRGs. Each station and connection
has a weight representing its importance. Moreover, stations and connections
are randomly placed in a geometric space. The distance between stations and
connections then provides a measure of similarity. In the Hitting Set instance,
some station s is a member of connection c with a probability proportional to the
combined weights of s and c and inverse proportional to the distance between the
vertices s and c. To make this more precise, let wS : S → R and wC : C → R be
two weight functions; we omit the subscript when no ambiguity arises. For s ∈ S
and c ∈ C, let dist(s, c) denote the geometric distance between the corresponding
vertices. Finally, fix two positive constants a, T > 0. Then, station s is contained
in connection c with probability

P (s, c) = min

{
1,

(
a · w(s)w(c)

dist(s, c)

)1/T
}
. (1)

The parameter a governs the expected degree. The temperature T controls the
influence of the geometry. For T → 0 the method converges to a step model, where
s is contained in c if and only if dist(s, c)≤ aw(s)w(c). Larger temperatures
soften this threshold, allowing s ∈ c for larger distances, and s /∈ c for smaller
distances, with a low probability. Thus, T influences the locality of the instance.

The remaining degrees of freedom are the choice of the underlying geometry
and the weights. For the geometry, we use the unit circle. Positions for stations
and connections are drawn uniformly at random from [0, 1] and the distance
between x, y ∈ [0, 1] is min{|x− y|, 1− |x− y|}. This is arguably the simplest
possible symmetric geometry.

To choose the weights properly, it is important to note that the resulting
degrees are expected to be proportional to the weights [5]. Thus, we mimic the
real-world instances by choosing uniform weights for the connections and power-
law weights, with varying exponent β, for the stations. It is not hard to see



that for β → ∞, the latter converge to uniform weights as well. In summary,
adjusting β controls the heterogeneity.

4.2 Evaluation

We generate artificial networks and measure the dependence of their relative core
complexity on the heterogeneity and locality. The size of an instance has three
components: the (original) complexity |S|, the station-connection ratio |S|/|C|,
and the average station degree δS . Note that these values also determine the
number |C| of connections and average connection degree δC . From the model,
we have the two parameters we are most interested in, the power-law exponent
β and the temperature T . We also consider the limit case of uniform weights for
all vertices; slightly abusing notation, we denote this by β =∞.

For the main part of the experiments, we used |S| = 2000, |S|/|C| = 10.0,
and δS = 2.0, leaning on the respective properties for the real-world instances.
We let T vary between 0 and 1 in increments of 0.05, and β between 2 and 5
in increments of 0.25. For each combination, we generated ten samples. In the
following, we first validate the data. Then we examine the influence of hetero-
geneity and locality. Afterwards we test whether our findings still hold true for
different station-connection ratios and station degrees.

Data Validation. There are two aspects to the data validation. First, the
instances should approximately exhibit the properties we explicitly put in, i.e.,
the values of |S|, |S|/|C|, δS , and the power-law behavior. Second, the implicit
properties should also be as expected. In our case, we have to verify that changing
T actually has the desired effect on the bipartite clustering coefficient κ.

Concerning the complexity |S|, note that a sampled instance per se does
not need to be connected. If it is not, we again only use the largest component.
Thus, when generating an instance with 2000 stations, the resulting complexity is
actually a bit smaller. There are typically many isolated stations due to the small
average station degree, this is particularly true for small power-law exponents.
However, the complexity of the largest component never dropped below 1000
and usually was between 1400 and 1700 provided that β > 2.5. The transition
to the largest component mainly meant ignoring isolated stations. Thus, also
the station-connection ratio |S|/|C| decreases slightly. For β > 3 it was typically
around 8 and always at least 7. For smaller β, it is never below 5.

Recall that the average station degree δS is controlled by parameter a in
Equation 1. It is a constant in the sense that it is independent of the considered
station-connection pair. However, it does depend on other parameters of the
model. As there is no closed formula to determine a from δS , we estimated it
numerically. This estimation incurred some loss in accuracy but yielded values
of δS between 1.9 and 2.1, very close to the desired δS = 2. Transitioning to the
largest component typically slightly increases δS , as the largest component is
more likely to contain stations of higher degree. Anyway, δS never went above 2.7.

As with the real-world instances, we estimated the exponent β of the gen-
erated instances. For small values, the estimates matched the specified values.
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different power-law exponents β), and (right) depending on β (for different T ).

For larger exponents, the gap increases slightly, e.g., an estimated β = 5.7 for
an instance with predefined parameter 5.0.

Finally, we examined the dependency between the bipartite clustering coef-
ficient κ and the temperature T ; see Figure 2 (left). As desired, the clustering
coefficient increases with falling temperatures. More precisely, κ ranges between
0 and some maximum attained at T = 0. The value of this maximum depends
on the power-law exponent β, with smaller β giving smaller maxima.

Heterogeneity and Locality. For each instance described above, we computed
the relative core complexity. To reduce noise, we look at the arithmetic mean
of ten samples for each parameter configuration. The measured core complexi-
ties and clustering coefficients in fact showed only small variance, with almost
all values differing at most 5% from the respective mean. These measurements
are presented in Figure 2 (right), showing the mean core complexity depending
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connection ratio is |S|/|C| = 4.0 (instead of 10.0). (right) The average station
degree is δS = 5.0 (instead of 2.0).

on the temperature T and the power-law exponent β. For all parameter con-
figurations, the relative core complexity was at most 50%. This is due to the
low average station degree, which leads to dominant low-degree stations. More
importantly, the core complexity varies strongly for different values of T and β.

The complexity decreased both with lower temperatures and lower power-law
exponents. This further supports our claim that heterogeneity and locality both
have a positive impact on the effectiveness of the reduction rules. The locality,
however, seems to be more vital. To make this precise, low temperatures lead to
small cores, independent of β, as shown in Figure 3 (left). Even under uniform
station weights (β =∞), temperatures below 0.3 consistently produced instances
with empty core. In contrast, the power-law exponent has only a minor impact.
One can see in Figure 3 (right) that for low temperatures, the core complexity
is (almost) independent of β. For higher temperatures, the core complexities
remain high over wide ranges of β, except for very low exponents.

In summary, high locality seems to be the most prominent feature that makes
Station Cover instances tractable, independent of their heterogeneity. Hetero-
geneity alone reduces the core complexity only slightly, except for extreme cases
(very low power-law exponents). It is thus not the crucial factor. In the follow-
ing, we verify this general behavior also for alternative model parameters such
as station-connection ratio or average station degree.

Station-Connection Ratio. Recall that we fixed a ratio of |S|/|C| = 10.0
for the main part of our experiments. To see whether our observations are still
valid for different settings, we additionally generated data sets with mostly the
same parameters as before, except for |S|/|C| = 4.0. The result are shown in
Figure 4 (left). Comparing this to Figure 2 (right), one can see that general
dependence on T and β is very similar. However, there are subtle differences.
Under the smaller station-connection ratio the instances are tractable even for
larger temperatures, up to T = 0.5 instead of the earlier 0.3, i.e., for lower
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locality. Also, the maximum core complexity over all combinations of T and β is
larger than before, reaching almost 60%, compared to the 50% for |S|/|C| = 10.0.
In summary, in the (more realistic) low-temperature regime, a lower station-
connection ratio seems to further improve the effectiveness of the reduction rules.

Average Degree. To examine the influence of the average station degree δS ,
we generated another instance set with the same parameters as the main one,
except that we increased the δS from 2.0 to 5.0. The results are shown in Fig-
ure 4 (right). Again the general behavior is similar, but now lower tempera-
tures are necessary to render the instances tractable. Moreover, the maximum
core complexity increases significantly, reaching up to almost 100%. Generally,
a smaller average degree makes the reduction rules more effective. Intuitively
speaking, the existence of stations with low degree increases the likelihood that
the reduction rule of station dominance can be applied.

Comparison with Real-World Instances. To compare generated and real-
world instances more directly, we investigate the dependence between the rel-
ative core complexity and the bipartite clustering coefficient κ, instead of the
model-specific temperature T . Figure 5 shows the results. Several of the real-
world networks are well covered by the model. For example, our findings from
the generated instances can be directly transferred to sncf and kvv. They have
power-law exponents of 3.3 and 3.5, respectively, as well as clustering coefficients
of at least 0.47, which explains their small core complexity. Moreover, for lux-

embourg, the model can explain the low complexity in spite of a small clustering
coefficient of 0.25. The network exhibits a small exponent β = 2.9, which ben-
efits the effectiveness of the preprocessing. On the other hand, petersburg has
clustering κ = 0.31, but also a comparatively large core complexity of over 8%.
Here, the main factor seems to be the high power-law exponent of 4.0.



Notwithstanding, there are also some real-world instances that have an unex-
pectedly low core complexity, which cannot be fully explained by the model. The
vrs-instance has a low clustering coefficient of κ = 0.27 and a high power-law
exponent of 3.5, but still a very low 0.1% core complexity. The reason seems to be
its low average station degree of δS = 1.9. The switzerland-instance also has a
low core complexity of 1.7%, despite its high power-law exponent of β = 4.5 and
a clustering coefficient of κ = 0.33. Especially the high value of β would point
to a much higher complexity, however, its station-connection ratio |S|/|C| = 5.6
is significantly lower than that of the generated instances. All in all, the net-
works generated by the model are not perfectly realistic. However, the model
does replicate properties that are crucial for the effectiveness of the reduction
rules on real-world instances. Furthermore, in the interplay of heterogeneity and
locality, it reveals locality as the more important property.

5 Impact on Other Domains

Although the focus of this paper is to understand which structural properties
of public transportation networks make Weihe’s reduction rules so effective, our
findings go beyond that. Our experiments on the random model predict that
Hitting Set instances in general can be solved efficiently if they exhibit high
locality. Moreover, if the instance is highly heterogeneous, a smaller clustering
coefficient suffices; see Figure 5 (left). The element-set ratio and the average
degree have, within reasonable bounds, only a minor impact on the effectiveness.
Our experiments in Section 4.2 showed that instances are more difficult for a
larger average degree and if the difference between the number of elements and
the number of sets is high. Experiments not reported in this paper show that the
latter is also true, if there are more sets than elements (i.e., the ratio is below 1).

Data Sets. We consider Hitting Set instances from three different applica-
tions; see Table 2. The first set of instances are metabolic reaction networks
of Escherichia coli bacteria. The elements represent reactions and each set is
a so-called elementary mode. Analyzing the hitting sets of these instances has
applications in drug discovery. The corresponding data sets, labeled ec-*, were
generated with the Metatool [10]. In the second type of instance, the sets con-
sist of so-called elementary pathways that need to be hit by interventions that
suppress all signals, which is relevant, inter alia, for the treatment of cancer.
The data sets, EGFR.* and HER2.*, were obtained via the OCSANA tool [17]. The
instances country-cover and language-cover are based on a country-language
graph, taken from the network collection KONECT [12], with an edge between a
country and a language if the language is spoken in that country. The corre-
sponding Hitting Set instances ask for a minimum number of countries to
visit to hear all languages, and for a minimum number of languages necessary
to communicate with someone in every country, respectively.



Data Set |S| |S|/|C| κ core

ec-acetate 57 0.214 0.67 1.8%
ec-succinate 57 0.061 0.59 1.8%
ec-glycerol 60 0.028 0.66 1.7%
ec-glucose 58 0.009 0.66 36.2%
ec-combined 64 0.002 0.62 40.6%
EGFR.short 50 0.400 0.66 2.0%
EGFR.sub 56 0.239 0.57 1.8%
HER2.short 123 0.230 0.53 9.8%
HER2.sub 172 0.068 0.55 10.4%
country-cover 248 0.407 0.11 0.4%
language-cover 610 2.460 0.11 0.2%

Table 2: Hitting Set instances from other domains. Listed are the number |S|
of elements, the element-set ratio |S|/|C|, the bipartite clustering coefficient κ,
and the relative core complexity.

Evaluation. The basic properties of the instances and the effectiveness of the
reduction rules are reported in Table 2. The results match the prediction of
our model: most instances have a high clustering coefficient and the reduction
rules are very effective. The only instances that stand out at first glance are
ec-glucose, ec-combined, HER2.short, and HER2.sub, which are not solved
completely by the reduction rules despite their high clustering coefficients, as well
as country-cover and language-cover, which are solved completely despite the
comparatively low clustering coefficient of κ = 0.11.

However, a more detailed consideration reveals that these instances also
match the predictions of the model. First, the two instances country-cover

and language-cover are very heterogeneous with power-law exponent β = 2.2.
As can be seen in Figure 2 (left), a clustering coefficient of κ = 0.11 is already
rather high for this exponent, leading to a low core complexity; see Figure 5 (left).

The instances ec-glucose and ec-combined have skewed element-set ratios
(more than 100 times as many sets as elements) and a high average degree (30
for the sets; 3k and 13k for the elements, respectively). Thus, these instances at
least qualitatively match the predictions of the model that the reduction rules
are less effective if the element-set ratio is skewed or the average degree is high.
One obtains a similar but less pronounced picture for HER2.short and HER2.sub.

6 Conclusion

We explored the effectiveness of data reduction for Station Cover on trans-
portation networks. Our main finding is that real-world instances have high
locality and heterogeneity, and that these properties make the reduction rules
effective, with locality being the crucial factor. This directly transfers to general
Hitting Set instances. For future work, it would be interesting to rigorously
prove that the reduction rules perform well on the model.



References

1. Abu-Khzam, F.N.: A Kernelization Algorithm for d-Hitting Set. Journal of Com-
puter and System Sciences 76, 524–531 (2010)

2. Alstott, J., Bullmore, E., Plenz, D.: powerlaw: A Python Package for Analysis of
Heavy-Tailed Distributions. PLOS One 9, e85777 (2014)

3. Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science
286, 509–512 (1999)

4. Bläsius, T., Fischbeck, P., Friedrich, T., Schirneck, M.: Understanding the Effec-
tiveness of Data Reduction in Public Transportation Networks. arXiv:1905.12477
(2019)

5. Bringmann, K., Keusch, R., Lengler, J.: Sampling Geometric Inhomogeneous Ran-
dom Graphs in Linear Time. In: Proceedings of the 25th Annual European Sym-
posium on Algorithms (ESA). pp. 20:1–20:15 (2017)

6. Davies, J., Bacchus, F.: Solving MAXSAT by Solving a Sequence of Simpler SAT
Instances. In: Proceedings of the 17th International Conference on Principles and
Practice of Constraint Programming (CP). pp. 225–239 (2011)

7. Gabaix, X.: Zipf’s Law for Cities: an Explanation. The Quarterly Journal of Eco-
nomics 114, 739–767 (1999)
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