
Space-Efficient Fault-Tolerant Diameter Oracles
Davide Bilò #

Department of Humanities and Social Sciences, University of Sassari, Italy

Sarel Cohen #

Hasso Plattner Institute, University of Potsdam, Germany

Tobias Friedrich #

Hasso Plattner Institute, University of Potsdam, Germany

Martin Schirneck #

Hasso Plattner Institute, University of Potsdam, Germany

Abstract

We design f-edge fault-tolerant diameter oracles (f -FDO, or simply FDO if f = 1). For a given
directed or undirected and possibly edge-weighted graph G with n vertices and m edges and a
positive integer f , we preprocess the graph and construct a data structure that, when queried with
a set F of edges, where |F | ⩽ f , returns the diameter of G − F . An f -FDO has stretch σ ⩾ 1 if the
returned value D̂ satisfies diam(G − F) ⩽ D̂ ⩽ σ diam(G − F).

For the case of a single edge failure (f = 1) in an unweighted directed graph, there exists an
approximate FDO by Henzinger et al. [ITCS 2017] with stretch (1 + ε), constant query time, space
O(m), and a combinatorial preprocessing time of Õ(mn + n1.5

√
Dm/ε), where D is the diameter.

We present an FDO for directed graphs with the same stretch, query time, and space. It has a
preprocessing time of Õ(mn + n2/ε), which is better for constant ε > 0. The preprocessing time
nearly matches a conditional lower bound for combinatorial algorithms, also by Henzinger et al.
With fast matrix multiplication, we achieve a preprocessing time of Õ(n2.5794 + n2/ε). We further
prove an information-theoretic lower bound showing that any FDO with stretch better than 3/2
requires Ω(m) bits of space. Thus, for constant 0 < ε < 3/2, our combinatorial (1 + ε)-approximate
FDO is near-optimal in all parameters.

In the case of multiple edge failures (f > 1) in undirected graphs with non-negative edge weights,
we give an f -FDO with stretch (f + 2), query time O(f2 log2 n), Õ(fn) space, and preprocessing
time Õ(fm). We complement this with a lower bound excluding any finite stretch in o(fn) space.

Many real-world networks have polylogarithmic diameter. We show that for those graphs and up
to f = o(log n/ log log n) failures one can swap approximation for query time and space. We present
an exact combinatorial f -FDO with preprocessing time mn1+o(1), query time no(1), and space
n2+o(1). When using fast matrix multiplication instead, the preprocessing time can be improved to
nω+o(1), where ω < 2.373 is the matrix multiplication exponent.

2012 ACM Subject Classification Theory of computation → Shortest paths; Theory of computation
→ Data structures design and analysis; Theory of computation → Cell probe models and lower
bounds; Theory of computation → Pseudorandomness and derandomization

Keywords and phrases derandomization, diameter, distance sensitivity oracle, fault-tolerant data
structure, space lower bound

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.18

Related Version Full Version: https://arxiv.org/abs/2107.03485

Funding Davide Bilò: This work was partially supported by the Research Grant FBS2016_BILO,
funded by “Fondazione di Sardegna” in 2016.

© Davide Bilò, Sarel Cohen, Tobias Friedrich, and Martin Schirneck;
licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 18; pp. 18:1–18:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:davidebilo@uniss.it
https://orcid.org/0000-0003-3169-4300
mailto:sarel.cohen@hpi.de
mailto:tobias.friedrich@hpi.de
https://orcid.org/0000-0003-0076-6308
mailto:martin.schirneck@hpi.de
https://doi.org/10.4230/LIPIcs.MFCS.2021.18
https://arxiv.org/abs/2107.03485
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Space-Efficient Fault-Tolerant Diameter Oracles

1 Introduction

The diameter is one of the most fundamental graph parameters. It plays a particular
significant role in the analysis of communication networks as the time to transmit a message
to all nodes is strongly related with the diameter. Several lines of work have recently attacked
the problem of computing the diameter in different settings. For example, Choudhary and
Gold [16] constructed diameter spanners, which are subgraphs that approximately preserve
the diameter of the original graph, Ancona et al. [6] developed algorithms for computing
the diameter in dynamic scenarios and proved matching conditional lower bounds, and
Bonnet [10] proved that, for any constant ε > 0, computing a (7/4 − ε)-approximation of the
diameter of a sparse graph n vertices and m = n1+o(1) edges requires m4/3−o(1) time, unless
the Strong Exponential Time Hypothesis fails.

In this paper, we approach the diameter from the perspective of fault tolerance. A
communication network may be subject to a small number of transient failures, and we want
to quickly find out the new diameter without recomputing it from scratch. Therefore, we
study the problem of constructing space-efficient data structures that can quickly report the
diameter even if up to f edges fail in the graph. We refer to them as f-edge fault-tolerant
diameter oracles (f -FDO, or simply FDO if f = 1). More precisely, given an undirected or
directed and possibly edge-weighted graph G and a positive integer f , we want to construct
an f -FDO that, when queried on a set F of up to f edges of G, returns a value D̂ that is
always at least as large the diameter of G − F , denoted by diam(G − F). We say that an
f -FDO has a stretch of σ ⩾ 1 (or that it is σ-approximate) if the value D̂ returned by the
oracle additionally satisfies diam(G − F) ⩽ D̂ ⩽ σ diam(G − F).

When designing f -FDOs one must find a good compromise between the following param-
eters: the stretch, the time needed to query the oracle, the size of the data structure, and
the preprocessing time needed to build it. We focus particularly on space-optimal solutions,
while keeping the query and preprocessing times low. For the case of a single edge failure in
undirected edge-weighted graphs, there are two folklore FDOs known. One reports the exact
diameter and has size O(m), while the other takes O(n) space, but guarantees only a stretch
of 2. (more details are given in Section 2.1.) In a sense they mark the extreme points of a
spectrum. It is natural to ask whether there are more trade-offs possible between the stretch
and size of an FDO. More precisely, we pose the following question.

Question 1 – space vs. approximation trade-off. What is the minimum achievable size of
an FDO for a given stretch σ? To answer the question, we prove an information-theoretic
lower bound. It shows that for undirected unweighted graphs and every (even non-constant)
1 ⩽ σ < 3/2, every σ-approximate diameter oracle requires Ω(m) bits of space. The space
lower bound also holds for the harder case of directed graphs. The size of the exact folklore
FDO is thus optimal up to the size of a machine word. Moreover, we prove that the stretch 2
of the approximate FDO cannot be improved on weighted graphs while keeping O(n) space.

▶ Theorem 1. Any FDO with stretch σ = σ(m) < 3/2 must take Ω(m) bits of space on
undirected graphs with m edges. The bound increases to σ < 2 if the graphs are edge-weighted.

When we focus our attention on the preprocessing time, the exact FDO can be constructed
in Õ(n3) time1 using the distance sensitivity oracle (DSO) of Bernstein and Karger [8].
Henzinger et al. [30] proved an essentially matching conditional lower bound for combinatorial2

1 For a positive function g(n, m, f), we use Õ(g) to denote O(g · polylog(n)).
2 The term “combinatorial algorithm” is not well-defined, and is often interpreted as not using any

matrix multiplication. Arguably, combinatorial algorithms can be considered efficient in practice as the
constants hidden in the matrix multiplication bounds are rather high.

D. Bilò, S. Cohen, T. Friedrich, and M. Schirneck 18:3

algorithms. They assumed that any combinatorial algorithm requires n3−o(1) time to multiply
two Boolean n × n matrices, known as the BMM conjecture. The restriction to combinatorial
algorithms is crucial as the task is reducible to integer matrices and one can use fast matrix
multiplication to solve it in O(nω) time, where ω < 2.37286 is the matrix multiplication
exponent [2]. Under the BMM conjecture, Henzinger et al. [30] showed that, for 0 < ε < 1/3,
any combinatorial preprocessing algorithm requires n3−o(1) time to build an FDO of stretch
(1 + ε), even if we allow O(n2−δ) query time for any constant δ > 0.

They match this bound with an FDO with stretch (1 + ε) and O(1) query time that can
be constructed in time Õ(mn + n1.5

√
diam(G) · m/ε). Their oracle also reports the radius

and vertex eccentricities in the presence of a single edge failure. Even on sparse graphs
with m = Õ(n) edges and constant diameter, the preprocessing time is Õ(n2.5/

√
ε). For

constant ε > 0, this is by a factor
√

n larger than the Õ(mn) time needed to build the DSO
of Bernstein and Karger [8]. It is interesting whether one can close the gap.

Question 2 – fast preprocessing time. Does there exist a combinatorial algorithm that
constructs in Õ(mn) time an FDO with stretch (1 + ε) and constant query time? In addition,
can one bypass the combinatorial lower bound by using fast matrix multiplication? We
answer these questions affirmatively for the diameter case with the following theorem. The
proof of the algebraic part uses the DSO presented very recently by Gu and Ren [28].

▶ Theorem 2. For every unweighted directed graph and ε > 0, there exists a randomized
combinatorial (1 + ε)-approximate FDO that takes O(m) space and has Õ(mn + n2/ε)
preprocessing time and O(1) query time. The returned values are correct w.h.p.3 Using fast
matrix multiplication instead, one can construct the FDO in time Õ(n2.5794 + n2/ε).

Note that, for any constant 0 < ε < 1/3, our combinatorial (1 + ε)-approximate combina-
torial FDO from Theorem 2 is near-optimal with respect to all parameters. The Θ(m) space
is near-optimal by Theorem 1, the query time is Õ(1), and the Õ(mn) preprocessing time
comes within sub-polynomial factors of the conditional lower bound by Henzinger et al. [30].
Furthermore, when fast matrix multiplication is permitted, our algebraic preprocessing
algorithm is even faster on dense graphs. However, our FDO is randomized.

Question 3 – derandomization. Can the construction of Theorem 2 be derandomized in the
same asymptotic running time? We answer this question partially in that we derandomize
the approximation part of our algorithm. When combined with the DSO of Bernstein and
Karger [8] this gives a deterministic combinatorial FDO. For the derandomization, we adapt
the framework of Alon, Chechik, and Cohen [3]. We identify a set of O(n3/2) critical paths
one needs to hit, and show how to compute them in O(mn) time. It is then enough to let
the folklore greedy algorithm compute a hitting set in Õ(n2) time.

It remains an open problem whether one can derandomize the algebraic approach, whose
randomization stems solely from the DSO by Gu and Ren [28].

▶ Theorem 3. For every unweighted directed graph and ε > 0, there exists a deterministic
combinatorial (1 + ε)-approximate FDO that takes O(m) space and has Õ(mn + n2/ε)
preprocessing time and O(1) query time.

3 An event occurs with high probability (w.h.p.) if it has probability at least 1 − n−c for some c > 0.

MFCS 2021

18:4 Space-Efficient Fault-Tolerant Diameter Oracles

Question 4 – space vs. approximation trade-off for multiple failures. Finally, we consider
the case of multiple edge failures and examine similar questions. What is a the minimum
size for an exact, respectively, approximate, diameter oracle in the presence of up to f edge
failures? We again prove an information-theoretic lower bound and show that for arbitrary
finite stretch σ, any σ-approximation diameter oracle requires Ω(fn) bits of space, at least if
the oracle can be queried also with sets F that contain non-edges.

▶ Theorem 4. Suppose f < n. Any f-FDO with finite stretch that can be queried also for
non-edges must take Ω(fn) bits of space on graphs with n vertices.

We develop an efficient f -FDO whose space requirement almost matches the lower bound.
Our result adapts and improves a construction by Bilò et al. [9]. Note that we use the
Õ-notation to suppress polylogarithmic factors in n.

▶ Theorem 5. For every undirected graph with non-negative edge weights, there exists a
deterministic combinatorial (f + 2)-approximate f-FDO that takes Õ(fn) space and has
Õ(fm) preprocessing time and Õ(f2) query time.

Real-world networks are often described as having a small diameter, dubbed as the
“small world property” [35]. Many graph models used to analyze social and communication
networks have provable polylogarithmic guarantees on the diameter, e.g. Chung-Lu graphs [17],
hyperbolic random graphs [24], or the preferential attachement model [31]. We show that
on graphs with low diameter one can swap approximation for query time even for multiple
failures, while still retaining efficient preprocessing time and a low space requirement To
achieve this, we combine fault-tolerant trees that where introduced by Chechik et al. [13]
with the random graphs of Weimann and Yuster [43].

▶ Theorem 6. Let f be a positive integer and δ = δ(n, m) > 0 a real number. For every
undirected unweighted graph with diameter at most nδ/f /(f+1), there exists a randomized
combinatorial f -FDO that takes O(n2+δ) space, has O(2f) query time, and with high probabil-
ity Õ(fmn1+δ + f n2+(2−1/f)δ) preprocessing time. Using fast matrix multiplication instead,
one can construct the FDO w.h.p. in time Õ(fnω+δ + f n2+(2−1/f)δ).

If the diameter is in fact polylogarithmic and the number of failures is bounded by
f = o(log n/ log log n), we obtain the following corollary.

▶ Corollary 7. Let f = o(log n/ log log n). For every undirected graph with polylogarithmic
diameter, there is an f-FDO that takes n2+o(1) space and has no(1) query time. It can
be preprocessed in time mn1+o(1), or algebraically in time nω+o(1). If f is constant, the
preprocessing times are Õ(mn), resp. Õ(nω), with Õ(n2) space and Õ(1) query time.

1.1 Related Work
We briefly review previous work on distance sensitivity oracles and diameter computation.

Distance sensitivity oracles. Distance oracles for all-pairs distances were introduced in
a seminal paper by Thorup and Zwick [42]. Demetrescu et al. [19] extended the notion of
distance oracles to the fault-tolerant setting in which either an edge or a vertex of a graph can
fail (i.e., distance sensitivity oracles or DSOs). They showed that it is possible to preprocess
a directed weighted graph in Õ(mn2) time to compute a data-structure of size O(n2 log n)
capable of answering distance queries in constant time. Bernstein and Karger [8] improved
the preprocessing time to Õ(mn) and Duan and Zhang [23] reduced the space to O(n2),
which is asymptotically optimal.

D. Bilò, S. Cohen, T. Friedrich, and M. Schirneck 18:5

Duan and Pettie [22] considered the more involved case of two failures and presented an
oracle with O(n2 log3 n) size, O(log n) query time and polynomial construction time. Chechik
et al. [13] presented a DSO of size O(n2+o(1)) that supports up to o(log n/ log log n) edge
failures and guarantees a stretch of (1 + ϵ), for every constant ϵ > 0. The approach has been
recently extended to also handle vertex failures by Duan, Gu, and Ren [21].

The construction of DSOs have also been considered in the approximate regime [13].
Algebraic algorithms are known to improve the preprocessing times, if one is willing to
employ fast matrix multiplication (for e.g., see [28, 12] and the references therein).

Diameter computation. The fastest known combinatorial algorithms (up to polylogarithmic
factor) for both solving the all-pairs shortest paths (APSP) problem and the diameter problem,
are the trivial ones with Õ(mn) running time. There is extensive research on developing
faster approximate APSP algorithms [7, 18, 33], as well as faster approximation algorithms
for the diameter [14, 40]. For special classes of graphs, for example planar graphs, efficient
exact algorithms for computing the diameter are known [25].

2 Preliminaries

We let G = (V, E) denote the (possibly directed) base graph on n vertices and m edges. We
tacitly assume that G is (strongly) connected, i.e., m = Ω(n). For a graph H, we denote by
V (H) the set of its vertices, and by E(H) its edges. The (closed) neighborhood of a vertex
v ∈ V (H) is the set N [v] = {u ∈ V (H) | {v, u} ∈ E(H)} ∪ {v}. Let P be a path in H,
its length |P | is the number of its edges. For any two vertices x, y ∈ V (P), P [x..y] is the
subpath of P from x to y. For s, t ∈ V (H), the distance dH(s, t) is the minimum length of
an s-t-paths in H; if s and t are disconnected, we set dH(s, t) = +∞. We drop the subscript
when talking about the base graph G. The eccentricity of s is ecc(s, H) = maxt∈V (H) dH(s, t)
and the diameter is diam(H) = maxs∈V (H) ecc(s, H). Any graph distance can be stored in a
single machine word on O(log n) bits. Unless explicitly stated otherwise, we measure the
space complexity in the number of words. For a collection F ⊆

(
V (H)

2
)

of 2-sets of vertices
(edges or non-edges), let H − F be the graph obtained from H by removing all edges in F

(graph H is not altered if F ∩ E(H) = ∅). A replacement path PH(s, t, F) is a shortest path
from s to t in H − F . Its length dH(s, t, F) = |PH(s, t, F)| is the replacement distance. The
fault-tolerant diameter of H with respect to F is the diameter of H − F .

For a positive integer f , an f -fault-tolerant diameter oracle (f -FDO) for the graph G is
a data structure that reports, upon query F with |F | ⩽ f , the value diam(G − F). For any
σ = σ(n, m, f) ⩾ 1, such an oracle is σ-approximate, or has stretch σ, if it answers a query
F with a value D̂ such that diam(G − F) ⩽ D̂ ⩽ σ · diam(G − F). In case of a single failure,
we write FDO for 1-FDO and abbreviate F = {e} to e. An f-distance sensitivity oracle
(f -DSO) reports, upon query (s, t, F) with |F | ⩽ f , the replacement distance d(s, t, F).

2.1 (Mostly) Known FDOs for Single Edge Failures
The first folklore FDO handles single edge failures in unweighted (directed or undirected)
graphs. It has also been observed in [30]. The DSO of Bernstein and Karger [8] constructible
in Õ(mn) time and is able to report in constant time the exact distance of any pair of vertices
in the presence of a single edge failure. With this one can construct the FDO by explicitly
computing all the eccentricities ecc(v, G − e), for every vertex v and every edge e of G, in
O(n3) time. For a fixed vertex v, the m values ecc(v, G − e) can be obtained in O(n2) time
as follows. First compute a shortest paths tree Tv of G rooted at v. For each edge e that

MFCS 2021

18:6 Space-Efficient Fault-Tolerant Diameter Oracles

is not in Tv, we have that ecc(v, G − e) = ecc(v, G). For the tree-edges e in Tv, we use the
DSO to compute ecc(v, G − e) which is the maximum distance from v to any other vertex
in G − e. Therefore, ecc(v, G − e) can be computed by performing n − 1 queries, as there
are n − 1 edges in Tv, we need O(n2) time. The fault-tolerant diameter diam(G − e) is the
maximum of the ecc(v, G − e), it can be stored in O(m) space with one entry for each edge e.

The second folklore FDO can only be used for undirected edge-weighted graphs. The
FDO has stretch 2 and uses the fact that the diameter of the graph is intimately related to the
eccentricity of any vertex. For an arbitrary v, we have that ecc(v, G) ⩽ diam(G) ⩽ 2 ecc(v, G)
as, by the triangle inequality, we can bound the distance between any two vertices u, u′ ∈ V

by dG(u, u′) ⩽ dG(u, v) + dG(v, u′) ⩽ 2 ecc(v, G). The FDO again computes a shortest paths
tree T rooted at a fixed source v and stores an array of length n − 1, corresponding to the
edges of T . For every such edge e, one computes and stores 2 ecc(s, G − e). When queried
with edge e, the FDO returns the stored value or, if e is not in the tree, the value 2 ecc(s, G).
The size of this FDO is O(n).

A maybe lesser-known way of building FDOs is via spanners. For any σ > 0, we say
that a subgraph H of G is a spanner of stretch σ if, for every two vertices s, t of G, we have
dH(s, t) ⩽ σdG(s, t). For every positive integer k, it is known how to construct a spanner H

of G such that (a) H has a stretch of 2k − 1 and (b) the size of H is O(n1+1/k) [5]. Observe
that for every edge e = {u, v} that is in G but not in H, we have d(u, v, e) ⩽ 2k − 1. We
now describe how spanners can be used to construct another easy oracle for undirected
unweighted graphs whose stretch guarantee depends on both k and the inverse of diam(G).
This implies that the oracle already performs quite well for large-diameter graphs.

We construct such a spanner oracle with parameter k by first computing a spanner that
satisfies (a) and (b). Then, we associate the value diam(G − e) to each edge e in the spanner
H and build a dictionary in which we store information about the edges of the spanner
together with the corresponding associated values. Consider a query of edge e. If e ∈ E(H)
the we return the value associated with e; otherwise, we return diam(G) + 2(k − 1). The
proof of the next lemma is deferred to the full version.

▶ Lemma 8. For every positive integer k, the spanner oracle with parameter k has O(n1+1/k)
size, a constant query time, and a stretch of 1 + 2(k − 1)/ diam(G).

The result of Lemma 8 already implies the existence of sparse FDOs of o(m) size and
of stretch σ < 3/2 for sufficiently dense graphs with diameter strictly larger than 4. This
does not contradict the lower bound of Theorem 1, but allows us to conclude that strong
lower bounds on the size of FDOs for unweighted undirected graphs can only hold when the
diameter of the input graph is bounded by a small constant.

3 Single Edge Failures

First, we treat single edge failures, f = 1. In this section, we assume the base graph G to
be directed and present an (1 + ε)-approximate fault-tolerant diameter oracle with space
O(m) and O(1) query time. We give two variants, one is deterministic and combinatorial,
the other randomized and algebraic. We then show that the space requirement is optimal up
to the size of the machine word.

3.1 An (1 + ε)-approximate FDO for Single Failures
We construct here the approximate FDO, thereby proving Theorem 2. Suppose we know
for each s, t ∈ V some shortest path P (s, t) in G and additionally have access to a distance
sensitivity oracle that, for any edge e, reports in constant time the replacement distances

D. Bilò, S. Cohen, T. Friedrich, and M. Schirneck 18:7

d(s, t, e) whenever needed. Clearly, d(s, t, e) differs from the original graph distance only if e

is on P (s, t). To determine the diameters of all the graphs G − e, it is thus enough to query
the DSO only for the edges on the shortest paths, which can be done in time O(n2 · diam(G)).
We use approximation to avoid the cubic running time in case of a large diameter. For this,
we randomly sample a small set B of so-called pivots and prove that it is enough to compute
the replacement distances only between pairs from B × V , instead of all pairs of vertices.
Subsequently, we derandomize the pivot selection.

We fill in the details starting with the APSP computation in G and the preprocessing
of the DSO. The combinatorial version uses a breath-first search from every vertex and
the DSO of Bernstein and Karger [8], taking total time Õ(mn). Alternatively, compute
APSP algebraically and use the randomized DSO by Gu and Ren [28].4 APSP is computable
in time O(n2.575) on unweighted directed graphs with a variant of Zwick’s algorithm [44,
Corollary 4.5], this is in turn dominated by the O(n2.5794) preprocessing time of the DSO [28].
After these computation, the distances d(s, t), shortest paths P (s, t) in G, and the replacement
distances d(s, t, e) are available to us (w.h.p., in the randomized case) with a constant query
time per distance/path edge.

From here on out, the process for both variants is the same. Our fault-tolerant diameter
oracle also allows non-edges to be queried, for which we return the original diameter diam(G).
To account for this, we store all edges in a static dictionary of size O(m) that allows for
worst-case constant look-up times after an Õ(m) preprocessing [4, 29].5

Now fix a parameter ε > 0 for the approximation, possibly even depending on m, n.
We initialize an array D indexed by the edges of G, all its cells hold the value diam(G).
Assume first that ε · diam(G) = O(log n). For any two vertices s, t and edge e on the shortest
path P (s, t), we update D[e] to the maximum of the previous value and d(s, t, e). This
takes O(n2 diam(G)) = Õ(n2/ε) time. After all updates, the entry D[e] stores the exact
fault-tolerant diameter diam(G − e) (possibly w.h.p.). For ε · diam(G) = ω(log n), we first
give a randomized (1+ε)-approximation and later derandomize it in Section 3.2. This yields
the deterministic combinatorial algorithm of Theorem 3. The remaining use of randomness
in the algebraic variant is due to the DSO by Gu and Ren [28].

To guard for the case that the failure of e disconnects the graph, we compute all strong
bridges of G, that is, edges whose removal increases the number of strongly connected
components, in time O(m) with the algorithm by Italiano, Laura, and Santaroni [32]. For
each strong bridge e, we set D[e] = ∞. To compute the other entries, we construct the
set B ⊆ V of pivots by randomly sampling every vertex independently with probability
C(log n)/(ε diam(G)) for a sufficiently large constant C > 0. A simple calculation using
Chernoff bounds shows that |B| = Õ(n/(ε diam(G))) w.h.p. Moreover, with high probability
for all s, t ∈ V and e ∈ E such that ε diam(G) < d(s, t, e) < ∞, there exists a replacement
path from s to t that avoids e and additionally contains a pivot from B. See [27, 41] for details.
We update the entries of D in the same fashion as above, but now only use the (directed)
distance d(x, t, e) for all pivots x ∈ B and vertices t ∈ V . In the end, we add ε diam(G) to
the value in D[e]. The array D is computable in time O(m + n |B| diam(G)) = Õ(n2/ε).

4 The DSO by Gu and Ren [28] is not path-reporting; if it were, we would not have to compute APSP.
The fastest path-reporting algebraic DSO was given by Ren [38, 39] and can be constructed in time
O(n2.7233) on directed graphs, respectively in time O(n2.6865) on undirected graphs.

5 The weak non-uniformity mentioned in [29], i.e., the need of compile-time constants depending on the
word size, only holds if this size is ω(log n), which is not the case for us.

MFCS 2021

18:8 Space-Efficient Fault-Tolerant Diameter Oracles

We verify that D[e] is an (1+ε)-approximation of the fault-tolerant diameter diam(G − e).

▶ Lemma 9. We have diam(G − e) ⩽ D[e] ⩽ (1+ε) diam(G − e) w.h.p.

Proof. We can assume that G − e is strongly connected as otherwise D[e] = ∞ = diam(G − e).
The upper bound follows from D[e] = maxx∈B,t∈V d(x, t, e)+ε diam(G) ⩽ (1+ε) diam(G − e).

The main part consists of showing the lower bound D[e] ⩾ diam(G − e). The idea is
to prove the existence of a pivot x ∈ B and vertex t ∈ V whose replacement distance
underestimates the fault-tolerant diameter by at most an additive term ε diam(G), which we
offset when computing D[e]. If diam(G − e) ⩽ ε diam(G) (which can only happen for ε ⩾ 1),
the lower bound holds vacuously as we have D[e] ⩾ ε diam(G).

Let thus vertices s, t ∈ V be such that d(s, t, e) = diam(G − e) > ε diam(G). Since G − e

is strongly connected the diameter is finite and realized by some replacement path P (s, t, e).
In particular, we have |P (s, t, e)| > ε diam(G). Let y be the unique vertex on P (s, t, e) with
d(s, y, e) = ε diam(G). Recall that w.h.p. the set B hits some shortest path P ′ from s to
y that avoids e. The path P ′ is not necessarily equal to the subpath P (s, t, e)[s..y], but
they have the same length d(s, y, e). Substituting P ′ for P (s, t, e)[s..y] therefore guarantees
a replacement path from s to t that (w.h.p.) has a pivot x ∈ B on its prefix of length
ε diam(G). For notational convenience, we use P (s, t, e) to also denote this particular path.

The replacement distance from pivot x to target t satisfies d(x, t, e) = |P (s, t, e)[x..t]| =
|P (s, t, e)| − |P (s, t, e)[s..x]| ⩾ d(s, t, e) − ε diam(G). The entry D[e] is also updated using
the pivot x, whence D[e] ⩾ d(x, t, e) + ε diam(G) ⩾ d(s, t, e) = diam(G − e). ◀

3.2 Derandomization
For the randomized combinatorial FDO, we had a preprocessing time of Õ(mn + n2/ε).
The underlying APSP computation and the DSO are deterministic. We now derandomize
the approximation part in the same asymptotic running time, proving Theorem 3. In
Lemma 9, we used that the set B intersects at least one long replacement path from s to
t exactly. We argue that it is in fact enough to hit the set of all vertices with distance at
most ε diam(G) from s in each strongly connected G − e. The pivot x does not need to be
on any replacement path. The only assertion of Lemma 9 that is possibly in doubt is the
lower bound D[e] ⩾ diam(G − e). Let again s and t be such that d(s, t, e) = diam(G − e)
and let x ∈ B be a pivot with d(s, x, e) = dG − e(s, x) ⩽ ε diam(G). Whenever G − e is
strongly connected, a replacement path P (x, t, e) exists and, by the triangle inequality, we
have d(x, t, e) ⩾ d(s, t, e) − d(s, x, e) ⩾ d(s, t, e) − ε diam(G). The claim follows.

For the derandomization, we adopt the framework of Alon, Chechik and Cohen [3]. This
involves efficiently finding a small set of critical paths such that hitting them ensures to hit
each (ε diam(G))-ball in the strongly connected G − e. If the critical paths are both short
enough and few in numbers, it is then enough to compute the hitting set via the folklore
greedy algorithm. In [3], it was sufficient to give a single set of critical paths. We generalize
this to multiple sets, where the later-defined sets depend on the paths in the former.

Set ℓ = min{ε diam(G),
√

n } and let r be an arbitrary vertex in G. We compute the
in-tree Tin(r), containing the shortest paths in G leading to r, with breath-first search.
In the set P, we collect, for each vertex s with d(s, r) > ℓ, the path of Tin(r) starting in
s and having length ℓ. Let P ∈ P be a path with start vertex s and let e ∈ E(P) be
such that it is not a strong bridge. We compute the in-tree Tin,e(r) in G − e rooted in r.
Note that s has distance d(s, r, e) ⩾ d(s, r) > ℓ from the root in the tree. We add the
corresponding path to the set Pe. The original in-tree Tin(r) contains only n − 1 edges, so all

D. Bilò, S. Cohen, T. Friedrich, and M. Schirneck 18:9

trees can be computed in total time6 O(mn). Moreover, there are at most ℓ + 1 paths with
starting vertex s. In total, we thus have O(nℓ) paths each of length ℓ. A greedy algorithm
computes a hitting set B for all paths in the P and Pe. It iteratively selects the vertex
that is contained in the most yet unhit paths, it terminates in time Õ(nℓ2) = Õ(n2) and
produces a set of |B| = Õ(n/ℓ) = Õ(n/(ε diam(G)) pivots, see [3, 34]. We used the definition
ℓ = min{ε diam(G),

√
n } for both estimates. Finally, we add the root r to the set B to cover

all paths in the trees that are shorter than ℓ.

▶ Lemma 10. For each vertex s ∈ V and edge e such that G − e is strongly connected, there
exists a pivot x ∈ B with d(s, x, e) ⩽ ε diam(G).

Proof. If d(s, r) ⩽ ε diam(G), we are done. Otherwise, let P be the prefix of length ℓ of the
path from s to r in the tree Tin(r), whence P ∈ P. If P does not contain the edge e, it also
exists in G − e and the corresponding pivot x ∈ B ∩ V (P) satisfies d(s, x, e) = d(s, x) ⩽ ℓ ⩽
ε diam(G). If P contains e, then let instead P ′ ∈ Pe be the length-ℓ prefix of the path from
s to r in Tin,e(r). Again, x ∈ B ∩ V (P ′) implies d(s, x, e) ⩽ ε diam(G). ◀

3.3 Space Lower Bounds
Finally, we prove Theorem 1 thus showing that the space requirement of the FDOs in
Theorems 2 and 3 is near-optimal provided that the stretch is σ = σ(m, n) < 3/2, that is,
ε < 1/2. This even holds for the simpler task of computing the diameter in undirected graphs.
For better exposition, we first show that any diameter oracle with such a stretch requires
Ω(n2) space on at least one n-vertex graph, which is, however, only tight for dense graphs.
We then sparsify the construction to for an Ω(m) bound for graphs with m edges. Any
σ-approximate FDO solves the promise problem of distinguishing, for each edge e, whether
G − e has diameter 2 or 3.

▶ Lemma 11. There is a graph G on n vertices such that G − e has diameter 2 or 3 for any
e ∈ E. Any data structure that decides which one is the case must take Ω(n2) bits of space.

Proof. We give an incompressibility argument by encoding any binary (n/4)×(n/4) matrix
X in the fault-tolerant diameters of G. No data structure can store this in o(n2) bits. The
construction is illustrated in Figure 1a.

Without loosing generality, n is divisible by 4, we can add up to three dummy vertices
if needed. Split the vertex set equally into four groups A, B, C, D and let a1, . . . , an/4 be
an arbitrary numbering of the elements of A, same with the other groups. All groups are
made into cliques and, for all i ∈ [n/4], we make ai, bi, and ci into a triangle. This results in
matchings for the pairs (A, B), (B, C), and (A, C), respectively. We further add edges so as
to make (B, D) into a biclique. To encode the matrix X, we introduce the edge {ci, dj} if
and only if Xi,j = 1.

The graph G indeed has diameter 2 (even if X is the all-zeros matrix). Vertices ai and bj

are joined by the path (ai, aj , bj)–which by symmetry also holds for the other pairs of groups
among A, B, or C–and and the vertices ai or ci are connected to dj via the paths (ai, bi, dj)
or (ci, bi, dj), respectively. Removing any edge increases the diameter by at most 1 since for
any e = {u, v} there exists a common neighbor in w ∈ N [u] ∩ N [v]. This is clear inside the
(bi-)cliques. For the matching edges, say e = {ai, bi}, we have w = aj , j ̸= i. Finally, for
e = {ci, dj} (if it exists), we have w = bi.

6 For a single source, there are randomized algorithms known that compute the trees faster [11, 15, 26].

MFCS 2021

18:10 Space-Efficient Fault-Tolerant Diameter Oracles

X

A B

DC

n/4 n/4

n/4n/4

(a)

A

X

B

DC

√
m

√
m

√
m

√
m

R
n− 4

√
mr

b1a1

c1

(b)

Figure 1 Illustration of Lemma 11 (a) and of Lemma 12 (b). The full ellipses A, B, C, D are
cliques on the respective number of vertices, the dashed ellipse R is an independent set. The three
parallel lines stand for matchings, the two crossed lines for a biclique. Edges encoding the binary
matrix X run between C and D. Every vertex r ∈ R is connected to a1 ∈ A, b1 ∈ B, and c1 ∈ C.

We now prove that the graph G − {bi, dj} has diameter 3 if and only if the edge {ci, dj}
is not present in G, that is, iff Xi,j = 0. When arguing the diameter above, edge {bi, dj}
was only needed for the paths (ai, bi, dj) and (ci, bi, dj). Consider the neighborhoods of the
three vertices in G − {bi, dj}, N [ai] = A ∪ {ci, di}, N [ci] = C ∪ {ai, bi} ∪ {dk | Xi,k = 1},
and N [dj] = D ∪ (B\{bi}) ∪ {ck | Xk,j = 1}. If Xi,j = 1, then the neighborhoods intersect,
namely in ci, keeping the diameter at 2. If, however, Xi,j = 0, then N [ai] ∩ N [dj] = ∅ and
the diameter increases to 3. ◀

We now refine the result to give a better bound for sparse graphs. Note that a logarithmic
gap remains between Lemma 12 and Theorem 2 since we lower bound the space at Ω(m)
bits while the FDO takes this many words.

▶ Lemma 12. There is a graph G with m edges such that G − e has diameter 2 or 3 for any
edge e ∈ E. A data structure that decides which one is the case must take Ω(m) bits of space.

Proof. The main weakness of the construction in Lemma 11 is that it requires Ω(n2) edges
inside the cliques. As it turns out, this is not necessary and we can sparsify the graph G as
long as we keep its diameter at 2. Figure 1b shows the idea of the sparsification.

Let m′ be a parameter to be fixed later. We now store a binary
√

m′ ×
√

m′ matrix
X. Split the vertices into five groups, where A, B, C, D each contain

√
m′ vertices and

R the remaining n − 4
√

m′ . The edges among vertices in A through D are the same as in
Lemma 11. Each vertex in R has degree 3 and is connected to a1, b1, and c1. The graph G

has 4
(√

m′

2
)

+ 3
√

m′ + m′ + |{(i, j) | Xi,j = 1}| + 3(n − 4
√

m′) = O(m′) edges. We fix the
parameter m′ such that the total number of edges is m. If needed, we introduce additional
edges among vertices in R without affecting the result.

Note that the eccentricity of any vertex in r ∈ R is 2 (even if R is not an independent set).
Vertex ai is reached via the path (r, a1, ai), similar for the vertices in B and C, the ones in D

are reached via b1. Moreover, for any edge involving r, say {r, a1}, we have b1 ∈ N [r] ∩ N [a1].
Therefore, the proof that G has diameter 2, G − e has diameter 2 or 3, and G − {bi, dj} has
diameter 3 iff Xi,j = 0 is almost exactly as in Lemma 11. The sole difference is the case in
which the edge {b1, dj} fails since this may also increase the eccentricity of r. This is settled
by observing that the neighborhood N [r] = {r, a1, b1, c1} in G − {b1, dj} intersects N [dj] iff
X1,j = 1. To accommodate all possible matrices X, we require Ω(m′) = Ω(m) bits. ◀

D. Bilò, S. Cohen, T. Friedrich, and M. Schirneck 18:11

The same construction shows that for edge-weighted graphs there is no (2−ε)-approximate
FDO, for any ε = ε(m) > 0, with space o(m). In more detail, we choose an ε′ > 0 small
enough so that ε′ < 2ε/(1 − ε) and give weight ε′ to all matching edges as well as the edges
incident to vertices in R, all other edges are weighted 2. One can verify that diam(G) = 2+ε′

and the fault-tolerant diameter diam(G−{bi, dj}) remains at that value iff {ci, dj} is present,
it raises to 4 + ε′ otherwise. The bound on the stretch cannot be improved as shown by the
trivial FDO discussed in the introduction, which gives a 2-approximation in O(n) space.

4 Multiple Edge Failures

We now turn to multiple edge failures. Recall that in the fault-tolerant setting the maximum
number f of failures is known in advance, and stretch, space, preprocessing, and query time
usually depend on f . In this section, we first prove the following lemma. Let α = α(m, n)
denote the inverse Ackermann function.

▶ Lemma 13 (Theorem 5 with explicit logarithmic factors). For every undirected graph with
non-negative edge weights, there exists a deterministic combinatorial (f + 2)-approximate
f-FDO that takes O(fn log2n) space and has O(fmα + fn log3n) preprocessing time and
O(f2 log2n) query time. For f = 1, the size of the oracle is O(n), the preprocessing time
O(mα + n log n), and the query time is constant.

Bilò et al. [9] designed an (2f+1)-approximate single-source f -DSO. That means, the
oracle processes an undirected graph G with non-negative edge weights and a distinguished
source s, and, upon query (t, F) with |F | ⩽ f , it returns d(s, t, F). The oracle can be built
in O

(
fmα + fn log3 n

)
time, has size O(fn log2 n), and answers queries in O(f2 log2 n) time.

In principle we can modify the oracle so as, when queried with the set F , it returns twice
the eccentricity of s in the graph G − F . This would clearly allow us to construct an f -FDO
of stretch 2·(2f+1). We show that the same oracle construction, but with a better query
algorithm, allows us to develop an f -FDO of stretch f + 2.

We let w(e) denote the weight of the edge e ∈ E. The length of a path is now defined as
the sum of its edge weights; the definitions of distance and diameter are adjusted accordingly.
The oracle in [9] first computes a shortest path tree T of G rooted at the source s and uses
it to re-weight all the edges of G. The new weight function w′ assigns weight of 0 to each
edge of T and weight w′(e) = d(s, x) + w(e) + d(y, s) to any other edge e = {x, y}. When
queried with (t, F), the oracle computes a spanning forest TF of G − F w.r.t. the new weight
function w′ in O(f2 log2 n) time. Let k = |F ∩ E(T)|. The oracle replaces the k failing
edges in F ∩ E(T) with a minimum-weight set of edges in G − F w.r.t. to w′, say EF , whose
addition to T − F forms a spanning forest of G − F .7 The obtained forest TF is then used to
estimate the distance from s to t in G − F . We reuse a nice property proven in [9].

▶ Lemma 14 (Bilò et al. [9]). TF is a minimum spanning forest of G − F w.r.t. w′.

Our query algorithm works as follows. Let tree T be rooted at s and F ∩ E(T) =
{f1, . . . , fk} with k ⩽ f the edges in T that are also in F . Let T0, . . . , Tk denote the k + 1
subtrees of T − F , and ri the root of the subtree Ti. W.l.o.g., we assume r0 = s. We use

7 This is done by computing, for each unordered pair ϕ = (T ′, T ′′) of connected components of T − F ,
the minimum-weight edge w.r.t. w′, say eϕ, that has one endpoint in T ′ and the other endpoint in
T ′′. Then, the set EF is computed in O(f2) time using any time-efficient algorithm for computing a
minimum spanning tree of an auxiliary graph in which each of the connected components of T − F is
modelled by a vertex and the edge between the unordered pair ϕ = (T ′, T ′′) of T − F has a weight equal
to w′(eϕ). The authors of [9] design a data structure that is able to retrieve, for each pair ϕ = (T ′, T ′′)
of connected components of T − F , the edge eϕ in O(log2 n) time.

MFCS 2021

18:12 Space-Efficient Fault-Tolerant Diameter Oracles

f1, . . . , fk to compute the roots r1, . . . , rk in O(k) time. We then build a forest T ′ on k + 1
new vertices v0, . . . , vk, where vi represents Ti. The forest T ′ contains an edge {vi, vj} iff EF

contains an edge e with one end point in V (Ti) and the other in V (Tj). Obviously, if T ′ is not
connected, then we can simply certify that diam(G − F) = ∞. So, we assume that T ′ is a tree.
We root T ′ at v0 and denote by ei the edge that joins vi with its parent p(vi). We compute
the value ∆ = max1⩽i⩽k w′(ei) − d(s, ri) and output D̂ = f∆ + 2 · maxt∈V d(s, t). The time
needed for the query algorithm is dominated by the computation of T in time O(f2 log2 n)
as all the new operations can be performed in O(f2) time. Observe that maxt∈V d(s, t) is
independent of F and can be precomputed in time O(n).

For a single failure, f = 1, the query time can be reduced to O(1). In fact, for each
edge e of T , it is enough to precompute the minimum weight edge of E(G)\E(T), w.r.t.
weight function w′, that crosses the cut induced by T − e. This, a.k.a. the sensitivity analysis
problem of a minimum spanning tree, can be solved in O(m log α) time on a graph with m

edges [37]. We show in the remainder that D̂ is an (f + 2)-approximation of diam(G − F).
The proof of the following lemma can be found in the full version.

▶ Lemma 15. We have that diam(G − F) ⩾ ∆.

We now prove the approximation with the help of Lemma 15.

▶ Lemma 16. The value D̂ satisfies diam(G − F) ⩽ D̂ ⩽ (f + 2) diam(G − F).

Proof. Again, we only need to prove anything if T ′ is connected, which implies that TF

is connected. By Lemma 15, we have that diam(G − F) ⩾ ∆. Moreover, diam(G − F) ⩾
diam(G) ⩾ maxt∈V d(s, t). The value D̂ returned by the query algorithm satisfies D̂ ⩽
f∆ + 2 maxt∈V d(s, t) ⩽ (f + 2) diam(G − F). It remains to show that D̂ ⩾ diam(G − F).
We prove the latter by verifying that, for any two vertices x and y, D̂ ⩾ d(x, y, F) holds.

Let rx and ry be the roots of the subtrees of T − F that contain x and y, respectively.
It is possible that rx = ry. Let rp(i) denote the root of the tree of T − F that corresponds
to the parent vertex p(vi) in T ′. Consider the subgraph of TF consisting of the edges of
the paths in TF between the following pairs of vertices: (a) rp(i) and ri for every i, (b) x

and rx, (c) y and ry. The subgraph contains a path from x to y since TF is connected.
Therefore, the replacement distance d(x, y, F) is upper bounded by the total weight of
the subgraph. The path in TF between rx and x has length at most maxt∈V d(s, t) as rx

is an ancestor of x in the shortest path tree T rooted at s; same for ry and y. Finally,
for any i > 0, let ei = {xi, yi} be the edge in EF that caused the addition of the edge
(vi, p(vi)) in T ′. W.l.o.g., we assume that xi (resp., yi) is a vertex of the tree of T − F

represented by vi (resp., p(vi)) in T ′. The path from ri to rp(i) in G − F has length at most
d(ri, xi)+w(ei)+d(yi, rp(i)) ⩽ d(ri, xi)+w(ei)+d(yi, s)+d(s, ri)−d(s, ri) = w′(ei)−d(s, ri) ⩽
∆. Therefore, d(x, y, F) ⩽ k∆ + 2 maxt∈V d(s, t) ⩽ f∆ + 2 maxt∈V d(s, t) = D̂. ◀

4.1 Exact f -FDO for Low Diameter
We show that one can swap approximation for query time in low-diameter graphs, namely,
with diameter at most nδ/f /(f+1) for arbitrary δ = δ(m, n) > 0. This is summarized
in Theorem 6. The case f = 1 is solved like in Section 3.1 only that there is no need for
approximation here as the diameter is small enough to process all pairs of vertices in time
O(n2+δ). We thus assume f ⩾ 2. We adapt a space-saving technique introduced by Chechik
et al. [13]. In a bird’s-eye view, we construct a recursion tree T (s, t) of size O(nδ) for each
pair of vertices s and t. It contains all relevant replacement distances d(s, t, F) for sets F

with up to f failures. We then show how we can simulate the search for diam(G − F) in the
O(n2) trees in total time O(2f).

D. Bilò, S. Cohen, T. Friedrich, and M. Schirneck 18:13

Afek et al. [1, Theorem 1] showed that if G is undirected, then any shortest path in G − F ,
with |F |, is a concatenation of at most |F | + 1 shortest paths in G. The condition on the
diameter and |F | ⩽ f ensure that every path below has length at most (f+1)·diam(G) ⩽ nδ/f .

Assume we have access to a path-reporting f -DSO. That means, upon query (s, t, F),
the oracle either certifies that d(s, t, F) = ∞, i.e., s and t are disconnected in G −F , or
reports the replacement distance and a shortest s-t-path in G −F . The preprocessing time
of the combinatorial version is assumed to be Õ(fmn1+δ) with a Õ(fn(1−1/f)δ + |P |) =
Õ(fn(1−1/f)δ) query time w.h.p. reporting path P . Here, we used the assumption f ⩾ 2,
whence |P | ⩽ nδ/f = Õ(fn(1−1/f)δ). Alternatively, we have algebraic preprocessing in time
Õ(fnω+δ). We show how to obtain the oracle in the full version, using an idea of Weimann
and Yuster [43] with a more refined analysis of the query time.

Fix two vertices s and t. We construct the tree T (s, t) recursively. Each node in the tree
is associated with a set F ⊆

(
V
2
)

containing f ′ = |F ′| ⩽ f possible failures. We have F ′ = ∅
in the root. Upon creation, the node queries the assumed oracle with (s, t, F ′) and holds the
returned path P (s, t, F ′), if any. If f ′ = f or s and t are disconnected in G − F ′, the node is
a leaf. Otherwise, it has d(s, t, F ′) many children, one for each edge of e ∈ E(P (s, t, F ′)) of
the path. The respective child is associated with the set F ′ ∪ {e}.

The tree indeed has at least one node for every distinct replacement distance d(s, t, F)
with |F | ⩽ f . To see this, let F ′, F be two sets with F ′ ⊆ F ⊆

(
V
2
)
. Clearly, we have

d(s, t, F ′) ⩽ d(s, t, F), but d(s, t, F ′) < d(s, t, F) can only hold if F\F ′ contains an edge of
the path P (s, t, F ′) in the node associated with F ′. The fan-out of each node is at most nδ/f ,
the height of the tree is f . For all s, t ∈ V , the trees thus have O(n2+δ) nodes in total and
can be constructed with that many queries to the f -DSO in time Õ(fn2+(2−1/f)δ).

Consider the following naive algorithm to handle a query to the f -FDO for the fault-
tolerant diameter diam(G − F). Each tree T (s, t) is searched individually starting in the
root. The processing of a node depends on the associated set F ′. If it is a leaf or the set
F\F ′ is disjoint from the replacement path P (s, t, F ′), then we return the length d(s, t, F ′)
of the path; otherwise, we recurse on all children associated with F ′ ∪ {e} for all edges
e ∈ (F\F ′) ∩ E(P (s, t, F ′)). By the argument as above, the maximum over all reported
distances is indeed maxs,t∈V ;F ′⊆F d(s, t, F ′) = diam(G − F). This approach can be improved
significantly by aggregating the values {d(s, t, F ′)}s,t∈V already at construction.

Observe that we never query the underlying f -DSO with a set F ′ that contains non-
edges. We prepare a hash table H whose entries are indexed by subsets of E of size at
most f . For every query (s, t, F ′) we compare the returned replacement distance with the
value H[F ′]. If no such entry exists, we initialize it with d(s, t, F ′); else, we update it to
max{H[F ′], d(s, t, F ′)}. The final table has size O(n2+δ) and we discard the trees. The table
H is constructible w.h.p. in time O(n2+δ), guaranteeing constant query time [20, 36]. However,
to simulate the naive algorithm for the query F to the f -FDO, we have to check H[F ′] for
all O(2f) subsets F ′ ⊆ F as we do not know which ones were used during construction.

4.2 Space Lower Bound
We conclude with the space lower bound of Theorem 4. It rules out any finite stretch in
o(fn) space for an arbitrary number f of failures. We use the fact that an f -FDO with finite
stretch is able to decide whether the edges in F are a cut-set of the graph.

Assume for now that f is even. Let k be the largest integer such that fk + 1 ⩽ n. We
construct a graph G as follows. It has vertices c, v1, . . . , vfk as well as n − fk − 1 auxiliary
vertices. Define Ei = {{vi, vj} | 1 ⩽ |i − j| ⩽ f/2}. The edge set of G is

⋃fk
i=1 Ei together

with all possible edges {c, u}, including to the auxiliaries. In other words, G consists of a star

MFCS 2021

18:14 Space-Efficient Fault-Tolerant Diameter Oracles

centered at c with n − 1 leaves, and leaves vi, vj are joined by an edge iff their indices have
difference at most f/2. Let set G contain all spanning subgraphs of G that retain at least all
star edges incident to c. Since |Ei| = f , there are |G| = 2(f−1)fk/2 = 2Ω(fn) such subgraphs.

Let H be any subgraph in G. For i ̸= j with |i − j| ⩽ f/2, define the set Fi,j =
(Ei\{{vi, vj}}) ∪ {{c, vi}}. Note that Fi,j may contain non-edges. We have |Fi,j | = f and
evidently {vi, vj} is present in H iff H − Fi,j is connected. Any two f -FDOs for graphs in G
thus differ in at least one bit. For odd values f ⩾ 3, we emulate this using f − 1 failures.

For the remaining case f = 1, we use a different construction. W.l.o.g., n is even,
connecting a single excess vertex to some other vertex in the graph is immaterial. The graph
G contains two parallel paths P1 and P2, each on n/2 vertices, respectively numbered from 1
to n/2. The graph also contains a matching M in which the i-th vertex of P1 is matched
with the i-th vertex of P2. Let G be the set of all spanning subgraphs that have at least
all the edges of P1 and M . We have |G| = 2(n/2)−1 = 2Ω(n). Let H ∈ G and define ei, with
i < n/2, be the edge of P1 between the i-th and (i+1)-th vertices. The corresponding edge
of P2 is present in H if and only H − ei is connected.

References
1 Yehuda Afek, Anat Bremler-Barr, Haim Kaplan, Edith Cohen, and Michael Merritt. Restora-

tion by Path Concatenation: Fast Recovery of MPLS Paths. Distributed Computing, 15:273–283,
2002. doi:10.1007/s00446-002-0080-6.

2 Josh Alman and Virginia Vassilevska Williams. A Refined Laser Method and Faster Matrix
Multiplication. In Proceedings of the 32nd Symposium on Discrete Algorithms (SODA), pages
522–539, 2021. doi:10.1137/1.9781611976465.32.

3 Noga Alon, Shiri Chechik, and Sarel Cohen. Deterministic Combinatorial Replacement Paths
and Distance Sensitivity Oracles. In Proceedings of the 46th International Colloquium on
Automata, Languages, and Programming, (ICALP), pages 12:1–12:14, 2019. doi:10.4230/
LIPIcs.ICALP.2019.12.

4 Noga Alon and Moni Naor. Derandomization, Witnesses for Boolean Matrix Multiplication
and Construction of Perfect Hash Functions. Algorithmica, 16:434–449, 1996. doi:10.1007/
BF01940874.

5 Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On Sparse
Spanners of Weighted Graphs. Discrete and Computational Geometry, 9:81–100, 1993. doi:
10.1007/BF02189308.

6 Bertie Ancona, Monika Henzinger, Liam Roditty, Virginia Vassilevska Williams, and Nicole
Wein. Algorithms and Hardness for Diameter in Dynamic Graphs. In Proceedings of the
46th International Colloquium on Automata, Languages, and Programming (ICALP), pages
13:1–13:14, 2019. doi:10.4230/LIPIcs.ICALP.2019.13.

7 Surender Baswana and Telikepalli Kavitha. Faster Algorithms for All-pairs Approximate
Shortest Paths in Undirected Graphs. SIAM Journal on Computing, 39:2865–2896, 2010.
doi:10.1137/080737174.

8 Aaron Bernstein and David R. Karger. A Nearly Optimal Oracle for Avoiding Failed Vertices
and Edges. In Proceedings of the 41st Symposium on Theory of Computing (STOC), pages
101–110, 2009. doi:10.1145/1536414.1536431.

9 Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Multiple-Edge-Fault-Tolerant
Approximate Shortest-Path Trees. In Proceedings of the 33rd Symposium on Theoretical Aspects
of Computer Science (STACS), pages 18:1–18:14, 2016. doi:10.4230/LIPIcs.STACS.2016.18.

10 Édouard Bonnet. 4 vs 7 Sparse Undirected Unweighted Diameter is SETH-hard at Time n4/3.
In Proceedings of 48th International Colloquium on Automata, Languages, and Programming,
(ICALP), 2021. To appear.

https://doi.org/10.1007/s00446-002-0080-6
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.4230/LIPIcs.ICALP.2019.12
https://doi.org/10.4230/LIPIcs.ICALP.2019.12
https://doi.org/10.1007/BF01940874
https://doi.org/10.1007/BF01940874
https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/BF02189308
https://doi.org/10.4230/LIPIcs.ICALP.2019.13
https://doi.org/10.1137/080737174
https://doi.org/10.1145/1536414.1536431
https://doi.org/10.4230/LIPIcs.STACS.2016.18

D. Bilò, S. Cohen, T. Friedrich, and M. Schirneck 18:15

11 Shiri Chechik and Sarel Cohen. Near Optimal Algorithms for the Single Source Replacement
Paths Problem. In Proceedings of the 30th Symposium on Discrete Algorithms (SODA), pages
2090–2109, 2019. doi:10.1137/1.9781611975482.126.

12 Shiri Chechik and Sarel Cohen. Distance Sensitivity Oracles with Subcubic Preprocessing
Time and Fast Query Time. In Proccedings of the 52nd Symposium on Theory of Computing
(STOC), pages 1375–1388, 2020. doi:10.1145/3357713.3384253.

13 Shiri Chechik, Sarel Cohen, Amos Fiat, and Haim Kaplan. (1 + ϵ)-Approximate f -Sensitive
Distance Oracles. In Proceedings of the 28th Symposium on Discrete Algorithms (SODA),
pages 1479–1496, 2017. doi:10.1137/1.9781611974782.96.

14 Shiri Chechik, Daniel H. Larkin, Liam Roditty, Grant Schoenebeck, Robert E. Tarjan, and
Virginia Vassilevska Williams. Better Approximation Algorithms for the Graph Diameter. In
Proceedings of the 25th Symposium on Discrete Algorithms (SODA), pages 1041–1052, 2014.
doi:10.1137/1.9781611973402.78.

15 Shiri Chechik and Ofer Magen. Near Optimal Algorithm for the Directed Single Source
Replacement Paths Problem. In Proceedings of the 47th International Colloquium on Automata,
Languages, and Programming (ICALP), pages 81:1–81:17, 2020. doi:10.4230/LIPIcs.ICALP.
2020.81.

16 Keerti Choudhary and Omer Gold. Extremal Distances in Directed Graphs: Tight Spanners
and Near-Optimal Approximation Algorithms. In Proceedings of the 31st Symposium on
Discrete Algorithms (SODA), pages 495–514, 2020. doi:10.1137/1.9781611975994.30.

17 Fan Chung and Linyuan Lu. The Average Distances in Random Graphs with Given Expected
Degrees. Proceedings of the National Academy of Sciences, 99:15879–15882, 2002. doi:
10.1073/pnas.252631999.

18 Edith Cohen and Uri Zwick. All-Pairs Small-Stretch Paths. Journal of Algorithms, 38:335–353,
2001. doi:10.1006/jagm.2000.1117.

19 Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ramachandran.
Oracles for Distances Avoiding a Failed Node or Link. SIAM Journal on Computing, 37:1299–
1318, 2008. doi:10.1137/S0097539705429847.

20 Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide, Hans
Rohnert, and Robert E. Tarjan. Dynamic Perfect Hashing: Upper and Lower Bounds. SIAM
Journal on Computing, 23:738–761, 1994. doi:10.1137/S0097539791194094.

21 Ran Duan, Yong Gu, and Hanlin Ren. Approximate Distance Oracles Subject to Multiple
Vertex Failures. In PProceedings of the 32nd Symposium on Discrete Algorithms (SODA),
pages 2497–2516, 2021. doi:10.1137/1.9781611976465.148.

22 Ran Duan and Seth Pettie. Dual-Failure Distance and Connectivity Oracles. In Proceedings
of the 20th Symposium on Discrete Algorithms (SODA), pages 506–515, 2009. URL: https:
//dl.acm.org/citation.cfm?id=1496770.1496826.

23 Ran Duan and Tianyi Zhang. Improved Distance Sensitivity Oracles via Tree Partitioning. In
Proceedings of the 15th Algorithms and Data Structures Symposium (WADS), pages 349–360,
2017. doi:10.1007/978-3-319-62127-2_30.

24 Tobias Friedrich and Anton Krohmer. On the Diameter of Hyperbolic Random Graphs. SIAM
Journal on Discrete Mathematics, 32:1314–1334, 2018.

25 Pawel Gawrychowski, Haim Kaplan, Shay Mozes, Micha Sharir, and Oren Weimann. Voronoi
Diagrams on Planar Graphs, and Computing the Diameter in Deterministic Õ(n5/3) Time.
In Proceedings of the 29th Symposium on Discrete Algorithms (SODA), pages 495–514, 2018.
doi:10.1137/1.9781611975031.33.

26 Fabrizio Grandoni and Virginia Vassilevska Williams. Improved Distance Sensitivity Oracles via
Fast Single-Source Replacement Paths. In Proceedings of the 53rd Symposium on Foundations
of Computer Science (FOCS), pages 748–757, 2012. doi:10.1109/FOCS.2012.17.

27 Fabrizio Grandoni and Virginia Vassilevska Williams. Faster Replacement Paths and Distance
Sensitivity Oracles. ACM Transaction on Algorithms, 16:15:1–15:25, 2020. doi:10.1145/
3365835.

MFCS 2021

https://doi.org/10.1137/1.9781611975482.126
https://doi.org/10.1145/3357713.3384253
https://doi.org/10.1137/1.9781611974782.96
https://doi.org/10.1137/1.9781611973402.78
https://doi.org/10.4230/LIPIcs.ICALP.2020.81
https://doi.org/10.4230/LIPIcs.ICALP.2020.81
https://doi.org/10.1137/1.9781611975994.30
https://doi.org/10.1073/pnas.252631999
https://doi.org/10.1073/pnas.252631999
https://doi.org/10.1006/jagm.2000.1117
https://doi.org/10.1137/S0097539705429847
https://doi.org/10.1137/S0097539791194094
https://doi.org/10.1137/1.9781611976465.148
https://dl.acm.org/citation.cfm?id=1496770.1496826
https://dl.acm.org/citation.cfm?id=1496770.1496826
https://doi.org/10.1007/978-3-319-62127-2_30
https://doi.org/10.1137/1.9781611975031.33
https://doi.org/10.1109/FOCS.2012.17
https://doi.org/10.1145/3365835
https://doi.org/10.1145/3365835

18:16 Space-Efficient Fault-Tolerant Diameter Oracles

28 Yong Gu and Hanlin Ren. Constructing a Distance Sensitivity Oracle in O(n2.5794M) Time. In
Proceedings of the 48th International Colloquium on Automata, Languages, and Programming
(ICALP), 2021. To appear.

29 Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh. Deterministic Dictionaries. Journal
of Algorithms, 41:69–85, 2001. doi:10.1006/jagm.2001.1171.

30 Monika Henzinger, Andrea Lincoln, Stefan Neumann, and Virginia Vassilevska Williams.
Conditional Hardness for Sensitivity Problems. In Proceedings of the 8th Conference on
Innovations in Theoretical Computer Science (ITCS), pages 26:1–26:31, 2017. doi:10.4230/
LIPIcs.ITCS.2017.26.

31 Remco van der Hofstad. Random Graphs and Complex Networks, volume 1 of Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge,
UK, 2016. doi:10.1017/9781316779422.

32 Giuseppe F. Italiano, Luigi Laura, and Federico Santaroni. Finding Strong Bridges and
Strong Articulation Points in Linear Time. Theoretical Computer Science, 447:74–84, 2012.
doi:10.1016/j.tcs.2011.11.011.

33 Telikepalli Kavitha. Faster Algorithms for All-Pairs Small Stretch Distances in Weighted
Graphs. Algorithmica, 63:224–245, 2012. doi:10.1007/s00453-011-9529-y.

34 Valerie King. Fully Dynamic Algorithms for Maintaining All-Pairs Shortest Paths and
Transitive Closure in Digraphs. In Proceedings of the 40th Symposium on Foundations of
Computer Science (FOCS), pages 81–91, 1999. doi:10.1109/SFFCS.1999.814580.

35 Jon M. Kleinberg. Navigation in a Small World. Nature, 406:845–845, 2000. doi:10.1038/
35022643.

36 Rasmus Pagh and Flemming Friche Rodler. Cuckoo Hashing. Journal of Algorithms, 51:122–
144, 2004. doi:10.1016/j.jalgor.2003.12.002.

37 Seth Pettie. Sensitivity Analysis of Minimum Spanning Trees in Sub-Inverse-Ackermann Time.
Journal of Graph Algorithms and Applications, 19:375–391, 2015. doi:10.7155/jgaa.00365.

38 Hanlin Ren. Improved Distance Sensitivity Oracles with Subcubic Preprocessing Time. In
Proceedings of the 28th European Symposium on Algorithms (ESA), pages 79:1–79:13, 2020.
doi:10.4230/LIPIcs.ESA.2020.79.

39 Hanlin Ren. Improved Distance Sensitivity Oracles with Subcubic Preprocessing Time. CoRR,
abs/2007.11495, 2020. ArXiv preprint. Full version of [38]. arXiv:2007.11495.

40 Liam Roditty. Approximating the Diameter. In Ming-Yang Kao, editor, Encyclopedia
of Algorithms, pages 116–117. Springer, New York City, NY, USA, 2016. doi:10.1007/
978-1-4939-2864-4_566.

41 Liam Roditty and Uri Zwick. Replacement Paths and k Simple Shortest Paths in Unweighted
Directed Graphs. ACM Transaction on Algorithms, 8:33:1–33:11, 2012. doi:10.1145/2344422.
2344423.

42 Mikkel Thorup and Uri Zwick. Approximate Distance Oracles. In Proceedings on 33rd
Symposium on Theory of Computing (STOC), pages 183–192, 2001. doi:10.1145/380752.
380798.

43 Oren Weimann and Raphael Yuster. Replacement Paths and Distance Sensitivity Oracles
via Fast Matrix Multiplication. ACM Transactions on Algorithms, 9:14:1–14:13, 2013. doi:
10.1145/2438645.2438646.

44 Uri Zwick. All Pairs Shortest Paths Using Bridging Sets and Rectangular Matrix Multiplication.
Journal of the ACM, 49:289–317, 2002. doi:10.1145/567112.567114.

https://doi.org/10.1006/jagm.2001.1171
https://doi.org/10.4230/LIPIcs.ITCS.2017.26
https://doi.org/10.4230/LIPIcs.ITCS.2017.26
https://doi.org/10.1017/9781316779422
https://doi.org/10.1016/j.tcs.2011.11.011
https://doi.org/10.1007/s00453-011-9529-y
https://doi.org/10.1109/SFFCS.1999.814580
https://doi.org/10.1038/35022643
https://doi.org/10.1038/35022643
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.7155/jgaa.00365
https://doi.org/10.4230/LIPIcs.ESA.2020.79
http://arxiv.org/abs/2007.11495
https://doi.org/10.1007/978-1-4939-2864-4_566
https://doi.org/10.1007/978-1-4939-2864-4_566
https://doi.org/10.1145/2344422.2344423
https://doi.org/10.1145/2344422.2344423
https://doi.org/10.1145/380752.380798
https://doi.org/10.1145/380752.380798
https://doi.org/10.1145/2438645.2438646
https://doi.org/10.1145/2438645.2438646
https://doi.org/10.1145/567112.567114

	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 (Mostly) Known FDOs for Single Edge Failures

	3 Single Edge Failures
	3.1 An (1+epsilon)-approximate FDO for Single Failures
	3.2 Derandomization
	3.3 Space Lower Bounds

	4 Multiple Edge Failures
	4.1 Exact f-FDO for Low Diameter
	4.2 Space Lower Bound

