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ABSTRACT. An 𝑓 -edge fault-tolerant distance sensitive oracle ( 𝑓 -DSO) with stretch 𝜎 ⩾ 1 is a
data structure that preprocesses a given undirected, unweighted graph 𝐺 with 𝑛 vertices and 𝑚
edges, and a positive integer 𝑓 . When queried with a pair of vertices 𝑠, 𝑡 and a set 𝐹 of at most 𝑓
edges, it returns a 𝜎-approximation of the 𝑠-𝑡-distance in 𝐺 − 𝐹.

We study 𝑓 -DSOs that take subquadratic space. Thorup and Zwick [JACM 2005] showed
that this is only possible for 𝜎 ⩾ 3. We present, for any constant 𝑓 ⩾ 1 and 𝛼 ∈ (0, 1

2), and any
𝜀 > 0, a randomized 𝑓 -DSO with stretch 3+𝜀 that w.h.p. takes𝑂(𝑛2− 𝛼

𝑓 +1 ) ·𝑂(log 𝑛/𝜀) 𝑓 +2 space and
has an 𝑂(𝑛𝛼/𝜀2) query time. The time to build the oracle is 𝑂(𝑚𝑛2− 𝛼

𝑓 +1 ) · 𝑂(log 𝑛/𝜀) 𝑓 +1. We also
give an improved construction for graphs with diameter at most 𝐷. For any positive integer 𝑘,
we devise an 𝑓 -DSO with stretch 2𝑘 − 1 that w.h.p. takes 𝑂(𝐷 𝑓 +𝑜(1)𝑛1+1/𝑘) space and has 𝑂(𝐷𝑜(1))
query time, with a preprocessing time of 𝑂(𝐷 𝑓 +𝑜(1)𝑚𝑛1/𝑘).
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Chechik, Cohen, Fiat, and Kaplan [SODA 2017] devised an 𝑓 -DSO with stretch 1+𝜀 and
preprocessing time 𝑂(𝑛5+𝑜(1)/𝜀 𝑓 ), albeit with a super-quadratic space requirement. We show
how to reduce their preprocessing time to 𝑂(𝑚𝑛2+𝑜(1)/𝜀 𝑓 ).

1. Introduction

Distance Oracles (DOs) are fundamental data structures that store information about the dis-
tances of an input graph 𝐺 = (𝑉, 𝐸).1 These oracles are used in applications where one cannot
afford to store the entire input, but still wants to quickly retrieve the graph distances upon
query. Therefore, DOs should provide reasonable trade-offs between space consumption, query
time, and stretch, that is, the quality of the estimated distance.

We are interested in the design of DOs that additionally can tolerate multiple failures
of edges in 𝐺. An 𝑓 -edge fault-tolerant distance sensitivity oracles ( 𝑓 -DSO) is able to report an
estimate 𝑑𝐺−𝐹 (𝑠, 𝑡) of the distance 𝑑𝐺−𝐹 (𝑠, 𝑡) between 𝑠 and 𝑡 in the graph 𝐺 − 𝐹, where 𝐹 ⊆ 𝐸 is
a set of at most 𝑓 failing edges, when queried with the triple (𝑠, 𝑡, 𝐹). The parameter 𝑓 is the
sensitivity of the DSO. We say that the stretch of the 𝑓 -DSO is 𝜎 ⩾ 1 if 𝑑𝐺−𝐹 (𝑠, 𝑡) ⩽ 𝑑𝐺−𝐹 (𝑠, 𝑡) ⩽
𝜎 · 𝑑𝐺−𝐹 (𝑠, 𝑡) holds for every query (𝑠, 𝑡, 𝐹).

Several 𝑓 -DSOs with different size-stretch-time trade-offs have been proposed in the last
decades. Some of them can only deal with a very small number 𝑓 ∈ {1, 2} of failures [7, 10,
9, 14, 19, 24, 25, 26, 29, 6, 35]. In the following, we focus on 𝑓 -DSOs that deal with multiple
failures 𝑓 ⩾ 3. The randomized 𝑓 -DSO of Weimann and Yuster [38] computes exact distances
w.h.p.2 and gives adjustable trade-offs depending on some parameter 𝛼 ∈ (0, 1). More precisely,
the data structure can be built in 𝑂(𝑚𝑛2−𝛼) time, has a query time of 𝑂(𝑛2−2(1−𝛼)/ 𝑓 ), and uses
𝑂(𝑛3−𝛼) space.3 For any constant 𝑓 , the 𝑓 -DSO of Duan and Ren [27] requires 𝑂( 𝑓 𝑛4) space
and returns exact distances in 𝑓 𝑂( 𝑓 ) query time, but the preprocessing algorithm takes 𝑛Ω( 𝑓 )

time. The 𝑓 -DSO of Chechik, Cohen, Fiat, and Kaplan [20] can handle up to 𝑓 = 𝑜(log 𝑛/log log 𝑛)
failures but has a stretch of 1 + 𝜀, for any approximation parameter 𝜀 ⩾ 1/𝑛. In turn, the oracle
is more compact requiring 𝑂𝜀(𝑛2+𝑜(1) log𝑊) space,4 where𝑊 is the weight of the heaviest edge
of 𝐺, has query time 𝑂𝜀( 𝑓 5 log 𝑛 log log𝑊), and can be built in 𝑂𝜀(𝑛5+𝑜(1) log𝑊) preprocessing
time. Note that the aforementioned 𝑓 -DSOs all have a super-quadratic space requirement,
that is, they take up more space than the original input graph, which is prohibitive in settings
where we cannot even afford to store 𝐺. The 𝑓 -DSO of Chechik, Langberg, Peleg, and Roditty [21]
addresses this issue with a space requirement of𝑂( 𝑓 𝑘𝑛1+1/𝑘 log(𝑛𝑊)), where 𝑘 ⩾ 1 is an integer

1 Throughout, we assume the graph 𝐺 to be undirected, unweighted, have 𝑛 vertices, and 𝑚 edges.

2 An event occurs with high probability (w.h.p.) if it has probability at least 1 − 𝑛−𝑐 for some constant 𝑐 > 0.

3 The space is measured in the number of machine words on 𝑂(log 𝑛) bits.

4 For any positive function 𝑔 of the input and parameters, we use 𝑂(𝑔) to denote 𝑂(𝑔 · polylog(𝑛)), and 𝑂𝜀 (𝑔) for
𝑂(𝑔 · poly(1/𝜀)). 𝑂𝜀 (𝑔) combines the two.
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parameter. Their data structure has a fast query time of 𝑂( |𝐹 | log log 𝑑𝐺−𝐹 (𝑠, 𝑡)) but guarantees
only a stretch of (8𝑘 − 2) ( 𝑓 + 1), that is, depending on the sensitivity 𝑓 .

Another way to provide approximate pairwise replacement distances under edge failures
is that of fault-tolerant spanners [32]. An ( 𝑓 -edge) fault-tolerant 𝜎-spanner is a subgraph 𝐻 of 𝐺
such that 𝑑𝐻−𝐹 (𝑠, 𝑡) ⩽ 𝜎 · 𝑑𝐺−𝐹 (𝑠, 𝑡), for every triple (𝑠, 𝑡, 𝐹), with 𝑠, 𝑡 ∈ 𝑉 and 𝐹 ⊆ 𝐸, |𝐹 | ⩽ 𝑓 .
There is a simple algorithm by Chechik, Langberg, Peleg, and Roditty [22] that computes, for
any positive integer 𝑘, a fault-tolerant (2𝑘−1)-spanner with 𝑂( 𝑓 𝑛1+1/𝑘) edges. Constructions
by Bodwin, Dinitz, and Robelle [16, 17] recently reduced the size to 𝑓 1/2𝑛1+1/𝑘 · poly(𝑘) for
even 𝑘, and 𝑓 1/2−1/(2𝑘)𝑛1+1/𝑘 · poly(𝑘) for odd 𝑘. They also showed an almost matching lower
bound of Ω( 𝑓 1/2−1/(2𝑘)𝑛1+1/𝑘 + 𝑓 𝑛) for 𝑘 > 2, and Ω( 𝑓 1/2𝑛3/2) for 𝑘 = 2, assuming the Erdős girth
conjecture [28]. The space is also the main problem with this approach as it translates to a high
query time. Currently, the most efficient way to retrieve the approximate distance between a
given pair of vertices is to compute the single-source distance from one of the endpoint taking
at least linear in the size of the spanner.

All the results above for multiple failures either require Ω(𝑛2) space, have a stretch
depending on 𝑓 , or superlinear query time. If one wants a truly constant stretch and fast query
time simultaneously, one currently has to pay Ω(𝑛2) space. Thorup and Zwick [37] showed that,
even when not supporting a single failure, breaking the quadratic barrier is impossible for
directed graphs; and for undirected graphs this requires a stretch of at least 3. In this paper, we
discuss the case of unweighted graphs and constant sensitivity. We give a subquadratic-space
DSO with near-optimal stretch 3 + 𝜀 and an arbitrarily small polynomial query time.

THEOREM 1.1. Let 𝑓 ⩾ 2 be an integer constant and 0 < 𝛼 < 1/2. For any undirected, unweighted
graph 𝐺 with unique shortest paths and any 𝜀 = 𝜀(𝑚, 𝑛, 𝑓 ) > 0, there is a (3+𝜀)-approximate
randomized 𝑓 -DSO for𝐺 that w.h.p. takes space𝑂(𝑛2− 𝛼

𝑓 +1 ) ·𝑂(log 𝑛/𝜀) 𝑓 +2, has query time𝑂(𝑛𝛼/𝜀2),
and preprocessing time 𝑂(𝑚𝑛2− 𝛼

𝑓 +1 ) · 𝑂(log 𝑛/𝜀) 𝑓 +1.

Note that the literature on 𝑓 -DSOs generally assumes that the only valid queries to the
oracle are triples (𝑠, 𝑡, 𝐹) where 𝐹 ⊆ 𝐸, |𝐹 | ⩽ 𝑓 , is a set of edges actually present in 𝐺. Verifying
whether a given query is valid requires Ω(𝑛2) space for dense graphs. This would make the
goal of a subquadratic-space 𝑓 -DSO impossible. However, our query algorithm never uses the
assumption 𝐹 ⊆ 𝐸. This allows it to process any triplet (𝑠, 𝑡, 𝐹) where 𝐹 ⊆

(𝑉
2
)

is a set of at most
𝑓 pairs of vertices. It then returns the approximate distance for the valid query (𝑠, 𝑡, 𝐹 ∩ 𝐸).5

The assumption in Theorem 1.1 of shortest paths being unique in the base graph 𝐺 can
be achieved w.h.p. by randomly perturbing the edge weights of the input, while keeping the
characteristics of an essentially unweighted graph. For an unweighted graph, this results in
edge weights of 1 ± 𝑜(1/𝑛) not affecting the graph distances. This is a sufficient alternative

5 See Lemmas 4.2 and 5.8 for the technical details.
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condition in all places of the paper where we assume 𝐺 to be unweighted. The change on the
preprocessing time is negligible. Computing all-pairs shortest paths via Dijkstra’s algorithm
from every vertex of a weighted graph takes time 𝑂(𝑚𝑛), while using breath-first searches in
an unweighted graph takes time 𝑂(𝑚𝑛). As an alternative, we can also precompute a set of
unique paths via so-called lexicographic perturbation [18] in time 𝑂(𝑚𝑛 + 𝑛2 log2 𝑛).

Very recently, Bilò, Choudhary, Cohen, Friedrich, Krogmann, and Schirneck [12] addressed
the same problem as we do in this work. Their setting is more general in that they obtain an
𝑓 -DSO for graphs with edge weights that are non-negative and polynomially bounded, and
support a sensitivity of 𝑓 = 𝑜(log 𝑛/log log 𝑛). For any integer 𝑘 ⩾ 2 and constant 0 < 𝛼 < 1
their construction achieves a stretch of 2𝑘 − 1 with space 𝑂(𝑛1+ 1

𝑘+𝛼+𝑜(1)) and an 𝑂(𝑛1+ 1
𝑘−

𝛼
𝑘 ( 𝑓 +1) )

query time. In comparison, their space requirement is smaller for the price of a query time that
is always at least linear (albeit smaller than running a single-source shortest path algorithm on
a spanner). The construction by Bilò et al. [12] also differentiates between long and short paths,
which is common for fault-tolerant data structures, and employs the distance oracle of Thorup
and Zwick [37]. Besides that, they use techniques that are different from ours.

In order to prove Theorem 1.1, we develop several new ideas. For the remainder of this
section, we highlight the novelties. A more detailed overview can be found in Section 2.

Tree Sampling for Short Paths. It is a common approach in the design of fault-tolerant data
structures to first give a solution for short paths and then combine them into one for all distances,
see [19, 31, 29, 6, 35, 38]. We also focus first on 𝑓 -DSOs for short paths. Let 𝐿 be the cut-off
parameter.6 We say a path is short if it has at most 𝐿 edges. An 𝑓 -DSO for short paths only needs
to report the correct answer for a query (𝑠, 𝑡, 𝐹) if 𝐺 − 𝐹 contains a shortest path from 𝑠 to 𝑡
with at most 𝐿 edges. Designing such an oracle with good query-space-preprocessing trade-offs
is the first step towards improving general 𝑓 -DSOs. Let 𝑑⩽𝐿𝐺−𝐹 (𝑠, 𝑡) be the minimum length over
all 𝑠-𝑡-paths in 𝐺 − 𝐹 with at most 𝐿 edges; if there are none, then 𝑑⩽𝐿𝐺−𝐹 (𝑠, 𝑡) = +∞. Note that
𝑑⩽𝐿𝐺−𝐹 (𝑠, 𝑡) = +∞may hold for pairs (𝑠, 𝑡) that are connected in 𝐺 − 𝐹.

THEOREM 1.2. Let 𝑓 , 𝑘 ⩾ 1 be integer constants.7 There exists a randomized data structure
that, when given an undirected, unweighted graph 𝐺 = (𝑉, 𝐸), and a positive integer 𝐿 (possibly
dependent on 𝑛 and 𝑚), preprocesses 𝐺 and answers queries (𝑠, 𝑡, 𝐹) for vertices 𝑠, 𝑡 ∈ 𝑉 and
sets of edges 𝐹 ⊆ 𝐸 with |𝐹 | ⩽ 𝑓 . W.h.p. over all queries, the returned value 𝑑⩽𝐿(𝑠, 𝑡, 𝐹) satisfies
𝑑𝐺−𝐹 (𝑠, 𝑡) ⩽ 𝑑⩽𝐿(𝑠, 𝑡, 𝐹) ⩽ (2𝑘−1) · 𝑑⩽𝐿𝐺−𝐹 (𝑠, 𝑡, 𝐹). The data structure takes space 𝑂(𝐿 𝑓 +𝑜(1) 𝑛1+1/𝑘),
has query time 𝑂(𝐿𝑜(1)), and preprocessing time 𝑂(𝐿 𝑓 +𝑜(1)𝑚𝑛1/𝑘).

We compare Theorem 1.2 with previous work on 𝑓 -DSOs for short paths. Weimann and
Yuster [38] presented a construction with 𝑂(𝐿 𝑓𝑚𝑛) preprocessing time, 𝑂(𝐿 𝑓 𝑛2) space, and

6 The cut-off point will eventually turn out to be 𝐿 = 𝑛𝛼/( 𝑓 +1) , where 𝛼 ∈ (0, 1
2 ) is the parameter from Theorem 1.1.

7 In principle, 𝑘 could depend on 𝑛 or 𝑚, but for 𝑘 = Ω(log 𝑛) we do not get further space improvements.
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𝑂(𝐿 𝑓 ) query time. It laid the foundation for many subsequent works, see [5, 15, 13, 31, 35].
When using the fault-tolerant trees of Chechik et al. [20], one can reduce the query time of the
oracle to 𝑂( 𝑓 2). However, storing all of these fault-tolerant trees still requires Ω(𝐿 𝑓 𝑛2) space.
For small enough 𝐿, sub-quadratic space suffices for our data structure, while still providing a
better query time than the oracle by Weimann and Yuster [38].

We extend their sampling technique [38] in order to prove Theorem 1.2. The technique
consists of first constructing 𝑂(𝐿 𝑓 ) copies of 𝐺 and then, in each one, remove edges with
probability 1/𝐿. One can show that w.h.p. each short replacement path survives in one of the
copies, where a replacement path is the respective shortest path after at most 𝑓 edge failures.
Instead of having all those graphs be independent of each other, we develop hierarchical tree
sampling. This allows us to quickly find the copies that are relevant for a given query, reducing
the query time to𝑂(𝐿𝑜(1)). We further sparsify the resulting graphs for a better space complexity.

From Theorem 1.2, we immediately get an 𝑓 -DSO for graphs with bounded diameter. Afek,
Bremler-Barr, Kaplan, Cohen, and Merritt [2] proved that for undirected, unweighted graphs
𝐺 any shortest path in 𝐺 − 𝐹 is a concatenation of up to |𝐹 | + 1 shortest paths in 𝐺. If 𝐺 has
diameter at most 𝐷 and |𝐹 | ⩽ 𝑓 , the diameter of 𝐺 − 𝐹 is thus bounded by ( 𝑓 +1)𝐷.

COROLLARY 1.3. Let 𝑓 , 𝑘 ⩾ 1 be integer constants. There exists a randomized (2𝑘−1)-
approximate 𝑓 -DSO for undirected, unweighted graphs with diameter bounded by 𝐷, that w.h.p.
takes space 𝑂(𝐷 𝑓 +𝑜(1) 𝑛1+1/𝑘), has query time 𝑂(𝐷𝑜(1)), and preprocessing time 𝑂(𝐷 𝑓 +𝑜(1)𝑚𝑛1/𝑘).

Fault-Tolerant Trees with Granularity. We employ fault-tolerant trees8 (FT-trees) introduced
by Chechik et al. [20] to combine the solutions for short paths. Those are trees in which every
node is associated with a path in a subgraph 𝐺 − 𝐴 where 𝐴 ⊆ 𝐸 is a set of edges, but possibly
much more than the sensitivity 𝑓 . Each path is partitioned into segments whose sizes increase
exponentially towards the middle. This is done to encode the paths more space efficient than
edge-by-edge. We have to take some additional compression steps to fit them in subquadratic
space. For example, instead of building a tree 𝐹𝑇 (𝑠, 𝑡) for every pair of vertices 𝑠, 𝑡, we only do
so if one of them is from a set of randomly selected pivots. But even this gives only a sublinear
query time. To improve it further to 𝑂𝜀(𝑛𝛼) for an any constant 𝛼 ∈ (0, 1

2), we generalize the
FT-trees by adding what we call granularity 𝜆 ⩾ 0.9 That means the first and last 𝜆 edges of
each path are their own segment and do not fall into the regime of exponential increase. The
original construction [20] corresponds to granularity 0. Intuitively, the larger the value of 𝜆, the
better the fault-tolerant tree 𝐹𝑇𝜆 (𝑢, 𝑣) with granularity 𝜆 approximates the shortest distance
from 𝑢 to 𝑣 in 𝐺 − 𝐹, but the larger the size of each node of the tree becomes.

The idea to answer a query (𝑠, 𝑡, 𝐹) is to scan balls of a certain radius around 𝑠 and 𝑡 in
𝐺 − 𝐹 for pivots and query the respective FT-tree together with the oracle for short paths in

8 The FT-trees are not related to the tree sampling mentioned before.

9 In the proof of Theorem 1.1, we set 𝜆 = 𝜀𝐿/𝑐, for an ad-hoc constant 𝑐 > 1.
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Theorem 1.2. W.h.p. one of the pivots hits the replacement path from 𝑠 to 𝑡 ensuring that this
gives (an approximation of) the right distance. The bottleneck is the case when there are too
many vertices in the vicinity of both 𝑠 and 𝑡 since then these balls also receive many pivots.
Instead, we sample a second type of much more scarce pivots, which are used to hit the dense
neighborhoods. In that case, we can find a scarce pivot 𝑏𝑠 near 𝑠 and a scarce pivot 𝑏𝑡 near 𝑡,
but we can no longer assume that they hit the sought replacement path. The fault-tolerant
tree 𝐹𝑇𝜆 (𝑏𝑠, 𝑏𝑡) with granularity 𝜆, however, allows us to get a good approximation, as long the
starting points 𝑏𝑠 and 𝑏𝑡 are at distance at most 𝜆 from the real endpoints.

The trees 𝐹𝑇𝜆 (𝑏𝑠, 𝑏𝑡) are much larger than their classical counterparts 𝐹𝑇 (𝑠, 𝑡). This is
compensated by the fact that we require much fewer of those. We verify that several of the key
lemmas from [20] transfer to fault-tolerant trees with granularity 𝜆 > 0.

Efficient Computation of Expaths. Since fault-tolerant trees are crucial for our work, we
revisit the approach used in [20] to construct them (with granularity 0). It turns out that their
algorithm can be improved. The preprocessing in [20] invokes many calls to all-pairs shortest
path computations (APSP) in different subgraphs 𝐺 − 𝐹, each of which is associated with a
node of the fault-tolerant trees. They also invoke 𝑂(𝑛) calls to Dijkstra’s algorithm on suitable
dense graphs with 𝑂( 𝑓 𝑛2) edges. We prove that many of those APSP calls can be avoided by
instead re-using the distances in the original graph 𝐺, which can be obtained by a single APSP
computation. More precisely, the paths associated with the nodes of the fault-tolerant trees (later
referred as (2 𝑓 + 1)-expaths) are the concatenation of 𝑂( 𝑓 log(𝑛𝑊)) original shortest paths.
The distances in 𝐺 can be integrated into a single Dijkstra run on a specially built graph with
𝑂( 𝑓 𝑚) edges to compute such an expath in time 𝑂( 𝑓 𝑚). This technique implies an improved
preprocessing time for our own subquadratic 𝑓 -DSO. Moreover, when applied to the 𝑓 -DSO by
Chechik et al. [20], it improves their preprocessing time from 𝑂𝜀( 𝑓 𝑛5+𝑜(1)) to 𝑂𝜀( 𝑓 𝑚𝑛2+𝑜(1)).

THEOREM 1.4. Let𝐺 be an undirected weighted graph with maximum edge weight𝑊 = poly(𝑛)
and unique shortest paths. For any positive integer 𝑓 = 𝑜(log 𝑛/log log 𝑛), and 𝜀 ⩾ 1/(𝑛𝑊), there

exists an (1+𝜀)-approximate 𝑓 -DSO for 𝐺 that takes 𝑂( 𝑓 𝑛2) · 𝑂
(

log(𝑛𝑊)
𝜀

) 𝑓
= 𝑂(𝜀− 𝑓 ) · 𝑛2+𝑜(1) space,

has query time 𝑂( 𝑓 5 log 𝑛), and preprocessing time 𝑂( 𝑓 𝑚𝑛2) · 𝑂
(

log(𝑛𝑊)
𝜀

) 𝑓
= 𝑂(𝜀− 𝑓 ) · 𝑚𝑛2+𝑜(1) .

Open Problems. As an open question, we ask whether one can further improve the query time
from 𝑂𝜀(𝑛𝛼) to poly-logarithmic in 𝑛 and 1/𝜀 while keeping the space truly subquadratic. The
converse problem is to further reduce the space without affecting the query time. Finally, we
can currently only handle unweighted graphs where the length of the path corresponds to the
number of edges. Some sampling-based ideas break down if long paths can consist of only a
few heavy edges. In all cases, the bottleneck is the handling of long paths. For short distances,
our 𝑓 -DSO has asymptotically almost optimal size and very low query time that can easily be
adapted to the weighted case.
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2. Overview

Fault-tolerant Trees. Our distance sensitivity oracle is built on the concept of fault-tolerant
trees [20]. This is a data structure that reports, for a fixed pair of vertices 𝑠, 𝑡 ∈ 𝑉 and any set
𝐹 ⊆ 𝐸 of up to 𝑓 edge failures, the replacement distance 𝑑𝐺−𝐹 (𝑠, 𝑡). Consider a shortest path 𝑃
from 𝑠 to 𝑡 in the original graph 𝐺. FT-trees draw from the fact that only failures on 𝑃 can
influence the distance from 𝑠 to 𝑡. In its simplest form, the tree 𝐹𝑇 (𝑠, 𝑡) consists of a root node
that stores the path 𝑃 and the distance 𝑑 (𝑠, 𝑡) = |𝑃 |. It has a child for each edge 𝑒 ∈ 𝐸(𝑃) which
in turn holds a shortest 𝑠-𝑡-path in 𝐺 − 𝑒. Iterating this construction until depth 𝑓 ensures that
all relevant failure sets for the pair (𝑠, 𝑡) are covered. If some set of edge failures disconnect
the two vertices, this is represented by a leaf node that does not store any path. Let 𝑃𝜈 denote
the path in some node 𝜈. Given a failure set 𝐹, the algorithm checks in each node 𝜈 starting
with the root whether it is a leaf or 𝐹 ∩ 𝐸(𝑃𝜈) = ∅, with the latter meaning that the path 𝑃𝜈

exists in 𝐺 − 𝐹. If so, its length |𝑃𝜈 | is reported; otherwise, the search recurses on the child node
corresponding to an (arbitrary) edge 𝑒 ∈ 𝐹 ∩ 𝐸(𝑃𝜈). Let 𝐹𝑇 (𝑠, 𝑡, 𝐹) be the reported distance.
It is equal to 𝑑𝐺−𝐹 (𝑠, 𝑡) and the query time is 𝑂( 𝑓 2) since at most 𝑓 +1 vertices are visited and
computing the intersection takes time 𝑂( 𝑓 ).

The problem is, these trees are huge. Preprocessing them for all pairs of vertices takes
total space 𝑂(𝑛 𝑓 +3). The main technical contribution of [20] is to reduce the space without
sacrificing too much of their performance, that is, the stretch of the reported distance and the
query time. In the first step, the number of vertices in the tree is decreased by introducing an
approximation parameter 𝜀 > 0. Each path 𝑃𝜈 is split into 𝑂(log 𝑛/𝜀) segments. Now node 𝜈
only has a child for each segment and the search procedure recursing on that child corresponds
to failing the whole segment instead of only a single edge. This reduces the total size of all trees
to 𝑂(𝑛3 (𝑐 log 𝑛

𝜀 )
𝑓 ) for some constant 𝑐 > 0. However, it leads to some inaccuracies in the answer

of the tree. The failed segments may contain edges that are actually present in 𝐺 − 𝐹 and thus
the path 𝑃𝜈∗ stored in the last visited node 𝜈∗ may take unnecessary detours. It is proven in [20]
that 𝐹𝑇 (𝑠, 𝑡, 𝐹) = |𝑃𝜈∗ | = 𝑑𝐺−𝐹 (𝑠, 𝑡) is correct if all failing edges are “far away”10 from the true
replacement path 𝑃(𝑠, 𝑡, 𝐹) in 𝐺−𝐹, where the required safety distance depends on the distance
𝑑𝐺−𝐹 (𝑠, 𝑡). To also answer queries for which this condition is violated, they consult multiple
FT-trees. An auxiliary graph 𝐻𝐹 is constructed on the endpoints𝑉 (𝐹) of all failing edges, that is,
𝑉 (𝐻𝐹) = {𝑠, 𝑡} ∪𝑉 (𝐹). For each pair of vertices 𝑢, 𝑣 ∈ 𝑉 (𝐻𝐹), the edge {𝑢, 𝑣} is weighted with
the reported distance 𝐹𝑇 (𝑢, 𝑣, 𝐹). While not all edge weights may be the correct 𝑢-𝑣-replacement
distance, the distance of 𝑠 and 𝑡 in 𝐻𝐹 can be shown to be a (1+𝜀)-approximation of 𝑑𝐺−𝐹 (𝑠, 𝑡).
The idea is that, when going from 𝑠 to 𝑡, one can always find a next vertex in 𝑉 (𝐻𝐹) that is not

10 More formally, a path 𝑃 being “far away” from 𝐹 means that, for every vertex 𝑥 on 𝑃 except for 𝑠 and 𝑡 and every
endpoint 𝑦 of a failing edge in 𝐹, the distance from 𝑥 to 𝑦 is more than 𝜀

9 ·min( |𝑃[𝑠, 𝑥] |, |𝑃[𝑥, 𝑡] | ), see Definition 5.2.
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too far off the shortest path and such that the subpath to that vertex is “far away” from all
failures. Computing the weights for 𝐻𝐹 increases the query time to 𝑂( 𝑓 4).

The next step is more involved and is concerned with the size of the nodes in the FT-
trees. Originally, each of them stores all edges of a path in (a subgraph of) 𝐺 and therefore
may take 𝑂(𝑛) space. Afek et al. [2] showed that every shortest path in 𝐺−𝐹, for |𝐹 | ⩽ 𝑓 , is
𝑓 -decomposable, that is, a concatenation of at most 𝑓 shortest paths in 𝐺. Chechik et al. [20]
extend this notion to so-called expaths. For a positive integer ℓ, a path is said to be an ℓ-expath if
it is the concatenation of (2 log2(𝑛) + 1) ℓ-decomposable paths such that the 𝑖th ℓ-decomposable
path has length at most min{2𝑖 , 22 log2(𝑛)−𝑖}. Consider a node 𝜈 in the tree 𝐹𝑇 (𝑢, 𝑣). Instead of
storing the shortest 𝑢-𝑣-path 𝑃𝜈 edge by edge, one would like to represent it by the endpoints
of the constituting shortest paths (in 𝐺) and edges. However, the collection 𝐴𝜈 of edges in all
segments that were failed while descending from the root to 𝜈may be much larger than 𝑓 and 𝑃𝜈
may not be 𝑓 -decomposable. Instead, the node 𝜈 now holds the shortest (2 𝑓 +1)-expath from 𝑢

to 𝑣 in 𝐺 − 𝐴𝜈. It can be represented by 𝑂( 𝑓 log 𝑛) endpoints, bringing the total space of the
trees to 𝑂( 𝑓 𝑛2(log 𝑛) (𝑐 log 𝑛

𝜀 )
𝑓 ). It is described in [20] how to navigate the new representation to

obtain a (1+𝜀)-approximation of 𝑑𝐺−𝐹 (𝑠, 𝑡) in time 𝑂( 𝑓 5 log 𝑛).
In this work, we advance the space reduction further into the subquadratic regime. Recall

that 𝐿 is the number of edges up to which a path is called short. When sampling a set 𝐵
of 𝑂𝜀(𝑛/𝐿) pivots uniformly at random, then w.h.p. every long replacement path contains a
pivot. Restricting the FT-trees 𝐹𝑇 (𝑢, 𝑣) to only those pairs 𝑢, 𝑣 for which at least one vertex is
in 𝐵 brings the total number of trees to 𝑜(𝑛2). Unfortunately, it deprives us of the replacement
distances for pairs that are joined by a short path.

Short Paths. To make up for this deficit, we design an approximate 𝑓 -DSO for vertex pairs with
short replacement paths. We extend a technique by Weimann and Yuster [38] from exact to
approximate distances while also reducing the required space and query time. Let {𝐺𝑖}𝑖 be a
collection of spanning subgraphs of 𝐺. It is called an (𝐿, 𝑓 )-replacement path covering (RPC) [31]
if, for every set 𝐹 of at most 𝑓 edges and any pair of vertices that is joined in 𝐺−𝐹 by a path of at
most 𝐿 edges, there exists some subgraph 𝐺𝑖 that does not contain any edge of 𝐹 but all edges of
the path. This construction is the basis of many 𝑓 -DSOs for the following reason. Consider two
vertices 𝑠 and 𝑡 that have a replacement path on at most 𝐿 edges. Scan over all graphs of the
RPC that contain no edge of 𝐹, and, for each graph, record the 𝑠-𝑡-distance. By the properties of
an RPC, the minimum recorded value is the correct replacement distance 𝑑𝐺−𝐹 (𝑠, 𝑡). This holds
even if 𝐺−𝐹 itself is not in {𝐺𝑖}𝑖 .

Weimann and Yuster [38] showed that one can obtain an RPC with high probability by the
following process. Take 𝑂(𝐿 𝑓 ) copies of 𝐺 and, in each one, remove any edge independently
with probability 1/𝐿. We cannot use that approach directly in subquadratic space. The subgraphs
have total size Ω(𝐿 𝑓−1𝑚), which is already too large if 𝐺 is dense. Also, it is expensive to find
the correct members of the RPC for a given query. In [38], the solution was to indeed go over
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all graphs and explicitly check whether they have the set 𝐹 removed. Karthik and Parter [31]
derandomized this construction and reduced the time needed to find the correct subgraphs to
𝑂(𝐿). Both approaches break down in subquadratic space, since we cannot even store all edges
of the graphs. However, we are only seeking approximate replacement distances. We exploit
this fact in a new way of constructing an approximate (𝐿, 𝑓 )-replacement path covering. We
turn the sampling technique upside down and combine it with the DO of Thorup and Zwick [37].

Instead of sampling the subgraphs directly by removing edges, we construct them in a
hierarchical manner by adding connections. We build a tree11 in which each node is associated
with a subset of the edges of 𝐺, this set stands for the “missing” edges. We start with the full
edge set 𝐸 in the root, that is, the graph in the root is empty. The height of the tree is ℎ and
each node has 𝐿 𝑓 /ℎ children. The associated set of a child node contains any edge of its parent
with probability 𝐿−1/ℎ. This corresponds to adding any missing edge with probability 1 − 𝐿−1/ℎ.
Knowing the missing edges upfront benefits the query algorithm. At each node starting with the
root, if we were to expand all children in which all failures of 𝐹 are missing, we would find the
suitable subgraphs. The hierarchical sampling creates some dependencies among the subgraphs
associated with the leaves of the tree, while the graphs in [38] were independent. We tackle
this issue by always recursing only on one child node and therefore querying a single leaf. The
process is repeated in several independent trees in order to amplify the success probability. We
prove that there exists a constant 𝑐 > 0 such that 𝑂(𝑐ℎ) trees together ensure the property we
need from an (𝐿, 𝑓 )-replacement path covering w.h.p. Optimizing the height ℎ gives an 𝑂(𝐿𝑜(1))
query time (assuming constant 𝑓 ).

The main challenge is to bring down the size of this construction by reducing the number
of edges in the graphs associated with the nodes of the trees. Thorup and Zwick [37] devised,
for any positive integer 𝑘, a (2𝑘−1)-approximate distance oracle together with a compatible
spanner of size 𝑂(𝑘𝑛1+1/𝑘), i.e., the stretched distance returned by the oracle is the length of a
shortest path in the spanner. Therefore, we can use the oracles in the leaves of the trees to report
distances, giving a low query time, and employ the spanners as proxies for the graphs associated
with the intermediate nodes. For this to work, we have to carefully tweak the computation of
the spanners and interleave it with the sampling process in order to not blow up the size or
stretch too much.

Long Paths. We return to the fault-tolerant trees. By the use of the pivots, we reduced the
required number of trees to 𝑂𝜀(𝑛2/𝐿). But even in the most compact version of FT-trees, this
is not enough to reach subquadratic space altogether. The issue is with the representation of
expaths as a sequence of 𝑂( 𝑓 log 𝑛) components, each of which is implicitly represented by its
two endpoints. In [20] this was implemented by storing the original graph distance 𝑑 (𝑥, 𝑦) and
the predecessor pred(𝑥, 𝑦) of 𝑦 on the shortest 𝑥-𝑦-path for all pairs 𝑥, 𝑦. This information is

11 Again, the sampling trees and fault-tolerant trees are not related.
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used to expand the implicit representation of an expath when needed. However, the space is
again Ω(𝑛2). The key observation to overcome this is that, in our case, we do not need to encode
arbitrary expaths but only those with a particular structure, e.g., at least one endpoint is a pivot.
This allows us to forgo the need for a quadratic database of all distances.

We also devise a new procedure to obtain an approximation of 𝑑𝐺−𝐹 (𝑠, 𝑡) by combining
the values from the FT-trees with the 𝑓 -DSO for short paths. Recall that we build one FT-tree for
each pair of vertices (𝑢, 𝑣) where 𝑢 or 𝑣 are pivots. The main open issue is to find the weight of
the edge {𝑢, 𝑣} in the auxiliary graph 𝐻𝐹 (see above) if neither 𝑢 nor 𝑣 are pivots and they do
not have a short path between them in 𝐺 − 𝐹. Then, w.h.p. at least one pivot 𝑏 hits the 𝐿-edge
prefix of that replacement path. Therefore, it is sufficient to estimate its length as the sum of an
approximation for 𝑑⩽𝐿𝐺−𝐹 (𝑢, 𝑏) via the 𝑓 -DSO for short paths, and an approximation for 𝑑𝐺−𝐹 (𝑏, 𝑣)
via the FT-trees. However, since we do not know the right pivot 𝑏, we have to scan all of them.
We prove that this results in a stretch of 3 + 𝜀 and a sublinear query time.

While already being faster than running a shortest-path algorithm on a fault-tolerant
spanner, this is still not very efficient. In Section 6, we improve the query time to 𝑂𝜀(𝑛𝛼) for any
constant 0 < 𝛼 < 1/2. We provide an efficient way to check whether the number of pivots in 𝐵
that are close to 𝑢 and 𝑣 in 𝐺 − 𝐹 are below the threshold value of 𝐿 𝑓−1 and, if so, find them all.
If only a few pivots are around 𝑢 (or 𝑣), we can afford to scan them as described above.

The complementary case of many pivots around both endpoints is solved by precomputing
a set of 𝑂𝜀(𝑛/𝐿 𝑓 ) new pivots, much fewer than before, and generalizing the FT-trees to granu-
larity 𝜆 > 0. This ensures that, in any node 𝜈, the first and last 𝜆 edges of the corresponding
path 𝑃𝜈 each form their own segment. High granularity thus makes the generalized trees much
larger. For comparison, the maximum granularity 𝜆 = 𝑛 would unwind all the efforts taken
in [20] to reduce their size, as summarized at the beginning of this section. We can still fit the
trees in subquadratic space by building 𝐹𝑇𝜆 (𝑏, 𝑏′) only for pairs 𝑏, 𝑏′ of new pivots.

The 𝑢-𝑣-distance in𝐺−𝐹 in the case of many original pivots around 𝑢 and 𝑣 is approximated
as follows. We compute two new pivots 𝑏𝑢, 𝑏𝑣, with 𝑏𝑢 close to 𝑢 in 𝐺 − 𝐹 and 𝑏𝑣 close to 𝑣. The
approximate length of the shortest path from 𝑢 to 𝑣 in 𝐺 − 𝐹 is computed by the overall sum of
(i) an approximation of the distance from 𝑢 to 𝑏𝑢 in 𝐺 − 𝐹, (ii) an approximation of the distance
from 𝑏𝑢 to 𝑏𝑣 in 𝐺 − 𝐹 computed by querying 𝐹𝑇𝜆 (𝑏𝑢, 𝑏𝑣), and (iii) an approximation of the
distance from 𝑏𝑣 to 𝑣 in 𝐺 − 𝐹. We make sure to have a granularity 𝜆 ⩽ 𝐿 so that we can obtain
the terms (i) and (iii) from our 𝑓 -DSO for short paths.

3. Preliminaries

We let 𝐺 = (𝑉, 𝐸) denote the undirected and unweighted base graph with 𝑛 vertices and 𝑚

edges. We tacitly assume 𝑚 = Ω(𝑛). For any undirected (multi-)graph 𝐻 , which may differ from
the input 𝐺, we denote by 𝑉 (𝐻) and 𝐸(𝐻) the set of its vertices and edges, respectively. Let 𝑃
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be a path in 𝐻 from a vertex 𝑠 ∈ 𝑉 (𝐻) to 𝑡 ∈ 𝑉 (𝐻), we say that 𝑃 is an 𝑠-𝑡-path in 𝐻 . We denote
by |𝑃 | = |𝐸(𝑃) | the length of 𝑃. For vertices 𝑢, 𝑣 ∈ 𝑉 (𝑃), we let 𝑃[𝑢..𝑣] denote the subpath of 𝑃
from 𝑢 to 𝑣. Let 𝑃 = (𝑢1, . . . , 𝑢𝑖) and 𝑄 = (𝑣1, . . . , 𝑣 𝑗) be two paths in 𝐻 . Their concatenation is
𝑃 ◦𝑄 = (𝑢1, . . . , 𝑢𝑖 , 𝑣1, . . . , 𝑣 𝑗), which is well-defined if 𝑢𝑖 = 𝑣1 or {𝑢𝑖 , 𝑣1} ∈ 𝐸(𝐻). For 𝑠, 𝑡 ∈ 𝑉 (𝐻),
the distance 𝑑𝐻 (𝑠, 𝑡) is the minimum length of any 𝑠-𝑡-path in 𝐻 ; if 𝑠 and 𝑡 are disconnected, we
set 𝑑𝐻 (𝑠, 𝑡) = +∞. When talking about the base graph 𝐺, we drop the subscripts.

A spanning subgraph of a graph 𝐻 is one with the same vertex set as 𝐻 but possibly any
subset of its edges. This should not be confused with a spanner. A spanner of stretch 𝜎 ⩾ 1,
or 𝜎-spanner, is a spanning subgraph 𝑆 ⊆ 𝐻 such that additionally for any two vertices 𝑠, 𝑡 ∈
𝑉 (𝑆) = 𝑉 (𝐻), it holds that 𝑑𝐻 (𝑠, 𝑡) ⩽ 𝑑𝑆 (𝑠, 𝑡) ⩽ 𝜎 · 𝑑𝐻 (𝑠, 𝑡). A distance oracle (DO) for 𝐻 is a
data structure that reports, upon query (𝑠, 𝑡), the distance 𝑑𝐻 (𝑠, 𝑡). It has stretch 𝜎 ⩾ 1, or is
𝜎-approximate, if the reported value 𝑑 (𝑠, 𝑡) satisfies 𝑑𝐻 (𝑠, 𝑡) ⩽ 𝑑 (𝑠, 𝑡) ⩽ 𝜎 · 𝑑𝐻 (𝑠, 𝑡).

For a set 𝐹 ⊆ 𝐸 of edges, let 𝐺−𝐹 be the graph obtained from 𝐺 by removing all edges in 𝐹.
For any two 𝑠, 𝑡 ∈ 𝑉 , a replacement path 𝑃(𝑠, 𝑡, 𝐹) is a shortest path from 𝑠 to 𝑡 in 𝐺−𝐹. Its length
𝑑𝐺−𝐹 (𝑠, 𝑡) is the replacement distance. Let 𝐿 be a positive integer. We call a path in (a subgraph
of) 𝐺 short if it has at most 𝐿 edges, and long otherwise. Let 𝑑⩽𝐿𝐺−𝐹 (𝑠, 𝑡) be the minimum length
of any short 𝑠-𝑡-paths in 𝐺 − 𝐹, or +∞ if no such path exists.

For a positive integer 𝑓 , an 𝑓 -distance sensitivity oracle (DSO) answers queries (𝑠, 𝑡, 𝐹) with
|𝐹 | ⩽ 𝑓 by reporting the replacement distance 𝑑𝐺−𝐹 (𝑠, 𝑡). The stretch of a DSO is defined as for
DOs. The maximum number 𝑓 of supported failures is called the sensitivity. We measure the
space complexity of any data structure in the number of 𝑂(log 𝑛)-bit machine words. The size
of the input graph 𝐺 does not count against the space, unless it is stored explicitly.

4. Handling Short Paths

We develop here our (2𝑘−1)-approximate solution for short replacement paths. It will later be
used for the general distance sensitivity oracle. We first review (and slightly modify) the DO and
spanner of Thorup and Zwick [37] to an extent that is needed to present our own construction.

4.1 The Distance Oracle and Spanner of Thorup and Zwick

For any positive integer 𝑘, Thorup and Zwick [37] devised a DO that is computable in time
𝑂(𝑘𝑚𝑛1/𝑘), has size𝑂(𝑘𝑛1+1/𝑘), query time𝑂(𝑘), and a stretch of 2𝑘−1. Their stretch-space trade-
off is essentially optimal for sufficiently dense graphs, assuming the Erdős girth conjecture [37].
For sparse graphs, better constructions are known [1, 33, 34], including subquadratic-space
DOs with a stretch less than 2 [3, 4].

We first review the Thorup and Zwick construction before discussing our changes. First, a
family of vertex subsets 𝑉 = 𝑋0 ⊇ 𝑋1 ⊇ · · · ⊇ 𝑋𝑘−1 ⊇ 𝑋𝑘 = ∅ is computed. Each 𝑋𝑖 is obtained by
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sampling the elements of 𝑋𝑖−1 independently with probability 𝑛−1/𝑘. We keep this family fixed
and apply the construction to a variety of subgraphs of 𝐺.

1: 𝑤← 𝑠

2: 𝑖 ← 0
3: while 𝑤 ∉

⋃𝑘−1
𝑗=0 𝑋 𝑗,𝐻(𝑡) do

4: 𝑖 ← 𝑖 + 1
5: (𝑠, 𝑡) ← (𝑡, 𝑠)
6: 𝑤← 𝑝𝑖,𝐻(𝑠)
7: return 𝑑𝐻(𝑠, 𝑤) + 𝑑𝐻(𝑤, 𝑡)

Algorithm 1. Original query algorithm [37] of the distance oracle for the pair (𝑠, 𝑡).

Let 𝐻 be such a subgraph for which the oracle needs to be computed. For any 𝑣 ∈ 𝑉 and
0 ⩽ 𝑖 < 𝑘, let 𝑝𝑖,𝐻 (𝑣) be the closest vertex12 to 𝑣 in 𝑋𝑖 in the graph 𝐻 , ties are broken in favor of
the vertex with smaller label. The distances from 𝑣 to all elements in

𝑋𝑖,𝐻 (𝑣) = {𝑥 ∈ 𝑋𝑖 | 𝑑𝐻 (𝑣, 𝑥) < min
𝑦∈𝑋𝑖+1

𝑑𝐻 (𝑣, 𝑦)} ∪ {𝑝𝑖,𝐻 (𝑣)}

are stored in a hash table. In other words, 𝑋𝑖,𝐻 (𝑣) contains those vertices of 𝑋𝑖\𝑋𝑖+1 that are
closer to 𝑣 than any vertex of 𝑋𝑖+1. This completes the construction of the DO for 𝐻 . Note that
while the 𝑋𝑖 are fixed, the sets 𝑋𝑖,𝐻 (𝑣) and vertices 𝑝𝑖,𝐻 (𝑣) may differ for the various subgraphs
𝐻 ⊆ 𝐺 as the underlying distance function 𝑑𝐻 changes.

The oracle is accompanied by a (2𝑘−1)-spanner with 𝑂(𝑘𝑛1+1/𝑘) edges. It stores all those
edges of 𝐻 that lie on a shortest path between 𝑣 and a vertex in

⋃
0⩽𝑖<𝑘 𝑋𝑖,𝐻 (𝑣), again ties

between shortest paths are broken using the edge labels.
Algorithm 1 describes how the oracle handles the query (𝑠, 𝑡). The returned distance

can be shown to overestimate 𝑑𝐻 (𝑠, 𝑡) by at most a factor 2𝑘−1 [37, Lemma 3.3]. We would
like to use this construction in many different subgraphs 𝐻,𝐺′ with 𝐻 ⊆ 𝐺′ ⊆ 𝐺 and have it
satisfy a certain inheritance property. That means, if some approximate shortest 𝑠-𝑡-path in the
larger graph 𝐺′ only uses edges already present in the smaller graph 𝐻 , then the same path
should be used in both 𝐻 and 𝐺′ to compute the estimate reported by the oracle. For a precise
statement see Lemma 4.1. This is not the case for Algorithm 1. It computes the vertex 𝑝𝑖,𝐻 (𝑠)
with smallest index 𝑖 that is contained in

⋃𝑘−1
𝑗=0 𝑋 𝑗,𝐻 (𝑡) (respectively, the 𝑝𝑖,𝐻 (𝑡) with the smallest

index in
⋃𝑘−1

𝑗=0 𝑋 𝑗,𝐻 (𝑠)). As more edges are added to get from 𝐻 to 𝐺′, both the sets 𝑋 𝑗,𝐺′ and the
first vertex 𝑝𝑖,𝐺′ (𝑠) (respectively, 𝑝𝑖,𝐺′ (𝑡)) satisfying the inclusion relations may change.

12 We have 𝑝𝑖,𝐻 (𝑣) = 𝑣 for all 𝑖 small enough so that 𝑋𝑖 still contains 𝑣.
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We instead use a slightly modified version as presented in Algorithm 2. It considers the
vertices 𝑝𝑖,𝐻 (𝑠) (respectively, 𝑝𝑖,𝐻 (𝑡)) for all indices 𝑖, checks whether they satisfy the inclusion
relations, and chooses the one minimizing the combined distance. Observe that the estimate 𝑑
produced by our version is at most the value returned by the original one and at least the actual
distance between 𝑠 and 𝑡. As before, for any 𝑠 and 𝑡, the path corresponding to the new estimate
is a concatenation of at most two original shortest paths in 𝐻 . The interconnecting vertex is
either 𝑝𝑖,𝐻 (𝑠) or 𝑝𝑖,𝐻 (𝑡) for some 𝑖, we denote it as 𝑢𝑠,𝑡,𝐻 , and the (2𝑘−1)-approximate shortest
path as 𝑃𝑠,𝑡,𝐻 . We show next that the adapted query algorithm has the inheritance property.

1: 𝑑←∞
2: for 𝑖 = 0 to 𝑘 − 1 do
3: if 𝑝𝑖 (𝑠) ∈

⋃𝑘−1
𝑗=0 𝑋 𝑗,𝐻(𝑡) then

4: 𝑑← min
{
𝑑, 𝑑𝐻(𝑠, 𝑝𝑖 (𝑠)) + 𝑑𝐻(𝑝𝑖 (𝑠), 𝑡)

}
5: if 𝑝𝑖 (𝑡) ∈

⋃𝑘−1
𝑗=0 𝑋 𝑗,𝐻(𝑠) then

6: 𝑑← min
{
𝑑, 𝑑𝐻(𝑡, 𝑝𝑖 (𝑡)) + 𝑑𝐻(𝑝𝑖 (𝑡), 𝑠)

}
7: return 𝑑

Algorithm 2. Modified query algorithm of the distance oracle for the pair (𝑠, 𝑡).

LEMMA 4.1 (Inheritance property). Let 𝐻 ⊆ 𝐺′ ⊆ 𝐺 be two spanning subgraphs of 𝐺, 𝑠, 𝑡 ∈ 𝑉
two vertices, and 𝑃𝑠,𝑡,𝐺′ the approximate shortest path underlying the value returned by the
(modified) distance oracle for 𝐺′. If 𝑃𝑠,𝑡,𝐺′ also exists in 𝐻 , then 𝑃𝑠,𝑡,𝐻 = 𝑃𝑠,𝑡,𝐺′ , Moreover, the oracle
for 𝐻 returns |𝑃𝑠,𝑡,𝐺′ | upon query (𝑠, 𝑡).

PROOF . Recall that 𝑃𝑠,𝑡,𝐺′ is a concatenation of two shortest paths in 𝐺′, say, 𝑃(𝑠, 𝑢) and 𝑃(𝑢, 𝑡),
where 𝑢 = 𝑢𝑠,𝑡,𝐺′ is the interconnecting vertex in

⋃
𝑗<𝑘 𝑋 𝑗,𝐺′ (𝑠) ∪

⋃
𝑗<𝑘 𝑋 𝑗,𝐺′ (𝑡) that minimizes

the sum of distances 𝑑𝐺′ (𝑠, 𝑢) + 𝑑𝐺′ (𝑢, 𝑡). Without losing generality, we have 𝑢 = 𝑝𝑖,𝐺′ (𝑠) for
some 0 ⩽ 𝑖 < 𝑘; otherwise, we swap the roles of 𝑠 and 𝑡. Let 0 ⩽ 𝑗 < 𝑘 be such that 𝑢 ∈ 𝑋 𝑗,𝐺′ (𝑡).

For any spanning subgraph 𝐻 ⊆ 𝐺′ that contains the path 𝑃𝑠,𝑡,𝐺′ , it holds that 𝑢 = 𝑝𝑖,𝐻 (𝑠)
and 𝑢 ∈ 𝑋 𝑗,𝐻 (𝑡). Here, we use that the tie-breaking for the 𝑝𝑖,𝐻 (𝑠) does not depend on the edge
set of 𝐻 . Moreover, the shortest 𝑠-𝑢-path and 𝑢-𝑡-path in the spanner for 𝐻 are the same as
in 𝐺, that is, 𝑃(𝑠, 𝑢) and 𝑃(𝑢, 𝑡). As a result, we have 𝑢 = 𝑢𝑠,𝑡,𝐻 and 𝑃𝑠,𝑡,𝐺′ = 𝑃𝑠,𝑡,𝐻 . The second
assertion of the lemma follows from 𝑑𝐻 (𝑠, 𝑢) = |𝑃(𝑠, 𝑢) | and 𝑑𝐻 (𝑢, 𝑡) = |𝑃(𝑢, 𝑡) |. ■

4.2 Tree Sampling

We present our fault-tolerant oracle construction for short paths. Recall that a path in 𝐺 is short
if it has at most 𝐿 edges, and that 𝑑⩽𝐿𝐺−𝐹 (𝑠, 𝑡) is the minimum distance over short 𝑠-𝑡-paths in
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𝐺 − 𝐹. Note that, while we assume 𝑓 and 𝑘 to be constants, 𝐿 may depend on 𝑚 and 𝑛. We prove
Theorem 1.2 in the remainder of the section.

We first compute the vertex sets 𝑋0, . . . , 𝑋𝑘. Define ℎ =
√︁
𝑓 ln 𝐿 , 𝐾 =

⌈
((2𝑘−1)𝐿) 𝑓 /ℎ

⌉
,

𝑝 = 𝐾−1/ 𝑓 , and 𝐼 = 𝐶 · 11ℎ ln 𝑛 for some sufficiently large constant 𝐶 > 0 (independent of 𝑓
and 𝑘). We build 𝐼 rooted trees 𝑇1, . . . , 𝑇𝐼 , each of height ℎ, such that any internal node has 𝐾
children. For the following description, we fix some tree 𝑇𝑖 and use 𝑥 to denote a node in 𝑇𝑖 .
Let 𝑦 be the parent of 𝑥 in case 𝑥 is not the root. We associate with each 𝑥 a subset of edges
𝐴𝑥 ⊆ 𝐸 and a spanning subgraph 𝑆𝑥 ⊆ 𝐺 in recursive fashion. For the root of 𝑇𝑖 , set 𝐴𝑥 = 𝐸;
otherwise 𝐴𝑥 is obtained by selecting each edge of 𝐴 𝑦 independently with probability 𝑝. The
random choices here and everywhere else are made independently of all other choices.

Let 𝑟 be the depth of 𝑥 in 𝑇𝑖 (where the root has depth 𝑟 = 0). Define 𝐽𝑟 = 4 · 𝐾ℎ−𝑟 for 𝑟 < ℎ,
and 𝐽ℎ = 1. The graph 𝑆𝑥 is constructed in 𝐽𝑟 rounds. In each round, we sample a subset 𝐴 ⊆ 𝐴𝑥
by independently selecting each edge with probability 𝑝ℎ−𝑟. We then compute the Thorup-Zwick
spanner of 𝑆𝑦 − 𝐴 using the family 𝑋0, . . . , 𝑋𝑘. Slightly abusing notation, if 𝑥 is the root, we
define 𝑆𝑦 = 𝐺 here. We set 𝑆𝑥 to be the union of all those spanners. Note that, for a leaf 𝑥 at
depth 𝑟 = ℎ, then 𝐴 = 𝐴𝑥 with probability 1, so indeed only 𝐽ℎ = 1 iteration is needed.

For each node, we store a dictionary of the edge set 𝐸(𝑆𝑥) and (except for the root) 𝐴𝑥∩𝐸(𝑆𝑦).
We use the static construction of Hagerup, Bro Miltersen, and Pagh [30] that, for a set 𝑀 , has
space 𝑂( |𝑀 |), preprocessing time 𝑂( |𝑀 |), and query time 𝑂(1). For each leaf of a tree, we store
the (modified) distance oracle 𝐷𝑥 . At depth 0 ⩽ 𝑟 ⩽ ℎ, the tree 𝑇𝑖 has 𝐾𝑟 nodes. The largest
dictionary at depth 𝑟 is for 𝐴𝑥 ∩ 𝐸(𝑆𝑦) of size 𝑂( 𝐽𝑟−1 · 𝑘𝑛1+1/𝑘) = 𝑂(𝐾ℎ−𝑟+1𝑛1+1/𝑘) (using that 𝑘 is
constant). Due to 𝐾 = 𝑂((2𝑘−1) 𝑓 /ℎ𝐿 𝑓 /ℎ) and ℎ =

√︁
𝑓 ln 𝑛 , we have 𝐾ℎ+1 = 𝑂(𝐿 𝑓 +𝑜(1)) (using that

𝑓 is constant as well). In total, our data structure requires𝑂(𝐼 ·ℎ ·𝐾ℎ+1𝑛1+1/𝑘) = 𝑂(𝐿 𝑓 +𝑜(1) 𝑛1+1/𝑘)
space and can be preprocessed in time 𝑂(𝐼 · ℎ · 𝐾ℎ+1(𝑘𝑚𝑛1/𝑘 + 𝑘𝑛1+1/𝑘)) = 𝑂(𝐿 𝑓 +𝑜(1)𝑚𝑛1/𝑘).
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4.3 Query Algorithm

1: 𝑑←∞
2: for 𝑖 = 1 to 𝐼 do
3: 𝑦 ← root of 𝑇𝑖

4: while 𝑦 is not leaf do
5: foreach child 𝑥 of 𝑦 do
6: if 𝐹 ∩ 𝐸(𝑆𝑦) ⊆ 𝐴𝑥 then
7: 𝑦 ← 𝑥

8: continue while-loop
9: break while-loop

10: if 𝑦 is leaf then 𝑑← min
{
𝑑, 𝐷𝑦 (𝑠, 𝑡)

}
11: return 𝑑

Algorithm 3. Algorithm to answer the query (𝑠, 𝑡, 𝐹). 𝐷𝑦 is the distance oracle associated with the
leaf 𝑦.

Algorithm 3 presents the query algorithm to report approximate distances. Fix a query
(𝑠, 𝑡, 𝐹) where 𝑠, 𝑡 ∈ 𝑉 are two vertices and 𝐹 ⊆ 𝐸 is a set of at most 𝑓 edges. For each of the 𝐼
trees, we start at the root and recurse on an arbitrary child, computed in the inner for-loop, that
satisfies 𝐹 ∩ 𝐸(𝑆𝑦) ⊆ 𝐴𝑥 , where 𝑦 is parent of 𝑥. Note that the set 𝐴𝑥 is not stored as it may be
too large. (We have |𝐴𝑥 | = 𝑚 in the root.) The test is equivalent to 𝐹 ∩ 𝐸(𝑆𝑦) ⊆ 𝐴𝑥 ∩ 𝐸(𝑆𝑦) and
can be performed in time 𝑂( 𝑓 ) using the stored dictionaries. If at some point no child satisfies
the condition, the algorithm resumes with the next tree. Once a leaf 𝑦 is reached, we query the
associated (modified) distance oracle 𝐷𝑦 with the pair (𝑠, 𝑡). Finally, the algorithm returns the
minimum of all oracle answers.

We set ℎ =
√︁
𝑓 ln 𝐿 . This gives 𝐼 = 𝑂(11

√
𝑓 ln 𝐿 ) = 𝑂(𝐿𝑜(1)) sampling trees and 𝐾 =

((2𝑘−1)𝐿)
√
𝑓 /
√

ln 𝐿 = 𝑂(𝐿𝑜(1)) children per node. The total query time is 𝐼 ·𝑂( 𝑓 ℎ𝐾+𝑘) = 𝑂(𝐿𝑜(1)).
We are left to prove correctness. That means, we claim that w.h.p. the returned estimate is

at least as large as the replacement distance 𝑑 (𝑠, 𝑡, 𝐹) and, if 𝑠 and 𝑡 are joined by a short path in
𝐺 − 𝐹, then this estimate is also at most (2𝑘−1)𝑑⩽𝐿𝐺−𝐹 (𝑠, 𝑡). Consider the Thorup-Zwick spanner
for 𝐺 − 𝐹 and in it the approximate shortest path 𝑃𝑠,𝑡,𝐺−𝐹 (as defined ahead of Lemma 4.1). If 𝑠
and 𝑡 have a short path in 𝐺 − 𝐹, then 𝑃𝑠,𝑡,𝐺−𝐹 has at most (2𝑘−1)𝐿 edges.

Let 𝑥 be a node at depth 𝑟 in the tree 𝑇𝑖 and let 𝑆𝑦 be the spanner associated to its parent
(or 𝑆𝑦 = 𝐺 if 𝑥 is the root). We say 𝑥 is well-behaved if it satisfies the following three properties.

(1) 𝐹 ∩ 𝐸(𝑆𝑦) ⊆ 𝐴𝑥 .
(2) Either 𝑥 is a root or |𝐸(𝑃𝑠,𝑡,𝐺−𝐹) ∩ 𝐴𝑥 | < 𝐾

ℎ−𝑟
𝑓 .
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(3) The path 𝑃𝑠,𝑡,𝐺−𝐹 is contained in 𝑆𝑥 .

Our query algorithm follows a path from the root to a leaf node such that at each node Prop-
erty (1) is satisfied. We show in the following lemma that any child 𝑥 of a well-behaved node 𝑦

that fulfills Property (1) is itself well-behaved with constant probability.

LEMMA 4.2. The following statements hold for any non-leaf node 𝑦 in the tree 𝑇𝑖 .
(i) If 𝑦 satisfies Property (1), then with probability at least 1 − 1

𝑒 there exists a child of 𝑦 that
satisfies Property (1).

(ii) If 𝑦 satisfies Property (2), then any child of 𝑦 satisfies Property (2) with probability at
least 1

4 .
(iii) If 𝑦 is well-behaved and a child 𝑥 of 𝑦 satisfies Properties (1) and (2), then the probability

of 𝑥 being well-behaved is at least 1 − 1
𝑒 .

The root of 𝑇𝑖 is well-behaved with probability at least 1 − 1
𝑒 .

PROOF . Assume that node 𝑦 satisfies Property (1), that means 𝐹 ∩ 𝐸(𝑆𝑦) ⊆ 𝐴 𝑦. Let 𝑥1, . . . , 𝑥𝐾

be the child nodes of 𝑦. Each edge of 𝐴 𝑦 is sampled into 𝐴𝑥 𝑗 with probability 𝑝. The probability
that there exists some child 𝑥 𝑗 with 𝐹 ∩ 𝐸(𝑆𝑦) ⊆ 𝐴𝑥 𝑗 is therefore

1 −
𝐾∏
𝑗=1

P
[
𝐹 ∩ 𝐸(𝑆𝑦) ⊈ 𝐴𝑥 𝑗

]
= 1 −

𝐾∏
𝑖=1

(
1 − 𝑝|𝐹∩𝐸(𝑆𝑦) |

)
= 1 −

(
1 − 1

𝐾 |𝐹∩𝐸(𝑆𝑦) |/ 𝑓

)𝐾
⩾ 1 −

(
1 − 1

𝐾

)𝐾
⩾ 1 − 1

𝑒
.

For the second statement, let 𝑟−1 be the depth of 𝑦 in 𝑇𝑖 . Recall that the path 𝑃 = 𝑃𝑠,𝑡,𝐺−𝐹

has at most (2𝑘−1)𝐿 edges. By our assumption of 𝑦 satisfying Property (2), at most 𝐾
ℎ−𝑟+1
𝑓 of

those are in 𝐴 𝑦. Let 𝑥 be a child of 𝑦. We first analyze the case that 𝑥 is a leaf, that is, 𝑟 = ℎ.

P
[
𝐸(𝑃) ∩ 𝐴𝑥 = ∅

]
= (1 − 𝑝) |𝐸(𝑃)∩𝐴 𝑦 | =

(
1 − 1

𝐾1/ 𝑓

) |𝐸(𝑃)∩𝐴 𝑦 |
⩾

(
1 − 1

𝐾1/ 𝑓

)𝐾1/ 𝑓

⩾
1
4
.

Now suppose 𝑟 < ℎ. Define the random variable 𝑀 = |𝐸(𝑃) ∩ 𝐴𝑥 | to be the number of
edges of the path 𝑃 that are contained in 𝐴𝑥 . Since 𝐴𝑥 is obtained by sampling edges from 𝐴 𝑦

independently with probability 𝑝, the variable 𝑀 is binomially distributed with parameters
|𝐸(𝑃) ∩ 𝐴 𝑦 | and 𝑝. The parent 𝑦 satisfies Property (2), which implies E[𝑀] ⩽ 𝑝𝐾

ℎ−𝑟+1
𝑓 = 𝐾

ℎ−𝑟
𝑓 . By

the central limit theorem, we have P
[
𝑀 ⩾ 𝐾

ℎ−𝑟
𝑓
]
⩽ P

[
𝑀 ⩾ E[𝑀]

]
⩽ 3

4 . In both cases, we see
that the child node 𝑥 also satisfies Property (2) with probability at least 1

4 .
We now turn to the third clause of the lemma. Suppose 𝑦 is well-behaved and its child

node 𝑥 fulfills Properties (1) and (2). If 𝑥 is a leaf, it is well-behaved deterministically. Indeed, in
this case, subgraph 𝑆𝑥 is just the Thorup-Zwick spanner for 𝑆𝑦−𝐴𝑥 . Property (1) for 𝑥 means that
𝑆𝑦 − 𝐴𝑥 doesn’t contain edges of 𝐹. Likewise, 𝑥 satisfying Property (2) with 𝑟 = ℎ and together
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with 𝑦 satisfying Property (3) shows that the path 𝑃 is contained in 𝑆𝑦 − 𝐴𝑥 . The inheritance
property (Lemma 4.1) applied to 𝐺′ = 𝐺 − 𝐹 and 𝐻 = 𝑆𝑦 − 𝐴𝑥 gives that 𝑃 is contained in 𝑆𝑥 .

For 𝑟 < ℎ, the argument goes through only with a certain probability. The graph 𝑆𝑥 is
obtained in 𝐽𝑟 = 4𝐾ℎ−𝑟 iterations; in each iteration, a subset 𝐴 ⊆ 𝐴𝑥 is sampled by selecting
each edge with probability 𝑝ℎ−𝑟, and the spanner 𝐻𝐴 of 𝑆𝑦−𝐴 is computed. 𝑆𝑥 is the union of all
4𝐾ℎ−𝑟 𝐻𝐴’s. We estimate the probability that the path 𝑃 exists in 𝑆𝑦−𝐴 and no failing edge of 𝐹
is in 𝑆𝑦−𝐴. By inheritance to 𝐻𝐴 and taking the union, this will imply that 𝑃 lies in 𝑆𝑥 .

We first claim that P[𝐹 ∩ (𝐸(𝑆𝑦)\𝐴) = ∅] = 𝑝|𝐹∩𝐸(𝑆𝑦) |·(ℎ−𝑟) . To see this, note that Property (1)
holding for 𝑥 means that 𝐹 ∩ 𝐸(𝑆𝑦) ⊆ 𝐴𝑥 . No failure from 𝐹 is in 𝑆𝑦−𝐴 if and only if all the edges
in 𝐹 ∩ 𝐸(𝑆𝑦) are chosen for 𝐴. Our second claim is P[𝐸(𝑃) ⊆ 𝐸(𝑆𝑦)\𝐴] = (1 − 𝑝ℎ−𝑟) |𝐸(𝑃)∩𝐴𝑥 |. It
holds that 𝐸(𝑃) ⊆ 𝐸(𝑆𝑦) since 𝑦 is well-behaved (Property (3)). Thus, 𝐸(𝑃) ⊆ 𝐸(𝑆𝑦)\𝐴 is true if
and only if none of the edges in 𝐸(𝑃) ∩ 𝐴𝑥 are selected in 𝐴.

Using the independence of the events and Property (2) of the node 𝑥, we arrive at

P
[
(𝐹 ∩ (𝐸(𝑆𝑦)\𝐴) = ∅) ∧ (𝐸(𝑃) ⊆ 𝐸(𝑆𝑦)\𝐴)

]
= 𝑝|𝐹∩𝐸(𝑆𝑦) |·(ℎ−𝑟) · (1 − 𝑝ℎ−𝑟) |𝐸(𝑃)∩𝐴𝑥 |

⩾ 𝑝 𝑓 (ℎ−𝑟) ·
(
1 − 𝑝ℎ−𝑟

)𝐾 ℎ−𝑟
𝑓

=
1

𝐾ℎ−𝑟
·
(
1 − 1

𝐾
ℎ−𝑟
𝑓

)𝐾 ℎ−𝑟
𝑓

⩾
1

4 · 𝐾ℎ−𝑟
.

Iterating this 𝐽𝑟 times gives

P
[
𝐸(𝑃) ⊆ 𝐸(𝑆𝑥)

]
⩾ 1 −

(
1 − 1

4𝐾ℎ−𝑟

) 𝐽𝑟
= 1 −

(
1 − 1

4𝐾ℎ−𝑟

)4𝐾ℎ−𝑟

⩾ 1 − 1
𝑒
.

The assertion about the root follows by observing that, for the purpose of this proof, the
original graph 𝐺 is the “parent” of the root, meaning that 𝐴𝑥 = 𝐸 and 𝑆𝑦 = 𝐺 both hold. ■

The next lemma shows that the distance oracle computed for a well-behaved leaf reports
a (2𝑘−1)-approximation of the distance in 𝐺 − 𝐹 for short paths.

LEMMA 4.3. Let 𝑠, 𝑡 ∈ 𝑉 be two vertices and 𝐹 ⊆ 𝐸 a set of at most 𝑓 edges. Furthermore, let 𝑥
be a leaf in 𝑇𝑖 and 𝐷𝑥 be the (modified) distance oracle associated with 𝑥. If 𝑥 satisfies Property (1)
with respect to 𝐹, then 𝐷𝑥 (𝑠, 𝑡) ⩾ 𝑑 (𝑠, 𝑡, 𝐹). Moreover, if 𝑥 is well-behaved with respect to the
approximate shortest path 𝑃𝑠,𝑡,𝐺−𝐹 , then 𝐷𝑥 (𝑠, 𝑡) ⩽ (2𝑘−1) 𝑑 (𝑠, 𝑡, 𝐹).

PROOF . As 𝑥 is a leaf node, 𝑆𝑥 is the spanner of the graph 𝑆𝑦 − 𝐴𝑥 and 𝐷𝑥 reports the distances
in 𝑆𝑥 . By Property (1), we have 𝐹 ∩ 𝐸(𝑆𝑦) ⊆ 𝐴𝑥 whence 𝑆𝑥 ⊆ 𝑆𝑦 − 𝐴𝑥 ⊆ 𝐺 − 𝐹. This implies
that 𝐷𝑥 (𝑠, 𝑡) = 𝑑𝑆𝑥 (𝑠, 𝑡) ⩾ 𝑑𝐺−𝐹 (𝑠, 𝑡) = 𝑑 (𝑠, 𝑡, 𝐹). If 𝑥 is even well-behaved then, by Property (3),
the path 𝑃𝑠,𝑡,𝐺−𝐹 lies in 𝑆𝑥 and thus by inheritance, 𝐷𝑥 (𝑠, 𝑡) ⩽ |𝑃𝑠,𝑡,𝐺−𝐹 | ⩽ (2𝑘−1) · 𝑑 (𝑠, 𝑡, 𝐹). ■

Our algorithm only ever queries leaves that fulfill Property (1), it therefore never under-
estimates the distance 𝑑 (𝑠, 𝑡, 𝐹). Additionally assume that 𝑠 and 𝑡 are connected in 𝐺−𝐹 via a
path with at most 𝐿 edges. To complete the proof of Theorem 1.2, we need to show that, under
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this condition and with high probability over all queries, our algorithm queries at least one
well-behaved leaf. If there is a short 𝑠-𝑡-path in 𝐺−𝐹 then 𝑃𝑠,𝑡,𝐺−𝐹 has at most (2𝑘−1)𝐿 edges.
Lemma 4.2 shows that the root of each tree 𝑇𝑖 is well-behaved with probability 1− 1

𝑒 , and that in
each stage the query algorithm finds a well-behaved child node with constant probability. More

precisely, we arrive at a well-behaved leaf with probability at least (1− 1
𝑒 ) ·

(
(1− 1

𝑒 )
2 1

4

)ℎ
⩾ 1

2 ·11−ℎ.
Since there are 𝐼 = 𝑐 · 11ℎ ln 𝑛 independent trees, the query algorithms fails for any fixed query
with probability at most (1 − 1

2·11ℎ )
𝐼 ⩽ 𝑛−𝑐/2. We choose the constant 𝑐 > 0 large enough to

ensure a high success probability over all 𝑂(𝑛2𝑚 𝑓 ) = 𝑂(𝑛2+2 𝑓 ) possible queries.

5. Sublinear Query Time for Long Paths

Let 0 < 𝛼 < 1/2 be a constant, where the approximation parameter 𝜀 > 0 may depend on
𝑚 and 𝑛. As a warm-up, we construct a distance sensitivity oracle with the same stretch and
space as in Theorem 1.1, but only a sublinear query time of the form 𝑂𝜀(𝑛1−𝑔 (𝛼, 𝑓 )), for some
function 𝑔 . In Section 6, we then show how to reduce the query time to𝑂𝜀(𝑛𝛼). The intermediate
solution serves to highlight many of the key ideas needed to implement the classical FT-trees in
subquadratic space, but does not yet involve the granularity 𝜆. Recall that we assume that, for
every two vertices 𝑢 and 𝑣 of 𝐺, there is a unique shortest path from 𝑢 to 𝑣 in 𝐺. Since the short
replacement paths are handled by Theorem 1.2, we focus on long paths. The structure of this
section is as follows. We first describe the interface of an abstract data structure FT and show
how to use it to get a (3+𝜀)-approximation of the replacement distances. We then implement
the data structure FT using FT-trees.

LEMMA 5.1. Let 𝑓 be a positive integer and 0 < 𝛼 < 1/2 a constant. For any undirected,
unweighted graph with unique shortest paths and any 𝜀 > 0, there exists a (3+𝜀)-approximate
𝑓 -DSO that takes space 𝑂(𝑛2− 𝛼

𝑓 +1 ) · 𝑂(log 𝑛/𝜀) 𝑓 +1, has query time 𝑛1− 𝛼
𝑓 +1+𝑜(1)/𝜀, and preprocessing

time 𝑂(𝑚𝑛2− 𝛼
𝑓 +1 ) · 𝑂(log 𝑛/𝜀) 𝑓 .

5.1 Trapezoids and Expaths

For the interface of FT, we need a bit of terminology from the work by Chechik et al. [20]. Recall
the high-level description of the original FT-trees in Section 2. We now make precise what we
mean by all failures in 𝐹 being “far away” from a given path. Let 0 < 𝜀 < 3; moreover, we
assume it to be bounded away from 3. (Recall that 𝜀 may depend on the input.) We use𝑉 (𝐹) for
the set of endpoints of failing edges.

DEF IN IT ION 5.2 ( 𝜀9-trapezoid). Let 𝐹 ⊆ 𝐸 a set of edges, 𝑢, 𝑣 ∈ 𝑉 , and 𝑃 a 𝑢-𝑣-path in 𝐺 − 𝐹.
The 𝜀

9-trapezoid around 𝑃 in 𝐺 − 𝐹 is

tr𝜀/9𝐺−𝐹 (𝑃) =
{
𝑧 ∈ 𝑉\{𝑢, 𝑣} | ∃ 𝑦 ∈ 𝑉 (𝑃) : 𝑑𝐺−𝐹 ( 𝑦, 𝑧) ⩽

𝜀

9
·min( |𝑃[𝑢.. 𝑦] |, |𝑃[ 𝑦..𝑣] | )

}
.
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𝑥
𝑢 = 𝑥

𝑣𝑦

𝑧

tr𝜀/9𝐺−𝐹 (𝑃)

𝑃 = 𝑃(𝑢, 𝑣, 𝐹)

Figure 1. A visualization of the trapezoid tr𝜀/9𝐺−𝐹 (𝑃) in Lemma 5.3 for the case 𝑢 = 𝑥. The vertices 𝑢, 𝑣 are
endpoints of failing edges in 𝐹 or the query vertices 𝑠 or 𝑡, they are not part of tr𝜀/9𝐺−𝐹 (𝑃). Vertex 𝑦 lies on
the path 𝑃 and vertex 𝑧 is in 𝑉(𝐹). The replacement path from 𝑦 to 𝑧 has length at most 𝜀

9 𝑑𝐺−𝐹 (𝑢, 𝑦). The
smaller trapezoid around 𝑃 [𝑢.. 𝑦] ◦ 𝑃( 𝑦, 𝑧, 𝐹) (red dashed line) does not contain any vertex from 𝑉(𝐹).

𝑃 is far away13 from 𝐹 if it exists in 𝐺 − 𝐹 and tr𝜀/9𝐺−𝐹 (𝑃) ∩𝑉 (𝐹) = ∅.

The endpoints 𝑢, 𝑣 of 𝑃 are removed from the trapezoid to exclude trivialities when ap-
plying it to paths between vertices contained in the failing edges. Finally, note that, due to
𝜀/9 < 1, the distance from 𝑢 to any vertex in the trapezoid is strictly smaller than 𝑑𝐺−𝐹 (𝑢, 𝑣) (by
symmetry, this also holds for 𝑣). The idea is that either the path 𝑃 is already far away from all
failures, or we can reach our destination via a vertex 𝑧 ∈ tr𝜀/9𝐺−𝐹 (𝑃) ∩𝑉 (𝐹) such that the shortest
𝑢-𝑧-path in 𝐺 − 𝐹 is far away from 𝐹 and only a slight detour. An illustration is given in Figure 1.

LEMMA 5.3 (Lemma 2.6 in [20]). Let 𝑢, 𝑣 ∈ 𝑉 (𝐹) ∪ {𝑠, 𝑡} be endpoints of failing edges or query
vertices and 𝑃 = 𝑃(𝑢, 𝑣, 𝐹) their replacement path. If tr𝜀/9𝐺−𝐹 (𝑃) ∩𝑉 (𝐹) ≠ ∅, then there are vertices
𝑥 ∈ {𝑢, 𝑣}, 𝑦 ∈ 𝑉 (𝑃), and 𝑧 ∈ tr𝜀/9𝐺−𝐹 (𝑃) ∩𝑉 (𝐹) satisfying the following statements.

(i) |𝑃[𝑥.. 𝑦] | ⩽ |𝑃 |/2;
(ii) 𝑑𝐺−𝐹 ( 𝑦, 𝑧) ⩽ 𝜀

9 · 𝑑𝐺−𝐹 (𝑥, 𝑦);
(iii) tr𝜀/9𝐺−𝐹 (𝑃[𝑥.. 𝑦] ◦ 𝑃( 𝑦, 𝑧, 𝐹)) ∩𝑉 (𝐹) = ∅.

Thus, the path 𝑃[𝑥.. 𝑦] ◦ 𝑃( 𝑦, 𝑧, 𝐹) is far away from 𝐹 and has length at most (1 + 𝜀
9) · 𝑑𝐺−𝐹 (𝑥, 𝑦).

We now turn to expaths. Afek et al. [2] showed that shortest paths in 𝐺 − 𝐹 are 𝑓 -
decomposable, that is, each of them is obtained by concatenating at most 𝑓 + 1 shortest paths
in 𝐺 (for weighted 𝐺 those shortest paths may be interleaved with up to 𝑓 edges). One would
like to represent replacement paths by the 𝑂( 𝑓 ) endpoints of those shortest paths (and edges),
but during the construction of the FT-trees much more than 𝑓 edges may fail, so this is not
directly possible. We will see that expaths offer a suitable alternative.

DEF IN IT ION 5.4 (ℓ-decomposable path). Let 𝐴 ⊆ 𝐸 be a set of edges and ℓ a positive integer.
An ℓ-decomposable path in 𝐺 − 𝐴 is a concatenation of at most ℓ + 1 shortest paths of 𝐺.

13 Definition 5.2 relaxes the notion of “far away” compared to [20] in that we allow the case tr𝜀/9𝐺−𝐹 (𝑃) ∩{𝑠, 𝑡} ≠ ∅ if 𝑠, 𝑡 ∉ 𝑉 (𝐹).
This makes the definition independent of the vertices 𝑠 and 𝑡 in the query. The proof of Lemma 5.3 remains the same
using a vertex 𝑧 ∈ 𝑉 (𝐹) instead of 𝑧 ∈ 𝑉 (𝐻𝐹) = 𝑉 (𝐹) ∪ {𝑠, 𝑡}.
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DEF IN IT ION 5.5 (ℓ-expath). Let 𝐴 ⊆ 𝐸 be a set of edges and ℓ a positive integer. An ℓ-
expath in 𝐺 − 𝐴 is a concatenation of (2 log2(𝑛) + 1) ℓ-decomposable paths such that, for every
0 ⩽ 𝑖 ⩽ 2 log2 𝑛, the length of the 𝑖-th path is at most min(2𝑖 , 22 log2(𝑛)−𝑖).

Since 𝑛− 1 is an upper bound on the diameter of any connected subgraph of 𝐺, the middle
level 𝑖 = log2 𝑛 is large enough to accompany any (decomposable) path. Levels may be empty.
Therefore, for any ℓ′ ⩾ ℓ, an ℓ-decomposable path is also both ℓ′-decomposable and an ℓ′-
expath. Also, an arbitrary subpath of an ℓ-decomposable path (respectively, ℓ-expath) is again
ℓ-decomposable (respectively, an ℓ-expath). This gives the following intuition why it is good
enough to work with expaths. Suppose some replacement path 𝑃(𝑢, 𝑣, 𝐹) survives in 𝐺−𝐴 albeit
𝐴 ⊇ 𝐹 may be much larger than 𝐹, then the shortest 𝑢-𝑣-path in 𝐺 − 𝐴 is indeed 𝑃(𝑢, 𝑣, 𝐹) and
thus 𝑓 -decomposable. The length of the shortest (2 𝑓 +1)-expath between 𝑢 and 𝑣 in 𝐺−𝐴 is
the actual replacement distance |𝑃(𝑢, 𝑣, 𝐹) | = 𝑑𝐺−𝐹 (𝑢, 𝑣). The reason for the choice ℓ = 2 𝑓 + 1
will become apparent in the proof of Lemma 5.6. The difficulties of working merely with
(2 𝑓 +1)-decomposable paths are described in Lemma 5.11.

Finally, we define a set 𝐵 of special vertices of 𝐺 that we call pivots. Recall that we are
mainly interested in paths with more than 𝐿 edges. Suppose 𝐿 = 𝜔(log 𝑛). We construct the
set 𝐵 by sampling any vertex from 𝑉 independently with probability 𝐶′ 𝑓 log2(𝑛)/𝐿 for some
sufficiently large constant 𝐶′ > 0. With high probability, we have |𝐵| = 𝑂(𝑛/𝐿) and any
replacement path with more than 𝐿/2 edges in any of the graphs 𝐺 − 𝐹 with |𝐹 | ⩽ 𝑓 contains a
pivot as can be seen by standard Chernoff bounds, see e.g. [29, 36, 38].

Interface of Data Structure FT. For a positive integer ℓ and vertices 𝑢, 𝑣 ∈ 𝑉 , define 𝑑 (ℓ)
𝜀/9(𝑢, 𝑣, 𝐹)

to be the minimum length over all ℓ-decomposable paths between 𝑢 and 𝑣 in 𝐺 − 𝐹 that are far
away from 𝐹. If there are no such paths, we set 𝑑 (ℓ)

𝜀/9(𝑢, 𝑣, 𝐹) = +∞. The data structure FT can
only be queried with triples (𝑢, 𝑣, 𝐹) for which 𝑢 or 𝑣 is a pivot in 𝐵. Its returned value satisfies
𝑑𝐺−𝐹 (𝑢, 𝑣) ⩽ 𝐹𝑇 (𝑢, 𝑣, 𝐹) ⩽ 3 · 𝑑 (2 𝑓 +1)

𝜀/9 (𝑢, 𝑣, 𝐹). We let 𝑞𝐹𝑇 denote its query time.

5.2 Querying the Distance Sensitivity Oracle

We show how to use the black box FT to get a (3+𝜀)-approximate 𝑓 -DSO. As an additional data
structure, we instantiate the 𝑓 -DSO for short paths described in Theorem 1.2 with parameter
𝑘 = 2. It thus gives a 3-approximation, whenever the replacement path in question has at most
𝐿 edges.

Fix a query (𝑠, 𝑡, 𝐹) that we want to answer on the top level. We build the weighted complete
graph 𝐻𝐹 on the vertex set𝑉 (𝐻𝐹) = {𝑠, 𝑡}∪𝑉 (𝐹). For a pair {𝑢, 𝑣} ∈

(𝑉 (𝐻𝐹)
2

)
, let𝑤𝐻𝐹 (𝑢, 𝑣) denote

the weight of the edge {𝑢, 𝑣}. Since 𝐺 is undirected, 𝑤𝐻𝐹 (·, ·) is symmetric. To simplify notation,
we allow possibly infinite edge weights instead of removing the respective edge. The weight
𝑤𝐻𝐹 (𝑢, 𝑣) is intended to roughly equal to the replacement distance 𝑑𝐺−𝐹 (𝑢, 𝑣). While we do not
achieve this exactly, most of the time we can ensure that 𝑑𝐺−𝐹 (𝑢, 𝑣) ⩽ 𝑤𝐻𝐹 (𝑢, 𝑣) ⩽ 3 · 𝑑𝐺−𝐹 (𝑢, 𝑣).
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Either way, we show in Lemma 5.6 that we can find weights that are good enough such that
for the query vertices 𝑠 and 𝑡, the 𝑠-𝑡-distance in 𝐻𝐹 is a (3+𝜀)-approximation of 𝑑𝐺−𝐹 (𝑠, 𝑡). It is
thus reported as the answer to the query (𝑠, 𝑡, 𝐹).

Recall that we use 𝑑⩽𝐿𝐺−𝐹 (𝑢, 𝑣) for the minimum length over all short 𝑢-𝑣-paths in the graph
𝐺−𝐹, and 𝑑⩽𝐿(𝑢, 𝑣, 𝐹) for its 3-approximation from the 𝑓 -DSO for short paths. The time to obtain
that estimate is 𝑂(𝐿𝑜(1)).

If 𝑢 or 𝑣 is a pivot, we set 𝑤𝐻𝐹 (𝑢, 𝑣) to the minimum of 𝑑⩽𝐿(𝑢, 𝑣, 𝐹) and 𝐹𝑇 (𝑢, 𝑣, 𝐹). Other-
wise, if {𝑢, 𝑣} ∩ 𝐵 = ∅, we set it to the minimum of 𝑑⩽𝐿(𝑢, 𝑣, 𝐹) and

𝑤′
𝐻𝐹 (𝑢, 𝑣) = min

𝑏∈𝐵
{𝐹𝑇 (𝑢, 𝑏, 𝐹) + 𝐹𝑇 (𝑏, 𝑣, 𝐹)} .

If 𝑢 and 𝑣 have a short replacement path, 𝑑⩽𝐿(𝑢, 𝑣, 𝐹) is a good estimate of 𝑑𝐺−𝐹 (𝑢, 𝑣). Otherwise,
the replacement path is long. The computation of the auxiliary weight 𝑤′

𝐻𝐹 (𝑢, 𝑣) then searches
for a pivot that lies on this long path and uses the FT-trees to obtain the distance.

LEMMA 5.6. With high probability over all queries, the query time is 𝑂(𝐿𝑜(1) + 𝑛
𝐿 · 𝑞𝐹𝑇 ) and it

holds that 𝑑𝐺−𝐹 (𝑠, 𝑡) ⩽ 𝑑𝐻𝐹 (𝑠, 𝑡) ⩽ (3+𝜀)𝑑𝐺−𝐹 (𝑠, 𝑡).

PROOF . The graph 𝐻𝐹 has 𝑂( 𝑓 2) = 𝑂(1) edges, and assigning a weight takes 𝑂(𝐿𝑜(1) + |𝐵| · 𝑞𝐹𝑇 )
per edge. The distance from 𝑠 to 𝑡 can be computed using Dijkstra’s algorithm in time 𝑂( 𝑓 2).

We prove the seemingly stronger assertion that for each pair 𝑢, 𝑣 ∈ 𝑉 (𝐻𝐹), we have
𝑑𝐺−𝐹 (𝑢, 𝑣) ⩽ 𝑑𝐻𝐹 (𝑢, 𝑣) ⩽ (3+𝜀)𝑑𝐺−𝐹 (𝑢, 𝑣). The first inequality is immediate from the fact that
the values 𝑑⩽𝐿(𝑢, 𝑣, 𝐹), 𝐹𝑇 (𝑢, 𝑣, 𝐹), and 𝐹𝑇 (𝑢, 𝑏, 𝐹) + 𝐹𝑇 (𝑏, 𝑣, 𝐹) for any 𝑏 ∈ 𝐵 are all at least
𝑑𝐺−𝐹 (𝑢, 𝑣).

We prove the second inequality by induction over 𝑑𝐺−𝐹 . If 𝑢 = 𝑣 (i.e., 𝑑𝐺−𝐹 (𝑢, 𝑣) = 0), there
is nothing to prove. Assume the inequality holds for all pairs of vertices with replacement
distance strictly smaller than 𝑑𝐺−𝐹 (𝑢, 𝑣). We distinguish three cases. In the first case, the (unique)
replacement path 𝑃 = 𝑃(𝑢, 𝑣, 𝐹) has at most 𝐿 edges. Theorem 1.2 then implies

𝑑𝐻𝐹 (𝑢, 𝑣) ⩽ 𝑤𝐻𝐹 (𝑢, 𝑣) ⩽ 𝑑⩽𝐿(𝑢, 𝑣, 𝐹) ⩽ 3 · 𝑑⩽𝐿𝐺−𝐹 (𝑢, 𝑣) = 3 · |𝑃 |,

which is 3𝑑𝐺−𝐹 (𝑢, 𝑣) as 𝑃 is a replacement path.
If the path 𝑃 is long instead, it contains a pivot 𝑏 ∈ 𝐵w.h.p. (possibly 𝑢 = 𝑏 or 𝑣 = 𝑏). For the

second case, assume 𝑃 has more than 𝐿 edges and is far away from all failures in 𝐹. Note that
then the subpaths 𝑃[𝑢..𝑏] and 𝑃[𝑏..𝑣] are the replacement paths for their respective endpoints,
and therefore both 𝑓 -decomposable (and also (2 𝑓 +1)-decomposable). Moreover, they are far
away from all failures as their trapezoids are subsets of tr𝜀/9𝐺−𝐹 (𝑃). It holds that

𝑑𝐻𝐹 (𝑢, 𝑣) ⩽ 𝑤𝐻𝐹 (𝑢, 𝑣) ⩽ 𝐹𝑇 (𝑢, 𝑏, 𝐹) + 𝐹𝑇 (𝑏, 𝑣, 𝐹)
⩽ 3 · 𝑑 (2 𝑓 +1)

𝜀/9 (𝑢, 𝑏, 𝐹) + 3 · 𝑑 (2 𝑓 +1)
𝜀/9 (𝑏, 𝑣, 𝐹)

= 3 · |𝑃[𝑢..𝑏] | + 3 · |𝑃[𝑏..𝑣] | = 3 · 𝑑𝐺−𝐹 (𝑢, 𝑣).
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Finally, for the third case suppose the replacement path 𝑃 is long but not far away from 𝐹.
Lemma 5.3 states the existence of three vertices 𝑥 ∈ {𝑢, 𝑣}, 𝑦 ∈𝑉 (𝑃), and 𝑧 ∈ tr𝜀/9𝐺−𝐹 (𝑃) ∩𝑉 (𝐹)
such that 𝑑𝐺−𝐹 (𝑧, 𝑦) ⩽ 𝜀

9 · 𝑑𝐺−𝐹 (𝑥, 𝑦). The path 𝑃′ = 𝑃[𝑥.. 𝑦] ◦ 𝑃( 𝑦, 𝑧, 𝐹) is far away from all
failures and has length at most (1 + 𝜀

9) · 𝑑𝐺−𝐹 (𝑥, 𝑦). In the remainder, we assume 𝑥 = 𝑢; the
argument for 𝑥 = 𝑣 is symmetric. If the concatenation 𝑃′ has at most 𝐿 edges, we get

𝑤𝐻𝐹 (𝑢, 𝑧) ⩽ 𝑑⩽𝐿(𝑢, 𝑧, 𝐹) ⩽ 3 |𝑃′| ⩽ 3
(
1 + 𝜀

9

)
𝑑𝐺−𝐹 (𝑢, 𝑦) =

(
3 + 𝜀

3

)
𝑑𝐺−𝐹 (𝑢, 𝑦).

Note that we do mean 𝑑𝐺−𝐹 (𝑢, 𝑦) here and not 𝑑𝐺−𝐹 (𝑢, 𝑧).
The subpath 𝑃[𝑢.. 𝑦] is in fact the unique replacement path 𝑃(𝑢, 𝑦, 𝐹). So, if 𝑃′ has more

than 𝐿 edges, one of its subpaths 𝑃[𝑢.. 𝑦] or 𝑃( 𝑦, 𝑧, 𝐹) has more than 𝐿/2 edges. Thus, there exists
a pivot 𝑏 on 𝑃′. Here, we actually use the uniqueness of shortest paths in 𝐺 since replacing, say,
𝑃[𝑢.. 𝑦] with another shortest 𝑢-𝑦-path in 𝐺 − 𝐹 to ensure a pivot may result in a concatenation
that is no longer far away from all failures. Similar to the second case, we arrive at

𝑤𝐻𝐹 (𝑢, 𝑧) ⩽ 𝐹𝑇 (𝑢, 𝑏, 𝐹) + 𝐹𝑇 (𝑏, 𝑧, 𝐹)
⩽ 3 · 𝑑 (2 𝑓 +1)

𝜀/9 (𝑢, 𝑏, 𝐹) + 3 · 𝑑 (2 𝑓 +1)
𝜀/9 (𝑏, 𝑧, 𝐹)

⩽ 3 · |𝑃′[𝑢..𝑏] | + 3 · |𝑃′[𝑏..𝑧] | = 3 |𝑃′| ⩽
(
3 + 𝜀

3

)
𝑑𝐺−𝐹 (𝑢, 𝑦).

It is important that FT approximates 𝑑 (2 𝑓 +1)
𝜀/9 since 𝑃′may not be 𝑓 -decomposable. As the concate-

nation of two 𝑓 -decomposable paths, 𝑃′ is (2 𝑓 +1)-decomposable; so are 𝑃′[𝑢..𝑏] and 𝑃′[𝑏..𝑧].
Now that we have an upper bound on 𝑤𝐻𝐹 (𝑢, 𝑧) we can conclude the third case. Since

𝜀
9 < 1 and 𝑧 ∈ tr𝜀/9𝐺𝐹

(𝑃) (where 𝑃 is the 𝑢-𝑣-replacement path), the distance 𝑑𝐺−𝐹 (𝑧, 𝑣) is strictly
smaller than 𝑑𝐺−𝐹 (𝑢, 𝑣). By induction, 𝑑𝐻𝐹 (𝑧, 𝑣) ⩽ (3+𝜀) · 𝑑𝐺−𝐹 (𝑧, 𝑣). Recall that vertex 𝑦 lies
on 𝑃, whence 𝑑𝐺−𝐹 (𝑢, 𝑦) +𝑑𝐺−𝐹 ( 𝑦, 𝑣) = 𝑑𝐺−𝐹 (𝑢, 𝑣). Due to 𝜀 ⩽ 3, we have (2+ 𝜀3)

𝜀
9 ⩽

𝜀
3 . Also, recall

that 𝑑𝐺−𝐹 (𝑧, 𝑦) ⩽ 𝜀
9 𝑑𝐺−𝐹 (𝑢, 𝑦) by the definition of 𝑧 and 𝑥 = 𝑢. Putting everything together, we

estimate the 𝑢-𝑣-distance in the graph 𝐻𝐹 .

𝑑𝐻𝐹 (𝑢, 𝑣) ⩽ 𝑤𝐻𝐹 (𝑢, 𝑧) + 𝑑𝐻𝐹 (𝑧, 𝑣) ⩽
(
3 + 𝜀

3

)
𝑑𝐺−𝐹 (𝑢, 𝑦) + (3 + 𝜀)𝑑𝐺−𝐹 (𝑧, 𝑣)

⩽ 3
((

1 + 𝜀
9

)
𝑑𝐺−𝐹 (𝑢, 𝑦) +

(
1 + 𝜀

3

)
(𝑑𝐺−𝐹 (𝑧, 𝑦) + 𝑑𝐺−𝐹 ( 𝑦, 𝑣))

)
⩽ 3

((
1 + 𝜀

9

)
𝑑𝐺−𝐹 (𝑢, 𝑦) +

(
1 + 𝜀

3

) (𝜀
9
𝑑𝐺−𝐹 (𝑢, 𝑦) + 𝑑𝐺−𝐹 ( 𝑦, 𝑣)

))
= 3

(
𝑑𝐺−𝐹 (𝑢, 𝑦) + 𝑑𝐺−𝐹 ( 𝑦, 𝑣) +

(
2 + 𝜀

3

) 𝜀
9
𝑑𝐺−𝐹 (𝑢, 𝑦) +

𝜀

3
𝑑𝐺−𝐹 ( 𝑦, 𝑣)

)
⩽ 3

(
𝑑𝐺−𝐹 (𝑢, 𝑣) +

𝜀

3
𝑑𝐺−𝐹 (𝑢, 𝑦) +

𝜀

3
𝑑𝐺−𝐹 ( 𝑦, 𝑣)

)
= 3

(
1 + 𝜀

3

)
𝑑𝐺−𝐹 (𝑢, 𝑣) = (3+𝜀)𝑑𝐺−𝐹 (𝑢, 𝑣). ■
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Figure 2. The red, blue and yellow vertices are some of the netpoints contained in 𝑝left for the path
(𝑢, 𝑏). The set 𝑝right is created in the same way but with reversed distance (hinted below in grey), i.e.,
from 𝑏 to 𝑢.

5.3 Fault-Tolerant Trees

We now describe the implementation of the FT data structure via fault-tolerant trees. We
compute all-pairs shortest distances in the original graph 𝐺 (slightly perturbing edge weights
for unique shortest paths if required), and, for each pivot 𝑏 ∈ 𝐵, a shortest path tree of 𝐺 rooted
in 𝑏 in 𝑂(𝑚𝑛) time. We turn each of those trees into a data structure that reports the lowest
common ancestor (LCA) in constant time with the algorithm of Bender and Farach-Colton [8].
This takes time and space 𝑂( |𝐵|𝑛) = 𝑂(𝑛2/𝐿) w.h.p.

We also assume that we have access to a procedure that, given any set 𝐴 ⊆ 𝐸 of edges
(which may have much more than 𝑓 elements) and a pair of vertices 𝑢, 𝑣 ∈ 𝑉 , computes the
shortest (2 𝑓 +1)-expath between 𝑢 and 𝑣 in 𝐺−𝐴. This expath is labeled with its structure,
that means, (a) the start and endpoints of the 2 log2(𝑛) + 1 constituting (2 𝑓 +1)-decomposable
subpaths, and (b) inside each decomposable path the start and endpoint of the constituting
shortest paths (and possibly interleaving edges). The explanation of how to achieve this in time
𝑂( 𝑓 𝑚) is deferred to Section 7. This is also the key ingredient of the proof of Theorem 1.4.

We build the FT-trees only for pairs of vertices (𝑢, 𝑏) for which 𝑏 ∈ 𝐵 is a pivot. On a high
level, 𝐹𝑇 (𝑢, 𝑏) is a tree of depth 𝑓 that stores in each node the shortest (2 𝑓 +1)-expath between
𝑢 and 𝑏 in some graph 𝐺−𝐴. We first describe the information that we hold in a single node
𝜈. Let 𝑃𝜈 be the stored expath. It is partitioned first into segments and those are partitioned
further into parts. To define the segments, we need the notion of netpoints.

DEF IN IT ION 5.7 (Path netpoints). Let 𝑃 = (𝑢 = 𝑣1, . . . , 𝑣ℓ = 𝑏) be a path. Define 𝑝left to be
all pairs of consecutive vertices 𝑣 𝑗 , 𝑣 𝑗+1 ∈ 𝑉 (𝑃), for which there is an integer 𝑖 ⩾ 0, such that
|𝑃[𝑢..𝑣 𝑗] | < (1+ 𝜀

36)
𝑖 ⩽ |𝑃[𝑢..𝑣 𝑗+1] |. Let 𝑝right be all vertices 𝑣 𝑗 , 𝑣 𝑗−1 ∈ 𝑉 (𝑃) such that |𝑃[𝑣 𝑗 ..𝑏] | <

(1 + 𝜀
36)

𝑖 ⩽ |𝑃[𝑣 𝑗−1..𝑏] | for some 𝑖. The netpoints of 𝑃 are the vertices in 𝑝left ∪ 𝑝right ∪ {𝑢, 𝑏}.

The netpoints can equivalently be seen as the result of the following process, illustrated
in Figure 2. Given the 𝑢-𝑏-path 𝑃, start from the endpoint 𝑢. For every power of 1 + 𝜀

36 , mark
the vertex that is the furthest away from 𝑢 but whose path length along 𝑃 is still less than this
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power. Additionally, mark its immediate successor on the path. These are exactly the vertices in
𝑝left. When doing the same thing from the other endpoint 𝑏, one obtains 𝑝right.

A segment of the path 𝑃 is the subpath between consecutive netpoints. Note that the
bounding netpoints may stem from both 𝑝left and 𝑝right. For an edge 𝑒 ∈ 𝐸(𝑃), let seg(𝑒, 𝑃)
denote the segment of 𝑃 containing 𝑒. There are segments that contain only a single edge, e.g.,
the ones between a marked vertex and its immediate successor in the process above. The others
have exponentially increasing lengths, with 1 + 𝜀

36 as the base of the exponential. However,
since we define the segments from both ends of 𝑃, they do not grow too large. This is made
precise in Lemma 5.10 below.

We only ever store expaths in the FT-trees, there the segments need to be subdivided into
parts. Recall that an expath 𝑃 is made up of logarithmically many decomposable subpaths. The
decomposable subpaths, in turn, consist of 𝑂( 𝑓 ) shortest paths (and interleaving edges) in 𝐺.
These building blocks may not be aligned with the segments. This can cause problems as we
want to use the structure of an expath but store it segment-wise. We thus define a part as a
maximal subpath of 𝑃 that is completely contained in one segment and, at the same time, in
one of the constituting shortest paths. We can find all parts by a linear scan over the labels of
the expath that are provided by the 𝑂( 𝑓 𝑚)-time procedure that computes 𝑃.

Note that each part is a shortest path/edge in 𝐺 (they are defined as subpaths of shortest
paths). We assume that the shortest paths in 𝐺 are unique. It is therefore enough to represent
a part by its endpoints. With any part [𝑣, 𝑤], for 𝑣, 𝑤 ∈ 𝑉 (𝑃), we store pointers to the closest
netpoint before 𝑣 and after 𝑤, possibly 𝑣 and 𝑤 themselves. This allows us to quickly find the
segment in which the part lies. We also store the original graph distance 𝑑 (𝑣, 𝑤). If the part
contains more than 𝐿 edges, we mark this fact and store a pivot 𝑝 ∈ 𝐵 that lies in [𝑣, 𝑤].

We now describe the FT-tree 𝐹𝑇 (𝑢, 𝑏) recursively. In some node 𝜈, let 𝐴𝜈 be the set of all
edges that were failed in the path from the root to 𝜈; with 𝐴𝜈 = ∅ in the root itself. We compute
the shortest (2 𝑓 +1)-expath 𝑃𝜈 in 𝐺 − 𝐴𝜈 and store the information for all its parts. For each
of its segments 𝑆, we create a child node 𝜇 in which we set 𝐴𝜇 = 𝐴𝜈 ∪ 𝐸(𝑆). That means, the
transition from a parent to a child corresponds to failing the whole segment. Note that the sets
𝐴𝜈 are only used during preprocessing and never actually stored. We continue the recursive
construction until depth 𝑓 is reached; if in a node 𝜈 the vertices 𝑢 and 𝑏 become disconnected,
we mark this as a leaf node not storing any path. We build one FT-tree for each pair of (distinct)
vertices in 𝑉 × 𝐵 and additionally store the LCA data structure for each pivot.

The number of segments of any simple path in a subgraph of 𝐺 is at most 2 log1+ 𝜀36
(𝑛) + 1.

Therefore, there exists a constant 𝑐 > 0 such that the maximum number of segments of one
path is at most 𝑐 log2(𝑛)/𝜀. This is an upper bound on the degree of any node, so there are
at most 2(𝑐 log2(𝑛)/𝜀) 𝑓 nodes in each tree. Moreover, an (2 𝑓 +1)-expath consists of 𝑂( 𝑓 log 𝑛)
shortest paths. So there are 𝑂( 𝑓 log 𝑛 + log(𝑛)/𝜀) = 𝑂( 𝑓 log(𝑛)/𝜀) parts in one node, for each of
which we store a constant number of machine words. The combined space of the FT-trees and
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LCA data structures is

|𝐵|𝑛 · 𝑂
(
𝑓 log 𝑛
𝜀

)
· 𝑂

(
log 𝑛
𝜀

) 𝑓
+ 𝑂( |𝐵|𝑛) = 𝑂

(
𝑛2

𝐿

)
· 𝑂

(
log 𝑛
𝜀

) 𝑓 +1

.

The time spent in each node is dominated by computing the (2 𝑓 +1)-expath. The total time to

precompute FT is |𝐵|𝑛 · 𝑂( 𝑓 𝑚) · 𝑂
(

log 𝑛
𝜀

) 𝑓
+ 𝑂( |𝐵|𝑛) = 𝑂

(
𝑛2

𝐿𝑚
)
· 𝑂

(
log 𝑛
𝜀

) 𝑓
.

5.4 Querying the Data Structure FT

We used in Lemma 5.6 that the value 𝐹𝑇 (𝑢, 𝑏, 𝐹) is between 𝑑𝐺−𝐹 (𝑢, 𝑏) and 3 𝑑 (2 𝑓 +1)
𝜀/9 (𝑢, 𝑏, 𝐹),

three times the minimum length of an (2 𝑓 +1)-decomposable between 𝑢 and 𝑏 in 𝐺−𝐹 that is far
away from all failures in 𝐹. We now show how to do this.

The main challenge when traversing the FT-tree is to utilize the little information that is
stored in a node 𝜈 to solve the following problem. We must either find the segment seg(𝑒, 𝑃𝜈)
for some failing edge 𝑒 ∈ 𝐹 or verify that 𝐹 ∩ 𝐸(𝑃𝜈) = ∅. The original solution in [20] was to
determine for each shortest path/interleaving edge [𝑣, 𝑤] on 𝑃𝜈 and edge 𝑒 = {𝑥, 𝑦} ∈ 𝐹 whether
the minimum of 𝑑 (𝑣, 𝑥) +𝑤(𝑥, 𝑦) + 𝑑 ( 𝑦, 𝑤) and 𝑑 (𝑣, 𝑦) +𝑤(𝑥, 𝑦) + 𝑑 (𝑥, 𝑤) is equal to 𝑑 (𝑣, 𝑤). If
so, 𝑒 must lie on the shortest path 𝑃𝜈[𝑣..𝑤]. Computing the actual segment seg(𝑒, 𝑃𝜈) ⊇ [𝑣, 𝑤] of
the edge, then merely has to find the closest netpoints before 𝑣 and after 𝑤 (including 𝑣 and
𝑤 themselves). The problem is that this approach requires storing all Ω(𝑛2) original graph
distances in 𝐺, which we cannot afford. We first prove that we can get a weaker guarantee.

LEMMA 5.8. Let 𝜈 be a node of 𝐹𝑇 (𝑢, 𝑏). There exists an algorithm to check that there is a path
between 𝑢 and 𝑏 in 𝐺−𝐹 that has length at most 3 |𝑃𝜈 | or find the segment seg(𝑒, 𝑃𝜈) for some
𝑒 ∈ 𝐹 ∩ 𝐸(𝑃𝜈). The computation time is 𝑂(𝐿𝑜(1)/𝜀).

PROOF . Note that one of the alternatives must occur for if 𝐹 ∩ 𝐸(𝑃𝜈) = ∅, then 𝑃𝜈 exists in
𝐺−𝐹. Consider a part [𝑣, 𝑤] of 𝑃𝜈. If it has more than 𝐿 edges, then we stored a pivot 𝑝 in [𝑣, 𝑤].
More precisely, [𝑣, 𝑤] is the concatenation of the unique shortest path between 𝑣 and 𝑝 and
the one between 𝑝 and 𝑤 in 𝐺. We have access to a shortest path tree rooted in 𝑝. So, for each
edge 𝑒 = {𝑥, 𝑦} ∈ 𝐹, we can check with a constant number of LCA queries involving 𝑝, 𝑣, 𝑤, 𝑥,
and 𝑦 whether edge 𝑒 is in that concatenation in time 𝑂( 𝑓 ) per part. If all checks fail, we have
𝑑𝐺−𝐹 (𝑣, 𝑤) = 𝑑 (𝑣, 𝑤) = |𝑃𝜈[𝑣..𝑤] |.

If [𝑣, 𝑤] is short, the oracle from Theorem 1.2 is queried with the triple (𝑣, 𝑤, 𝐹). That
oracle was preprocessed anyway and answers in time 𝑂(𝐿𝑜(1)). The return value 𝑑⩽𝐿(𝑣, 𝑤, 𝐹) is
compared with the original distance 𝑑 (𝑣, 𝑤) that was stored with the part. If the former is more
than 3 times the latter, it must be that 𝑑𝐺−𝐹 (𝑣, 𝑤) > 𝑑 (𝑣, 𝑤), so the part contains some edge of 𝐹.

We either find a part that has a failing edge in time 𝑂(𝐿𝑜(1) · 𝑓 log2 𝑛
𝜀 ) = 𝑂(𝐿

𝑜(1)/𝜀) or verify
that 𝑑𝐺−𝐹 (𝑣, 𝑤) ⩽ 3 · 𝑑 (𝑣, 𝑤) holds for all parts. In the latter case, swapping each part [𝑣, 𝑤] for
the path 𝑃(𝑣, 𝑤, 𝐹) shows the existence of a path in𝐺−𝐹 of length at most 3|𝑃𝜈 | =

∑
[𝑣,𝑤] 3·𝑑 (𝑣, 𝑤).
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Finally, let [𝑣, 𝑤] be a part for which we determined that it contains a failing edge. The
query algorithm does not need to know which edges are in 𝐸( [𝑣, 𝑤]) ∩ 𝐹 since for all of them
[𝑣, 𝑤] is completely contained in the segment seg(𝑒, 𝑃𝜈). It is thus enough to find the last netpoint
on the subpath 𝑃𝜈[𝑢..𝑣] and the first on 𝑃𝜈[𝑤..𝑏] by following the pointers. ■

We use the lemma to compute 𝐹𝑇 (𝑢, 𝑏, 𝐹). The tree transversal starts at the root. Once it
enters a node 𝜈, it checks whether there is a path in 𝐺−𝐹 of length at most 3 |𝑃𝜈 |. If so, this length
is returned. Otherwise, the algorithm obtains a segment seg(𝑒, 𝑃𝜈) for some 𝑒 ∈ 𝐹 ∩ 𝐸(𝑃𝜈) and
recurses on the corresponding child. Once a leaf 𝜈∗ is encountered, the length |𝑃𝜈∗ | is returned;
or +∞ if the leaf does not store a path. This takes total time 𝑞𝐹𝑇 = 𝑂(𝐿𝑜(1)/𝜀) since at most
𝑓 +1 = 𝑂(1) nodes are visited. The main argument for the correctness of this procedure is to
show that if a (2 𝑓 +1)-expath 𝑃 in 𝐺−𝐹 is far away from all failures, it survives in 𝐺−𝐴𝜈∗ .

LEMMA 5.9. Let 𝑃 be the shortest (2 𝑓 +1)-decomposable path between 𝑢 and 𝑏 in 𝐺 − 𝐹 that is
far away from all failures in 𝐹. Let 𝜈∗ be the node of 𝐹𝑇 (𝑢, 𝑏) in which a value is returned when
queried with 𝐹, and let 𝐴𝜈∗ be the set of edges that were failed from the root to 𝜈∗. Then, 𝑃 exists in
the graph 𝐺 − 𝐴𝜈∗ . Moreover, it holds that 𝑑𝐺−𝐹 (𝑢, 𝑏) ⩽ 𝐹𝑇 (𝑢, 𝑏, 𝐹) ⩽ 3 · 𝑑 (2 𝑓 +1)

𝜀/9 (𝑢, 𝑏, 𝐹).

We need the following two lemmas for the proof. The first one states that the segments
of a path are not too long, or even only contain a single edge. The second lemma verifies a
certain prefix optimality of expaths. This is the crucial property that decomposable paths are
lacking. For some edge set 𝐴 ⊆ 𝐸, let 𝑑 (ℓ) (𝑢, 𝑣, 𝐴) be the length of the shortest ℓ-decomposable
path in 𝐺−𝐴. Compared to 𝑑 (ℓ)

𝜀/9(𝑢, 𝑣, 𝐹), this definition allows for larger failure sets and drops
the requirement of the path being far away from the failures.

LEMMA 5.10 (Lemma 3.2 in [20]). Let 𝑢 ∈ 𝑉 and 𝑏 ∈ 𝐵, 𝑃 be any path between 𝑢 and 𝑏, 𝑒 ∈ 𝐸(𝑃),
and 𝑦 a vertex of the edge 𝑒. Then, 𝐸(seg(𝑒, 𝑃)) = {𝑒} or | seg(𝑒, 𝑃) | ⩽ 𝜀

36 min( |𝑃[𝑢.. 𝑦] |, |𝑃[ 𝑦..𝑏] |).

LEMMA 5.11 (Lemma 3.1 in [20]). Let 𝑢 ∈ 𝑉 and 𝑏 ∈ 𝐵, 𝐴 ⊆ 𝐸 a set of edges, ℓ a positive integer,
and 𝑃 the shortest ℓ-expath between 𝑢 and 𝑏 in 𝐺 − 𝐴. Then, for every 𝑦 ∈ 𝑉 (𝑃), |𝑃[𝑢.. 𝑦] | ⩽
4 · 𝑑 (ℓ) (𝑢, 𝑦, 𝐴) and |𝑃[ 𝑦..𝑣] | ⩽ 4 · 𝑑 (ℓ) ( 𝑦, 𝑣, 𝐴) both hold.

PROOF OF LEMMA 5.9 . The second assertion is an easy consequence of the first. 𝑃 is the
shortest (2 𝑓 +1)-decomposable 𝑢-𝑏-path in 𝐺 − 𝐹 that is far away from all failures in 𝐹. If 𝑃 also
exists in 𝐺 − 𝐴𝜈∗ , then |𝑃𝜈∗ | ⩽ |𝑃 | by the definition of 𝑃𝜈∗ as the shortest (2 𝑓 +1)-expath between
𝑢 and 𝑣 in 𝐺 − 𝐴𝜈∗ and 𝑃 being (2 𝑓 +1)-decomposable (and thus a (2 𝑓 +1)-expath). The query
algorithm guarantees 𝐹𝑇 (𝑢, 𝑏, 𝐹) ⩽ 3 |𝑃𝜈∗ | ⩽ 3 |𝑃 | = 3 · 𝑑 (2 𝑓 +1)

𝜀/9 (𝑢, 𝑏, 𝐹). It is clear that we never
underestimate the true distance 𝑑𝐺−𝐹 (𝑢, 𝑏).

We show the existence of the path 𝑃 in 𝐺 − 𝐴𝜈 for every visited node 𝜈 by induction over
the parent-child transitions of the tree transversal. It is true for the root where 𝐴𝜈 = ∅. When
going from 𝜈 to a child, 𝐴𝜈 gets increased by the edges 𝐸(seg(𝑒, 𝑃𝜈)) of a segment for some
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𝑒𝐹 ∈ 𝐹 ∩ 𝐸(𝑃𝜈). It is enough to prove that 𝑃 does not contain an edge of seg(𝑒, 𝑃𝜈). Intuitively,
we argue that the segments are too short for their removal to influence a path far away from 𝐹.

The claim is immediate if 𝐸(seg(𝑒𝐹 , 𝑃𝜈)) = {𝑒𝐹}, because 𝑃 exists in𝐺−𝐹. For the remainder,
suppose seg(𝑒𝐹 , 𝑃𝜈) consists of more than one edge. To reach a contradiction, assume 𝑒𝑃 ∈
𝐸(𝑃) ∩𝐸(seg(𝑒𝐹 , 𝑃𝜈)) is an edge in the intersection. If seg(𝑒𝐹 , 𝑃𝜈) contains multiple edges from 𝐹,
we let 𝑒𝐹 be the one closest to 𝑒𝑃. This ensures that the subpath of 𝑃𝜈 between the closest vertices
in 𝑒𝐹 and 𝑒𝑃 does not contain any other failing edges. More formally, there are vertices 𝑦 ∈ 𝑒𝑃
and 𝑧 ∈ 𝑒𝐹 such that neither 𝑦 nor 𝑧 are the endpoints 𝑢 or 𝑏 and the subpath 𝑃𝜈[ 𝑦..𝑧] lies
entirely both in seg(𝑒, 𝑃𝜈) and the graph 𝐺 − 𝐹. Since 𝑦 ∈ 𝑉 (𝑃), 𝑧 ∈ 𝑉 (𝐹), and the path 𝑃 is far
away from all failures, 𝑧 must be outside the trapezoid tr𝜀/9𝐺−𝐹 (𝑃), that is,

| seg(𝑒𝐹 , 𝑃𝜈) | ⩾ |𝑃𝜈[ 𝑦..𝑧] | ⩾ 𝑑𝐺−𝐹 ( 𝑦, 𝑧) >
𝜀

9
min( |𝑃[𝑢.. 𝑦] |, |𝑃[ 𝑦..𝑏] |).

Conversely, we combine Lemmas 5.10 and 5.11, edge 𝑒𝑃 lying both on 𝑃 and 𝑃𝜈, and 𝑃𝜈 (with its
subpaths) being a (2 𝑓 +1)-expath to arrive at

| seg(𝑒𝐹 , 𝑃𝜈) | ⩽
𝜀

36
min( |𝑃𝜈[𝑢.. 𝑦] |, |𝑃𝜈[ 𝑦..𝑏] |) ⩽

𝜀

36
·min

(
4 · 𝑑 (2 𝑓 +1) (𝑢, 𝑦, 𝐹), 4 · 𝑑 (2 𝑓 +1) ( 𝑦, 𝑏, 𝐹)

)
=
𝜀

9
·min

(
𝑑 (2 𝑓 +1) (𝑢, 𝑦, 𝐹), 𝑑 (2 𝑓 +1) ( 𝑦, 𝑏, 𝐹)

)
⩽
𝜀

9
·min( |𝑃[𝑢.. 𝑦] |, |𝑃[ 𝑦..𝑏] |). ■

5.5 Proof of Lemma 5.1

We derive here the parameters of the 𝑓 -DSO with sublinear query time. The preprocessing
consists of two main parts. First, the oracle for short paths is computable in time𝑂(𝐿 𝑓 +𝑜(1)𝑚

√
𝑛 )

(Theorem 1.2). Secondly, 𝐹𝑇 has preprocessing time 𝑂(𝑚𝑛2/𝐿) · 𝑂(log 𝑛/𝜀) 𝑓 , assuming that we
can compute expaths in time 𝑂(𝑚). We set 𝐿 = 𝑛𝛼/( 𝑓 +1) for a constant 0 < 𝛼 < 1/2. The
preprocessing is dominated by the FT-trees giving a total time of 𝑂(𝑚𝑛2− 𝛼

𝑓 +1 ) · 𝑂(log 𝑛/𝜀) 𝑓 .
By Lemma 5.6 with 𝑞𝐹𝑇 = 𝑂(𝐿𝑜(1)/𝜀) the query time of the resulting oracle is 𝑂(𝑛/(𝜀𝐿1−𝑜(1))) =
𝑛1− 𝛼

𝑓 +1+𝑜(1)/𝜀. The data structure from Theorem 1.2 requires space 𝑂(𝐿 𝑓 +𝑜(1) 𝑛3/2), and FT takes

𝑂(𝑛2/𝐿) ·𝑂(log 𝑛/𝜀) 𝑓 +1. Inserting our choice of 𝐿 gives 𝑛
𝑓
𝑓 +1𝛼+

3
2+𝑜(1) +𝑂

(
𝑛2− 𝛼

𝑓 +1
)
·𝑂

(
log 𝑛
𝜀

) 𝑓 +1
. Since

𝛼 < 1/2 is a constant, the second term dominates.

6. Reducing the Query Time

We now reduce the query time to𝑂𝜀(𝑛𝛼). The bottleneck of the query answering is computing the
(auxiliary) weight 𝑤′

𝐻𝐹 (𝑢, 𝑣) of the edge {𝑢, 𝑣} in the graph 𝐻𝐹 , see the beginning of Section 5.2.
Minimizing 𝐹𝑇 (𝑢, 𝑏, 𝐹) + 𝐹𝑇 (𝑏, 𝑣, 𝐹) over all pivots 𝑏 takes linear time in |𝐵|. Let 𝜆 = 𝜆 (𝐿, 𝜀) ⩽ 𝐿
be a parameter to be fixed later. We define ball𝐺−𝐹 (𝑥, 𝜆) = {𝑧 ∈ 𝑉 | 𝑑𝐺−𝐹 (𝑥, 𝑢) ⩽ 𝜆}. If we
had access to the graph 𝐺 − 𝐹 at query time, we could run breath-first searches from 𝑢 and
from 𝑣 to scan ball𝐺−𝐹 (𝑢, 𝜆) and ball𝐺−𝐹 (𝑣, 𝜆) of radius 𝜆, and only consider the pivots that are
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inside these balls. By carefully adapting the sampling probability of the pivots to𝑂(1/𝜆), we can
ensure at least one of them hits the shortest expath (replacement path) for from 𝑢 to 𝑣, more
details are given below. The problem is that these balls may still contain too many pivots. In
the worst case, we have, say, ball𝐺−𝐹 (𝑢, 𝜆) ∩ 𝐵 = 𝐵 degenerating again to scanning all pivots.
Furthermore, we cannot even afford to store all balls as there are Ω(𝑛𝑚 𝑓 ) different ones, a
ball for each pair (𝑥, 𝐹). Finally, the assumption of access to 𝐺 − 𝐹 itself is problematic in the
subquadratic-space regime.

To handle all these issues, we split the computation of 𝑤′
𝐻𝐹 (𝑢, 𝑣) into two cases. That of

sparse balls, where at least one of ball𝐺−𝐹 (𝑢, 𝜆) and ball𝐺−𝐹 (𝑣, 𝜆) contains fewer than 𝐿 𝑓 vertices;
and the case of dense balls where the two sets both contain more than 𝐿 𝑓 vertices. For the sparse
ball case, we can reuse the ideas from the previous section since there are only a few pivots to
scan. The only issue is that we cannot access𝐺−𝐹 directly, instead we use the (𝐿, 𝑓 )-replacement
path covering. However, if we were to apply the same technique also to the dense balls, the
query time would again rise to Ω( |𝐵|) = Ω(𝑛/𝐿). Instead, we introduce FT-trees with granularity
to handle those. Unfortunately, those are much larger than the original FT-trees. We can only
keep the total space subquadratic by using fewer of them. For this, we exploit the fact that the
dense balls can also be hit by much fewer than |𝐵| pivots.

6.1 The Case of Sparse Balls

Consider the same setup as in Section 5.1, only that the pivots for 𝐵 are now sampled with
probability 𝐶′′ 𝑓 log2(𝑛)/𝜆 for some 𝐶′′ > 0. By making the constant 𝐶′′ slightly larger than 𝐶′ in
the original sampling probability (see the end of Section 5.1), we ensure that w.h.p. every path
that is a concatenation of at most two replacement paths and has more than 𝜆 edges contains a
pivot. (Previously, we only had this for ordinary replacement paths with at least 𝐿/2 edges.)
Note that all statements from Section 5 except for the space, preprocessing and query time
in Lemma 5.1 remain true. Further, observe that in the case of sparse balls, w.h.p. there are
𝑂(𝐿 𝑓 /𝜆) pivots in ball𝐺−𝐹 (𝑢, 𝜆) or in ball𝐺−𝐹 (𝑣, 𝜆). In this case, it is sufficient to scan those in
the same way as we did above. The only issue is that we do not have access to ball𝐺−𝐹 (𝑢, 𝜆) at
query time, so we precompute a proxy.

Let𝐺1, . . . , 𝐺𝜅 be all the subgraphs of𝐺 in the leaves of the sampling trees introduced in Sec-
tion 4.2. Recall that they form an (𝐿, 𝑓 )-replacement path covering w.h.p. During preprocessing,
we compute and store the sets 𝐵𝐺𝑖 (𝑥, 𝜆) = 𝐵∩ball𝐺𝑖 (𝑥, 𝜆) for all the sparse balls ball𝐺𝑖 (𝑥, 𝜆), that
is, if |ball𝐺𝑖 (𝑥, 𝜆) | ⩽ 𝐿 𝑓 . Otherwise, we store a marker that ball𝐺𝑖 (𝑥, 𝜆) is dense.14 As 𝜅 = 𝐿 𝑓 +𝑜(1)

and w.h.p. |𝐵𝐺𝑖 (𝑥, 𝜆) | = 𝑂(𝐿 𝑓 /𝜆) for sparse balls, storing all of these sets requires𝑂(𝑛𝐿2 𝑓 +𝑜(1)/𝜆)
space. One can compute 𝐵𝐺𝑖 (𝑥, 𝜆) by running Dijkstra from 𝑥 in 𝐺𝑖 until at most 𝐿 𝑓 vertices are
discovered in time 𝑂(𝐿2 𝑓 ). In total, this takes 𝑂(𝑛𝐿3 𝑓 +𝑜(1)) time.

14 This marker is made more precise in Section 6.2.
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Suppose we want to compute the weight 𝑤𝐻𝐹 (𝑢, 𝑣) in the sparse balls case, meaning that
there is an 𝑥 ∈ {𝑢, 𝑣} such that the true set ball𝐺−𝐹 (𝑥, 𝜆) is sparse. If this holds for both 𝑢 and 𝑣
the choice of 𝑥 is arbitrary. We use 𝑦 to denote the remaining vertex in {𝑢, 𝑣}\{𝑥}. Let 𝑖1, . . . , 𝑖𝑟
be the indices of the graphs 𝐺𝑖 𝑗 that exclude 𝐹 as computed by Algorithm 3. We showed in
Section 4.2 that 𝑟 = 𝑂(𝐿𝑜(1)) and that the indices can be found in time proportional to their
number. By definition of 𝑥, all the proxies ball𝐺𝑖 𝑗 (𝑥, 𝜆) for 1 ⩽ 𝑗 ⩽ 𝑟 are sparse as well. Departing
from Section 5.2, we redefine the auxiliary weight as

𝑤′
𝐻𝐹 (𝑢, 𝑣) = min

1⩽ 𝑗⩽𝑟
𝑏∈𝐵𝐺𝑖 𝑗 (𝑥,𝜆)

(
𝑑⩽𝐿(𝑥, 𝑏, 𝐹) + 𝐹𝑇 (𝑏, 𝑦, 𝐹)

)
. (1)

Now that we have precomputed the sets 𝐵𝐺𝑖 𝑗 (𝑥, 𝜆), it is sufficient to limit the search to pivots
that are close to the endpoint 𝑥 ∈ {𝑢, 𝑣}.

The actual weight is again 𝑤𝐻𝐹 (𝑢, 𝑣) = min(𝑑⩽𝐿(𝑢, 𝑣, 𝐹), 𝑤′
𝐻𝐹 (𝑢, 𝑣)). Its computation takes

time 𝑂(𝐿 𝑓 +𝑜(1)/𝜀𝜆) as there are 𝑂(𝐿𝑜(1)) balls, each with 𝑂(𝐿 𝑓 /𝜆) pivots, the values 𝑑⩽𝐿 can be
evaluated in time 𝐿𝑜(1) (Theorem 1.2), and we navigate through 𝑂(𝐿 𝑓 /𝜆) FT-trees with a query
time of 𝑞𝐹𝑇 = 𝑂(𝐿𝑜(1)/𝜀) each.

Recall the proof of the (3+𝜀)-approximation in Lemma 5.6. Clearly, if the replacement path
𝑃(𝑢, 𝑣, 𝐹) is short, then 𝑑𝐻𝐹 (𝑢, 𝑣) ⩽ 3 · 𝑑𝐺−𝐹 (𝑢, 𝑣) still holds, the argument was independent of
𝑤′
𝐻𝐹 (𝑢, 𝑣). We make the next step in recovering what we called the “second case” for sparse

balls. The proof of the following lemma motivates the transition from 𝑂(𝑛/𝐿) to 𝑂(𝑛/𝜆) pivots.

LEMMA 6.1. Let 𝑢, 𝑣 ∈ 𝑉 be such that |ball𝐺−𝐹 (𝑢, 𝜆) | ⩽ 𝐿 𝑓 or |ball𝐺−𝐹 (𝑣, 𝜆) | ⩽ 𝐿 𝑓 , and the
replacement path 𝑃(𝑢, 𝑣, 𝐹) is long and far away from all failures in 𝐹. Then, with high probability
𝑤𝐻𝐹 (𝑢, 𝑣) ⩽ 3 · 𝑑𝐺−𝐹 (𝑢, 𝑣) holds.

PROOF . Let 𝑃 = 𝑃(𝑢, 𝑣, 𝐹). Without losing generality, we assume ball𝐺−𝐹 (𝑢, 𝜆) is sparse, the
other case is symmetric. Note that 𝑃 has at least 𝐿 ⩾ 𝜆 edges. Let 𝑢′ ∈ 𝑉 (𝑃) be the vertex
on 𝑃 at distance exactly 𝜆 from 𝑢. There exists a (regular) pivot 𝑏∗ on 𝑃[𝑢..𝑢′] w.h.p. Here,
we used the adapted sampling probability for set 𝐵 in Section 6. Note that the pivot is in
𝐵𝐺−𝐹 (𝑢, 𝜆) = 𝐵 ∩ ball𝐺−𝐹 (𝑢, 𝜆). The graphs 𝐺1, . . . , 𝐺𝜅 are an (𝐿, 𝑓 )-replacement path covering,
and Algorithm 3 finds the right indices 𝑖1, . . . , 𝑖𝑟. Equation (1) thus gives

𝑤𝐻𝐹 (𝑢, 𝑣) ⩽ 𝑤′
𝐻𝐹 (𝑢, 𝑣) = min

1⩽ 𝑗⩽𝑟
𝑏∈𝐵𝐺𝑖 𝑗 (𝑢,𝜆)

(
𝑑⩽𝐿(𝑢, 𝑏, 𝐹) + 𝐹𝑇 (𝑏, 𝑣, 𝐹)

)
⩽ 𝑑⩽𝐿(𝑢, 𝑏∗, 𝐹) + 𝐹𝑇 (𝑏∗, 𝑣, 𝐹).

Recall that FT approximates the length 𝑑 (2 𝑓 +1)
𝜀/9 of the shortest (2 𝑓 +1)-decomposable path

that is far away from all failures. As in the proof of Lemma 5.6, since 𝑃 is far away from all
failures, 𝑃[𝑏∗..𝑣] is (2 𝑓 +1)-decomposable and far away itself. It holds that

𝑤′
𝐻𝐹 (𝑢, 𝑣) ⩽ 3 · 𝑑𝐺−𝐹 (𝑢, 𝑏∗) + 3 · 𝑑 (2 𝑓 +1)

𝜀/9 (𝑏∗, 𝑣, 𝐹)
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= 3 |𝑃[𝑢..𝑏∗] | + 3 |𝑃[𝑏∗..𝑣] | = 3 |𝑃 | = 3𝑑𝐺−𝐹 (𝑢, 𝑣). ■

6.2 The Case of Dense Balls

Lemma 5.6 showed the 3 + 𝜀 stretch in Section 5. To directly transfer its proof, the inequality
𝑤𝐻𝐹 (𝑢, 𝑣) ⩽ 3 𝑑𝐺−𝐹 (𝑢, 𝑣) would have to hold also if both ball𝐺−𝐹 (𝑢, 𝜆) and ball𝐺−𝐹 (𝑣, 𝜆) are dense
and 𝑃(𝑢, 𝑣, 𝐹) is far away from all failures. Equation (1) ensures that but requires a query time
of Ω(𝑛/𝜆) since a dense ball may contain many pivots. We provide a more efficient query
algorithm via FT-trees with granularity. Besides the larger space requirement of those trees, the
new query algorithm only gives a (3+𝛿)-approximation for some small 𝛿 > 0 (see Lemma 6.6).
Therefore, we also have to adapt the proof of Lemma 5.6. This is done in Section 6.3.

Our changes to the construction of FT-trees are twofold. We define a set B of new piv-
ots, polynomially sparser than 𝐵, by sampling each vertex independently with probability
𝐶′ 𝑓 log2(𝑛)/𝜆𝐿 𝑓−1. By a Chernoff bound and 𝜆𝐿 𝑓−1 ⩽ 𝐿 𝑓 , it holds that w.h.p. |B| = 𝑂(𝑛/𝜆𝐿 𝑓−1)
and all sets ball𝐺−𝐹 (𝑥, 𝜆) with |ball𝐺−𝐹 (𝑥, 𝜆) | > 𝐿 𝑓 contain a new pivot. We build an FT-tree
with granularity 𝜆 for each pair in B2.

FT-Trees with Granularity. Given two new pivots 𝑏𝑢, 𝑏𝑣 ∈ B, let 𝐹𝑇𝜆 (𝑏𝑢, 𝑏𝑣) be the fault-tolerant
tree of 𝑏𝑢 and 𝑏𝑣 with granularity 𝜆. Granularity affects the netpoints, segments and expaths.

DEF IN IT ION 6.2 (Path netpoints with granularity 𝜆). Let 𝑃 = (𝑏𝑢 = 𝑣1, 𝑣2, . . . , 𝑣ℓ = 𝑏𝑣)
be a path. If |𝑃 | ⩽ 2𝜆, then the netpoints of 𝑃 with granularity 𝜆 are all vertices 𝑉 (𝑃) of the
path. Otherwise, define 𝑝left to be all vertices 𝑣 𝑗 , 𝑣 𝑗+1 ∈ 𝑉 (𝑃) with 𝜆 ⩽ 𝑗 ⩽ ℓ − 𝜆 such that
|𝑃[𝑣𝜆 ..𝑣 𝑗] | < (1+ 𝜀

36)
𝑖 ⩽ |𝑃[𝑣𝜆 ..𝑣 𝑗+1] | for some integer 𝑖 ⩾ 0. Analogously, let 𝑝right be all vertices

𝑣 𝑗 , 𝑣 𝑗−1 ∈ 𝑉 (𝑃) such that |𝑃[𝑣 𝑗 ..𝑣ℓ−𝜆] | < (1+ 𝜀
36)

𝑖 ⩽ |𝑃[𝑣 𝑗−1..𝑣ℓ−𝜆] | for some 𝑖. The netpoints of P
with granularity 𝜆 are all vertices in {𝑣1, . . . , 𝑣𝜆} ∪ 𝑝left ∪ 𝑝right ∪ {𝑣ℓ−𝜆 , . . . , 𝑣ℓ}.

For 𝜆 = 0, this is the same as Definition 5.7. We denote by seg𝜆 (𝑒, 𝑃) for 𝑒 ∈ 𝑃 the set
of segments w.r.t. to the new netpoints that contains 𝑒. Any path has 𝑂(𝜆) + 𝑂(log1+𝜀 𝑛) =

𝑂(𝜆) + 𝑂(log 𝑛/𝜀) netpoints with granularity 𝜆 and thus so many segments. The number of
nodes per tree is now (𝑂(𝜆) + 𝑂(log 𝑛/𝜀)) 𝑓 = 𝑂(𝜆 𝑓 ) + 𝑂(log 𝑛/𝜀) 𝑓 The crucial change is that the
first and last 𝜆 edges are in their own segment and the exponential length increase happens
only in the middle part.

DEF IN IT ION 6.3 (ℓ-expath with granularity 𝜆). Let 𝐴 ⊆ 𝐸 be a set of edges and ℓ a positive
integer. An ℓ-expath with granularity 𝜆 in 𝐺−𝐴 is a path 𝑃𝑎 ◦ 𝑃𝑏 ◦ 𝑃𝑐 such that 𝑃𝑎 and 𝑃𝑐 contain
at most 𝜆 edges each, while 𝑃𝑏 is a concatenation of (2 log2(𝑛)+1) ℓ-decomposable paths such
that, for every 0 ⩽ 𝑖 ⩽ 2 log2 𝑛, the length of the 𝑖-th such path is at most min(2𝑖 , 22 log2(𝑛)−𝑖).
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The parts of an ℓ-expath with granularity 𝜆 are defined as before. In each node 𝜈 of
𝐹𝑇𝜆 (𝑏𝑢, 𝑏𝑣), we store the shortest (2 𝑓 +1)-expath 𝑃𝜈 with granularity 𝜆 from 𝑏𝑢 to 𝑏𝑣 in 𝐺𝜈. Note
that 𝑃𝜈 now has 𝑂( 𝑓 log(𝑛) + 𝜆 + log(𝑛)/𝜀) = 𝑂(𝜆 + 𝑓 log(𝑛)/𝜀) many parts.

Space and Preprocessing Time. Recall the analysis at the end of Section 5.3, and also that
(compared to that) we changed the size of |𝐵| to 𝑂(𝑛/𝜆) in Section 6.1. The number of nodes
in 𝐹𝑇𝜆 (𝑏𝑢, 𝑏𝑣) is 𝑂(𝜆 𝑓 ) + 𝑂(log 𝑛/𝜀) 𝑓 and we only need |B|2 = 𝑂(𝑛2/𝜆2𝐿2 𝑓−2) new trees. With

𝜆 ⩽ 𝐿, this makes for 𝑂
(
𝑛2

𝐿 𝑓

)
+ 𝑂

(
𝑛2

𝜆2𝐿2 𝑓 −2

)
𝑂
(

log 𝑛
𝜀

) 𝑓
nodes in all new trees. These are fewer than

the 𝑂(𝑛2/𝜆) · 𝑂(log 𝑛/𝜀) 𝑓 we had for the original FT-trees (that we still need to preprocess). The
more efficient expath computation transfers to expaths with granularity, see Section 7.3. We
can compute such a path in asymptotically the same time 𝑂( 𝑓 𝑚) = 𝑂(𝑚). So the preprocessing
time of the new trees is dominated by the one for the old trees. Also, the additional 𝑂(𝑛𝐿3 𝑓 +𝑜(1))
term for the sparse/dense balls will turn out to be negligible, see Section 6.4. More importantly,
the number of nodes gets multiplied by the new number of parts 𝑂(𝜆 + 𝑓 log(𝑛)/𝜀) to get their
size. The result is

𝑂

(
𝑛2

𝐿 𝑓−1

)
+ 𝑂

(
𝑛2

𝜆𝐿2 𝑓−2

)
· 𝑂

(
log 𝑛
𝜀

) 𝑓
+ 𝑂

(
𝑛2

𝜀𝐿 𝑓

)
+ 𝑂

(
𝑛2

𝜆2𝐿2 𝑓−2

)
· 𝑂

(
log 𝑛
𝜀

) 𝑓 +1

.

Due to 𝑓 ⩾ 2 (see Theorem 1.1), all terms are bounded by the 𝑂(𝑛2/𝜆) · 𝑂(log 𝑛/𝜀) 𝑓 +1 from the
old FT-trees. The 𝑂(𝑛𝐿2 𝑓 +𝑜(1)/𝜆) space to store the regular pivots of the sparse balls will be
shown to be irrelevant in comparison.

Query time. A straightforward generalization of Lemma 5.8 shows that evaluating 𝐹𝑇𝜆 (𝑏𝑢, 𝑏𝑣)
with query set 𝐹 takes time 𝑂(𝐿𝑜(1) (𝜆 + 1/𝜀)). To compute 𝑤′

𝐻𝐹 (𝑢, 𝑣), let again 𝐺1, . . . , 𝐺𝜅 be the
graphs in the leaves of the sampling trees (Section 4.2). For every 𝐺𝑖 and vertex 𝑥 ∈ 𝑉 for which
|ball𝐺𝑖 (𝑥, 𝜆) | > 𝐿 𝑓 , we said we store a marker. More precisely, we associate with (𝐺𝑖 , 𝑥) a single
new pivot 𝑏𝑥 ∈ B∩ball𝐺𝑖 (𝑥, 𝜆). As before, let 𝑖1, . . . , 𝑖𝑟 be the indices of graphs𝐺𝑖 𝑗 that are relevant
for the query (𝑢, 𝑣, 𝐹). Even if ball𝐺−𝐹 (𝑢, 𝜆) and ball𝐺−𝐹 (𝑣, 𝜆) are dense, it might be that all the
ball𝐺𝑖 𝑗 (𝑢, 𝜆) are sparse or all ball𝐺𝑖 𝑗 (𝑣, 𝜆) are sparse. If so, we compute the auxiliary weight
𝑤′
𝐻𝐹 (𝑢, 𝑣) (and in turn 𝑤𝐻𝐹 (𝑢, 𝑣) = min(𝑤′

𝐻𝐹 (𝑢, 𝑣), 𝑑⩽𝐿(𝑢, 𝑣, 𝐹))) via Equation (1). Otherwise,
there are indices 𝑖𝑢, 𝑖𝑣 ∈ {𝑖1, . . . , 𝑖𝑟} such that both |ball𝐺𝑖𝑢 (𝑢, 𝜆) | > 𝐿 𝑓 and |ball𝐺𝑖𝑣 (𝑣, 𝜆) | > 𝐿 𝑓 .
If there are multiple such indices, the choice is arbitrary. Let 𝑏𝑢 ∈ B ∩ ball𝐺𝑖𝑢 (𝑢, 𝜆) and let
𝑏𝑣 ∈ B ∩ ball𝐺𝑖𝑣 (𝑣, 𝜆) be the stored new pivots. We define

𝑤′
𝐻𝐹 (𝑢, 𝑣) = 𝐹𝑇𝜆 (𝑏𝑢, 𝑏𝑣, 𝐹) + 2𝜆. (2)

Computing this auxiliary weight takes time𝑂(𝐿𝑜(1) (𝜆 +1/𝜀)), much less than for the sparse balls.
It is not immediately obvious why 𝑤′

𝐻𝐹 (𝑢, 𝑣) is still a good estimate of 𝑑𝐺−𝐹 (𝑢, 𝑣). We prove this
in the following section, namely, in Lemma 6.6.
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6.3 Approximation Guarantee

We have already proven the space and preprocessing time stated in Theorem 1.1 for they
are dominated by the original FT-trees, when accounting for the slightly larger set of regular
pivots with |𝐵| = 𝑂(𝑛/𝜆). We also argued the query time. The plan to prove the approximation
guarantee is the same as in Section 5. Recall the structure of the proof of Lemma 5.6. It involved
an induction over the distances in 𝐺−𝐹. The induction step had three cases: first, that the
replacement path 𝑃 = 𝑃(𝑢, 𝑣, 𝐹) has at most 𝐿 edges; secondly, that 𝑃 is in fact long but far away
from all failures in 𝐹; the third case is that 𝑃 is long but close to 𝐹. The first case is not affected
by the introduction of granularity. We already discussed the second case in Lemma 6.1 if both
ball𝐺−𝐹 (𝑢, 𝜆) and ball𝐺−𝐹 (𝑣, 𝜆) are sparse. In the remainder, we prove the second case also if
the balls are dense, and show how to transfer the induction to the new setting.

As a first step, we generalize Lemmas 5.10 and 5.11 to FT-trees with granularity 𝜆 > 0.

LEMMA 6.4. Let 𝑏𝑢, 𝑏𝑣 ∈ B, 𝑃 be any path between 𝑏𝑢 and 𝑏𝑣, 𝑒 ∈ 𝐸(𝑃), and 𝑦 ∈ 𝑒 a vertex of
that edge. Then, 𝐸(seg𝜆 (𝑒, 𝑃)) = {𝑒} or | seg𝜆 (𝑒, 𝑃) | ⩽ 𝜀

36
(

min( |𝑃[𝑏𝑢.. 𝑦] |, |𝑃[ 𝑦..𝑏𝑣] |) − 𝜆
)
.

PROOF . If |𝑃 | ⩽ 2𝜆 then seg𝜆 (𝑒, 𝑃) = {𝑒} for every edge 𝑒 of 𝑃 by definition. We thus assume
that 𝑃 has more than 2𝜆 edges. Let 𝑢′ and 𝑣′ be the two vertices of 𝑃 such that |𝑃[𝑏𝑢..𝑢′] | = 𝜆

and |𝑃[𝑣′..𝑏𝑣] | = 𝜆, respectively. Let 𝑒 be an edge of 𝑃 such that seg𝜆 (𝑒, 𝑃) ⊋ {𝑒} and 𝑦 ∈ 𝑒. Note
that 𝑦 must lie on 𝑃[𝑢′..𝑣′] since 𝑒 is not among the first or last 𝜆 edges of 𝑃. It is enough to show

| seg𝜆 (𝑒, 𝑃) | ⩽
𝜀

36
·min( |𝑃[𝑢′.. 𝑦] |, |𝑃[ 𝑦..𝑣′] |)

since min( |𝑃[𝑢′.. 𝑦] |, |𝑃[ 𝑦..𝑣′] |) = min( |𝑃[𝑏𝑢.. 𝑦] |, |𝑃[ 𝑦..𝑏𝑣] |) − 𝜆.
Let 𝑧 be the vertex of the edge 𝑒 that is not 𝑦. First, assume that 𝑦 is closer to 𝑢′ along

𝑃 than 𝑧, that is, |𝑃[𝑢′.. 𝑦] | < |𝑃[𝑢′..𝑧] |. Let 𝑖 be the maximal integer such that (1 + 𝜀/36)𝑖 ⩽
|𝑃[𝑢′.. 𝑦] |, whence (1 + 𝜀/36)𝑖+1 > |𝑃[𝑢′.. 𝑦] |. Since seg𝜆 (𝑒, 𝑃) contains more edges than just 𝑒,
the endpoints 𝑦, 𝑧 cannot both be netpoints of the path 𝑃 with granularity 𝜆. Therefore, we
even have (1 + 𝜀/36)𝑖+1 > |𝑃[𝑢′..𝑧] |, which gives

| seg𝜆 (𝑒, 𝑃) | ⩽
(
1 + 𝜀

36

) 𝑖+1
−

(
1 + 𝜀

36

) 𝑖
=
𝜀

36
·
(
1 + 𝜀

36

) 𝑖
⩽

𝜀

36
· |𝑃[𝑢′.. 𝑦] |.

We can also show | seg𝜆 (𝑒, 𝑃) | ⩽ 𝜀/36 · |𝑃[𝑧..𝑣′] | with a symmetric argument. Together
with the assumption |𝑃[𝑢′.. 𝑦] | < |𝑃[𝑢′..𝑧] | (whence, |𝑃[𝑧..𝑣′] | < |𝑃[ 𝑦..𝑣′] |), it follows that
| seg𝜆 (𝑒, 𝑃) | < 𝜀/36 · |𝑃[ 𝑦..𝑣′] |.

If conversely |𝑃[𝑢′.. 𝑦] | > |𝑃[𝑢′..𝑧] | holds (and thus |𝑃[𝑧..𝑣′] | > |𝑃[ 𝑦..𝑣′] |), then the exact
same argument as above where 𝑦 and 𝑧 switch places shows | seg𝜆 (𝑒, 𝑃) | ⩽ 𝜀/36 · |𝑃[𝑢′..𝑧] | <
𝜀/36 · |𝑃[𝑢′.. 𝑦] | and | seg𝜆 (𝑒, 𝑃) | ⩽ 𝜀/36 · |𝑃[ 𝑦..𝑣′] |. In summary, we get | seg𝜆 (𝑒, 𝑃) | ⩽ 𝜀/36 ·
min( |𝑃[𝑢′.. 𝑦] |, |𝑃[ 𝑦..𝑣′] |) in both cases. ■

Recall that 𝑑 (ℓ) (𝑢, 𝑣, 𝐴), 𝐴 ⊆ 𝐸, is the length of the shortest ℓ-decomposable path in 𝐺−𝐴.
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LEMMA 6.5. Let 𝑢, 𝑣 ∈ 𝑉 be two vertices, 𝐴 ⊆ 𝐸 a set of edges, and 𝑏𝑢 ∈ B ∩ ball𝐺−𝐴(𝑢, 𝜆)
and 𝑏𝑣 ∈ B ∩ ball𝐺−𝐴(𝑢, 𝜆). Let further ℓ be a positive integer, and 𝑃 the shortest ℓ-expath with
granularity 𝜆 between 𝑏𝑢 and 𝑏𝑣 in 𝐺− 𝐴. Then, for every 𝑦 ∈ 𝑉 (𝑃) with |𝑃[𝑏𝑢.. 𝑦] |, |𝑃[ 𝑦..𝑏𝑣] | > 𝜆,
it holds that |𝑃[𝑏𝑢.. 𝑦] | ⩽ 4 · 𝑑 (ℓ) (𝑢, 𝑦, 𝐴) + 𝜆 and |𝑃[ 𝑦..𝑏𝑣] | ⩽ 4 · 𝑑 (ℓ) ( 𝑦, 𝑣, 𝐴) + 𝜆.

PROOF . We only show that |𝑃[𝑏𝑢.. 𝑦] |, |𝑃[ 𝑦..𝑏𝑣] | > 𝜆 implies |𝑃[𝑏𝑢.. 𝑦] | ⩽ 4𝑑 (ℓ) (𝑢, 𝑦, 𝐴) + 𝜆,
the proof of the other inequality is symmetric. Let 𝑃 (ℓ)𝐺−𝐴(𝑢, 𝑦) be the shortest ℓ-decomposable
𝑢-𝑦-path in 𝐺 − 𝐴, that is, 𝑑 (ℓ) (𝑢, 𝑦, 𝐴) = |𝑃 (ℓ)𝐺−𝐴(𝑢, 𝑦) |. For the sake of contradiction, assume
|𝑃[𝑏𝑢.. 𝑦] | − 𝜆 > 4|𝑃 (ℓ)𝐺−𝐴(𝑢, 𝑦) |. Let 𝑃𝑏𝑢 be the shortest path in 𝐺 − 𝐴 from 𝑏𝑢 to 𝑢. Since 𝑏𝑢 ∈
B ∩ ball𝐺−𝐴(𝑢, 𝜆), it holds that |𝑃𝑏𝑢 | ⩽ 𝜆.

We first prove that 𝑃′ = 𝑃𝑏𝑢 ◦ 𝑃
(ℓ)
𝐺−𝐴 [𝑢.. 𝑦] ◦ 𝑃[ 𝑦..𝑏𝑣] is an ℓ-expath with granularity 𝜆. Let

𝑃 = 𝑃𝑎 ◦ 𝑃𝑏 ◦ 𝑃𝑐 be the constituting decomposition of 𝑃 as an expath with granularity. That
means 𝑃𝑎 and 𝑃𝑐 contain at most 𝜆 edges each, while 𝑃𝑏 is the concatenation 𝑃0 ◦ . . . ◦ 𝑃2 log2 𝑛

of 2 log2(𝑛) + 1, ℓ-decomposable paths such that |𝑃𝑖 | ⩽ min(2𝑖 , 22 log2 𝑛−𝑖). To show that 𝑃′ is an
ℓ-expath with granularity 𝜆, we define ℓ-decomposable paths 𝑃′0, . . . , 𝑃

′
2 log 𝑛 in 𝐺 − 𝐴 such that

|𝑃′
𝑖
| ⩽ min(2𝑖 , 22 log2 𝑛−𝑖) and 𝑃′ is the concatenation of 𝑃𝑏𝑢 ◦ 𝑃′0 ◦ . . . ◦ 𝑃′2 log 𝑛 ◦ 𝑃𝑐.

We have |𝑃[𝑏𝑢.. 𝑦] | > 𝜆 and thus |𝑃[𝑏𝑢.. 𝑦] | − |𝑃𝑎 | ⩾ 1. Let 𝑗0 = ⌊log2( |𝑃[𝑏𝑢.. 𝑦] | − |𝑃𝑎 |)⌋ − 1.
Be aware that 𝑗0 = −1 is possible. Since |𝑃𝑖 | ⩽ 2𝑖 , we have

|𝑃𝑎 | +
𝑗0∑︁
𝑖=0
|𝑃𝑖 | < |𝑃𝑎 | + 2 𝑗0+1 ⩽ |𝑃𝑎 | + |𝑃[𝑏𝑢.. 𝑦] | − |𝑃𝑎 | = |𝑃[𝑏𝑢.. 𝑦] |.

This implies that either 𝑦 is contained in a subpath 𝑃 𝑗1 of 𝑃𝑏 for some 𝑗1 > 𝑗0 or that 𝑦 is a vertex
of 𝑃𝑐. The latter case is impossible as |𝑃𝑐 | ⩽ 𝜆 while |𝑃[ 𝑦..𝑏𝑣] | > 𝜆. So 𝑦 is indeed on 𝑃 𝑗1 .

We are now ready to define the new subpaths 𝑃′0, 𝑃
′
1, . . . , 𝑃

′
2 log2 𝑛

. For every 0 ⩽ 𝑖 < 𝑗0, we

define 𝑃′
𝑖

as the empty path, and set 𝑃′
𝑗0
= 𝑃

(ℓ)
𝐺−𝐴(𝑢, 𝑦). For every 𝑗0 < 𝑖 < 𝑗1, we define 𝑃′

𝑖
as the

empty path again, and 𝑃′
𝑗1

is the suffix of 𝑃 𝑗1 starting at 𝑦. Finally, for every 𝑖 > 𝑗1, we set 𝑃′
𝑖
= 𝑃𝑖 .

Clearly all the 𝑃′
𝑖

are ℓ-decomposable paths in 𝐺 − 𝐴. The only index where the length bound
is possibly in doubt is 𝑗0. We need to prove that |𝑃 (ℓ)𝐺−𝐴(𝑢, 𝑦) | ⩽ min(2 𝑗0 , 22 log2 𝑛− 𝑗0). Note that
𝑗0 < log2 𝑛 as otherwise |𝑃[𝑏𝑢.. 𝑦] | − |𝑃𝑎 | > 𝑛, thus

min(2 𝑗0 , 22 log2 𝑛− 𝑗0) = 2 𝑗0 = 2⌊log( |𝑃[𝑏𝑢.. 𝑦] |−|𝑃𝑎 |)⌋−1

⩾
|𝑃[𝑏𝑢.. 𝑦] | − |𝑃𝑎 |

4
⩾
|𝑃[𝑏𝑢.. 𝑦] | − 𝜆

4
> |𝑃 (ℓ)𝐺−𝐴(𝑢, 𝑦) |.

The last step uses the assumption |𝑃[𝑏𝑢.. 𝑦] | − 𝜆 > 4 |𝑃 (ℓ)𝐺−𝐴(𝑢, 𝑦) |.
We have established that 𝑃′ = 𝑃𝑏𝑢◦𝑃

(ℓ)
𝐺−𝐴 [𝑢.. 𝑦]◦𝑃[ 𝑦..𝑏𝑣] is some ℓ-expath with granularity 𝜆

from 𝑏𝑢 to 𝑏𝑣 in 𝐺 − 𝐴. However, its length is

|𝑃′| = |𝑃𝑏𝑢 | + |𝑃
(ℓ)
𝐺−𝐴(𝑢, 𝑦) | + |𝑃[ 𝑦..𝑏𝑣] | < 𝜆 + |𝑃[𝑏𝑢.. 𝑦] | − 𝜆

4
+ |𝑃[ 𝑦..𝑏𝑣] |

=
3𝜆 + |𝑃[𝑏𝑢.. 𝑦] |

4
+ |𝑃[ 𝑦..𝑏𝑣] | < |𝑃[𝑏𝑢.. 𝑦] | + |𝑃[ 𝑦..𝑏𝑣] | = |𝑃 |,
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where the last proper inequality follows from |𝑃[𝑏𝑢.. 𝑦] | > 𝜆. This is a contradiction to 𝑃 being
the shortest ℓ-expath with granularity 𝜆 from 𝑏𝑢 to 𝑏𝑣 in 𝐺 − 𝐴. ■

We use the results to show that also Lemma 5.9 transfers to non-vanishing granularity,
but with a slight loss in the approximation. Again, 𝑑 (2 𝑓 +1)

𝜀/9 (𝑢, 𝑏, 𝐹) is the length of the shortest
(2 𝑓 +1)-decomposable 𝑢-𝑣-path in 𝐺 − 𝐹 that is far away from all failures.

LEMMA 6.6. Define 𝛿 = 8𝜆/𝐿. Let 𝑢, 𝑣 ∈ 𝑉 be such that both |ball𝐺−𝐹 (𝑢, 𝜆) |, |ball𝐺−𝐹 (𝑣, 𝜆) | > 𝐿 𝑓 ,
and 𝑏𝑢, 𝑏𝑣 ∈ B the associated new pivots. Let 𝑃 be any (2 𝑓 +1)-decomposable path between 𝑢 and 𝑣
in 𝐺 − 𝐹 that is far away from 𝐹. Then, 𝑑𝐺−𝐹 (𝑢, 𝑣) ⩽ 𝐹𝑇𝜆 (𝑏𝑢, 𝑏𝑣, 𝐹) + 2𝜆 ⩽ 3|𝑃 | + 𝛿𝐿. Moreover,
if the shortest (2 𝑓 +1)-decomposable path between 𝑢 and 𝑣 in 𝐺 − 𝐹 that is far away from 𝐹 has
more than 𝐿 edges, then, 𝐹𝑇𝜆 (𝑏𝑢, 𝑏𝑣, 𝐹) + 2𝜆 ⩽ (3 + 𝛿) · 𝑑 (2 𝑓 +1)

𝜀/9 (𝑢, 𝑣, 𝐹).

PROOF . We prove the survival of 𝑃 all the way to the output node 𝜈∗ of 𝐹𝑇𝜆 (𝑏𝑢, 𝑏𝑣) when
queried with set 𝐹, as in Lemma 5.9. We have to take care of the fact that 𝑃 and 𝑃𝜈∗ may have
different endpoints. In fact, we argue about a longer path. Let 𝑃(𝑏𝑢, 𝑢, 𝐹) be the replacement
path between 𝑏𝑢 and 𝑢 in 𝐺−𝐹. It has at most 𝜆 edges by the choice 𝑏𝑢 ∈ ball𝐺−𝐹 (𝑢, 𝜆), same
for 𝑃(𝑣, 𝑏𝑣, 𝐹). Also 𝑃 is (2 𝑓 +1)-decomposable, thus 𝑄 = 𝑃(𝑏𝑢, 𝑢, 𝐹) ◦ 𝑃 ◦ 𝑃(𝑣, 𝑏𝑣, 𝐹) is an (2 𝑓 +1)-
expath with granularity 𝜆. We argue by induction that 𝑄 exists in the graph 𝐺−𝐴𝜈 for every
visited node 𝜈. This is clear for the root. For a non-output node 𝜈 ≠ 𝜈∗, let 𝜈′ be its visited child.

To reach a contradiction, assume 𝑄 does not exist in 𝐺 − 𝐴𝜈′ Thus, there is a segment of 𝑃𝜈
that contains both a failing edge of 𝐹 and an edge of 𝑄. Without losing generality, we choose
𝑒𝐹 ∈ 𝐹 and 𝑒𝑄 ∈ 𝐸(𝑄) such that both 𝑒𝐹 and 𝑒𝑄 are in 𝑃𝜈 and the subpath of 𝑃𝜈 containing both
edges contains no other failing edge. Let 𝑦 ∈ 𝑒𝑄 the endpoint closer to 𝑒𝐹 along 𝑃𝜈, and let 𝑧 ∈ 𝑒𝐹
the endpoint closer to 𝑒𝑄. The subpath 𝑃𝜈[ 𝑦..𝑧] is entirely in 𝐺 − 𝐹.

The edges 𝑒𝐹 ≠ 𝑒𝑄 must be different since 𝑄 lies in 𝐺−𝐹. Segments with more than one
edge only appear in the middle part of the stored expath, that is, |𝑃𝜈[𝑏𝑢.. 𝑦] |, |𝑃𝜈[ 𝑦..𝑏𝑣] | > 𝜆. By
Lemmas 6.4 and 6.5, this implies

| seg𝜆 (𝑒𝐹 , 𝑃) | ⩽
𝜀

36

(
min

(
|𝑃𝜈[𝑏𝑢.. 𝑦] |, |𝑃𝜈[ 𝑦..𝑏𝑣] |

)
− 𝜆

)
⩽

𝜀

36

(
min

(
4𝑑 (2 𝑓 +1) (𝑢, 𝑦, 𝐴𝜈) + 𝜆, 4𝑑 (2 𝑓 +1) ( 𝑦, 𝑣, 𝐴𝜈) + 𝜆

)
− 𝜆

)
=
𝜀

9
min

(
𝑑 (2 𝑓 +1) (𝑢, 𝑦, 𝐴𝜈), 𝑑 (2 𝑓 +1) ( 𝑦, 𝑣, 𝐴𝜈)

)
.

We argue next that 𝑦 lies on the middle part of 𝑄, that is, on 𝑃. To reach a contradiction,
assume that 𝑦 is on the prefix 𝑃(𝑏𝑢, 𝑢, 𝐹) and consider the replacement path 𝑃(𝑏𝑢, 𝑦, 𝐹) =

𝑃(𝑏𝑢, 𝑢, 𝐹) [𝑏𝑢.. 𝑦], which has at most 𝜆 edges since 𝑏𝑢 ∈ ball𝐺−𝐹 (𝑢, 𝜆). The concatenation
𝑃(𝑏𝑢, 𝑦, 𝐹) ◦ 𝑃𝜈( 𝑦, 𝑏𝑣) is some (2 𝑓 +1)-expath from 𝑏𝑢 to 𝑏𝑣 with granularity 𝜆, but due to
|𝑃𝜈[𝑏𝑢.. 𝑦] | > 𝜆 it is strictly shorter than 𝑃𝜈, a contradiction. Likewise, 𝑦 being on 𝑃(𝑣, 𝑏𝑣, 𝐹)
contradicts |𝑃𝜈[ 𝑦..𝑏𝑣] | > 𝜆.
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As 𝑃 is some (2 𝑓 +1)-decomposable path from 𝑢 to 𝑣 in 𝐺 − 𝐴𝜈, subpaths of decomposable
paths are decomposable and 𝑦 is on 𝑃, we get 𝑑 (2 𝑓 +1) (𝑢, 𝑦, 𝐴𝜈) ⩽ |𝑃[𝑢, 𝑦] | and 𝑑 (2 𝑓 +1) ( 𝑦, 𝑣, 𝐴𝜈) ⩽
|𝑃[ 𝑦..𝑣] |. Since 𝑃 is also far away from 𝑒𝐹 the vertex 𝑧 is outside the trapezoid tr𝜀/9𝐺−𝐹 (𝑃), we
finally arrive at the contradiction

| seg𝜆 (𝑒𝐹 , 𝑃) | ⩾ |𝑃𝜈[ 𝑦..𝑧] | ⩾ 𝑑𝐺−𝐹 ( 𝑦, 𝑧)

>
𝜀

9
min( |𝑃[𝑢.. 𝑦] |, |𝑃[ 𝑦..𝑏] |) ⩾ 𝜀

9
min

(
𝑑 (2 𝑓 +1) (𝑢, 𝑦, 𝐴𝜈), 𝑑 (2 𝑓 +1) ( 𝑦, 𝑣, 𝐴𝜈)

)
.

For the approximation, we focus on proving

𝑑𝐺−𝐹 (𝑢, 𝑣) ⩽ 𝐹𝑇𝜆 (𝑏𝑢, 𝑏𝑣, 𝐹) + 2𝜆 ⩽ (3+𝛿) · 𝑑 (2 𝑓 +1)
𝜀/9 (𝑢, 𝑣, 𝐹)

with 𝛿 = 8𝜆/𝐿 if 𝑃 is the shortest (2 𝑓 +1)-decomposable path from 𝑢 to 𝑣 in 𝐺 − 𝐹 and has more
than 𝐿 edges; in particular, if |𝑃 | = 𝑑 (2 𝑓 +1)

𝜀/9 (𝑢, 𝑣, 𝐹). The other claim is established in passing.
Recall that 𝐹𝑇𝜆 (𝑏𝑢, 𝑏𝑣, 𝐹) ⩽ 3|𝑃𝜈∗ | for the output node 𝜈∗, for which we determined that

3|𝑃𝜈∗ | > 𝑑𝐺−𝐹 (𝑏𝑢, 𝑏𝑣). By the triangle inequality, it holds that 𝐹𝑇𝜆 (𝑏𝑢, 𝑏𝑣, 𝐹) + 2𝜆 ⩾ 𝑑𝐺−𝐹 (𝑏𝑢, 𝑏𝑣) +
𝑑𝐺−𝐹 (𝑢, 𝑏𝑢) + 𝑑𝐺−𝐹 (𝑏𝑣, 𝑣) ⩾ 𝑑𝐺−𝐹 (𝑢, 𝑣). We have seen that 𝑄 survives until 𝜈∗ and that 𝑃𝜈∗ is not
longer than 𝑄. In summary,

𝐹𝑇𝜆 (𝑏𝑢, 𝑏𝑣, 𝐹) + 2𝜆 ⩽ 3|𝑄| + 2𝜆 ⩽ 3( |𝑃 | + 2𝜆) + 2𝜆

⩽ 3|𝑃 | + 8𝜆 = 3|𝑃 | + 𝛿𝐿 < (3 + 𝛿) 𝑑 (2 𝑓 +1)
𝜀/9 (𝑢, 𝑣, 𝐹). ■

Before formally proving the 3 + 𝜀 stretch of the new query algorithm, we sketch the
necessary changes to Lemma 5.6. Recall that we assume 𝜀 > 0 to be bounded away from 3,
thus Δ = 3 − 𝜀 > 0 is a constant. We define 𝜆 = Δ

96𝜀𝐿, which in turn implies 𝛿 = Δ
12𝜀. As

it turns out, any 𝛿 ⩽ 3−𝜀
9+𝜀𝜀 would do as this ensures 𝛿 + (6 + 𝛿 + 𝜀) 𝜀9 ⩽ 𝜀. In Lemma 5.6 we

had 𝑤𝐻𝐹 (𝑢, 𝑣) ⩽ 3 𝑑𝐺−𝐹 (𝑢, 𝑣) if the path was short (“first case”) or long but far away from all
failures (“second case”). We now only have the weaker inequality 𝑤𝐻𝐹 (𝑢, 𝑣) ⩽ (3+𝛿) 𝑑𝐺−𝐹 (𝑢, 𝑣)
due to the dense ball case. For the “third case”, we are going to use the 𝑥-𝑦-𝑧-argument of
Lemma 5.3 again. A similar reasoning as before gives𝑤𝐻𝐹 (𝑢, 𝑧) ⩽ (3+𝛿) (1+ 𝜀9)𝑑𝐺−𝐹 (𝑢, 𝑦) (instead
of (3+ 𝜀3) 𝑑𝐺−𝐹 (𝑢, 𝑦)). The crucial part is to carefully adapt the chain of inequalities to show that
also this slightly higher factor gives the desired stretch of 3 + 𝜀.

LEMMA 6.7. With the changes made in Section 6, and when setting 𝜆 = 3−𝜀
96 𝜀𝐿 and 𝛿 = 8𝜆

𝐿 , the
inequalities 𝑑𝐺−𝐹 (𝑠, 𝑡) ⩽ 𝑑𝐻𝐹 (𝑠, 𝑡) ⩽ (3+𝜀)𝑑𝐺−𝐹 (𝑠, 𝑡) hold with high probability over all queries.

PROOF . The structure of the proof is like the one for Lemma 5.6. Recall the graph 𝐻𝐹 , which
depends on the query (𝑠, 𝑡, 𝐹). It has an edge for every pair in

(𝑉 (𝐹)∪{𝑠,𝑡}
2

)
, the weight 𝑤𝐻𝐹 (𝑢, 𝑣)

is the minimum of 𝑑⩽𝐿(𝑢, 𝑣, 𝐹) and 𝑤′
𝐻𝐹 (𝑢, 𝑣), where the computation of the latter depends

on whether we are in the sparse ball case or the dense ball case. The details are given in
Equations (1) and (2)
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The first inequality 𝑑𝐺−𝐹 (𝑠, 𝑡) ⩽ 𝑑𝐻𝐹 (𝑠, 𝑡) follows from the fact that all oracle calls used to
compute 𝑤𝐻𝐹 (𝑢, 𝑣) do not underestimate the true replacement distance 𝑑𝐺−𝐹 (𝑢, 𝑣). The second
inequality will be implied by 𝑑𝐻𝐹 (𝑢, 𝑣) ⩽ (3+𝜀)𝑑𝐺−𝐹 (𝑢, 𝑣) holding for all pairs 𝑢, 𝑣 ∈ 𝑉 (𝐻𝐹). We
prove this by induction over the replacement distance.

Fix a pair (𝑢, 𝑣) and assume the statement holds for all pairs with smaller distance in
𝐻𝐹 . We distinguish the same three cases as before, beginning with the replacement path
𝑃 = 𝑃(𝑢, 𝑣, 𝐹) having at most 𝐿 edges. The same argument as before, via Theorem 1.2, gives
𝑑𝐻𝐹 (𝑢, 𝑣) ⩽ 3𝑑⩽𝐿𝐺−𝐹 (𝑢, 𝑣) = 3𝑑𝐺−𝐹 (𝑢, 𝑣) ⩽ (3 + 𝜀)𝑑𝐺−𝐹 (𝑢, 𝑣) w.h.p.

In the second case, 𝑃 is long and far away from all failures. If ball𝐺−𝐹 (𝑢, 𝜆) or ball𝐺−𝐹 (𝑣, 𝜆)
contain at most 𝐿 𝑓 vertices, then Lemma 6.1 also shows that 𝑑𝐻𝐹 (𝑢, 𝑣) ⩽ 𝑤𝐻𝐹 (𝑢, 𝑣) ⩽ 3·𝑑𝐺−𝐹 (𝑢, 𝑣).
For the subcase that |ball𝐺−𝐹 (𝑢, 𝜆) |, |ball𝐺−𝐹 (𝑣, 𝜆) | > 𝐿 𝑓 , recall that 𝛿 = 8𝜆/𝐿 = 3−𝜀

12 𝜀 and that
𝑑
(2 𝑓 +1)
𝜀/9 (𝑢, 𝑣, 𝐹) is the length of the shortest (2 𝑓 +1)-decomposable𝑢-𝑣-path in𝐺−𝐹 that is far away

from 𝐹. The replacement path 𝑃 is 𝑓 -decomposable and therefore also (2 𝑓 +1)-decomposable.
It is far away by assumption, so we get 𝑑 (2 𝑓 +1)

𝜀/9 (𝑢, 𝑣, 𝐹) = |𝑃 | = 𝑑𝐺−𝐹 (𝑢, 𝑣). The second part of
Lemma 6.6 now implies that 𝑑𝐻𝐹 (𝑢, 𝑣) ⩽ 𝑤′

𝐻𝐹 (𝑢, 𝑣) ⩽ (3 + 𝛿) · 𝑑𝐺−𝐹 (𝑢, 𝑣) ⩽ (3 + 𝜀) · 𝑑𝐺−𝐹 (𝑢, 𝑣).
The main part of the proof consists in recovering the third case, where the replacement

path 𝑃 is long but not far away from 𝐹. By Lemma 5.3, there are vertices 𝑥 ∈ {𝑢, 𝑣}, 𝑦 ∈𝑉 (𝑃), and
𝑧 ∈ tr𝜀/9𝐺−𝐹 (𝑃) ∩𝑉 (𝐹) such that 𝑑𝐺−𝐹 (𝑧, 𝑦) ⩽ 𝜀

9 · 𝑑𝐺−𝐹 (𝑥, 𝑦) and the path 𝑃′ = 𝑃[𝑥.. 𝑦] ◦ 𝑃( 𝑦, 𝑧, 𝐹)
is far away. 𝑃( 𝑦, 𝑧, 𝐹) denotes the shortest path from 𝑦 to 𝑧 in 𝐺 − 𝐹. The length of 𝑃′ is bounded
from above by (1 + 𝜀

9) · 𝑑𝐺−𝐹 (𝑥, 𝑦).
We again assume 𝑥 = 𝑢 for simplicity. Just as before, if 𝑃′ has at most 𝐿 edges, we have

𝑤𝐻𝐹 (𝑢, 𝑧) ⩽ 𝑑⩽𝐿(𝑢, 𝑧, 𝐹) ⩽ 3 |𝑃′| ⩽ 3(1 + 𝜀
9) 𝑑𝐺−𝐹 (𝑢, 𝑦). If 𝑃′ has more than 𝐿 edges, we have to

distinguish the sparse ball and dense ball subcases again. First, note that 𝑃[𝑢.. 𝑦] is a subpath
of the replacement path 𝑃 = 𝑃(𝑢, 𝑣, 𝐹), so it is itself the unique replacement path 𝑃(𝑢, 𝑦, 𝐹).
Therefore, 𝑃′ = 𝑃[𝑢.. 𝑦] ◦ 𝑃( 𝑦, 𝑧, 𝐹) and all its subpaths are a concatenation of at most two
replacement paths. Moreover, since replacement paths are 𝑓 -decomposable, all subpaths of 𝑃′

are (2 𝑓 +1)-decomposable. Finally, recall that all subpaths are far away from all failures in 𝐹.
For the sparse balls case, let 𝑎 ∈ {𝑢, 𝑧} be a vertex such that ball𝐺−𝐹 (𝑎, 𝜆) is sparse. Consider

the vertex 𝑎′ that is exactly 𝜆 steps away from 𝑎 on the path 𝑃′. Then, 𝑃′[𝑎...𝑎′] is a concatenation
of two replacement paths and has 𝜆 edges. We adjusted the sampling probability for 𝐵 to ensure
that there is a (regular) pivot 𝑏∗ ∈ 𝐵 ∩ ball𝐺−𝐹 (𝑎, 𝜆) on 𝑃′. The subpath 𝑃′[𝑏∗..𝑧] is (2 𝑓 +1)-
decomposable and far away from all failures, so the exact same argument as in Lemma 6.1
gives 𝑤𝐻𝐹 (𝑢, 𝑧) ⩽ 3 |𝑃′| ⩽ 3(1 + 𝜀

9) · 𝑑𝐺−𝐹 (𝑢, 𝑦).
Regarding the dense ball case, the whole path 𝑃′ is (2 𝑓 +1)-decomposable. The first part of

Lemma 6.6 together with 𝐿 < |𝑃′| gives 𝑤𝐻𝐹 (𝑢, 𝑧) ⩽ 3|𝑃′| + 𝛿𝐿 < (3 + 𝛿) |𝑃′| ⩽ (3 + 𝛿) (1 + 𝜀
9) ·

𝑑𝐺−𝐹 (𝑢, 𝑦). In summary, we have 𝑤𝐻𝐹 (𝑢, 𝑧) ⩽ (3+ 𝛿) (1+ 𝜀
9) · 𝑑𝐺−𝐹 (𝑢, 𝑦) in all cases. Vertex 𝑧 lies

in the trapezoid associated with the path 𝑃 = 𝑃(𝑢, 𝑣, 𝐹), so 𝑑𝐺−𝐹 (𝑧, 𝑣) < 𝑑𝐺−𝐹 (𝑢, 𝑣). By induction,
we get 𝑑𝐻𝐹 (𝑧, 𝑣) ⩽ (3 + 𝜀)𝑑𝐺−𝐹 (𝑧, 𝑣). Recall that our choices of 𝜆 and 𝛿 imply 𝛿 + (6 + 𝛿 + 𝜀) 𝜀9 ⩽ 𝜀.
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Combining all this, we arrive at

𝑑𝐻𝐹 (𝑢, 𝑣) ⩽ 𝑤𝐻𝐹 (𝑢, 𝑧) + 𝑑𝐻𝐹 (𝑧, 𝑣) ⩽ (3+𝛿)
(
1+𝜀

9

)
𝑑𝐺−𝐹 (𝑢, 𝑦) + (3+𝜀)𝑑𝐺−𝐹 (𝑧, 𝑣)

⩽ (3+𝛿)
(
1+𝜀

9

)
𝑑𝐺−𝐹 (𝑢, 𝑦) + (3+𝜀)𝑑𝐺−𝐹 (𝑧, 𝑦) + (3+𝜀)𝑑𝐺−𝐹 ( 𝑦, 𝑣)

⩽ (3+𝛿)
(
1+𝜀

9

)
𝑑𝐺−𝐹 (𝑢, 𝑦) + (3+𝜀)

𝜀

9
𝑑𝐺−𝐹 (𝑢, 𝑦) + (3+𝜀)𝑑𝐺−𝐹 ( 𝑦, 𝑣)

= 3𝑑𝐺−𝐹 (𝑢, 𝑦) + 𝛿 · 𝑑𝐺−𝐹 (𝑢, 𝑦) + (6 + 𝛿 + 𝜀)
𝜀

9
· 𝑑𝐺−𝐹 (𝑢, 𝑦) + (3+𝜀)𝑑𝐺−𝐹 ( 𝑦, 𝑣)

⩽ 3𝑑𝐺−𝐹 (𝑢, 𝑦) + 𝜀 · 𝑑𝐺−𝐹 (𝑢, 𝑦) + (3+𝜀)𝑑𝐺−𝐹 ( 𝑦, 𝑣) = (3+𝜀)𝑑𝐺−𝐹 (𝑢, 𝑣). ■

6.4 Proof of Theorem 1.1

We can now complete the proof of Theorem 1.1, which we restate below. It follows in the same
fashion as Lemma 5.1 (see Section 5.5), but takes into account the changes made in this section.
The main difference is the transition from 𝐿 to 𝜆, giving an extra 1/𝜀 factor in the space and
preprocessing time, and, of course, the improved query time.

THEOREM 1.1. (Restated) Let 𝑓 ⩾ 2 be an integer constant and 0 < 𝛼 < 1/2. For any undirected,
unweighted graph 𝐺 with unique shortest paths and any 𝜀 = 𝜀(𝑚, 𝑛, 𝑓 ) > 0, there is a (3+𝜀)-
approximate randomized 𝑓 -DSO for 𝐺 that w.h.p. takes space 𝑂(𝑛2− 𝛼

𝑓 +1 ) ·𝑂(log 𝑛/𝜀) 𝑓 +2, has query
time 𝑂(𝑛𝛼/𝜀2), and preprocessing time 𝑂(𝑚𝑛2− 𝛼

𝑓 +1 ) · 𝑂(log 𝑛/𝜀) 𝑓 +1.

PROOF . The stretch of 3+ 𝜀 is treated in Lemma 6.7, requiring 𝜆 = 𝑂(𝜀𝐿). The derivation of the
other parameters of the theorem is very similar to the proof of Lemma 5.1. The main difference
is that now the vertices for 𝐵 are sampled with probability 𝑂( 𝑓 /𝜆) = 𝑂(1/𝜀𝐿) (as opposed to
𝑂(1/𝐿) before). We again choose 𝐿 = 𝑛𝛼/( 𝑓 +1) .

The total size of the FT-trees with and without granularity are discussed in Section 6.2.
There, we claimed that the 𝑂(𝑛𝐿2 𝑓 +𝑜(1)/𝜆) space needed to store all the pivot sets 𝐵𝐺𝑖 (𝑥, 𝜆) for
graphs 𝐺𝑖 of the (𝐿, 𝑓 )-replacement path covering is immaterial.

𝑂

(
𝑛𝐿2 𝑓 +𝑜(1)

𝜆

)
= 𝑂

(
𝑛𝐿2 𝑓−1+𝑜(1)

𝜀

)
= 𝑂

(
𝑛1+𝛼(2 𝑓 −1+𝑜(1) )

𝑓 +1

𝜀

)
=
𝑛1+𝛼 2 𝑓 −1+𝑜(1)

𝑓 +1

𝜀
.

The last transformation uses 𝛼 = 𝑂(1). We compare this with the space for the FT-trees.

𝑂

(
𝑛2

𝜆

)
· 𝑂

(
log 𝑛
𝜀

) 𝑓 +1

= 𝑂

(
𝑛2− 𝛼

𝑓 +1

𝜀

)
· 𝑂

(
log 𝑛
𝜀

) 𝑓 +1

= 𝑂(𝑛2− 𝛼
𝑓 +1 ) · 𝑂

(
log 𝑛
𝜀

) 𝑓 +2

.

Indeed, due to 𝛼 < 1
2 ⩽

𝑓 +1
2 𝑓 +𝑜(1) , the latter part dominates.

The main effort when answering a query is computing the edge weights in the auxiliary
graph 𝐻𝐹 in the sparse ball case. There, we have to scan all pivots in 𝐵 ∩ ball𝐺−𝐹 (𝑥, 𝜆). (The
dense ball case only takes time 𝑂(𝐿𝑜(1) (𝜆 + 1/𝜀)) = 𝑂(𝜀𝐿1+𝑜(1) + 𝐿𝑜(1)/𝜀).) Recall that 𝐻𝐹 is of
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size 𝑂( 𝑓 2) = 𝑂(1). The query time is

𝑂

(
𝐿 𝑓 +𝑜(1)

𝜀𝜆

)
= 𝑂

(
𝐿 𝑓−1+𝑜(1)

𝜀2

)
= 𝑂

(
𝑛
𝛼( 𝑓 −1+𝑜(1) )

𝑓 +1

𝜀2

)
=
𝑛𝛼

𝑓 −1
𝑓 +1 +𝑜(1)

𝜀2 = 𝑂

(
𝑛𝛼

𝜀2

)
.

For the preprocessing time, we assume that we can compute an expath with granularity 𝜆
in time 𝑂( 𝑓 𝑚 + 𝜆) = 𝑂(𝑚). Even though the FT-trees with granularity are much larger, we
need fewer of them. It still takes longer to construct all the regular FT-trees. Compared to
Lemma 5.1, we get an additional 1/𝜀 factor from replacing 𝐿by 𝜆 = Θ(𝜀𝐿), yielding𝑂(𝑚𝑛2− 𝛼

𝑓 +1/𝜀)·
𝑂(log 𝑛/𝜀) 𝑓 . It takes 𝑂(𝑛𝐿3 𝑓 +𝑜(1)) = 𝑛1+3𝛼 𝑓

𝑓 +1+𝑜(1) additional time to prepare the sets 𝐵𝐺𝑖 (𝑥, 𝜆).
This is negligible compared to the 𝑚𝑛2− 𝛼

𝑓 +1/𝜀 = Ω(𝑛3− 𝛼
𝑓 +1 ) term. We style the final preprocessing

time as 𝑂(𝑚𝑛2− 𝛼
𝑓 +1/𝜀) · 𝑂(log 𝑛/𝜀) 𝑓 = 𝑂(𝑚𝑛2− 𝛼

𝑓 +1 ) · 𝑂(log 𝑛/𝜀) 𝑓 +1 ■

7. Computing Shortest (2 𝒇+1)-Expaths in𝑶( 𝒇𝒎) Time

We finally turn to computing shortest (2 𝑓 +1)-expaths in 𝑂( 𝑓 𝑚) time. We assume that we are
given access to the all-pairs distances in the original graph 𝐺. Since the latter data can be
obtained in time 𝑂(𝑚𝑛), this completes the proof of the preprocessing time in Lemma 5.1 and
Theorem 1.1. It also allows us to improve the time needed to construct the (superquadratic-
space) 𝑓 -DSO with stretch (1 + 𝜀) by Chechik et al. [20]. More precisely, the preprocessing time,
which was 𝑂(𝑛5+𝑜(1)/𝜀 𝑓 ) [20], is now reduced to 𝑂(𝑚𝑛2+𝑜(1)/𝜀 𝑓 ) (Theorem 1.4), improving the
complexity by a factor of 𝑛3/𝑚.

We present our algorithm to compute (2 𝑓 +1)-expaths in weighted undirected graphs and
with a sensitivity of up to 𝑓 = 𝑜(log 𝑛/log log 𝑛). Any edge {𝑎, 𝑏} ∈ 𝐸 carries a weight 𝑤(𝑎, 𝑏)
between 1 and some maximum weight𝑊 = poly(𝑛). The reason for this generalization is to fit
the framework of [20]. The definition of graph distances is adjusted accordingly. This also has
an effect on the definition of decomposable paths. For any non-negative integer ℓ, Afek et al. [2,

Theorem 1] showed that in unweighted graphs after at most ℓ edge failures shortest paths are the
concatenation of up to ℓ + 1 shortest paths in 𝐺; if 𝐺 is weighted, this changes to a concatenation
of up to ℓ + 1 shortest paths and ℓ interleaving edges. We mean the latter whenever we speak of
ℓ-decomposable paths below. Let 𝐷 = 𝑛 ·𝑊 be an upper bound of the diameter of𝐺. An ℓ-expath
is now a concatenation of 1+2 log2 𝐷 ℓ-decomposable paths such that, for every 0 ⩽ 𝑖 ⩽ 2 log2 𝐷,
the length of the 𝑖-th ℓ-decomposable path is at most min(2𝑖 , 22 log2(𝐷)−𝑖).

7.1 Shortest (2 𝒇+1)-Decomposable Paths

As a warm-up, we first describe how to obtain (2 𝑓 +1)-decomposable paths efficiently. We
later extend our approach to (2 𝑓 +1)-expaths, with or without granularity. Our main tool is a
modification of Dijkstra’s algorithm [23, Chapter 22.3]. Given an edge weighted graph with a
distinguished source vertex 𝑠, the algorithms determines in time 𝑂(𝑚) the distance from 𝑠 to
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any other vertex. It maintains a priority queue of vertices whose distance estimate is not yet
final. The DecreaseKey operation updates the estimate. We mainly adapt this operation.

Let 𝐴 ⊆ 𝐸 be a set of edges in 𝐺 and 𝑠, 𝑡 ∈ 𝑉 two vertices. We denote the shortest ℓ-
decomposable path between 𝑢 and 𝑣 in 𝐺 − 𝐴 by 𝑃 (ℓ) (𝑠, 𝑡, 𝐴), its length is 𝑑 (ℓ) (𝑠, 𝑡, 𝐴). Recall that
𝑑 (ℓ) (𝑠, 𝑡, 𝐴) may be larger than 𝑑𝐺−𝐴(𝑠, 𝑡) if |𝐴| > ℓ + 1.

LEMMA 7.1. Given the original distances 𝑑𝐺 (𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝑉 and an edge set 𝐴 ⊆ 𝐸, the
distance 𝑑 (2 𝑓 +1) (𝑠, 𝑡, 𝐴) is computable in time 𝑂( 𝑓 𝑚). Moreover, one can compute 𝑑 (2 𝑓 +1) (𝑠, 𝑣, 𝐴)
for all vertices 𝑣 ∈ 𝑉 within the same time bound.

PROOF . We prove the lemma by induction over ℓ from 0 to 2 𝑓 +1, computing 𝑑 (ℓ) (𝑠, 𝑣, 𝐴) for
all targets 𝑣 ∈ 𝑉 in the ℓ-th step. For the base case, note that 𝑑 (0) (𝑠, 𝑣, 𝐴) = 𝑑𝐺 (𝑠, 𝑣) if the shortest
𝑠-𝑣-path in 𝐺 does not use any edge in 𝐴 (that is, if it also exists in 𝐺 − 𝐴); and 𝑑 (0) (𝑠, 𝑣, 𝐴) = +∞
otherwise. We use a modified version of Dijkstra’s algorithm in the graph𝐺−𝐴 from the source 𝑠.
Let 𝑑′(𝑠, 𝑎) be the distance from 𝑠 to some vertex 𝑎 computed so far by our algorithm. During
relaxation of an edge 𝑒 = {𝑎, 𝑏}, we check if the current path is also the shortest path in 𝐺 by
testing if 𝑑′(𝑠, 𝑎) + 𝑤(𝑎, 𝑏) = 𝑑𝐺 (𝑠, 𝑏), with the right-hand side being precomputed. If this fails,
we do not decrease the key of vertex 𝑏.

We now argue that 𝑑′(𝑠, 𝑣) = 𝑑 (0) (𝑠, 𝑣, 𝐴). Note that if the shortest 𝑠-𝑣-path in 𝐺 also lies in
𝐺−𝐴, then all its edges are relaxed at one point and the corresponding checks in the modification
succeed. Indeed, the last key of 𝑣 in the priority queue (i.e., 𝑑′(𝑠, 𝑣)) then is 𝑑𝐺 (𝑠, 𝑣) = 𝑑 (0) (𝑠, 𝑣, 𝐴).
Otherwise, due to the uniqueness of shortest paths, every 𝑠-𝑣-path in 𝐺 − 𝐴 has length larger
than 𝑑𝐺 (𝑠, 𝑣). Therefore, the key of 𝑣 is never decreased, it remains at +∞.

For the induction step, we construct a new directed graph 𝐺∗ = (𝑉∗, 𝐸∗) with 𝑉∗ = {𝑠0} ∪
𝑉1 ∪ 𝑉2, where 𝑉1 and 𝑉2 are two copies of 𝑉 . For a given 𝑣 ∈ 𝑉 , we denote by 𝑣1 and 𝑣2 the
copies of 𝑣 that are contained in𝑉1 and 𝑉2, respectively. The set 𝐸∗ contains the following edges.

(𝑠0, 𝑣1) of weight 𝑤𝐺∗ (𝑠0, 𝑣1) = 𝑑 (ℓ−1) (𝑠, 𝑣, 𝐴) for every 𝑣 ∈ 𝑉 with 𝑑 (ℓ−1) (𝑠, 𝑣, 𝐴) ≠ +∞;
(𝑣1, 𝑣2) of weight 𝑤𝐺∗ (𝑣1, 𝑣2) = 0 for every 𝑣 ∈ 𝑉 ;
(𝑢1, 𝑣2), (𝑣1, 𝑢2) both of weight 𝑤(𝑢, 𝑣) for every edge {𝑢, 𝑣} ∈ 𝐸\𝐴;
(𝑢2, 𝑣2), (𝑣2, 𝑢2) of weight 𝑤(𝑢, 𝑣) for every {𝑢, 𝑣} ∈ 𝐸\𝐴.

See Figure 3 for an example of this construction. The intuition behind 𝐺∗ is the following.
The edge from the source 𝑠0 to some vertex 𝑣1 ∈ 𝑉1 represents the shortest (ℓ−1)-decomposable
path from 𝑠 to 𝑣 in 𝐺−𝐴. They become ℓ-decomposable paths when concatenated with some
shortest path in 𝐺 which only use edges from 𝐸\𝐴. The latter are represented by the edges from
𝑉1 to 𝑉2 and those within 𝑉2. If the shortest path from 𝑢 to 𝑣 in 𝐺 is the edge {𝑢, 𝑣} (respectively,
if 𝑢 = 𝑣), this is modeled by the edge (𝑢1, 𝑣2) ∈ 𝑉1 ×𝑉2 in 𝐺∗(respectively, by (𝑢1, 𝑢2) with weight
0). If the shortest 𝑢-𝑣-path in the weighted graph 𝐺 has multiple edges, this is modeled by first
following (𝑢1, 𝑢2) and then the respective edges through 𝑉2.
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𝑎

𝑏

𝑐

𝑤(𝑎, 𝑏)

𝑤(𝑏, 𝑐)

𝑠0

𝑎1

𝑏1

𝑐1

𝑎2

𝑏2

𝑐2

𝑉1 𝑉2

𝑤(𝑎, 𝑏)

𝑤(𝑏, 𝑐)

𝑑
(ℓ−1) (𝑠, 𝑎,

𝐴)

𝑑 (ℓ−1) (𝑠, 𝑏, 𝐴)

𝑑 (ℓ−1)(𝑠, 𝑐, 𝐴)

0

0

0

𝑤(𝑎, 𝑏)

𝑤(𝑏, 𝑐)

𝑤(𝑎, 𝑏)

𝑤(𝑏, 𝑐)

Figure 3. Example construction of the graph 𝐺∗ (right) from 𝐺 − 𝐴 (left) for step ℓ of the algorithm to
compute shortest (2 𝑓+1)-decomposable paths (Lemma 7.1).

We use 𝑠0 as the source and compute the values 𝑑′(𝑠0, 𝑣𝑖) in 𝐺∗, for 𝑖 ∈ 1, 2 and all 𝑣 ∈ 𝑉 ,
with a similar Dijkstra modification as in the base case. The relaxation of any out-edge of 𝑠0

or any edge from 𝑉1 to 𝑉2 remains unchanged. For the relaxation of 𝑒 = (𝑎2, 𝑏2) in 𝐺∗[𝑉2],
let 𝑤2 be the first vertex from 𝑉2 on the shortest path from 𝑠0 to 𝑎2 that we found. We check
whether 𝑑′(𝑠0, 𝑎2) − 𝑑′(𝑠0, 𝑤2) + 𝑤𝐺∗ (𝑎2, 𝑏2) = 𝑑𝐺 (𝑤, 𝑏) from the original graph 𝐺. If not, we
do not decrease the key of 𝑏2. This makes sure that the subpath from 𝑤2 to 𝑏2 corresponds to
the shortest 𝑤-𝑏-path in 𝐺 (not only in 𝐺 − 𝐴). To have access to 𝑤2 in constant time, we store
the entry vertex 𝑤2 for each 𝑎2 at the time the key of 𝑎2 is decreased. If this happens using an
outgoing edge from 𝑉1, then we set the entry vertex of 𝑎2 to 𝑎2 itself. Otherwise, we set it to be
equal to the entry vertex of its predecessor.

The main part of the proof is to show that the computed distance 𝑑′(𝑠0, 𝑣2) is indeed
𝑑 (ℓ) (𝑠, 𝑣, 𝐴). This inductively implies that the algorithm eventually produces 𝑑 (2 𝑓 +1) (𝑠, 𝑣, 𝐴).
Any path in 𝐺∗ from 𝑠0 to some vertex 𝑣2 ∈ 𝑉2 has at least 3 vertices and its prefix has the form
(𝑠0, 𝑢1, 𝑤2). By construction, we have 𝑤𝐺∗ (𝑠0, 𝑢1) = 𝑑 (ℓ−1) (𝑠, 𝑢, 𝐴), which corresponds to the
shortest (ℓ−1)-decomposable path 𝑃 (ℓ−1) (𝑠, 𝑢, 𝐴) in 𝐺. Next, note that there is no edge leaving
𝐺∗[𝑉2], so the rest of the path from 𝑤2 to 𝑣2 exclusively uses vertices from 𝑉2. Let 𝑃 denote
the corresponding path in 𝐺 (meaning it uses the corresponding vertices from 𝑉 ). Our checks
in the modification ensure that 𝑃 is the shortest 𝑤-𝑣-path in 𝐺. Slightly abusing notation, let
𝑒 = {𝑢, 𝑤} ∈ 𝐸\𝐴 be an edge in case 𝑢 ≠ 𝑤; and 𝑒 = ∅ otherwise. In summary, the computed
path through 𝐺∗ corresponds to the path 𝑃ℓ = 𝑃 (ℓ−1) (𝑠, 𝑢, 𝐴) ◦ 𝑒 ◦ 𝑃 in 𝐺. Since 𝑃 (ℓ−1) (𝑠, 𝑢, 𝐴) is
(ℓ−1)-decomposable, and 𝑃 is a shortest path, 𝑃ℓ is ℓ-decomposable. It lies entirely in 𝐺−𝐴.

We now prove that 𝑃ℓ is also the shortest ℓ-decomposable path from 𝑠 to 𝑣 in 𝐺−𝐴. To
reach a contradiction, let 𝑄ℓ be a strictly shorter ℓ-decomposable 𝑠-𝑣-path. 𝑄ℓ is not (ℓ−1)-
decomposable since otherwise the two-edge path (𝑠0, 𝑣1, 𝑣2) in𝐺∗ of length |𝑄ℓ | would be strictly
shorter than 𝑃ℓ. Our algorithm would have found that path instead (even without modifications).
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Figure 4. The exploded graph for computing shortest ℓ-decomposable paths.

There exists a decomposition 𝑄ℓ = 𝑄ℓ−1 ◦ 𝑒′ ◦ 𝑄, where 𝑄ℓ−1 is an (ℓ−1)-decomposable
path in 𝐺 − 𝐴 ending in some vertex 𝑎, 𝑒′ is either empty or a single edge {𝑎, 𝑏} ∈ 𝐸\𝐴, and 𝑄
is a shortest path in 𝐺 from 𝑏 to 𝑣 that only uses edges from 𝐸\𝐴. Let 𝑄 = (𝑏, 𝑥 (2) , . . . , 𝑥 (𝑖) , 𝑣).
Since 𝑑 (ℓ−1) (𝑠, 𝑎, 𝐴) ⩽ |𝑄ℓ−1 |, the path (𝑠0, 𝑎1, 𝑏2, 𝑥

(2)
2 , . . . , 𝑥

(𝑖)
2 , 𝑣2) through 𝐺∗ has length at most

|𝑄ℓ | < |𝑃ℓ |. It would have been preferred by our algorithm, a contradiction.
Concerning the runtime, we have 𝑂( 𝑓 ) steps. In each of them, we build the graph 𝐺∗ =

(𝑉∗, 𝐸∗) with 𝑂(𝑛) vertices and 𝑂(𝑚) edges and run (the modified) Dijkstra’s algorithm. It
requires 𝑂(𝑚) time, so the overall time of our algorithm is 𝑂( 𝑓 𝑚). ■

Unrolling the inductive computation of (2 𝑓 +1)-decomposable distances discussed above
leads to a graph of 2 𝑓 + 2 layers as follows. As the edges from 𝑠0 to 𝑣1 ∈ 𝑉1 in the graph 𝐺∗ are
modeling (ℓ−1)-decomposable paths, we could substitute those by the construction graph used
to compute the (ℓ−1)-decomposable paths and proceed recursively. This way, we obtain an
exploded graph with a source 𝑠0 and 2 𝑓 + 2 additional layers 𝑉0, 𝑉1, . . . , 𝑉2 𝑓 +1, where layer 𝑉ℓ
models the graph 𝐺 − 𝐴 as above and is used to compute shortest ℓ-decomposable distances.
Figure 4 gives an overview.

Running the modified version of Dijkstra’s algorithm in the exploded graph guarantees
that subpaths entirely contained in one layer are also shortest paths in𝐺 (while using only edges
from 𝐸\𝐴). The decomposable distances may be computed out of order; for example, we may
compute the value 𝑑 (ℓ) (𝑠, 𝑣, 𝐴) before 𝑑 (ℓ−1) (𝑠, 𝑢, 𝐴) provided that 𝑑 (ℓ) (𝑠, 𝑣, 𝐴) ⩽ 𝑑 (ℓ−1) (𝑠, 𝑢, 𝐴)).
Notwithstanding, for each vertex 𝑣ℓ ∈ 𝑉ℓ, the computed distance is 𝑑 (ℓ) (𝑠, 𝑣, 𝐴).

We can further modify Dijkstra’s algorithm to limit the length of partial paths to some
upper bound 𝛿𝑖 , by only allowing edges to be relaxed that do not increase the length of a subpath
above that threshold. For this, we need to store information about the start of a subpath, e.g.,
the entry point into the 𝑖-th layer, for each of its descendant nodes. This can be propagated
during edge relaxation as we did with𝑤2 in the proof above. In the next subsection, we formally
describe and combine these two ideas, exploded graphs and length restrictions, to compute
ℓ-expaths efficiently.
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Figure 5. Example construction of graph 𝐺𝑖 (right) from 𝐺 (left) for the algorithm to compute shortest
𝑖-partial ℓ-expaths (Lemma 7.3). Each layer 𝑉𝑖, 𝑗 is connected to its neighboring layers in the same way as
the first two layers. If the red path is the shortest path from 𝑠0 to 𝑎ℓ, then the entry nodes for 𝑎ℓ are
𝑤𝑎ℓ = 𝑏0 and 𝑥𝑎ℓ = 𝑎ℓ.

7.2 Shortest (2 𝒇+1)-Expaths

We show how to compute the shortest (2 𝑓 +1)-expath in time𝑂( 𝑓 𝑚 log(𝑛𝑊)), when given access
to all-pairs distances in 𝐺. We define an 𝑖-partial ℓ-expath as follows.

DEF IN IT ION 7.2 (𝑖-partial ℓ-expath). Let 𝐴 ⊆ 𝐸 be a set of edges and 𝑖, ℓ non-negative integers.
An 𝑖-partial ℓ-expath in𝐺−𝐴 is a concatenation of 𝑖+1 ℓ-decomposable paths in𝐺−𝐴 such that, for
every 0 ⩽ 𝑗 ⩽ 𝑖 the length of the 𝑗-th ℓ-decomposable path is at most 𝛿 𝑗 = min(2 𝑗 , 22 log2(𝑛𝑊)− 𝑗).

We write 𝑃𝑖 = 𝑃0 ◦ 𝑃1 ◦ . . . ◦ 𝑃𝑖 for the constituting subpaths of an 𝑖-partial ℓ-expath, that is,
𝑃 𝑗 is an ℓ-decomposable path and |𝑃 𝑗 | ⩽ 𝛿 𝑗 . The definition interpolates between ℓ-decomposable
paths (i.e., 0-partial ℓ-expaths) and ordinary ℓ-expaths (i.e., (2 log2(𝑛𝑊))-partial ℓ-expaths).

The shortest ℓ-expath from 𝑠 to 𝑡 in 𝐺 − 𝐴 is computed in 2 log2(𝑛𝑊) + 1 phases. At the
start of the 𝑖-th phase, we already have the shortest (𝑖−1)-partial ℓ-expath 𝑃𝑖−1 from 𝑠 to 𝑣 in
𝐺 − 𝐴 for each 𝑣 ∈ 𝑉 . We extend them to the shortest 𝑖-partial ℓ-expath 𝑃𝑖 = 𝑃𝑖−1 ◦ 𝑃𝑖 from 𝑠 to 𝑣
in 𝐺 − 𝐴, again for each 𝑣 ∈ 𝑉 .

Let 𝑑𝑖,ℓ (𝑠, 𝑣, 𝐴) denote the length of the shortest 𝑖-partial ℓ-expath from 𝑠 to 𝑣 in 𝐺−𝐴. We
define a directed graph 𝐺𝑖 as follows. We set 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) with 𝑉𝑖 = {𝑠∗} ∪

⋃ℓ
𝑗=0𝑉𝑖, 𝑗 , where all

the 𝑉𝑖, 𝑗 are copies of 𝑉 . In the remaining description, for every 𝑣 ∈ 𝑉 and every 0 ⩽ 𝑗 ⩽ ℓ, we
denote by 𝑣 𝑗 the copy of 𝑣 contained in 𝑉𝑖, 𝑗 . The graph 𝐺𝑖 has the following edges 𝐸𝑖 .

(𝑠∗, 𝑣0) of weight 𝑤𝐺𝑖 (𝑠∗, 𝑣0) = 𝑑𝑖−1,ℓ (𝑠, 𝑣, 𝐴) for every 𝑣 ∈ 𝑉 with 𝑑𝑖−1,ℓ (𝑠, 𝑣, 𝐴) ≠ +∞;
(𝑣 𝑗−1, 𝑣 𝑗) of weight 𝑤𝐺𝑖 (𝑣 𝑗−1, 𝑣 𝑗) = 0 for every 𝑣 ∈ 𝑉 and every 1 ⩽ 𝑗 ⩽ ℓ;
(𝑢 𝑗−1, 𝑣 𝑗), (𝑣 𝑗−1, 𝑢 𝑗) both of weight 𝑤(𝑢, 𝑣) for every edge {𝑢, 𝑣} ∈ 𝐸\𝐴 and every 1 ⩽ 𝑗 ⩽ ℓ;
(𝑢 𝑗 , 𝑣 𝑗), (𝑣 𝑗 , 𝑢 𝑗) of weight 𝑤(𝑢, 𝑣) for every {𝑢, 𝑣} ∈ 𝐸\𝐴 and every 0 ⩽ 𝑗 ⩽ ℓ.

The construction is visualized in Figure 5. Intuitively, this adds a new ℓ-decomposable path
to the previously computed partial expath, by using the same exploded graph as in Figure 4.
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Regarding the weights of the out-edges of 𝑠∗ in the first graph 𝐺0, note that 𝑑−1,ℓ (𝑠, 𝑣, 𝐴), by
definition, is 1 if {𝑠, 𝑣} ∈ 𝐸\𝐴; and +∞ otherwise. Let 𝑑′(𝑠∗, 𝑣 𝑗) be the values we compute in 𝐺𝑖
by running Dijkstra’s algorithm from the source 𝑠∗ with the following modifications.

1. For each vertex 𝑣 𝑗 ∈ 𝑉𝑖 , we store entry vertices 𝑤𝑣 𝑗 and 𝑥𝑣 𝑗 .
2. If DecreaseKey is called on 𝑣0 ∈ 𝑉𝑖,0 upon relaxation of an edge (𝑠∗, 𝑣0), 𝑤𝑣0 is set to 𝑣0.
3. If DecreaseKey is called on a vertex 𝑣 𝑗 ∈ 𝑉𝑖, 𝑗 upon relaxation of an edge (𝑢 𝑗−1, 𝑣 𝑗) from

the previous layer, then 𝑥𝑣 𝑗 is set to 𝑣 𝑗 .
4. For all other calls of DecreaseKey, when relaxing edge (𝑢 𝑗 , 𝑣 𝑗), set 𝑤𝑣 𝑗 = 𝑤𝑢 𝑗 and 𝑥𝑣 𝑗 = 𝑥𝑢 𝑗 .
5. To relax an edge (𝑢 𝑗 , 𝑣 𝑗), we require 𝑑′(𝑠∗, 𝑢 𝑗) − 𝑑′(𝑠∗, 𝑥𝑢 𝑗) + 𝑤𝐺𝑖 (𝑢 𝑗 , 𝑣 𝑗) = 𝑑𝐺 (𝑢, 𝑣).
6. To relax an edge (𝑢 𝑗′ , 𝑣 𝑗), 𝑗′ ∈ { 𝑗 −1, 𝑗}, we require 𝑑′(𝑠∗, 𝑢 𝑗′) − 𝑑′(𝑠∗, 𝑤𝑢 𝑗′ ) +𝑤(𝑢 𝑗′ , 𝑣 𝑗) ⩽ 𝛿𝑖 .

Finally, we set 𝑑𝑖,ℓ (𝑠, 𝑣, 𝐴) = 𝑑′(𝑠∗, 𝑣ℓ) for each 𝑣 ∈ 𝑉 .
The modifications are such that 𝑤𝑣 𝑗 marks the entry point of the current shortest path

from 𝑠∗ to 𝑣 𝑗 into the graph induced by 𝑉𝑖\{𝑠∗}, while 𝑥𝑣 𝑗 marks the entry point into the layer
𝑉𝑖, 𝑗 . Modification 5 further ensures that a path entirely contained within one layer corresponds
to a shortest path in 𝐺. This implies that a shortest path from 𝑠∗ to a vertex 𝑣ℓ ∈ 𝑉𝑖,ℓ corresponds
to a composition of an (𝑖−1)-partial ℓ-expath, via the edge (𝑠∗, 𝑤𝑣ℓ), and an ℓ-decomposable
path. Modification 6 enforces that the ℓ-decomposable path we append has length at most 𝛿𝑖 .

LEMMA 7.3. Given the original distances 𝑑𝐺 (𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝑉 , a set 𝐴 ⊆ 𝐸, and the distances
𝑑𝑖−1,ℓ (𝑠, 𝑣, 𝐴) for all 𝑣 ∈ 𝑉 , the distances 𝑑𝑖,ℓ (𝑠, 𝑣, 𝐴) for all 𝑣 are computable in total time 𝑂(ℓ𝑚).

PROOF . First, we show that, for an arbitrary vertex 𝑡 ∈ 𝑉 with 𝑑′(𝑠∗, 𝑡ℓ) ≠ +∞, there exists an
𝑖-partial ℓ-expath in 𝐺 − 𝐴 of length 𝑑′(𝑠∗, 𝑡ℓ). Consider the 𝑠∗-𝑡ℓ-path 𝑄 through 𝐺𝑖 computed by
our algorithm. For each layer 𝑗, let 𝑃𝑖, 𝑗 be the path in𝐺 corresponding to the subpath of𝑄within
𝑉𝑖, 𝑗 . That means, for every (𝑢 𝑗 , 𝑣 𝑗) ∈ 𝐸(𝑄), 𝑃𝑖, 𝑗 contains the edge {𝑢, 𝑣}. Due to Modification 5,
we only relax edges (𝑢 𝑗 , 𝑣 𝑗), if the distance to the current entry vertex 𝑥𝑣 𝑗 into the 𝑗-th layer,
corresponding to some 𝑥 ∈ 𝑉 , is equal to the 𝑑𝐺 (𝑥, 𝑣). Thus, each 𝑃𝑖, 𝑗 is a shortest path in 𝐺.

Recall that we use symbol 𝑃𝑖 for the (𝑖+1)th constituting ℓ-decomposable subpath of the
𝑖-partial ℓ-expath 𝑃𝑖 we aim to construct. We define 𝑃𝑖 by interleaving all the paths 𝑃𝑖, 𝑗 with the
edges corresponding to the layer transitions. In more detail, let (𝑢 𝑗 , 𝑣 𝑗+1) be the edge leaving𝑉𝑖, 𝑗 .
Note that 𝑄 never returns to 𝑉𝑖, 𝑗 . We add the corresponding edge {𝑢, 𝑣} between 𝑃𝑖, 𝑗 and 𝑃𝑖, 𝑗+1

if 𝑢 ≠ 𝑣; otherwise, we concatenate 𝑃𝑖, 𝑗 and 𝑃𝑖, 𝑗+1 directly. Since 𝑃𝑖 consists of ℓ + 1 shortest
paths in 𝐺 possibly interleaved with single edges, 𝑃𝑖 is indeed an ℓ-decomposable path. By the
definition of 𝐸𝑖 , path 𝑃𝑖 exclusively uses edges from 𝐸\𝐴.

The path 𝑃𝑖 starts in the vertex 𝑤 ∈ 𝑉 corresponding to 𝑤𝑡ℓ ∈ 𝑉𝑖,0, hence the length of 𝑃𝑖
is exactly 𝑑′(𝑠∗, 𝑡ℓ) − 𝑑′(𝑠∗, 𝑤𝑡ℓ) as our transformation preserves edge weights and the edges
(𝑣 𝑗−1, 𝑣 𝑗) between vertices corresponding to the same 𝑣 have weight 0 in 𝐺𝑖 . By Modification 6,
the length of 𝑃𝑖 is bounded by 𝛿𝑖 as otherwise the last edge would not have been relaxed. Let
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𝑃𝑖−1 be the (𝑖−1)-partial ℓ-expath corresponding to the edge (𝑠∗, 𝑤𝑡ℓ) with length 𝑑𝑖,ℓ (𝑠, 𝑤, 𝐴).
In summary, 𝑃𝑖 = 𝑃𝑖−1 ◦ 𝑃𝑖 is an 𝑖-partial ℓ-expath that has length |𝑄| = 𝑑′(𝑠∗, 𝑡ℓ).

It remains to prove that 𝑃𝑖 is the shortest such path in 𝐺 − 𝐴. Assume there is a shorter
𝑖-partial ℓ-expath 𝑃′ = 𝑃′0◦ . . .◦𝑃′𝑖 . Let 𝑥′ be the first vertex of 𝑃′

𝑖
, then𝑤𝐺𝑖 (𝑠∗, 𝑥′0) = 𝑑𝑖,ℓ (𝑠, 𝑥, 𝐴) ⩽

𝑤(𝑃′0 ◦ . . . ◦ 𝑃′𝑖−1) as 𝑃′0 ◦ . . . ◦ 𝑃′𝑖−1 is an (𝑖−1)-partial ℓ-expath from 𝑠 to 𝑥 in 𝐺 − 𝐴. Also, 𝑃′
𝑖

is an
ℓ-decomposable path from 𝑥′ to 𝑡 of length |𝑃′

𝑖
| ⩽ 𝛿𝑖 .

Let𝑄′
𝑖

be the corresponding path through𝐺𝑖 from 𝑥′0 to 𝑡ℓ. Then, the path𝑄′ = (𝑠∗, 𝑥′0) ◦𝑄′𝑖 is
an 𝑠∗-𝑡ℓ-path in 𝐺𝑖 that is shorter than the path𝑄 that our algorithm found. Since Dijkstra’s (orig-
inal) algorithm is correct and 𝑄′

𝑖
has length |𝑃′

𝑖
| ⩽ 𝛿𝑖 , this can only happen due to Modification 5.

During the computation, some edge (𝑢 𝑗 , 𝑣 𝑗) ∈ 𝐸(𝑄′𝑖) satisfies 𝑑′(𝑠∗, 𝑢 𝑗) −𝑑′(𝑠∗, 𝑥𝑢 𝑗) +𝑤𝐺𝑖 (𝑢 𝑗 , 𝑣 𝑗) >
𝑑𝐺 (𝑢, 𝑣). Thus, the subpath of𝑄′

𝑖
between 𝑥𝑢 𝑗 and 𝑣 𝑗 is entirely contained in𝑉𝑖, 𝑗 but not a shortest

path in 𝐺. This is a contradiction to 𝑃′
𝑖

being ℓ-decomposable. Since 𝐺𝑖 has 𝑂(ℓ𝑛) vertices and
𝑂(ℓ𝑚) edges the 𝑖-th phase of our modified algorithm runs in time 𝑂(ℓ𝑚). ■

If desired, the computed 𝑖-partial ℓ-expath can be reconstructed by storing the parent of
the relaxed vertex whenever DecreaseKey is called. Additionally, we can label the start and
endpoints of the ℓ-decomposable paths as well as the shortest paths within them, by inserting
labels for the first vertex after 𝑠∗ and when an edge transitions from one layer to the next.

Lemma 7.3 implies the following result that we frequently referenced in Sections 5 and 6.15

COROLLARY 7.4. Given vertices 𝑠, 𝑡 ∈ 𝑉 , the original distances 𝑑𝐺 (𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝑉 , and
edges 𝐴 ⊆ 𝐸, the shortest (2 𝑓 +1)-expath from 𝑠 to 𝑡 in𝐺−𝐴 is computable in time𝑂( 𝑓 𝑚 log(𝑛𝑊)).

7.3 Expaths with Granularity

It is also not hard to extend the efficient expath computation to positive granularity 𝜆 (Defini-
tion 6.3). The difference is that the path now may have a pre- and suffix of up to 𝜆 edges each.
Recall that 𝑑⩽𝜆𝐺−𝐴(𝑢, 𝑣) is the minimum length of paths between vertices 𝑢, 𝑣 in 𝐺 − 𝐴 that have
at most 𝜆 edges; or +∞ if no such path exists. We first prepare the distances 𝑑⩽𝜆𝐺−𝐴(𝑠, 𝑣) and
𝑑⩽𝜆𝐺−𝐴(𝑣, 𝑡) for all 𝑣 ∈ 𝑉 by running Dijkstra’s algorithm from 𝑠 and from 𝑡, respectively. This
takes time 𝑂(𝑚) since 𝜆 ⩽ 𝑛, whence it does not affect the total computation time.

Let 𝐺0, . . . , 𝐺2 log 𝑛 be the graphs defined above, where 𝐺𝑖 is used to compute the 𝑖-partial
ℓ-expath. We incorporate the prefix of 𝜆 edges in the Dijkstra run from 𝑠∗ in𝐺0. We set the weight
of the edges (𝑠∗, 𝑣0) for every 𝑣 ∈ 𝑉 to 𝑑⩽𝜆𝐺−𝐴(𝑠, 𝑣) (and omit the edge in case 𝑑⩽𝜆𝐺−𝐴(𝑠, 𝑣) = +∞).
For the suffix, we add a final node 𝑡∗ after the last layer of the last graph 𝐺2 log 𝑛 The weight of
the edges (𝑣ℓ, 𝑡∗) is 𝑑⩽𝜆𝐺−𝐴(𝑣, 𝑡).

15 Recall that in Sections 5 and 6 the maximum weight is𝑊 = 1, whence the running time simplifies to 𝑂( 𝑓 𝑚), and further
to 𝑂(𝑚) as 𝑓 is assumed to be constant.
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It is not difficult to see that the algorithm for computing shortest (2 𝑓 +1)-expaths (without
granularity) from Section 7.2 together with these adaptions computes shortest (2 𝑓 +1)-expaths
with granularity 𝜆 in 𝐺−𝐴.

7.4 Improved Preprocessing of the Distance Sensitivity Oracle of
Chechik, Cohen, Fiat, and Kaplan

We now plug our expath computation into the preprocessing algorithm of the 𝑓 -DSO of Chechik
et al. [20]. The sensitivity 𝑓 can grow to 𝑜(log 𝑛/log log 𝑛) in their setting and the underlying
graph 𝐺 is weighted with a polynomial maximum weight𝑊 = poly(𝑛). They use fault-tolerant
trees 𝐹𝑇 (𝑢, 𝑣) for all pairs of vertices 𝑢, 𝑣 ∈ 𝑉 incurring super-quadratic space. Every node 𝜈 in
an FT-tree is associated with a specific subgraph 𝐺𝜈 ⊆ 𝐺. To obtain the expath 𝑃𝜈 from 𝑢 to 𝑣,
all-pairs shortest paths in 𝐺𝜈 are computed and then assembled in time 𝑂( 𝑓 𝑛3 + 𝑛2 log(𝑛𝑊) +
𝑛 log(𝑛𝑊) log log(𝑛𝑊)) = 𝑂( 𝑓 𝑛3) per node. With 𝑂(𝑛2) FT-trees having 𝑂(log(𝑛𝑊)/𝜀) 𝑓 nodes
each, this makes for a preprocessing time of 𝑂( 𝑓 𝑛5) · 𝑂(log(𝑛𝑊)/𝜀) 𝑓 = 𝑂(1/𝜀 𝑓 ) · 𝑛5+𝑜(1) .

We have shown above that APSP is only needed in the original graph𝐺 to obtain the expaths
in all relevant subgraphs, taking only 𝑂(𝑚𝑛) time. Our algorithm for expaths then reduces
the time to construct one node of an FT-tree to 𝑂( 𝑓 𝑚). In total, we obtain a preprocessing
time of 𝑂(𝑚𝑛) + 𝑂( 𝑓 𝑚𝑛2) · 𝑂(log(𝑛𝑊)/𝜀) 𝑓 = 𝑂(1/𝜀 𝑓 ) · 𝑚𝑛2+𝑜(1) . The stretch of 1 + 𝜀, space
𝑂( 𝑓 𝑛2) · 𝑂(log(𝑛𝑊)/𝜀) 𝑓 , and query time 𝑂( 𝑓 5 log 𝑛) of the DSO remain the same as for Chechik
et al. [20, Theorem 3.2]. This proves our Theorem 1.4.
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