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Abstract

Given an instance of a scheduling problem where we want
to start executing jobs as soon as possible, it is advantageous
if a scheduling algorithm emits the first parts of its solution
early, in particular before the algorithm completes its work.
Therefore, in this position paper, we analyze core scheduling
problems in regards to their enumeration complexity, i. e. the
computation time to the first emitted schedule entry (prepro-
cessing time) and the worst case time between two consecu-
tive parts of the solution (delay).
Specifically, we look at scheduling instances that reduce
to ordering problems. We apply a known incremental sort-
ing algorithm for scheduling strategies that are at their core
comparison-based sorting algorithms and translate corre-
sponding upper and lower complexity bounds to the schedul-
ing setting. For instances with n jobs and a precedence DAG
with maximum degree ∆, we incrementally build a topolog-
ical ordering with O(n) preprocessing and O(∆) delay. We
prove a matching lower bound and show with an adversary
argument that the delay lower bound holds even in case the
DAG has constant average degree and the ordering is emitted
out-of-order in the form of insert operations.
We complement our theoretical results with experiments that
highlight the improved time-to-first-output and discuss re-
search opportunities for similar incremental approaches for
other scheduling problems.

1 Introduction
Assigning resources to work packages (“jobs”) in a way that
optimizes an objective is a ubiquitous task in most indus-
trial settings. Naturally, it has been a scientific endeavor for
many years to develop efficient algorithms and to understand
the limits of possible algorithmic solutions by proving lower
bounds on the time complexity of such scheduling problems
(Pinedo 2022; Brucker et al. 2023; Brucker 2007).

Most research has focused on a total-time complexity per-
spective: An algorithm is presented with an input instance to
a scheduling problem, and the time complexity is analyzed
(or measured in case of experimental results) from the first
computation steps until the algorithm outputs the complete
solution. This approach makes it possible to employ com-
plex algorithmic strategies, but it also means that we cannot
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start to execute the schedule until the scheduling algorithm
terminates.

In contrast to this, we propose to analyze scheduling prob-
lems with an enumeration perspective: After some initial
preprocessing time, an enumeration algorithm has to emit
parts of the final solution with little delay in between consec-
utive solutions. In the case of scheduling algorithms, these
solution parts are schedule entries that specify when and on
which resource to execute a job. An algorithm that enumer-
ates the first entries of a schedule early on enables us to start
executing the schedule before it is finalized.

Note that this is different from the well-known online set-
ting: There, an algorithm does not see the whole input in-
stance but is presented with the jobs to be scheduled one
at a time and has to make an immediate scheduling deci-
sion (Albers 2009). This limitation is also present in both the
semi-online setting and in its generalization, scheduling with
advice, where the algorithm has access to additional infor-
mation on the input sequence or output properties (Dwibedy
and Mohanty 2022; Boyar et al. 2016). In contrast, our enu-
meration algorithms do have access to the complete input
and are free to decide which jobs to schedule next. This also
allows for restrictions on the order of emitted solution parts:
Whilst online algorithms produce their outputs in the same
order as they receive the input, enumeration algorithms can
optimize for emitting schedule entries in the order of, say,
increasing start time.

If the requirement on the output order is dropped, on-
line algorithms can be used for enumerating a schedule.
One would, however, expect inferior results, as online algo-
rithms are usually unable to give optimal solutions to input
instances (cp. Dwibedy and Mohanty 2022). In this work we
mostly look into enumeration algorithms that solve instances
exactly. We do, however, discuss the enumeration of parts of
a approximative solution in the conclusions in section 5.

Our enumeration perspective also shares some character-
istics with greedy scheduling approaches: In both cases the
algorithms iteratively commit to small solution parts until
all selected parts form a complete solution. Usually though,
greedy algorithms are not optimized for small preprocessing
and delay, as they produce solution parts as a mere byprod-
uct of their algorithmic strategy. This also means that usually
the order of produced solution parts is, as with online algo-
rithms, not a criterion for the development and analysis of
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greedy algorithms.
To avoid confusion we want to also contrast our work

with the concept of enumerating all solutions to a problem;
a concept that has been applied to scheduling problems be-
fore (T’kindt, Bouibede-Hocine, and Esswein 2007). Whilst
we do borrow the ideas of analyzing preprocessing and de-
lay from this branch of enumeration research (cp. Strozecki
2019), we are not interested in listing all possible solutions,
but in decreasing the waiting time to the first parts of a single
solution.

Finally, we want to highlight that enumerating solution
parts gives a head start to subsequent steps in a processing
pipeline. Therefore, the approach can be advantageous even
when the resulting total time of the enumeration algorithm is
worse than a classical total-time algorithm, as Lindner et al.
(2017) showed for a DNA sequencing application.

1.1 Our Contribution
Many basic scheduling variants can be solved by order-
ing jobs according to their precedence graph and/or sorting
available jobs according to a simple scheduling rule.

After formally introducing the concept of an enumeration
algorithm and basic notation in section 2 we tackle topolog-
ical orderings of precedence graphs in section 3. We discuss
why enumerating the solution in ascending order requires
known in-degrees and preprocessing time linear in the num-
ber of vertices. Regarding delay, we give an algorithm for
enumerating a topological ordering of a graph with maxi-
mum out-degree ∆+ with Θ(∆+) delay and prove a match-
ing lower bound.

In section 4 we apply both our algorithm for ascending
topological ordering enumeration as well as INCREMEN-
TALQUICKSELECT by Paredes and Navarro (2006) for in-
cremental sorting (see related work) to scheduling problems.
With these two algorithms we compute schedules that opti-
mize the maximum completion time (“makespan”) in three
different settings (single machine with either release times
or a precedence graph, flow shop with two machines) and
discuss how the results transfer to other scheduling variants.
We demonstrate the improved time-to-first-output with ex-
periments on random instances of the three main settings.

As this position paper intends to spark further work on
schedule enumeration, we conclude in section 5 with a num-
ber of potential research directions.

1.2 Related Work
The proposed enumeration perspective has already been
studied for core algorithmic problems on graphs and
(un)ordered sets:

When computing Single Source / All Pairs Shortest Dis-
tances in graphs, the order of enumerated solution parts
plays a crucial role in the enumeration complexity (Casel
et al. 2024). Our lower bound on the delay of topological or-
dering follows a similar approach as in this work. We will,
however, show that the order of enumerated parts does not
influence the complexity of topological ordering enumera-
tion.

Incremental Sorting is concerned with emitting the
elements of an input set in ascending order. Paredes

and Navarro (2006; 2010) developed the INCREMEN-
TALQUICKSELECT algorithm to solve this problem with op-
timal preprocessing and delay and showed its practical use in
an experimental application to computing a minimum span-
ning tree. We apply this algorithm to enumerating schedules
to problems where sorting according to a simple rule yields
an optimal solution.

Carmeli et al. (2022, Proposition 3.9) devised an enu-
meration variant of the Fisher-Yates Shuffle (Durstenfeld
1964) to derive random-permutation enumeration algo-
rithms from random-access enumeration algorithms in the
field of database queries.

2 Enumeration Model and Notation
In the standard total-time model, an algorithm maps an input
to a solution that has to fulfill problem-specific correctness
and optimality criteria. Time complexity is analyzed/mea-
sured as the total time from the start (input is provided) to
the termination (algorithm produces output).

Enumeration Problems We study algorithms that enu-
merate parts to a solution: Enumeration algorithms are pro-
vided with an input, perform initial computations and pre-
pare data structures in a preprocessing phase, and then, in
the enumeration phase, emit solution parts without repeti-
tion.

The specific type and semantics of a solution part are
specified in a problem description, along with an optional
requirement on the order in which the parts have to be pro-
duced. It is, however, a general requirement that the emitted
parts can be efficiently assembled to a complete solution that
has to fulfill the same criteria as in the standard model.

Time complexity is analyzed/measured in terms of the
preprocessing time the algorithm spends in the preprocess-
ing phase and the worst-case delay the algorithm spends in
the enumeration phase before emitting the first / next solu-
tion part.

In this work we consider three types of enumeration prob-
lems:

Topological Ordering Enumeration The input is a di-
rected acyclic graph (DAG) G = (V,E) with n vertices
V = [n] = {1, 2, . . . , n}. For a vertex v we write δ+(v) for
the out-degree of v. We denote by ∆+ = maxv∈V δ+(v) the
maximum out-degree of the graph. A topological ordering
for G is a permutation π of its vertices, formalized as tuple
(π(1), π(2), . . . , π(n)), such that for all edges (u, v) ∈ E it
holds that π−1(u) < π−1(v).

An algorithm that solves the ascending topological order-
ing enumeration problem has to produce as solution parts the
individual entries π(1), π(2), . . . , π(n) in this order.

Incremental Sorting The input is a set X of elements
with a total order ⪯, the solution is a permutation π that
is sorted in ascending order according to ⪯.

An enumeration algorithm for this problem has to produce
the individual permutation entries π(1), π(2), . . . , π(n) in
the sorted order.
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Schedule Enumeration Because scheduling of jobs hap-
pens in many different environments there are numerous
problem variants studied in the literature. Many of them are
commonly named according to a three field classification
scheme α|β|γ for the machine environment, problem char-
acteristics and objective function (Graham et al. 1979). We
summarize here the notions required for this paper and refer
for a more in-depth introduction to standard literature on the
topic (Brucker 2007; Pinedo 2022). In section 4, when we
apply our techniques, we will introduce the specific prob-
lem definitions.

A scheduling input instance consists of n jobs identified
by j ∈ [n] to be scheduled for processing in a machine en-
vironment α, e. g. on a single machine (α = 1) or in a flow
shop on machine 1 first and then on machine 2 (α = F2).

Each job j consists of one or more operations o, each with
a processing time pj,o. A job can be processed on only one
machine at a time, no machine can process multiple jobs
simultaneously and we only consider the case without pre-
emption (processing an operation cannot be interrupted).

Additional information and/or requirements β might be
provided. Examples include release times rj and deadlines
dj per job, or a precedence relation given as DAG where the
edge (j, k) specifies that job j has to be completed before
work on job k can start.

A scheduling algorithm has to produce a schedule, i. e.
an assignment of jobs to processing intervals on machines.
The schedule has to optimize some objective function γ, e. g.
minimize Cmax, the completion time of the last job.

Enumerating such a schedule means emitting entries of
the form (j, i, s) that specify that job j is to be executed on
machine i in the time interval starting at time s. (We omit
i in the single machine setting.) In this work we will con-
sider the most natural version in which the entries have to be
enumerated in the order of increasing start time.

3 Topological Ordering Enumeration
Recall that for ascending topological ordering enumera-
tion an algorithm has to enumerate a topological ordering
from π(1) to π(n). Especially regarding the applications to
scheduling that we have in mind, enumerating a topological
ordering in that way appears to be the most natural.

However, this restriction on the output order has implica-
tions on the complexity of the enumeration task at hand. If
the input is a graph in the form of out-adjacency lists with-
out information on the in-degrees of vertices, one clearly
needs Ω(n + m) time in the worst case to identify a ver-
tex without in-coming arcs (source vertex) to be enumerated
as π(1). Given that computing a complete topological or-
der via finish times of a depth first search is in O(n + m),
this rules out enumeration as a suitable tool for this setting.
We will, therefore, assume that each vertex in our input data
knows its in-degree, for example by having both in- and out-
adjacency lists with a size attribute per list. Without further
information, we certainly still need Ω(n) preprocessing time
to identify source vertices.

Corollary 1. Ascending topological ordering enumeration
without in-degree information needs preprocessing time or

delay in Ω(n + m). With known in-degrees but unknown
source vertices preprocessing time or delay is in Ω(n).

Once all source vertices are known (either by O(n) pre-
processing or by assuming that they are given additionally as
input), the classical iterative source removal algorithm can
enumerate a topological ordering with delay in O(∆+): The
algorithm stores all current source vertices in a queue and
keeps track of the in-degree of all visited vertices in an ar-
ray D. In the enumeration phase, the algorithm repeats the
following until the queue is empty: It removes the first ver-
tex u from the queue. For each of u’s outgoing edges (u, v)
it decrements the in-degree of vertex v and appends v to the
queue of source vertices should v’s degree reach 0. Then, the
algorithm emits u as solution part after O(δ+(u)) ⊆ O(∆+)
steps.

Corollary 2. Ascending topological ordering enumeration
with known in-degrees can be solved with preprocessing
time in O(n), delay in O(∆+) and space-complexity in
Θ(n). If the set of source-vertices is given as input, the
preprocessing time can be reduced to O(1) using lazy-
initialized memory.1

The preprocessing for this enumeration is certainly op-
timal, but it is not apparent why the delay needs to be
O(∆+). Considering that O(n + m) suffices to compute
a whole topological ordering and n solution parts are pro-
duced, one could hope to improve the delay to the average
degree of G. To properly study the possibility of such im-
provement, we consider a variation of the enumeration prob-
lem that does not require preprocessing. This allows to high-
light the worst-case delay. For this version, we will show that
delay in O(∆+) is optimal, and then discuss resulting impli-
cations for ascending enumeration.

For topological ordering enumeration (without the addi-
tion of ascending), we consider solution parts to be inser-
tion operations y1, y2, . . . , yn where each yi has the form
(v, p) ∈ V × (V ∪ {ε}): “In step i, insert vertex v (a) if
p = ε at the beginning of the current partial ordering or
(b) else after vertex p.”. We assume that the ordering is to
be written from left to right, thus after means right of. In-
sertion operations have to be feasible, meaning that every
vertex is inserted exactly once, and that instructions to insert
after some vertex p are preceded by instructions to insert ver-
tex p. Formally, any two instructions yi = (p, ·), yj = (·, p)
have to fulfill i < j.

Note that this is another way of enumerating n parts that
can be used to construct a topological ordering and that this
way is a generalization of the ascending enumeration intro-
duced before. The ascending restriction only adds that each
insertion happens at the end of the current partial order; thus
for all 2 ≤ i ≤ n with yi = (·, p) the previous operation
must be yi−1 = (p, ·).

For the generalized notion of topological ordering enu-
meration, a repeated depth-first search can be used to enu-
merate with delay in O(∆+) without preprocessing or addi-
tional knowledge about the input.

1For a detailed discussion of memory considerations in enumer-
ation see (Casel et al. 2024).
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Algorithm 1: Filling the queue of solution parts for
topological ordering

1 foreach v = 1 to n do
2 if A[v] ̸= TRUE then
3 visit(v, ε);

4 Function visit(v, parent):
5 enqueue(v, parent);
6 A[v] = TRUE;
7 forall (v, w) ∈ E do
8 if A[w] ̸= TRUE then
9 visit(w, v);

Theorem 3. Topological ordering enumeration can be
solved with delay in O(∆+) with Θ(n) lazy-initialized mem-
ory and space-complexity in Θ(n).

Proof. The algorithm tracks in a lazy-initialized boolean ar-
ray A of length n in field A[u] whether vertex u was vis-
ited by one of the searches. Uninitialized entries are read
as FALSE. It further maintains a queue Q to collect solution
parts for later output. This queue is filled as shown in Algo-
rithm 1.

Note that Algorithm 1 is essentially a standard depth first
search augmented by line 5 that produces the solution parts
and fills Q. This queue will now be used by our enumeration
algorithm to emit solution parts while minimizing the worst
case delay.

Let c be some implementation specific constant. After
emitting a solution part (v, parent), the algorithm delays
the output of the next solution part from Q by c · δ+(v)
steps. Whenever the algorithm is required to emit an out-
put, Q must not be empty. We apply the accounting method
to prove this. For each credit unit, the algorithm can perform
a constant number of steps. As long as the credit stays posi-
tive, Q is not empty.

Initially, the credit balance is ∆+, as the delay we want
to prove is in O(∆+). This pays for all computation steps
in the first iteration of the loop in line 1 until the first solu-
tion part is produced. Each time a solution part (v, parent)
is enqueued in line 9, this part is charged δ+(v) ∈ O(∆+)
credit. This credit pays for all computation in the current re-
cursive invocation of visit and, (a) in case parent ̸= ε
for skipping v in a later iteration of the loop in line 1, (b)
in case parent = ε for the next iteration of the same loop
that discovers an unvisited vertex. This implies that the so-
lution part pays for all computation associated to the visited
vertex, including checking its immediate descendants and
backtracking the DFS. As each invocation of visit im-
mediately enqueues a new solution part, the credit therefore
stays positive.

Hence, the algorithm enumerates solution parts with delay
in O(∆+).

Whilst computing a topological ordering by running DFS
on all unvisited vertices is a standard algorithm, usually each
vertex is inserted at the head of the ordering as soon as the

search fully processed all its descendants and backtracks
from them. Our Algorithm 1 deviates from that by insert-
ing vertices immediately when they are visited. However,
this does not change the main property of the DFS-based
topological ordering: All descendants of a vertex are placed
to the right of it. We prove correctness of Algorithm 1 by
showing that all edges are forward edges in the joined order-
ing.

First note that root nodes of depth-first searches are al-
ways inserted at the head of the ordering (cp. line 3). Sec-
ondly observe that, except for these root nodes, all other ver-
tices are inserted directly after their parent in the DFS tree
(cp. line 9). Therefore, whenever a call to visit on a ver-
tex v ends and the search backtracks, no further insertions
will happen after v’s position in the current partial ordering.

For each edge (u, v) ∈ E there are two possible cases:

1. Vertex u is inserted into the ordering first. This implies
that v is visited as a descendant of u by the depth-first
search and therefore inserted directly after u or after one
of u’s other descendants. Therefore, (u, v) is a forward
edge.

2. Vertex v is inserted into the ordering first. As (u, v) ∈ E
implies that u is not a descendant of v, the search com-
pletely backtracks to a parent of v or even to the root loop
in line 1 and thus, according to the earlier observation, u
is later inserted left of v and (u, v) is a forward edge.

Thus, the algorithm produces a correct topological order-
ing of the input DAG.

This positive result can be matched with a corresponding
lower bound by creating an adversarial input. For this, con-
sider the graph structure in Figure 1: For given k, the graph
consists of k vertices that form a fully connected DAG C,
a set B of k − 1 vertices that each add a bridge between a
pair of two consecutive vertices from C, and a path P of k2
vertices that extends one of those bridges. The idea of the
lower bound proof is now to force any solution algorithm to
essentially fully process the fully connected DAG before it
can figure out where the path of k2 vertices appears in the
ordering.
Theorem 4. Topological ordering enumeration cannot be
solved with preprocessing and delay in o(∆+), even if the
graph has constant average out-degree.

Proof. Assume some algorithm A was able to enumerate the
solution parts with delay in o(∆+) and consider the follow-
ing adversarial setup that is equivalent to receiving the input
graph as adjacency lists with attached in-degree information:
A is allowed to ask the adversary for (a) the next neighbor
of any vertex (and thereby iterate through its adjacency list)
and (b) the in- and out-degree of any vertex.

The adversary will, for arbitrary k, construct a graph with
the structure shown in Figure 1, that at its core consists of
a fully connected DAG C = {c1, . . . , ck}. Additionally, the
graph consists of k − 1 vertices B = {b1, . . . , bk−1}; each
bridge vertex bi has exactly one incoming edge from vertex
ci. All bridge vertices bi but one connect with their single
outgoing edge to vertex ci+1. The remaining bridge vertex bi
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b1 b3 b4 b5b2

. . .

k2

C

B

P

Figure 1: Structure of the adversary input graph.

connects to a path of k2 vertices P = {p1, . . . , pk2} instead,
which in turn has an edge to ci+1.

Initially, it is not fixed after which bridge vertex this path
appears in the graph. Thus in order to identify this connec-
tion between path and core, an adversary can force the enu-
meration algorithm to explore all neighborhoods of the core
or to walk the whole path.

Without correct knowledge of this connection, it is not
possible to know between which two core vertices the path
needs to be placed in the topological ordering. If the algo-
rithm starts with solution parts that place some vertex of the
core or a bridge, it needs at least k(k−1)

2 + 2(k − 1) steps
before it can give the 2kth solution part that has to place
a vertex from the path. Identifying some connection on the
path to start building an order from there, on the other hand,
requires accessing more than k vertices before the first out-
put.

Note, that the graph has |V | = k + (k − 1) + k2 vertices
and |E| = k(k−1)

2 + 2(k − 1) + k2 edges and thus constant
average out-degree. Vertex c1 has the maximum out-degree
in the graph, thus ∆+ = δ+(c1) = k.

If we consider a setting for ascending topological ordering
enumeration without preprocessing where the source ver-
tices are given, the adversarial input in the proof of Theo-
rem 4 directly shows that the delay of O(∆+) from The-
orem 2 is optimal. During a preprocessing phase of O(n)
steps, an algorithm could however solve the adversarial in-
stance completely.

With a similar idea, we can however also show that de-
lay in the order of the average degree is not achievable for
ascending topological ordering enumeration even if prepro-
cessing time in O(n) is permitted.
Theorem 5. Ascending topological ordering enumeration
on a graph with average out-degree ∆+ and maximum
out-degree ∆+ ∈ ω(∆+) cannot be solved with delay
in O(∆+), even with O(n) preprocessing and known in-
degrees.

Proof. Consider, as shown in Figure 2, a graph G of n =
3k+2+p nodes that form a path that completely determines
the topological order. Denote the first k vertices as first core
group C1, then comes a bridge vertex b1, followed by the
second core group of k vertices C2, another bridge vertex
b2, the third core group of k vertices C3, followed by a path
of p vertices. We will now insert additional edges that, as
before, an adversary can use to force an algorithm to inspect
too many vertices with high degree before being able to find
the path edge: All vertices in C1 connect to all in C2, all
in C2 connect to all in C3. Note that except for the source
vertex, within each core group all vertices have identical out-
and in-degree, so an algorithm cannot distinguish them by
degree alone.

We now choose k = n0.6. The graph consists of m =
(2k(k + 1) + k) + 2 + (p − 1) = 2n1.2 + n − 1 edges
and has an average out-degree of ∆+ ∈ Θ(n0.2). As the
adversary always can force an algorithm to inspect the com-
plete neighborhood of any vertex in C1 and C2, before the
algorithm can know the next vertex in the topological order,
any algorithm has to perform at least x ∈ Ω(k2) = Ω(n1.2)
edge queries to fix the order of two vertices in C2. How-
ever, it can up to this point only emit y ∈ O(k) = O(n0.6)
solution parts from the first two core groups and b1. With
preprocessing in O(n) and a delay in the order of the av-
erage out-degree, we get a maximum of O(n) queries the
algorithm can execute before running out of solution parts
to emit.

4 Application to Scheduling
We now apply the enumeration concept to scheduling prob-
lems. First we look at variants that can be solved by means
of incremental sorting. Afterwards we apply our algorithm
for ascending topological ordering enumeration to schedul-
ing instances with a precedence graph.

Besides the theoretical analysis we also present experi-
mental results. We implemented all algorithms in Rust and
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Figure 2: Underlying structure of the adversary input graph for ascending topological ordering enumeration.

executed the experiments on a compute server with 256 GB
RAM and an Intel Xeon Silver 4314 CPU with 2.40 GHz.
For each input size and parameter we show the average time
measurements in nanoseconds of 10 random instances and
5 runs each. As source for randomness we used the linear
congruential generator by Bratley, Fox, and Schrage (1983)
as presented in (Taillard 1993). Further details to the in-
stance generation are presented along with the individual
problem statements.

4.1 Incremental Sorting
It is well known that finding a minimum element in a set of
size n requires Θ(n) steps and that comparison-based sort-
ing is in Θ(n log(n)). This implies that enumerating the ele-
ments of such a set in ascending order requires Ω(n) prepro-
cessing and Ω(log(n)) delay, as the first output is the mini-
mum element and there are n solution parts in total. Paredes
and Navarro (2006) introduced the INCREMENTALSELECT
algorithm that achieves these bounds and emits the kth solu-
tion part after O(n + k log(k)) steps. The same bounds are
met in the average case by their INCREMENTALQUICKSE-
LECT (IQS) algorithm that performs better in practice.

We apply IQS to the problem of scheduling jobs with re-
lease times on a single machine, optimizing the maximum
completion time (1|rj |Cmax in standard notation). Schedul-
ing the jobs in order of non-decreasing release time without
additional idle time is optimal, as can be shown with a sim-
ple exchange argument. An enumeration algorithm for this
problem is expected to produce for each job j a tuple (j, sj),
where sj is the start time for the job on the single machine.
An optimal schedule can be enumerated in order of increas-
ing sj by keeping track of the maximum completion time
c on the machine so far, sorting the jobs according to their
release times with IQS, and for each job j emitted by IQS
producing the solution part (j,max(rj , c)).

Corollary 6. An optimal schedule for an instance of
1|rj |Cmax with n jobs can be enumerated in order of
increasing start times with O(n) preprocessing and with
O(log(n)) delay.

Note that – similarly to sorting – it takes Ω(n) time to find
the potentially single job that can be executed first, which
proves a matching lower bound to the preprocessing time.
It is open, however, whether we can also show a matching
lower bound on the delay, as sorting the jobs by release times

is sufficient but not necessary to solve 1|rj |Cmax (Lin and
Wang 2007).

Corollary 6 easily translates to other problem variants
with similar scheduling rules, such as the earliest due date
first rule for minimizing maximum lateness on a single ma-
chine in the presence of deadlines (1|dj |Lmax).

Our second example concerns scheduling n jobs in a flow
shop with 2 machines: Each job j consists of two operations
with processing times pj,1, pj,2 and has to be processed first
on machine 1 for pj,1 time units and later for pj,2 time units
on machine 2. We again strive to minimize the maximum
completion time (F2||Cmax in standard notation). This goal
is achieved by scheduling all jobs in the same order on both
machines, starting with the jobs j with pj,1 ≤ pj,2 ordered
by increasing pj,1, followed by the remaining jobs in order
of decreasing pj,2 (Johnson 1954).

The same approach yields an enumeration algorithm that
emits for each job and each machine a schedule entry with
the respective start time: In the preprocessing phase, the al-
gorithm splits the jobs according to the comparison of pro-
cessing times on the two machines. It also initializes two
IQS instances, one that sorts the first jobs by increasing
pj,1 and one for sorting the second jobs by decreasing pj,2.
The enumeration phase consists again of keeping track of
the maximum completion times on the two machines so far
and scheduling the jobs as emitted by the sorting algorithms.
This order already guarantees that schedule entries per ma-
chine are sorted by start time. In order to sort the entries by
start time overall, the enumeration algorithm can buffer the
computed solution parts in a queue per machine and, after
each delay, emit the solution part from the head of the queue
with smaller start time.

Corollary 7. An optimal schedule for an instance of
F2||Cmax with n jobs can be enumerated in order of in-
creasing start times with O(n) preprocessing and with
O(log(n)) delay.

The similar job shop setting with two machines and at
most two operations per job (J2|nj ≤ 2|Cmax) can be re-
duced to computing several optimal schedules for F2||Cmax

(Jackson 1956). Adapted to the enumeration setting this re-
duction also transfers the time bounds of Corollary 7 to the
more complex job shop.

For our experiments we generated processing times uni-
formly at random from {1, . . . , 99} (cp. (Taillard 1993)).
Release times are chosen uniformly at random from
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Figure 3: Total time for the classical algorithm compared to the total time, time-to-first-output and average delay of the enu-
meration algorithm for 1|rj |Cmax (left) and F2||Cmax (right).

{0, . . . , T
2 }, where T is the total processing time of all jobs.

Figure 3 shows the runtime measurements. In both ex-
periments we compared the performance of our IQS based
enumeration algorithm to a total-time scheduling algorithm
based on the pattern-defeating quicksort algorithm from the
Rust standard library (Rust Foundation 2023). As expected,
the highly optimized standard implementation is roughly
two to three times as fast as our unoptimized IQS imple-
mentation in the total time comparison. The enumeration al-
gorithm however clearly comes ahead when comparing the
time-to-first-output, that is produced after about 1

6 th of the
total time of the standard algorithm.

4.2 Incremental Topological Ordering
As an application of the ascending topological ordering
enumeration, we consider scheduling jobs on a single ma-
chine with precedence constraints in the form of a DAG
(1|prec|Cmax in standard notation). Any schedule without
idle time that respects the precedence constraints is optimal
in this setting. Thus scheduling in any topological order is
sufficient. On top of the algorithm for ascending topological
ordering enumeration from section 3 we only have to keep
track of the total processing time of the already scheduled
jobs to enumerate solution tuples (j, sj) for each job j and
its start time sj .
Corollary 8. An optimal schedule for an instance of
1|prec|Cmax with n jobs and maximum out-degree ∆+ can
be enumerated in order of increasing start times with O(n)
preprocessing and with O(∆+) delay.

It is possible to extend this algorithm to the slightly more
complex scenario with additional release times for the n
jobs (1|prec, rj |Cmax). A solution algorithm for this set-
ting combines the non-decreasing release time approach of
1|rj |Cmax with a topological ordering: The respective next
job to be scheduled is one with minimal release time among
all available jobs without unfulfilled precedences. We again
use the iterative source removal algorithm for the topological
order, but do not remove any source, but one with minimal

release time. By using a Strict Fibonacci Heap (Brodal, La-
gogiannis, and Tarjan 2012) to manage all available source
vertices, the algorithm can find and remove such a source in
O(log(n)) time and insert the up to ∆+ new sources after
the removal in constant time per insert operation.

Corollary 9. An optimal schedule for an instance of
1|prec, rj |Cmax with n jobs and maximum out-degree ∆+

can be enumerated in order of increasing start times with
O(n) preprocessing and with O(∆+ + log(n)) delay.

We generate the random DAGs for our experiments in the
G(n, p) model (Gilbert 1959) by choosing for a fixed ver-
tex order every forward edge with probability p uniformly
at random and shuffling the vertices afterwards. Our exper-
iments use, for fast access to both outgoing and incoming
edges, two adjacency arrays with vertex offsets as data struc-
ture (cp. Kammer and Sajenko 2019).

Figure 4 shows runtime measurements for scheduling jobs
based on a dense precedence graph (p = 1

4 ) by means of
topological ordering. In the total-time comparison, the algo-
rithm based on DFS finish times is slightly faster than our
enumeration algorithm. The average time-to-first-output on
the other hand is (and grows) a lot smaller for the enumera-
tion algorithm.

5 Conclusions and Research Directions
In this paper we demonstrated the theoretical and practical
potential of an enumeration perspective on scheduling prob-
lems. Given the plethora of problem variants in the schedul-
ing literature it is an interesting and wide open question,
which variants admit for efficient enumeration algorithms.

Interesting candidates to look at are scheduling problems
with a non-trivial polynomial time algorithm. One example
is minimizing the number of late jobs on a single machine.
The Moore-Hodgson Algorithm (Moore 1968) starts with an
earliest due date first ordering and from that rejects jobs un-
til the remaining jobs all meet their deadline. It is unclear
whether a schedule for this setting could be enumerated ef-
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Figure 4: Total time for the total-time algorithm (DFS
finish times) compared to the total time, time-to-first-
output and average delay of our enumeration algorithm for
1|prec|Cmax with edge probability p = 1

4 .

ficiently in ascending order, as rejecting jobs is in a way the
opposite of fixing and emitting early solution parts.

Another direction might be the comparison of differ-
ent restrictions to precedence graphs. For example, some
scheduling problems seem to profit from the restriction to
series-parallel precedence graphs by making use of a series-
parallel-decomposition (Lawler 1978). However, a first in-
spection of such graphs seems to indicate that such a de-
composition cannot be enumerated efficiently.

The enumeration concept can also be applied to approx-
imative scheduling. Simple, sorting-based list scheduling
rules again transfer nicely to enumeration algorithms: The
LPT rule (largest processing time first) for minimizing max-
imum completion time for parallel machines (P ||Cmax)
yields the same approximation ratios as in the offline algo-
rithm (Graham 1969). Better approximation ratios are pos-
sible in the offline setting through a reduction to bin packing
(Coffman, Garey, and Johnson 1978). Given the offline na-
ture of the reduction it seems unlikely that the same duality
holds in the enumeration setting.

Finally, we would like to investigate the gained advantage
by enumerating schedules in a processing pipeline. Of par-
ticular interest here is the concept of conditional scheduling,
where the result of executed jobs determines which subse-
quent nodes in the precedence graph are to be run and which
are discarded (Melani et al. 2015). Whilst basic list schedul-
ing provides acceptable approximation factors in this set-
ting, enumerating a schedule could benefit from a feedback
loop: While the schedule is still being enumerated, the al-
ready scheduled jobs can run in parallel and their results can
then serve as additional input to the scheduling algorithm.
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