
New Approaches to Classic Graph-Embedding Problems

Orthogonal Drawings & Constrained Planarity

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenscha�en

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Thomas Bläsius

aus Konstanz

Tag der mündlichen Prüfung: 15. Juli 2015
Erster Gutachter: Prof. Dr. Dorothea Wagner
Zweiter Gutachter: Prof. Dr. Alexander Wol�

simianer
Typewritten Text
DOI:	10.5445/IR/1000048879

0Danksagung

Meinen ersten nennenswerten Kontakt mit der theoretischen Informatik hatte ich in
der Vorlesung mit dem nichtssagenden Titel „Informatik III“, deren heutiges Pendant
den tre�enden Namen „theoretische Grundlagen der Informatik“ trägt. Diese hervorra-
gende, von Dorothea Wagner gehaltene Vorlesung hat nicht zuletzt dazu beigetragen,
dass ich im späteren Verlauf meines Studiums möglichst viele von ihrem Lehrstuhl
angebotene Veranstaltungen besucht und somit Algorithmik als Vertiefungsfach ge-
wählt habe. Ihr Angebot im Anschluss an mein Studium zu promovieren war nicht
nur Voraussetzung für diese Dissertation, sondern hat mir auch vier sehr lehr- und
ereignisreiche Jahre in Karlsruhe beschert. Dabei konnte ich stets ohne zeitlichen
Druck an den Probleme forschen, die mich interessierten, was nicht selbstverständlich
ist. Dafür möchte ich mich ganz herzlich bei Dorothea bedanken.

Meinen Zweitgutachter Sascha (Alexander) Wol� traf ich das erste Mal bei der
GD 2010 in Konstanz (auch wenn er sich daran vermutlich nicht mehr erinnern kann),
bei der ich die Ergebnisse meiner Studienarbeit vorstellen durfte. Sein Kommentar zu
meinem Vortrag war, man würde merken, dass ich mit großer Begeisterung dabei wäre,
er hätte aber auf Grund der Geschwindigkeit nicht alles verstanden (ich wollte einfach
zu viel in zu kurzer Zeit erzählen). Bei Sascha möchte ich mich für die Übernahme
des Koreferats und insbesondere für die unkomplizierte Termin�ndung zum Zwecke
der Promotionsprüfung (wegen der er sehr früh aufstehen musste), sowie für seine
hilfreichen Anmerkungen zu meiner Dissertation bedanken.

Großer Dank geht an Ignaz Rutter, der sowohl meine Studienarbeit (zusammen mit
Marcus Krug) als auch meine Diplomarbeit betreut und mich während meiner Promo-
tion fachlich angeleitet hat. Vielen Dank für die unzähligen nützlichen Anmerkungen
zu meinen Aufschrieben und die sehr interessanten sowie spaßigen Whiteboard-
Forschungs-Sessions. Ohne Dich wäre diese Dissertation nicht das was sie ist und ich
hätte in den letzten vier Jahren deutlich weniger gelernt als ich gelernt habe.

Moreover, I want to thank all my coauthors (listed below); it has been a great
pleasure to work with you and I hope you also enjoyed working with me. Jawaherul
Alam, Patrizio Angelini, Moritz Baum, Therese Biedl, Guido Brückner, Andreas Gemsa,
Annette Karrer, Fabian Klute, Stephen Kobourov, Marcus Krug, Sebastian Lehmann,
Benjamin Niedermann, Martin Nöllenburg, Roman Prutkin, Marcel Radermacher, Ignaz
Rutter, Torsten Ueckerdt, Dorothea Wagner, Franziska Wegner, and Alexander Wol�.
Besides Ignaz Rutter, my sister Anne and my father Karl Hans, I also want to thank
the many anonymous reviewers of my papers for proofreading parts of my thesis.

Bei meinen (aktuellen und ehemaligen) Kollegen Moritz Baum, Julian Dibbelt, Fabian

Fuchs, Andreas Gemsa, Michael Hamann, Tanja Hartmann, Andrea Kappes, Marcus
Krug, Tamara Mchedlidze, Benjamin Niedermann, Martin Nöllenburg, Thomas Pajor,
Roman Prutkin, Ignaz Rutter, Ben Strasser, Markus Völker, Franziska Wegner und
Tobias Zündorf möchte ich mich für das angenehme Arbeitsumfeld bedanken. Ich habe
nicht nur die Arbeit mit Euch genossen, sondern natürlich auch die Kickerrunden, die
Fußballabende (sowohl vor dem Fernseher als auch im Soccer Center) sowie andere
sportliche Aktivitäten wie Volleyball, Squash oder Badminton, die Schwimmbad- bzw.
Baggersee-Aus�üge, Spieleabende, Kinobesuche, etc. Ohne Euch wäre die Zeit hier in
Karlsruhe weit weniger schön gewesen.

Schlussendlich möchte ich meinen Eltern für ihre ständige Unterstützung danken.
Euch habe ich das Privileg zu verdanken, ein so sorgenfreies Leben führen zu können.

0Deutsche Zusammenfassung

a

b

c

d

V = {a, b, c, d}
E = {ab, ac, bc, bd, cd}

In einer Welt, in der Daten im Übermaß verfügbar sind, ist
es wichtig, über geeignete Verfahren zu verfügen, um vor-
handenen Rohdaten analysieren, interpretieren und das so
gewonnene Wissen kommunizieren zu können. Dabei erwei-
sen sich Informationsvisualisierungen im Allgemeinen und
Zeichnungen von Graphen (auch Einbettungen genannt) im
Speziellen als hilfreich. Aus algorithmischer Sicht hat das Einbetten von Graphen zu-
nächst im Zusammenhang mit dem Entwurf von integrierten Schaltkreisen Beachtung
erlangt [AGR70]. Mittlerweile dient es meist dem Zweck der Informationsvisuali-
sierung. Trotz der unterschiedlichen Anwendungen sind sich die Optimierungsziele
oftmals erstaunlich ähnlich. Beispielsweise verschlechtern Kantenkreuzungen die
Lesbarkeit von Zeichnungen erheblich. In Schaltkreisen führen sie dazu, dass die
entsprechenden Leitungen auf unterschiedlichen Lagen verlegt werden müssen. Damit
ist das Konzept der Planarität (also der kreuzungsfreien Einbettbarkeit) aus der Sicht
verschiedener Anwendungen relevant.

Einige Einbettungsprobleme sind trotz ihrer langen Historie und ihrer grundlegen-
den Bedeutung bislang ungelöst. Das Ziel dieser Arbeit ist es, die Forschung an solchen
klassischen Einbettungsproblemen voranzutreiben. Dabei steht die Entwicklung e�-
zienter Algorithmen (mit polynomieller Laufzeit) im Vordergrund. Stellt sich für ein
Problem heraus, dass es NP-schwer ist, so stelle ich diesem negativen Resultat immer
auch positive Ergebnisse gegenüber. Dazu gebe ich beispielsweise Algorithmen an,
deren Laufzeit nur exponentiell bezüglich eines oder mehrerer Parameter ist.

Die Arbeit gliedert sich in zwei Teile. Im ersten Teil werden sogenannte orthogonale
Zeichnungen betrachtet. Dabei werden Kanten durch Sequenzen von ausschließlich
horizontalen und vertikalen Strecken dargestellt. Im zweiten Teil geht es um die
verallgemeinerten Planaritätsbegri�e c-Planarität (engl. clustered planarity) sowie
simultane Planarität.

Orthogonale Zeichnungen

Historisch wurde die automatisierte Erstellung von orthogonalen Zeichnungen zu-
nächst im Zusammenhang mit dem Entwurf von integrierten Schaltkreisen erforscht.
Die naheliegendsten Optimierungskriterien waren dabei die benötigte Fläche, die
sich direkt auf die Größe des Mikrochips überträgt, sowie die Gesamtkantenlänge.
Etwas später kam die Knickzahl als mögliches Optimierungskriterium hinzu [Sto80].

i

Dies wurde zum einen motiviert durch Kosten, die an Knicken entstehen, wenn In-
formationen mittels Licht oder Mikrowellen übertragen werden, zum anderen durch
„aufgeräumtere“ Zeichnungen. Der Aspekt der aufgeräumteren Zeichnung erlangt
größere Bedeutung, wenn es darum geht, Graphen zum Zweck der Netzwerkanalyse
anschaulich zu visualisieren. Dank der klaren und strukturierten Darstellung, die aus-
schließlich vertikale und horizontale Strecken mit sich bringen, gehören orthogonale
Zeichnungen bis heute zu den meistverwendeten Zeichenstilen bei der Visualisierung
von kleinen bis mittelgroßen Netzwerken.

Üblicherweise wird der Eingabegraph bei der Erzeugung orthogonaler Zeichnungen
als planar vorausgesetzt. Für nicht-planare Graphen wird zunächst eine sogenannte
Planarisierung mit möglichst wenigen Kreuzungen berechnet. Diese kann dann wie
ein planarer Graph behandelt werden. Da man jeden Gitterpunkt im orthogonalen
Gitter nur in vier verschiedene Richtungen verlassen kann, schränkt man sich bei or-
thogonalen Zeichnungen häu�g auf Graphen mit Maximalgrad 4 ein. Eine Möglichkeit
auch mit höhergradigen Knoten umzugehen bietet das sogenannte Kandinskymodell.

Graphen mit Maximalgrad 4. Trotz drei Jahrzehnten
intensiver Forschung zu orthogonalen Zeichnungen blie-
ben eine Reihe Fragen lange unbeantwortet. Beispielsweise
ist seit 1994 bekannt, dass jeder 4-planare Graph (planar,
mit Maximalgrad 4) eine orthogonale Zeichnung mit zwei
Knicken pro Kante besitzt [BK98], es jedoch NP-schwer ist zu entscheiden, ob ein
gegebener Graph ohne Knicke gezeichnet werden kann [GT01]. Erst 2010 konnte ein ef-
�zienter Algorithmus angegeben werden, der entscheidet, ob ein gegebener 4-planarer
Graph eine orthogonale Zeichnung mit einem Knick pro Kante besitzt [Blä+14].

Um diese Komplexitätslücke weiter zu schließen, untersuche ich den Fall, dass
manche Kanten nicht geknickt werden dürfen, wohingegen die übrigen Kanten jeweils
mindestens einen Knick erlauben. Ich gebe einen parametrisierten Algorithmus an,
dessen Laufzeit nur exponentiell in der Anzahl nicht zu knickender Kanten ist (die
Laufzeit ist polynomiell, solange diese Anzahl in O (logn) liegt). Auf der anderen
Seite zeige ich, dass das Problem NP-schwer wird, sobald der Graph O (nε) (ε > 0)
unknickbare Kanten enthält, selbst wenn diese gleichmäßig über den Graphen verteilt
sind.

Bei den bislang erwähnten Einbettungsproblemen handelt es sich um Entscheidungs-
probleme, bei denen nur überprüft wird, ob es eine Zeichnung mit den gewünschten
Eigenschaften gibt. Existiert beispielsweise keine knickfreie Zeichnung, so würde
man stattdessen gerne eine Zeichnung mit möglichst wenigen Knicken ausgeben (was
NP-schwer ist, da es bereits schwer ist zu testen, ob es ohne Knicke geht). Durch den
Beweis einiger struktureller Eigenschaften von orthogonalen Zeichnungen mit einem
Knick pro Kante gelingt es mir, einen e�zienten Algorithmus anzugeben, der die An-

ii

zahl der Knicke minimiert, unter der Voraussetzung, dass der erste Knick jeder Kante
keine Kosten verursacht. Dies ist auch dann noch möglich, wenn man jeder Kante
eine individuelle konvexe Kostenfunktion zuweist (vorausgesetzt, der erste Knick ist
kostenlos). Damit gebe ich den ersten e�zienten Algorithmus zur Knickminimierung
in dem vorliegenden Szenario an, der beliebige 4-planare Graphen als Eingabe erlaubt.
Darüberhinaus ist dieser Algorithmus optimal in dem Sinne, dass das Weglassen einer
der Forderungen (konvexe Kostenfunktionen und erster Knick pro Kante ist kostenlos)
das Problem NP-schwer macht.

Kandinskyzeichnungen. Im Kandinskymodell werden
Knoten als Quadrate fester Größe dargestellt und mehrere
Kanten dürfen einen Knoten in dieselbe Richtung verlassen.
Das Kandinskymodell wurde bereits 1995 vorgestellt [FK95].
Dabei wurde auch ein Algorithmus angegeben, der die An-
zahl der Knicke minimiert, unter der Voraussetzung, dass die Topologie der Zeichnung
bereits festgelegt ist (d.h. die zyklische Ordnung der Kanten um jeden Knoten ist
gegeben). Wenig später stellte sich heraus, dass der Algorithmus einen Fehler enthält.
Seither entstanden zahlreiche, meist approximative oder heuristische Verfahren, die
Kandinskyzeichnungen generieren oder das Modell, zum Beispiel auf nicht-planare
Graphen, erweitern.

Indem ich zeige, dass Knickminimierung im Kandinskymodell NP-schwer ist, beant-
worte ich die grundlegende Frage nach der Komplexität dieses Problems. Darüberhin-
aus betrachte ich seine parametrisierte Komplexität bezüglich verschiedener Parameter.
Dies liefert insbesondere einen polynomiellen Algorithmus für serien-parallele Gra-
phen (Laufzeit O (n3)), sowie einen subexponentiellen Algorithmus im allgemeinen
(Laufzeit 2O (

√
n logn)). Damit beantworte ich nicht nur eine seit zwanzig Jahren o�ene

Frage, sondern gebe auch neue algorithmische Lösungsansätze für dieses NP-schwere
Problem.

Einbe�ung planarer Graphen unter Nebenbedingungen

In diesem Teil meiner Arbeit geht es um zwei Probleme, bei denen es nicht genügt einen
einzelnen gegebenen Graphen möglichst ansprechend und übersichtlich darzustellen.

C-Planarität. Ist zu dem Graphen noch eine Gruppierung
(engl. clustering) der Knoten gegeben (beispielsweise die
Einteilung von Klassen eines Softwareprojekts in Pakete),
so kann es wünschenswert sein, neben dem Graphen selbst,
auch diese Gruppierung mithilfe von Regionen darzustel-
len. Neben Kreuzungen zwischen Kanten, kann es in einer

iii

solchen Zeichnung auch zu Kreuzungen zwischen unterschiedlichen Regionen oder
Kreuzungen zwischen Kanten und Regionen kommen. Damit erhält man eine Verall-
gemeinerung des Konzeptes der Planarität: Ein gruppierter Graph heißt c-planar (engl.
clustered planar), wenn eine Zeichnung existiert, in der keiner dieser drei Kreuzungsty-
pen auftaucht. Das Problem, einen gegebenen gruppierten Graphen auf c-Planarität zu
testen, wurde bereits 1986 das erste Mal betrachtet [Len89]. Trotz zahlreicher Arbeiten
zu dem Thema konnten seither nur Spezialfälle gelöst werden. Die Komplexität des
allgemeinen Problems ist nach wie vor ungeklärt.

Indem ich eine neue Datenstruktur zusammen mit einer Charakterisierung für
c-Planarität angebe, kann ich zeigen, dass c-Planarität auf ein bedingtes Einbettungs-
problem hinausläuft. Dabei stellt sich die Frage, ob ein gegebener planarer Graph eine
planare Zeichnung besitzt, wenn man die möglichen Ordnungen von Kanten um Kno-
ten herum einschränkt. Mithilfe dieser neuen Sichtweise zeige ich, dass sich diverse
vorherige, auf den ersten Blick sehr unterschiedliche Resultate, mit ähnlichen Techni-
ken beweisen lassen. Neben der Vereinheitlichung und Vereinfachung existierender
Ergebnisse gebe ich e�ziente Algorithmen für einige bislang o�ene Fälle an.

Simultane Planarität. Eine weitere Anwendung stellt
die Visualisierung dynamischer Graphen dar. Hierbei möch-
te man neben der Graphstruktur auch die Veränderung die-
ser Struktur zwischen verschiedenen Zeitpunkten verstehen.
Daraus ergibt sich das Problem der simultanen Visualisie-
rung, bei der mehrere Graphen so gezeichnet werden sollen,
dass ihr gemeinsamer, unveränderter Teil gleich dargestellt ist. Dabei soll weiterhin
jeder der Graphen für sich eine möglichst übersichtliche Zeichnung haben. Wählt man
die Kreuzungen zwischen Kanten als vorwiegendes Ästhetikkriterium, so erhält man
das Konzept der simultanen Planarität. Dieses ist nah verwandt mit der c-Planarität,
und es ist ebenfalls ein o�enes Problem, ob man zwei gegebene Graphen e�zient
auf simultane Planarität testen kann, wohingegen diese Frage für diverse Sonderfälle
positiv beantwortet werden konnte.

Bisher wurde meist angenommen, dass der gemeinsame Teilgraph zusammenhän-
gend ist. Dies vereinfacht das Problem der simultanen Planarität insofern, dass es
genügt, die beiden Graphen so einzubetten, dass die zyklischen Ordnungen der ge-
meinsamen Kanten um Knoten konsistent sind. Besteht der gemeinsame Graph aus
mehreren Zusammenhangskomponenten, so muss man darüber hinaus konsistente
relative Positionen der Komponenten zueinander sicherstellen. Ich gehe zunächst
den umgekehrten Weg und löse die Fälle, in denen die zyklischen Ordnungen keine
Rolle spielen, man also nur für konsistente relative Lagen sorgen muss. Die daraus
entstehenden Techniken kombiniere ich mit bereits existierenden sowie neu von
mir entwickelten Verfahren zur Sicherstellung konsistenter zyklischer Ordnungen.

iv

Daraus ergibt sich insbesondere ein e�zienter Algorithmus für den Fall, dass jede Zu-
sammenhangskomponente zweifach zusammenhängend ist, Maximalgrad 3 hat oder
außenplanar ist mit Schnittknoten von Grad höchstens 3. Ist jede Zusammenhangs-
komponente zweifach zusammenhängend, so hat der Algorithmus sogar optimale
(lineare) Laufzeit.

v

0Contents

Deutsche Zusammenfassung i

1 Introduction 1

1.1 Motivation . 1
1.2 Scope of the Thesis . 6
1.3 Contribution and Outline . 6

1.3.1 Bend Minimization in Orthogonal Drawings 6
1.3.2 Constrained Planarity . 9

1.4 Preliminaries . 10
1.4.1 Graph-Theoretic Notation . 11
1.4.2 Drawings and Planar Embeddings 12
1.4.3 The SPQR-Tree . 15
1.4.4 Orthogonal Drawings . 20
1.4.5 Kandinsky Drawings . 29
1.4.6 Clustered Planarity . 32
1.4.7 Simultaneous Planarity . 33

I Orthogonal Drawings 35

2 Inflexible Edges in Orthogonal Drawings 37

2.1 Introduction . 37
2.2 A Matching of In�exible Edges . 39
2.3 The General Algorithm . 41
2.4 Series-Parallel Graphs . 45
2.5 An FPT-Algorithm for General Graphs 47

2.5.1 The Cost Functions of k-Critical Instances 47
2.5.2 Computing the Cost Functions of Compositions 53

2.6 Conclusion . 57

3 Bend Minimization with Convex Bend Costs 59

3.1 Introduction . 59
3.2 Valid Drawings with Fixed Planar Embedding 62
3.3 Flexibility of Split Components and Nice Drawings 69
3.4 Optimal Drawings with Fixed Planar Embedding 75

vii

3.5 Optimal Drawings with Variable Planar Embedding 76
3.5.1 Biconnected Graphs . 76
3.5.2 Connected Graphs . 86
3.5.3 Computing the Flow . 89

3.6 Conclusion . 90

4 Higher-Degree Nodes in the Kandinsky Model 93

4.1 Introduction . 93
4.2 Complexity . 97

4.2.1 Orthogonal 01-Embeddability 98
4.2.2 Kandinsky Bend Minimization 112

4.3 A Subexponential Algorithm . 118
4.3.1 Interfaces of Kandinsky Representations 119
4.3.2 Merging two Kandinsky Representations 123
4.3.3 The Algorithm . 127

4.4 Conclusion . 129

II Constrained Planarity 131

5 An Introduction to Simultaneous PQ-Ordering 133

5.1 PQ-Trees Representing Cyclic Orders 133
5.2 PQ-Tree Reduction . 134
5.3 PQ-Tree Projection . 135
5.4 Simultaneously Ordering Two PQ-Trees 137
5.5 Simultaneously Ordering Multiple PQ-Trees 139
5.6 Solvable Instances . 142
5.7 Representing Planar Embeddings . 144

6 A New Perspective on Clustered Planarity 149

6.1 Introduction . 149
6.2 The CD-Tree . 152
6.3 Clustered and Constrained Planarity 156

6.3.1 Flat-Clustered Graph . 156
6.3.2 General Clustered Graphs . 160

6.4 Cutvertices with Two Non-Trivial Blocks 163
6.5 Conclusion . 164

7 Disconnectivity in Simultaneous Planarity 167

7.1 Introduction . 167
7.2 Connecting Disconnected Graphs . 170

viii

7.3 Disjoint Cycles . 172
7.3.1 A Polynomial-Time Algorithm 173
7.3.2 A Compact Representation of all Simultaneous Embeddings . 179
7.3.3 Linear-Time Algorithm . 184

7.4 Connected Components with Fixed Embedding 195
7.5 Conclusion . 200

8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous

Planarity 201

8.1 Introduction . 201
8.2 Preprocessing Algorithms . 203

8.2.1 Union Cutvertices . 204
8.2.2 Union Separating Pairs . 205
8.2.3 Connected Components that are Biconnected 213
8.2.4 Special Bridges and Common-Face Constraints 217

8.3 Preprocessing 2-Components in Linear Time 218
8.3.1 Computing the Sefe-Instances with Union Bridge Constraints 218
8.3.2 Constructing the Subbridge Instances 220
8.3.3 Simultaneous Embedding with Union Bridge Constraints . . . 220

8.4 Edge Orderings and Relative Positions 239
8.4.1 Relative Positions with Respect to a Cycle Basis 240
8.4.2 Consistent Edge Orderings . 242
8.4.3 Common-Face Constraints . 250
8.4.4 Consistent Relative Positions 251
8.4.5 Putting Things Together . 263

8.5 Conclusion . 264

9 Conclusion 265

9.1 Summary . 265
9.2 Outlook . 266

Bibliography 269

List of Publications 279

ix

1 Introduction

1.1 Motivation

In a world where information is available in abundance, being able to e�ciently analyze
and interpret the raw data at hand is crucial. In many cases, computers can take over
that task. For example, a shortest-path algorithm can compute the fastest way to get
from one place to another in a road network, and a minimum-cut algorithm can spot
weak points in transportation, energy, or computer networks, facilitating reasonable
decisions on where to invest into the infrastructure. However, algorithms processing
given input data to compute and output optimal solutions have their limitations. In
fact, such a direct algorithmic approach is not applicable if the question the user wants
an answer for is to vague to be formalized in a problem statement, if a black-box
solution is not acceptable (e.g., if the user not only needs an answer but also arguments
for this answer), or if there exists no algorithm computing a solution in reasonable
time.

The problem of �nding the leader of a group of people based on their communication
is an example for a question that is hard to formalize. Surely, there is a variety of
centrality measures and choosing the most central person with respect to one of these
measures can be a reasonable solution. However, di�erent measures lead to di�erent
solutions and maybe none of the measures re�ects the user’s understanding of a person
being the leader. In fact, the user himself may not know what his understanding of
being a leader precisely is. Beyond the di�culties of formalizing this question, a
black-box solution is probably not acceptable in most use cases. Similarly, a plan for
an extension of the infrastructure that achieves maximum failure safety subject to
a given budget may be of little value as political decisions play an important role in
such projects. Moreover, many of these problems coming from real-world questions
include fundamental NP-hard problems such as Steiner Tree and can thus not be
solved in polynomial time assuming that P , NP.

Accepting that a direct algorithmic solution is not applicable does however not
mean that a computer cannot help to answer a user’s question. For example, architects
make heavy use of computers although computers do not automatically generate
complete blueprints. The key here is to integrate the user in the process of �nding an
answer to his question. In this way, a formal problem statement is no longer necessary
and the user can change his mind on the exact goal during the process of �nding an
answer. As the user is integrated in this process, it is less likely that he questions the
result than when it comes from a black-box algorithm. Finally, human intuition can

1

Chapter 1 Introduction

help to �nd the crucial steps leading to a solution for an NP-hard or even undecidable
problem (e.g., automated theorem proving).

As humans are not good at working with large sets of abstract data, the raw data must
be complemented by some visual representation. E.g., assume the user is presented a
drawing of the communication graph of a group of people. With such a visualization,
the user can get an overview over the data set, which enables him to �nd a group
leader or argue for or against potential leaders suggested by an algorithm even without
knowing what these algorithms actually compute or how they work. This leads to a
general application of graph drawing, or more generally, information visualization: A
user has a potentially unknown data set at hand and wants to accumulate knowledge
based on this data set.

A slightly di�erent application is the following. The user already has knowledge
about a data set and wants to make this knowledge accessible to others. This is
for example relevant for teachers, museums, and journalists who want to impart
knowledge to students, visitors, and readers in a vivid manner. UML diagrams that
visualize the structure of a software project also fall in this category.

Visualizing information and in particular drawing graphs to make knowledge ac-
cessible to others has a long tradition. In fact, the oldest known drawings of graphs
date back at least 900 years [Lim14]. Figure 1.1 shows the drawing of a tree from 1866
visualizing a biological categorization.

It is not surprising that mathematicians who studied graph theory in general were
also interested in drawings of graphs. To mention two classical examples, Kura-
towski [Kur30] showed that a graph is planar, i.e., it can be drawn in the plane without
crossing edges, if and only if it does not contain a subdivision of the K5 or the K3,3
as subgraph; see Figure 1.2a. Moreover, Wagner [Wag36] showed that every planar
graph has a planar straight-line drawing (a result usually referred to as “Fáry’s theo-
rem” [Fár48]); also see Figure 1.2b. The proof of Fáry’s theorem is actually constructive
and could thus be used to generate planar straight-line drawings for planar graphs.

From an algorithmic point of view, the problem of drawing graphs �rst received
attention not for the purpose of visualizing information but in the context of integrated
circuits [AGR70]. Once the logical structure of a computer chip is designed, it has
to be transferred into an actual physical structure, i.e., components and connections
between them must be mapped to physical locations and wires between these locations,
respectively. In other words, the graph representing the logical structure has to be
drawn. A similar, more recent application is the design of biochips (also called lab-on-
a-chip); see Figure 1.2c. A biochip is basically a small laboratory on which multiple
biochemical reactions can be performed simultaneously.

In summary, besides visualizing information to make them accessible to humans,
�nding a physical representation for a given logical structure is another application
for drawing graphs. In this context, one often �nds orthogonal drawings, in which

2

Motivation Section 1.1

Figure 1.1: The “Monophyletic Family Tree of Organisms” by Ernst Haeckel from 1866. The
three top-level categories (also called kingdoms) are plants (Plantae), unicellular organisms
(Protista), and animals (Animalia). In the top right corner there are for example birds (Aves),
reptiles (Reptilia), and mammals (Mammalia).

3

Chapter 1 Introduction

(b) (d)(c)

K5

K3,3

(a)

Figure 1.2: (a) The fundamental non-planar graphs K5 (complete graph with �ve vertices) and
K3,3 (complete bipartite graphs with three vertices in each partition). (b) The K3,3 becomes
planar when removing a single edge (planar drawing in the top). By Fáry’s theorem, the
resulting graph has a planar straight-line drawing (bottom). (c) A biochip that can perform up
to 1024 reactions in parallel [Wan+09]. (d) An orthogonal drawing.

the edges are represented by sequences of horizontal and vertical segments. E.g., in
the biochip in Figure 1.2c, the edges are routed orthogonally (with rounded bends).
Figure 1.2d shows a more abstract orthogonal drawing of a graph.

The optimization objectives that researchers �rst pursued when automatically gener-
ating orthogonal drawings were a small number of crossings and a small area [AGR70].
In the context of designing integrated circuits, these are natural optimization criteria as
the area of the drawing directly translates into the area of the resulting chip and wires
that cross need to be routed on di�erent layers of the chip. Later, a third optimization
criterion was introduced by Storer [Sto80]; the number of bends. Storer’s motivation
for minimizing the number of bends was threefold. First, minimizing the number of
bends can serve as a heuristic for minimizing the area. Second, bends may cause costs,
e.g., when information is transmitted via light or microwaves. And third, he noticed
that drawings with fewer bends “appear simpler” and are thus possibly more desirable.

Due to the clear and structured appearance of axis-aligned segments, orthogonal
graph drawing is one of the most popular drawing styles for network visualizations.
Despite the fact that designing chips and visualizing networks are very di�erent
applications to graph drawing, the optimization criteria are actually very similar. As
edge crossings heavily obfuscate a graph’s drawing [PCJ96], minimizing the number
of crossings is one of the most important optimization goals when visualizing graphs.
Moreover, a small area makes sure that the drawing �ts onto the output device (e.g., a
computer screen or a piece of paper), and the above-mentioned aspect that drawings
with fewer bends appear simpler becomes more important in the context of drawing
graphs for the purpose of visualizing information.

However, a graph’s drawing alone is sometimes not satisfactory even if it is aesthet-
ically appealing and does a good job in revealing the graph’s structure. For example

4

Motivation Section 1.2

(a) (c)(b)

Figure 1.3: (a) A c-planar drawing of a clustered graph with three clusters. (b) An edge
crossing, an edge-region crossing, and a region crossing (from left to right). (c) Two di�erent
graphs on the same vertex set with a simultaneous planar drawing; the drawing of each graph
is planar and the common graph (bold) is drawn the same in both.

the drawing of the tree in Figure 1.1 becomes worthless when omitting the labels
and the grouping of the vertices. Another example are UML diagrams illustrating the
structure of a software project. Such a diagram is much more helpful if it not only
displays the classes and relations between them but also their hierarchical clustering
imposed by packages.

Such graph-drawing problems that go beyond simply drawing a single graph of
course require extended graph drawing models and an adaption of the optimization
criteria. E.g., a natural way to visualize a clustered graph is a drawing of the graph
together with a colored region for each cluster; see Figure 1.3a. The optimization
criterion of minimizing the number of edge crossings can be adapted to this extended
graph-drawing model by minimizing crossings between pairs of edges, between edges
and regions, and between pairs of regions; see Figure 1.3b. This also extends the fun-
damental concept of planarity (recall that a graph is planar if it can be drawn without
edge crossings) to the concept of clustered planarity (or c-planarity for short) [Len89;
FCE95b], where a clustered graph is c-planar if it admits a drawing with no cross-
ings, i.e., without edge crossings, without edge-region crossings, and without region
crossings. This leads to the problem Clustered Planarity of recognizing c-planar
clustered graphs.

A similar extension to the concept of planarity is simultaneous planarity. Given
two (or more) graphs that share some vertices and edges, simultaneous planarity asks
whether each has a planar drawing such that the drawings of their common parts
coincide; see Figure 1.3c. The problem of recognizing simultaneously planar graphs
is usually called Sefe (which is an acronym for “simultaneous embedding with �xed
edges”) [EK05]. Simultaneously drawing multiple graphs is useful for comparing
di�erent graphs. E.g., when examining a dynamic network that changes over time,
the user may be interested not only in its structure at particular points in time but
also in understanding how the network changes.

The concepts of clustered and simultaneous planarity generalize the concept of
planarity by allowing restrictions that go beyond requiring non-crossing edges. Gener-
alizations of this type can be summarized using the common term constrained planarity.

5

Chapter 1 Introduction

1.2 Scope of the Thesis

Despite their long history and fundamental relevance, the computational complexity of
many classical graph-drawing problems is unknown, i.e., neither e�cient algorithms
solving them nor proofs showing NP-hardness are known. The goal of this thesis is to
advance the state of research on such classical graph-drawing problems. I focus on
developing e�cient algorithms. Whenever I prove a certain problem to be NP-hard, I
oppose this negative result with a positive result. To this end, I for example develop
parameterized algorithms whose running time increases exponentially with respect to
a certain parameter but only polynomially in the input size.

The reader should not, however, expect ready-to-use algorithms for speci�c ap-
plications. The aim lies more in the development of a theoretical basis, providing
techniques that can serve as a toolbox when actually implementing an algorithm for
a certain application. Moreover, a better understanding of a problem’s underlying
mathematical properties facilitates the development of good heuristical algorithms in
case techniques providing exact solutions cannot be applied.

1.3 Contribution and Outline

This thesis consists of two parts. First, I consider various variants of the bend-
minimization problem for orthogonal drawings in di�erent drawing models; see
Part I. Then I investigate the constrained planarity problems Clustered Planarity
and Sefe; see Part II.

1.3.1 Bend Minimization in Orthogonal Drawings

In orthogonal drawings, vertices are mapped to grid points and edges are routed along
grid lines. As an edge can enter a vertex only from one of the four directions top, bottom,
left, and right, each vertex can be connected to at most four neighbors, i.e., the degree
of the vertices is bounded by 4. Thus, orthogonal drawings are often only considered
for graphs with maximum degree 4. An extension of the basic orthogonal drawing
style that is capable handling vertices of higher degree is the so-called Kandinsky
model.

Graphs of Maximum Degree 4

Despite three decades of research on orthogonal drawings, many questions remained
unanswered for a long time. It is for example known since 1994 that every 4-planar
graph (planar graph with maximum degree 4) admits an orthogonal drawing with
at most two bends per edge (with a single exception) [BK98]. Concerning the com-
putational complexity, this means that deciding whether a graph admits a two-bend

6

Contribution and Outline Section 1.3

drawing is trivial. On the other hand, it is NP-hard to decide whether a 4-planar graph
can be drawn without bends, i.e., whether it has a zero-bend drawing [GT01] (which
is also known since 1994). This leaves open a huge complexity gap in the sense that
going from two bends per edge to zero bends makes a trivial problem NP-hard. We
partially closed this gap in 2010 by giving an algorithm that can e�ciently decide
whether a 4-planar graph admits a one-bend drawing, i.e., a drawing with one bend
per edge [Blä+14].

Graphs with Inflexible Edges. In this thesis, I close this gap further by investigat-
ing the case where only some edges are in�exible, i.e., only some edges are required to
have zero bends and all other edges can bend at least once; see Chapter 2. I develop an
algorithm for testing whether a given graph with a set of in�exible edges admits such
an orthogonal drawing. Its running time is exponential in the number of in�exible
edges but polynomial in the size of the graph. More precisely, it has the running time
O (2k · n ·T�ow (n)), where k is the number of in�exible edges and T�ow (n) is the time
necessary to compute a maximum �ow in a planar �ow network with multiple sources
and sinks. This shows that the problem is �xed-parameter tractable (FPT) with respect
to the number of in�exible edges. In fact, the running time is polynomial if the number
of in�exible edges lies in O (logn), which is a stronger statement than being FPT. This
is further strengthened by showing that it su�ces to count only those in�exible edges
that are incident to a vertex of degree 4.

On the other hand, I show that testing whether a 4-planar graph with in�exible
edges admits an orthogonal drawing is NP-hard even if the graph contains only O (nε)
in�exible edges (for any constant ε > 0) that are evenly distributed over the graph, i.e.,
they have pairwise distance Ω(n1−ε). This includes the case where the in�exible edges
form a matching in the graph.

Minimizing the Bends. The problems mentioned so far are decision problems, i.e.,
one has to decide whether a given graph has a drawing with the desired properties.
The algorithms are usually constructive in the sense that a drawing is returned if one
exists. However, if no drawing with the required properties exists, no drawing can
be returned, which is usually not in the user’s interest. E.g., if no zero-bend drawing
exists, the user would like to have a drawing with as few bends as possible instead.
Finding a bend-minimal drawing is of course NP-hard as the base case of deciding
whether it can be done without bends is already hard.

However, testing the existence of a one-bend drawing can be done in polynomial
time. Thus, one can hope for an e�cient algorithm that minimizes the number of
bends that go beyond the �rst bend on every edge. In Chapter 3, I prove several
structural properties of orthogonal drawings that in fact lead to a polynomial-time
algorithm that generates a bend-minimal orthogonal drawing when not counting the

7

Chapter 1 Introduction

(a) (b) (c)

Figure 1.4: (a) An orthogonal drawing in the Kandinsky model. (b) Two planar drawings
of the same graph. Their embedding is di�erent as the edges incident to the blue vertices
are ordered di�erently. (c) Two drawings of the same graph consisting of two connected
components. The two drawings have di�erent embeddings as the relative positions of the
connected components are di�erent.

�rst bend on every edge. The algorithm extends to the case where each edge has an
individual cost function with the following two properties. First, each cost function
must be convex. Second, the �rst bend on every edge must not cause any cost. The
algorithm is optimal in the sense that omitting one of these two properties makes the
problem NP-hard.

Kandinsky Drawings

To allow vertices with a degree greater than 4, the Kandinsky model represents vertices
as squares of equal size, allowing multiple edges to enter a vertex at the same side; see
Figure 1.4a. The Kandinsky model was introduced in 1995 [FK95] together with an
e�cient bend-minimization algorithm for the case that the input graph has a �xed
embedding, i.e., the order of edges around every vertex is given; see Figure 1.4b. Unfor-
tunately, this algorithm turned out to be �awed [Eig03]. Since then, the computational
complexity of bend minimization in the Kandinsky model is open.

In spite of this, the Kandinsky model as such has received much attention, and
di�erent extensions to the model have been proposed, e.g., an extension to non-planar
graphs [FK97] or to the case where vertices are represented by rectangles of prescribed
size instead of uniform squares [Di +99]. Moreover, many approximation or heuristic
algorithms for generating Kandinsky drawings with few bends have been developed.

In Chapter 4, I prove that the bend minimization problem in the Kandinsky model
is NP-hard. On the positive side, I consider the problem’s parameterized complexity
with respect to di�erent parameters. Among others, this results in a polynomial-time
algorithm for series-parallel graphs (running time O (n3)) and in a subexponential
algorithm for general graphs (running time 2O (

√
n logn)). Hence, I do not only answer

a question that was open for almost twenty years, but also develop a new algorithmic
approach for this NP-hard problem.

8

Contribution and Outline Section 1.3

1.3.2 Constrained Planarity

In Part II of this thesis, I consider the constrained planarity problems Clustered
Planarity and Sefe, both having an unknown computational complexity. Although
these two problems arise from di�erent applications and seem very di�erent on the
surface, they are actually very similar. In fact, Clustered Planarity (besides several
other constrained planarity problems) can be reduced to Sefe [Sch13] and a slightly
restricted case of Sefe can be reduced to Clustered Planarity [AL14]. Thus, an
e�cient algorithm for one of the two problems would also solve the other at least
partially.

Besides giving new e�cient algorithms solving restricted cases of Clustered
Planarity and Sefe, I deepen the understanding of the connection between these
two problems by showing that similar techniques can help to solve them. Note that
this does not obviously follow from the above-mentioned reductions. Otherwise, all
NP-complete problems could be approached using the same techniques just because
they can be reduced to each other.

Before actually considering clustered and simultaneous planarity, I give a short
introduction to the techniques centering around the problem Simultaneous PQ-
Ordering in Chapter 5. These techniques will prove to be very useful in several
subsequent chapters.

C-Planarity

Recall that a c-planar drawing of a clustered graph is a planar drawing of the graph
together with a representation of the clusters with non-crossing regions such that
no edge crosses a region; see Figure 1.3a. The problem Clustered Planarity was
considered already in 1986 [Len89]. Despite numerous papers giving polynomial-
time algorithms solving special cases of Clustered Planarity, the computational
complexity of the general problem is still unknown.

In Chapter 6, I present a new data structure called cd-tree based on which I character-
ize the clustered graphs that are c-planar, providing a new perspective on c-planarity.
By reconsidering previous results on c-planarity using this new perspective, I can
show that many restricted cases that seem to be unnatural are actually very natural.
This leads to a uni�cation, often to a simpli�cation, and in some cases to an extension
of existing e�cient algorithms. In particular, I give e�cient algorithms solving Clus-
tered Planarity for the cases that every cluster has at most �ve outgoing edges, or
that every cluster and the complement of every cluster has at most two connected
components.

Beyond the results presented in Chapter 6, the new perspective gives rise to several
promising directions for further research on the topic. I would like to stress that the
strength of the new perspective based on the cd-tree lies in its simplicity. This is

9

Chapter 1 Introduction

re�ected in the fact that Chapter 6 is comparatively short even though it addresses
many variants of c-planarity.

Simultaneous Planarity

Recall that the problem Sefe asks whether two given graphs that share a common
subgraph admit planar drawings that coincide on the common subgraph. The current
state of research on the problems Sefe andClustered Planarity is very similar: There
are many e�cient algorithms for restricted cases but the computational complexity
for the general case is unknown.

Besides other restrictions, most previous results assume that the common graph is
connected. This simpli�es Sefe insofar as it su�ces to �nd planar drawings of the two
input graphs such that the cyclic order of common edges around common vertices
is consistent; see Figure 1.4b. If the common graph has multiple connected compo-
nents, one additionally has to ensure that the relative positions of these connected
components with respect to each other are consistent; see Figure 1.4c.

In Chapter 7, I approach Sefe from the opposite direction, considering cases where
one only has to ensure consistent relative positions as the cyclic edge orderings do
not matter. I solve this problem by giving an e�cient algorithm for Sefe for the case
that the embedding of each connected component of the common graph is �xed.

In Chapter 8, I combine the techniques for consistent relative positions from Chap-
ter 7 with existing and newly developed methods for ensuring consistent edge order-
ings. This leads to an e�cient algorithm solving Sefe if every connected component
of the common graph is biconnected, has maximum degree 3, or is outerplanar with
cutvertices of maximum degree 3. In the case that each connected component is
biconnected, the algorithm even runs in optimal linear time. Besides our previous
algorithm [BR13] that e�ciently solves Sefe if the common graph is connected while
both input graphs are biconnected, the algorithm presented in Chapter 8 is one of the
least restrictive algorithms for Sefe in the sense that it can solve a large variety of
instances.

1.4 Preliminaries

The purpose of this section is threefold. The �rst aim is to introduce the reader to the
notation we1 use, e.g., how we denote the degree of a vertex or how we distinguish
between directed and undirected edges. Note that the chapter does not intend to be
an introduction to fundamental graph-theoretic concepts [Die10], to basic algorithms
and algorithmic tools such as run-time analysis [Cor+09a], to complexity-theoretic

1For the purpose of more convenient writing, I use “we” instead of “I” in the remainder of my thesis.

10

Preliminaries Section 1.4

foundations like the notion of NP-completeness [GJ79], or to �xed-parameter tractabil-
ity [DF13]. The second aim is to introduce the reader to less fundamental techniques
that we use in multiple chapters of this thesis, such as SPQR-trees and orthogonal
representations. The third aim is to give formal de�nitions for the di�erent types of
graph drawings and the corresponding graph-drawing problems considered in this
thesis.

1.4.1 Graph-Theoretic Notation

Let G = (V ,E) be a graph with vertex set V and edge set E. With n = |V | and m = |E |,
we denote the number of vertices and edges, respectively. If not otherwise mentioned,
we assume G to be undirected and simple, i.e., G has no multiple edges and no (self-)
loops. Thus, E is a set of two-element subsets of V . For an edge e = {u,v} we also
use the short form uv (which is equal to vu). We say that u and v are the endvertices
or endpoints of e and that e connects the neighbors u and v . The vertices u and v are
incident to e and adjacent to each other. The degree of a vertex v is the number of
incident edges and is denoted by deg(v).

The usual set terminology carries over from the vertices and edges to the graph. E.g.,
the union of two graphs G1 = (V1,E1) and G2 = (V2,E2) is G1 ∪G2 = (V1 ∪V2,E1 ∪ E2).
Similarly, the graph G ′ = (V ′,E ′) is a subgraph of G (G ′ ⊆ G) if V ′ ⊆ V and E ′ ⊆ E.
The subgraph G ′ is induced byV ′ if E ′ = {uv ∈ E | u ∈ V ′ and v ∈ V ′}. The subgraph
G ′ is proper if G ′ , G and V ′ , ∅. The subgraph obtained from G by removing a
vertex v , i.e., the subgraph induced by V \ {v}, is also denoted by G −v . Similarly, G
without the edge uv is denoted by G − uv and G with an additional edge connecting
the vertices u and v is denoted by G + uv .

A walk in a graph G is a sequence (v0,e1,v1,e2, . . . ,vk−1,ek ,vk) such that vi is a
vertex for i = 0, . . . ,k and ei is an edge connecting vi−1 and vi for i = 1, . . . ,k . A
vertex or an edge may be contained multiple times in a walk. As the vertices of a walk
already determine the edges (at least in a simple graph), we usually omit the edges
in the above notation. The length of a walk (v0, . . . ,vk) is k ; the walk (v0, . . . ,vk) is
cyclic if v0 = vk . A walk is a path if no vertex appears multiple times in (v0, . . . ,vk).
A cyclic walk is a cycle if the v1, . . . ,vk are distinct vertices. We also call the subgraph
of G given by the vertices and edges of a path (or cycle) a path (or cycle) in G. A path
(u = v0, . . . ,vk = v) is also called uv-path.

When dealing with directed graphs, we also call the edges arcs. For an arc a = (u,v),
u is the source andv is the target. We say that a is an outgoing arc foru and an incoming
arc for v . A walkW = (v0,e1,v1,e2, . . . ,vk−1,ek ,vk) in a directed graph is directed if ei
is directed from vi−1 to vi for i = 1, . . . ,k , i.e., ei = (vi−1,vi). This de�nition directly
extends to directed paths and directed cycles. A directed graph without directed cycles
is called DAG (directed acyclic graph).

When G has multiple edges, we say that G is a multi-graph. We also use the pre�x

11

Chapter 1 Introduction

multi- for restricted graph classes with multiple edges, e.g., a multi-cycle is a multi-
graph such that removing multiple edges results in a cycle. Besides few exceptions,
graphs we consider have no loops.

A graph G is connected, if G is not the disjoint union of two proper subgraphs. A
separating k-set is a set of k vertices whose removal disconnects G. Separating 1-sets
and 2-sets are cutvertices and separating pairs, respectively. A connected graph is
biconnected if it has no cutvertex and a biconnected graph is triconnected if it has no
separating pair. The maximal biconnected components (with respect to inclusion) of a
graph are called blocks. Let S be a separating k-set of G. The split components with
respect to S are the smallest subgraphs G1, . . . ,G` of G such that G = G1 ∪ · · · ∪G`

and Gi ∩G j ⊆ S for every i, j ∈ {1, . . . , `} with i , j . Note that if {s,t} is a separating
pair and st is an edge of G, then the graph consisting only of the edge st is one of the
split components. A split pair, which can be seen as a generalization of separating pair,
is a set of two vertices {s,t} such that {s,t} is a separating pair or st is an edge. The
above de�nition of split components extends to the case where {s,t} is a split pair but
not a separating pair, in which case st and G − st are the only two split components.

A tree is a connected graph that contains no cycle as subgraph. The vertices of a
tree T with degree 1 are called leaves, vertices with higher degree are inner vertices.
The tree T is rooted if it is directed such that each vertex has exactly one incoming arc
except for one vertex with no incoming arcs. The latter vertex is the root of T . For an
arc a = (u,v) of T , the source u is also called parent of v and conversely, v is a child
of u.

Sometimes, we use graphs as auxiliary structures. In this case, the vertices often
represent more than an element of a set, e.g., a vertex may represent a subgraph of
another graph. We call these kinds of vertices also nodes to distinguish them from
vertices that are nothing more than elements of a set. A prominent example is the
SPQR-tree de�ned in Section 1.4.3.

1.4.2 Drawings and Planar Embeddings

Let G = (V ,E) be a graph. A drawing Γ of G into the real plane R2 maps each vertex
v of G to a point Γ(v) and each edge e of G to an open Jordan curve Γ(e) with the
following properties. For u,v ∈ V , the points Γ(u) and Γ(v) are distinct if u , v . For
uv ∈ E, the endpoints of Γ(uv) are Γ(u) and Γ(v) and for every vertexw ∈ V , the point
Γ(w) is not contained in the interior of Γ(uv). Finally, for edges e1 , e2, Γ(e1) ∩ Γ(e2)
is �nite. A drawing onto the sphere S2 is de�ned analogously.

To improve readability, we usually identify the drawings of vertices and edges with
the corresponding vertices and edges, respectively. E.g., a crossing of two edges e1 and
e2 is a point shared by the interior of e1 and the interior of e2. It is (and it will always
be) clear from the context that we actually refer to Γ(e1) and Γ(e2) instead of e1 and e2
themselves. If e1 and e2 have a crossing, we say they cross.

12

Preliminaries Section 1.4

(a) (b) (c)

a

b c

d

e1

2

3

4

5

a b
c
d e

1

2

3 4

56 f

д

a b

1

2

3
c

e

f

d

5

64

Figure 1.5: (a) Two drawings realizing the same planar embedding. (b) The faces of a
drawing. (c) A face of a biconnected (left), connected (middle), and disconnected planar
graph (right). The boundaries of these faces are the cycle (1,a,2,b,3,c,4,d ,5,e,1) (left), the
cyclic walk (1,a,2,b,3,c,4,d ,2,e,5, f ,6, f ,5,д,1) (middle), and a union of the two cyclic walks
(1,a,2,b,3,c,1) and (4,d ,5,e,6, f ,4).

A crossing-free drawing of G is called planar drawing. A graph that has a planar
drawing is planar. Note that planarity is independent from whether we draw in the
plane or on the sphere as R2 and S2 with a single point removed are homeomorphic
and a drawing without crossings remains planar when applying a homeomorphism.

We de�ne the following equivalence relation. Two planar drawings Γ1 and Γ2 of a
planar graph G in the plane are equivalent if there exists a homeomorphism of the
plane onto itself that maps Γ1 to Γ2; see Figure 1.5a. An equivalence class E with respect
to this equivalence relation is called planar embedding of G. Analogously, we de�ne
planar embedding on the sphere for drawings on the sphere that can be transformed
into one another by applying a homeomorphism of the sphere.

Let G be a planar graph together with a planar drawing Γ in the plane R2 (if
not mentioned otherwise, all de�nitions are literally the same for drawings on the
sphere S2). Removing all edges from R2 (i.e., removing their image under Γ) may
disconnect R2 into several connected components. These connected components are
called faces of Γ; see Figure 1.5b. Exactly one of these faces is unbounded. It is called
the outer face; all other faces are inner faces. This is not true for drawings on the sphere,
where we have only inner faces. Let f be a face. If G is biconnected, the (topological)
boundary of f corresponds to a cycle in G. We also call this cycle the boundary of f .
When traversing the boundary of f , we usually choose an orientation such that the
face f lies to the right of the boundary (i.e., we traverse f in clockwise direction if f is
in inner face and in counter-clockwise direction if f is an outer face). IfG is connected
but not biconnected, the boundary of a face is a cyclic walk in which the same vertices
and edges may appear several times. Finally, if G is disconnected, the boundary of a
face is the union of cyclic walks; see Figure 1.5c. A vertex or an edge is incident to a
face if it is contained in the boundary of this face. Two faces that are incident to the
same edge are adjacent.

13

Chapter 1 Introduction

Note that two planar drawings Γ1 and Γ2 have the same planar embedding E on the
sphere if and only if the boundaries of their faces are the same. This allows us to talk
about faces of the planar embedding E instead of the faces of the planar drawings
Γ1 and Γ2. If Γ1 and Γ2 are planar drawings in the plane, they have the same planar
embedding if and only if they have the same faces and the same outer face.

A planar graph together with a �xed planar embedding is also called a plane graph.
Let G = (V ,E) be a plane graph, and let F be the set of faces of G. The dual graph
G? = (F ,E?) is de�ned as follows. The vertex set of G? is the set of faces F and for
every edge e ∈ E incident to the faces f1 and f2, the set E? includes the edge e? = f1 f2
dual to e . We also say that G is the primal graph of G? and e is the primal edge of e?.

Why Drawing on the Sphere?

Usually, one is interested in drawings into the plane and not in drawings on the sphere.
However, due to the fact that R2 and S2 without a single point are homeomorphic, a
drawing with certain properties on the sphere may imply the existence of a drawing
with certain properties in the plane. E.g., a drawing with k crossings on the sphere
implies the existence of a drawing with k crossings in the plane.

Drawing onto the sphere has the advantage that there is no special face such as the
outer face in the plane, which often requires special attention. Thus, drawing onto the
sphere lets us exploit symmetries that do not exist when drawing in the plane.

Using the sphere to break symmetries is, however, not always possible. E.g., the
notion of an orthogonal drawing on the sphere does not exists. Moreover, the choice
of the outer face plays an important role when generating planar orthogonal drawings.
In Part I, we thus solely use drawings (and embeddings) in the plane. In Part II, we
usually use the sphere when conceptually describing algorithms or proving structural
results. However, when it comes to e�cient implementations, it usually helps to have
the outer face as a reference point.

Edge Orderings and Relative Positions

Let G be a graph with a planar drawing, and let v be a vertex. When traversing the
edges incident to v in clockwise order, starting with an arbitrary edge, we get a linear
order on the edges incident to v . This linear order depends on the edge we start with.
Thus, the order in which the edges appear around v is better described by a so-called
cyclic order, which is de�ned as follows.

Let S = {s1, . . . ,sn} be a �nite set together with a linear order s1 < · · · < sn . We
denote this linear order also by [s1, . . . ,sn]. The cyclic shifts of [s1, . . . ,sn] are the
linear orders [si , . . . ,sn ,s1, . . . ,si−1] for i = 1, . . . ,n. E.g., the order [c,d ,a,b] is a cyclic
shift of [a,b,c,d]. Two linear orders are cyclically equivalent if one is the cyclic shift of
the other. This relation is obviously an equivalence relation. The equivalence classes

14

Preliminaries Section 1.4

Figure 1.6: (a) A vertexv with edge
ordering [a,b,c,d]. (b) A graph with
two connected components. (c) The
graph from (b) with di�erent rela-
tive positions. (a)

a
b

c

d
v

(b) (c)

with respect to this relation are called cyclic orders. We denote a cyclic order using
one representative of the equivalence class, e.g., [a,b,c,d] and [c,d,a,b] describe the
same cyclic order.

Figure 1.6a shows a vertex v whose incident edges have the cyclic order [a,b,c,d].
We call the cyclic order in which the edges incident to a vertex v appear around v the
edge ordering of v . Note that the edge orderings only depend on the embedding and
not on the actual drawing. Conversely, in caseG is connected, two drawings that have
the same edge ordering for every vertex induce the same planar embedding on the
sphere.

Assume G is not connected and let G1 and G2 be two connected components of G.
In a planar drawing ofG , the componentG2 lies in a single face f ofG1. We say that f
is the relative position of G2 with respect to G1. Note that two drawings of G with the
same edge ordering for every vertex may have di�erent relative positions and thus
di�erent planar embeddings. E.g., the two drawings of the same graph in Figure 1.6b
and Figure 1.6c have di�erent embeddings although the embedding of each connected
component and thus the edge orderings are the same. However, two drawings induce
the same embedding on the sphere if and only if they have the same edge orderings
and the same relative positions. They have the same embedding in the plane if they
additionally have the same outer face.

Notation Conventions

We use embedding as a short term for planar embedding. In the literature, drawings of
graphs are sometimes also called embedding. Throughout this thesis, we use solely the
term drawing to have a clear distinction between drawings and planar embeddings.

Usually, it is clear from the context, whether we consider an embedding in the plane
or on the sphere. Therefore, the term embedding can refer to a planar embedding or
to a planar embedding on the sphere.

If we have �xed an embedding E for a planar graphG , we also write about the faces
of G, which then actually refers to the faces of E.

1.4.3 The SPQR-Tree

As embedding planar graphs involves choosing edge orderings for every vertex, planar
graphs have potentially super-exponentially (Ω(n!)) many planar embeddings. The

15

Chapter 1 Introduction

SPQR-tree is a data structure that compactly represents all planar embeddings of a bi-
connected planar graph [DT96a; DT96b]. It is based on a decomposition of biconnected
graphs into triconnected components, which have a �xed planar embedding [Whi32].
Such a decomposition, and thus the SPQR-tree, can be computed in linear time [HT73;
GM01]. A linear-time implementation [GM01] is available in the Open Graph Drawing
Framework (OGDF) [Chi+13].

Composition of Graphs

An st-graph G is a graph with two designated vertices s and t such that G + st is
biconnected. The vertices s and t are called the poles of G. Let G1, . . . ,Gk be st-
graphs such thatGi (for i = 1, . . . ,k) has the poles si and ti . The series compositionG of
G1, . . . ,Gk is the union of those graphs where ti is identi�ed with si+1 for i = 1, . . . ,k−1.
Clearly, G is again an st-graph with the poles s1 and tk .

In the parallel composition G of G1, . . . ,Gk , the vertices s1, . . . ,sk and the vertices
t1, . . . ,tk are merged into single vertices s and t , respectively. The vertices s and t
are the poles of G. An st-graph is series-parallel if it is a single edge or the series or
parallel composition of two series-parallel graphs.

To be able to compose all st-graphs, we need a third composition (not all st-graphs
are series-parallel). Let G1, . . . ,Gk be st-graphs. Moreover, let H be a graph with
vertices s and t such that H + st is triconnected and let e1, . . . ,ek be the edges of H .
Then the rigid composition G with respect to the so-called skeleton H + st is obtained
by replacing each edge ei of H with the graph Gi , identifying the endpoints of ei with
the poles ofGi . The special edge st is included in the skeleton for reasons that become
clear later.

Every st-graph is either a single edge or the series, parallel or rigid composition of
st-graphs. To make the notation more consistent, one can actually understand each
of the three compositions as a replacement of edges in a skeleton H + st with larger
st-graphs. We get a series, parallel, and rigid composition if and only if the skeleton
H + st is a cycle, a bunch of (at least three) parallel edges, and a triconnected graph,
respectively. See Figure 1.7 for an example. Note that the graph G1 is decomposed
in a tree-like fashion (each node represents a composition). The SPQR-tree is simply
this decomposition tree. In the following sections, we give a formal de�nition of
SPQR-trees, provide some useful notation, and discuss how the SPQR-tree represents
all planar embeddings of a biconnected graph.

SPQR-Tree

An SPQR-tree T is a tree with the following properties. Every inner node of T is
either an S-node, a P-node, or an R-node. With each inner node µ, we associate a graph
skel(µ), the skeleton of µ. If µ is an S-, P-, or R-node, skel(µ) is a cycle, a bunch of at

16

Preliminaries Section 1.4

G3

e5

e2 e3 e4

G1

=

G2 G3 G4

G2 G5

G5

5

3

G4

3

G7G6

e7

e6

G7

2
G6 G8

e8

G8

2

skeleton

skeleton skeleton

skeleton

skeleton

skeleton skeleton

skeleton

parallel composition ofG1

series composition ofG2

rigid composition ofG5

series comp. ofG3 rigid composition ofG4

series comp. ofG7parallel comp. ofG6

series comp. ofG8

+ +

= +

= ·

= · = · + +

= ·+=

= ·

Figure 1.7: The st-graph G1 is a parallel composition of G2, G3, and G4. The graph G2 is a
series composition of an edge and G5, which is a rigid composition of �ve edges. Similarly, G3
and G4 can be decomposed using only series, parallel, and rigid compositions.

least three parallel edges, and a triconnected graph, respectively. We call the edges
in skel(µ) virtual edges. There is a bijection between the virtual edges of skel(µ) and
the neighbors of µ in T ; we say that each virtual edge corresponds to a neighbor and
vice versa. The leaves of T are Q-nodes (which exist mostly for technical reasons and
to complete the name “SPQR-tree”). The skeleton of a Q-node µ is a pair of parallel
edges, one of which is virtual (corresponding to the Q-node’s unique neighbor). We
say that µ represents the normal (i.e., non-virtual) edge of skel(µ).

Assume T to be rooted at a Q-node τ . For each node µ , τ , exactly one edge of
skel(µ) corresponds to the parent of µ. We call it the parent edge and its endvertices
the poles of µ. The poles of the root τ are the two vertices of skel(τ). Figure 1.8
shows an SPQR-tree T . For each node µ of T , we de�ne the pertinent graph pert(µ)
as follows. If µ is a Q-node (and not the root), pert(µ) is the edge represented by µ
(i.e., the non-virtual edge of skel(µ)). If µ is an inner node with children µ1, . . . ,µk ,

17

Chapter 1 Introduction

µ1

ε5

ε2 ε3 ε4

ε7

ε6

ε8

µ2

µ5

µ3

µ7

µ4

µ6

µ8

ε2

ε1 ε1
ε1

ε4 ε4

ε6

Figure 1.8: An SPQR-tree T . The rectangles are the inner nodes µ1, . . . ,µ8 (the leaves are
omitted in the drawing). The skeleton of each node is drawn inside its rectangle, the parent
edge is dashed. For an edge εj in skel(µi), the node µ j is the corresponding neighbor of µi (also
indicated by the curved edges).

then pert(µ) is the composition of pert(µ1), . . . ,pert(µk) with respect to the skeleton
skel(µ), which is a series, parallel, and rigid composition if µ is an S-node, a P-node,
and an R-node, respectively. Note that the pertinent graph pert(µi) in Figure 1.8 is the
graph Gi in Figure 1.7.

The pertinent graph of the root τ of T is the pertinent graph of its unique child
together with the edge represented by τ connecting its poles; let G be this graph. In
Figure 1.8 the graph G is equal to G1 + st , where G1 is the graph from Figure 1.7. Note
that choosing another root for T results in the same graph G . Moreover, if we require
that no two S-nodes and no two P-nodes are adjacent in T (they would represent
multiple successive series and parallel compositions, which can be replaced by a single
series and parallel composition, respectively), there is no other SPQR-tree representing
the same graph G. Thus, we can say that T is the SPQR-tree of G.

As all pertinent graphs are st-graphs, the graph G is biconnected. Moreover, every
biconnected graph admits such a decomposition [HT73]. Thus, a graph has an SPQR-
tree if and only if it is biconnected.

18

Preliminaries Section 1.4

Representing Planar Embeddings

Let G be a biconnected graph and let T be its SPQR-tree. Then G is planar if and only
if the skeleton of every node of T is planar. Moreover, making embedding choices
for the skeletons carries over to the embedding of G. Which embedding choices we
have for each skeleton depends on whether the SPQR-tree is unrooted, representing
embeddings on the sphere, or rooted, representing embeddings in the plane.

For embeddings on the sphere, changing an edge ordering in one of the skeletons also
changes the resulting edge orderings for G . We thus get a one-to-one correspondence
between the embeddings of G (on the sphere) and the combinations of embeddings of
the skeletons (also on the sphere). For each node µ of T , this leads to the following
embedding choices. If µ is an S-node or a Q-node, there are no choices as skel(µ) has
a unique embedding. If µ is a P-node, we can choose any cyclic order for the edges
of skel(µ). For a P-node of degree k , we get (k − 1)! di�erent embeddings. If µ is an
R-node, its embedding is �xed up to a �ip (i.e., up to mirroring it by reversing all edge
orderings) [Whi32].

For embeddings in the plane, things become less symmetric. Assume T is rooted at
the Q-node τ and let s and t be the poles of τ . Then T can be used to represent all
planar embeddings with the edge st on the outer face (if we want to represent all planar
embeddings, we have to choose each Q-node as the root once). When composing
graphs G1, . . . ,Gk , we can preserve their planar embeddings only if the embedding of
Gi (for i = 1, . . . ,k) has the poles ofGi on its outer face. Note that this is the case in the
example of Figure 1.7. For every node µ , τ , we thus only allow planar embeddings
of skel(µ) that have the parent edge on the outer face. Thus, our embedding choice
for µ is to choose an embedding of skel(µ) on the sphere and pick one face incident
to the parent edge as the outer face. Which of the two faces incident to the parent
edge is chosen has no e�ect on the resulting planar embedding of G. Thus, for µ , τ ,
we actually get the same embedding choices as in the unrooted case (with a slightly
di�erent interpretation). For the root τ , skel(τ) has a unique embedding on the sphere
(τ is a Q-node). However, τ has an embedding choice as choosing one of the two faces
of skel(τ) as the outer face determines which of the faces incident to st is the outer
face of G.

In the literature (and in the de�nitions above) it is usually required that the root τ
of T is a Q-node. However, all de�nitions work exactly the same if the root τ is an
inner node. Assume T to be rooted at an inner node τ . Also the embedding choices
remain the same, including the fact that the choice of an outer face for skel(τ) has
an e�ect on the outer face of G. E.g., if τ is an R-node, then we can choose one of
the two embeddings of skel(τ) on the sphere and one of its (linearly many) faces as
the outer face. As in the case where τ is a Q-node, this does not actually represent
all planar embeddings of G, as the choice of the outer face is restricted. We have to
choose multiple roots to actually get all planar embeddings.

19

Chapter 1 Introduction

Embeddings of Non-Biconnected Graphs

The SPQR-tree is only de�ned for biconnected graphs. However, ifG is not biconnected,
we can still use SPQR-trees to represent embeddings of the blocks of G. To this end,
we de�ne the block-cutvertex tree (BC-tree) B of a connected graph G as a tree whose
nodes are the blocks and cutvertices of G, called B-nodes and C-nodes, respectively. In
the BC-tree, a block B and a cutvertex v are connected by an edge if v belongs to B.

If an embedding is chosen for each block (represented by their SPQR-trees), these
embeddings can be combined to an embedding of the whole graph if and only if B
can be rooted at a B-node such that the parent of every non-root block B in B, which
is a cutvertex, lies on the outer face of B. Note that requiring a vertex v to lie on the
outer face of a block B can be easily enforced by rooting the SPQR-tree of B only at
Q-nodes corresponding to edges incident to v .

Notation

We introduce some additional notation that is not actually necessary but allows more
concise writing. Let µ1 be a node of T and let ε2 be a virtual edge of µ1. Moreover, let
µ2 be the neighbor of µ1 corresponding to ε2 and let ε1 be the virtual edge of µ2 that
corresponds to µ1; see Figure 1.8. We say that ε2 is the twin of ε1 and vice versa. We
denote this relationship by twin(ε1) = ε2.

Assume T is rooted at µ1. Then the virtual edge ε2 represents the pertinent graph
pert(µ2). We say that this is the expansion graph of ε2 and denote it by expan(ε2).
Note that the expansion graph is also de�ned for unrooted SPQR-trees, whereas the
pertinent graph is not. A vertex in expan(ε) is an inner vertex if it is not an endvertex
of ε .

In most cases we explicitly name the SPQR-trees we consider (e.g., by de�ning thatT
is the SPQR-tree of a given graph G). However, sometimes it is more convenient to
write T (G) to denote the SPQR-tree of a given graph G.

We use the following conventions. With the SPQR-tree of a non-biconnected graph,
we implicitly mean a collection of SPQR-trees, one for each block. For an S-, P-, Q-, or
R-node µ of the SPQR-tree of a graph G, we also say that µ is an S-, P-, Q-, or R-node
of G, respectively. These conventions for example simplify the statement “let µ be a
P-node of the SPQR-tree of a block of G” to “let µ be a P-node of G”.

1.4.4 Orthogonal Drawings

A drawing Γ of a graph G (in the plane) is orthogonal if it maps every edge of G to
a sequence of alternating horizontal and vertical line segments; see Figure 1.9. The
points on an edge where a horizontal and a vertical segment meet are called bends.
One can assume that all vertices and bend points have integer coordinates. Thus, an
orthogonal drawing is actually a drawing on the integer grid.

20

Preliminaries Section 1.4

Figure 1.9: A planar orthogonal drawing of a 4-planar
graph, i.e., a drawing on the (blue) grid. One edge has four
bends, two edges have two bends, one edge has one bend,
and all other edges have no bends.

For every vertex v of G, each edge incident to v enters v either from top, bottom,
left, or right. Note that no two edges may enter v from the same side, as this would
result in a pair of edges sharing an in�nite number of points. It follows that orthogonal
drawings exist only for graphs with maximum degree 4. A planar graph with maximum
degree 4 is called 4-planar.

We de�ne the problem FlexDraw that includes multiple orthogonal drawing prob-
lems such as testing whether a graph has a drawing without bends or a drawing with
one or two bends per edge. LetG = (V ,E) be a 4-planar graph together with a function
�ex : E → N0 ∪ {∞} assigning a �exibility to every edge. FlexDraw asks whether G
admits an orthogonal drawing such that every edge e ∈ E has at most �ex(e) bends.
Such a drawing is called a valid drawing of the FlexDraw instance. An edge e ∈ E
with �ex(e) = 0 is called in�exible. The instance has positive �exibility if no edge is
in�exible.

The problem OptimalFlexDraw is the optimization problem corresponding to the
decision problem FlexDraw. It is de�ned as follows. Let G = (V ,E) be a 4-planar
graph together with a cost function coste : N0 → R ∪ {∞} associated with every edge
e ∈ E. The cost of an edge e with ρ bends in an orthogonal drawing of G is coste (ρ).
The cost of the whole drawing is the total cost summing over all edges. A drawing is
optimal if it has the minimum cost among all orthogonal drawings of G. The task of
the optimization problem OptimalFlexDraw is to �nd an optimal drawing of G.

Note that an instance of FlexDraw can be seen as an instance of OptimalFlexDraw
in which the cost function of each edge e is set to coste (ρ) = 0 for ρ ∈ [0,�ex(e)] and
coste (ρ) = ∞ for ρ ∈ (�ex(e),∞). Deciding whether G admits a valid drawing is then
equivalent to deciding whether it admits a drawing with cost less than∞.

Thus, OptimalFlexDraw includes FlexDraw as a special case, which itself includes
the problem of testing whether a 4-planar graph admits a drawing without bends.
As the latter is NP-hard [GT01], FlexDraw and OptimalFlexDraw are both NP-
hard problems. However, FlexDraw is e�ciently solvable for instances with positive
�exibility [Blä+14]. To obtain a similar result for OptimalFlexDraw in Chapter 3, we
consider restricted cost functions.

For a cost function coste (·) we de�ne the di�erence function ∆ coste (ρ) = coste (ρ +
1) − coste (ρ). A cost function is monotone if its di�erence function is greater or

21

Chapter 1 Introduction

equal to 0. We say that the base cost of the edge e with monotone cost function is
be = coste (0). The �exibility of an edge e with monotone cost function is de�ned to
be the largest possible number of bends ρ for which coste (ρ) = be . As before, we say
that an instance G of OptimalFlexDraw has positive �exibility if all cost functions
are monotone and the �exibility of every edge is positive.

The cost function coste (·) is convex, if its di�erence function is monotone. We call
an instance of OptimalFlexDraw positive-convex, if every edge has positive �exibility
and each cost function is convex. Note that this implies that the cost functions are
monotone.

Orthogonal Representation

Two orthogonal drawings of a 4-planar graph G are equivalent, if they have the same
topology, i.e., the same planar embedding, and the same shape in the sense that the
sequence of right and left turns is the same in both drawings when traversing the faces
ofG . To make this precise, we de�ne orthogonal representations as equivalence classes
of this equivalence relation between orthogonal drawings. Orthogonal representations
were �rst introduced by Tamassia [Tam87], however, we use a slight modi�cation that
makes it easier to work with, as bends of edges and bends at vertices are handled more
consistently.

To ease the notation, we assume orthogonal drawings to be normalized, i.e., every
edge has bends in only one direction. If additional bends do not improve the drawing
(i.e., costs for bends are monotonically increasing), a normalized optimal drawing
exists [Tam87]. Thus, assuming that orthogonal drawings are normalized is not a real
restriction.

Let e be an edge inG that has β bends in Γ and let f be a face incident to e . We de�ne
the rotation of e in f to be rot(ef) = β and rot(ef) = −β if the bends of e form 90◦ and
270◦ angles in f , respectively. For a vertex v incident to a face f , we de�ne rot(vf) to
be 1, 0, −1 and −2 if v forms an angle of 90◦, 180◦, 270◦ and 360◦ in f , respectively. In
other words, if v forms the angle α in f , we have rot(vf) = 2 − α/90◦.

Note that, when traversing a face ofG in clockwise direction (counter-clockwise for
the outer face), the right and left bends correspond to rotations of 1 and−1, respectively
(we may have two left bends at once at vertices of degree 1). The values for the rotations
we obtain from a drawing Γ satisfy the following properties; see Figure 1.10a.

(1) The sum over all rotations in a face is 4 (−4 for the outer face).

(2) For every edge e with incident faces f` and fr we have rot(ef`) + rot(efr) = 0.

(3) The sum of rotations around a vertex v is 2 · deg(v) − 4.

(4) The rotations at vertices lie in the range [−2,1].

22

Preliminaries Section 1.4

Let R be a structure consisting of an embedding of G plus a set of values �xing the
rotation for every vertex–face and edge–face incidence. We call R an orthogonal
representation of G if the rotation values satisfy the above properties (1)–(4). Given an
orthogonal representation R, a drawing inducing the speci�ed rotation values exists
and can be computed e�ciently [Tam87].

In some cases we also write rotR (·) instead of rot(·) to make clear which orthogonal
representation we refer to. Moreover, the face in the subscript is sometimes omitted if
it is clear which face is meant, e.g., we write rot(e) instead of rot(ef).

We note that the above de�nitions are ambiguous if G is not biconnected. In this
case an edge e or a vertex v may have multiple incidences to the same face f . Thus, it
is not immediately clear, which angle is described by rot(ef) or rot(vf). However, it
will be always clear from the context, which incidence of a face we refer to.

For a given instance of FlexDraw, we say that an orthogonal representation is
valid, if a corresponding drawing is valid.

The Shape of st-Graphs

We extend the notion of rotation to paths; conceptually this is very similar to spiral-
ity [DLV98]. Let π be a path from vertex u to vertex v . We de�ne the rotation of π
(denoted by rot(π)) to be the number of bends to the right minus the number of bends
to the left when traversing π from u to v .

There are two special paths in an st-graph G . Let s and t be the poles of G and let R
be an orthogonal representation with s and t on the outer face. Then π (s,t) denotes
the path from s to t when traversing the outer face ofG in counter-clockwise direction.
Similarly, π (t ,s) is the path from t to s . We de�ne the number of bends of R to be
max{| rot(π (s,t)) |, | rot(π (t ,s)) |}. Note that a single edge e = st is also an st-graph.
Note further that the notions of the number of bends of the edge e and the number of
bends of the st-graph e coincide. Thus, the above de�nition is consistent.

When considering orthogonal representations of st-graphs, we always require the
poles s and t to be on the outer face. We say that the vertex s has σ occupied incidences
if rot(sf) = σ −3 where f is the outer face. We also say that s has 4−σ free incidences in
the outer face. If the poles s and t have σ and τ occupied incidences in R , respectively,
we say that R is a (σ ,τ)-orthogonal representation; see Figure 1.10b.

Note that rot(π (s,t)) and rot(π (t ,s)) together with the number of occupied inci-
dences σ and τ basically describe the outer shape ofG and thus how it has to be treated
if it is a subgraph of some larger graph. Using the bends of R instead of the rotations
of π (s,t) and π (t ,s) implicitly allows to mirror the orthogonal representation (and
thus exchanging π (s,t) and π (t ,s)).

23

Chapter 1 Introduction

(a)

0

1
−1

01

1
1
−1

−1

−1

0
0 0

0

−22

(b)

s

t

0

−1

(c)
−2

−2

1

1

1
−1

1

−1

1

1

1

1
1
−1

−1

−1

0

00
0

e1

e2

Figure 1.10: (a) An orthogonal drawing together with its orthogonal representation given by
the rotation values. (b) A (2,3)-orthogonal representation (s and t have 2 and 1 free incidences,
respectively). (c) An orthogonal representation with thick edges e1 and e2. The blue boxes
indicate how many attachments the thick edges occupy, i.e., e1 is a (2,3)-edge and e2 is a
(2,2)-edge. Both thick edges have two bends.

Thick Edges

In the basic formulation of an orthogonal representation, every edge occupies exactly
one incidence at each of its endpoints, i.e., an edge enters each of its endpoint from
exactly one of four possible directions. We introduce thick edges that may occupy
more than one incidence at each endpoint to represent larger subgraphs.

Let e = st be an edge in G. We say that e is a (σ ,τ)-edge if e is de�ned to occupy
σ and τ incidences at s and t , respectively. Note that the total amount of occupied
incidences of a vertex in G must not exceed 4. With this extended notion of edges,
we de�ne a structure R consisting of an embedding of G plus a set of values for
all rotations to be an orthogonal representation if it satis�es the following (slightly
extended) properties; see Figure 1.10c.

(1) The sum over all rotations in a face is 4 (−4 for the outer face).

(2) For every (σ ,τ)-edge e with incident faces f` and fr we have rot(ef`) + rot(efr) =
2 − (σ + τ).

(3) The sum of rotations around a vertex v with incident edges e1, . . . ,e` occupying
σ1, . . . ,σ` incidences of v , respectively, is ∑

(σi + 1) − 4

(4) The rotations at vertices lie in the range [−2,1].

Note that requiring every edge to be a (1,1)-edge in this de�nition of an orthogonal
representation exactly yields the previous de�nition without thick edges. The number
of bends of a (thick) edge e incident to the faces f` and fr is max{| rot(ef`) |, | rot(efr) |}.
Unsurprisingly, replacing a (σ ,τ)-edge with β bends in an orthogonal representation
with a (σ ,τ)-orthogonal representation with β bends of an arbitrary st-graph yields
an orthogonal representation [Blä+14, Lemma 5].

24

Preliminaries Section 1.4

Figure 1.11: On the left three tight
orthogonal drawings are stacked to-
gether. This is not possible on the
right side, since the black vertices
have angles larger than 90◦ in inter-
nal faces.

?

Tight Orthogonal Representations

LetG be a 4-planar graph with positive �exibility and valid orthogonal representationR
and let {s,t} be a split pair. Let further H be a split component with respect to {s,t}
such that the orthogonal representation S of H induced by R has {s,t} on the outer
face f . The orthogonal representation S of H is called tight with respect to the vertices
s and t if the rotations of s and t in internal faces are 1, i.e., s and t form 90◦-angles in
internal faces of H .

Bläsius et al. [Blä+14, Lemma 2] show thatS can be made tight with respect to s and t ,
i.e., there exists a valid orthogonal representation ofH that is tight. Moreover, this tight
orthogonal representation can be plugged back into the orthogonal representation
of the whole graph G. We call an orthogonal representation R of the whole graph G
tight, if every split component having the corresponding split pair on its outer face is
tight with respect to its split pair. For instances with positive �exibility, we can thus
assume without loss of generality that every valid orthogonal representation is tight.

Dealing with tight orthogonal representations has two major advantages. First, if
we have for example a series composition of multiple st-graphs, each with a given
orthogonal representation, we can easily combine these orthogonal representations
yielding an orthogonal representation of the resulting graph (assuming it has maximum
degree 4); see Figure 1.11. Note that this may not be possible if the orthogonal
representations are not tight. Second, the shape of the outer face f of a split component
with split pair {s,t} is completely determined by the rotation of πf (s,t) and the degrees
of s and t , since the rotation at the vertices s and t in the outer face only depends on
their degrees. If not otherwise mentioned, we assume orthogonal representations of
instances with positive �exibility to be tight.

Network Flows

A �ow network is a tuple N = (V ,A,cost,dem) where (V ,A) is a directed (multi-)
graph, cost is a set containing a cost function costa : N0 → R∪{∞} for each arc a ∈ A
and dem: V → Z is the demand of the vertices. A �ow in N is a function ϕ : A→ N0
assigning a certain amount of �ow to each arc. A �ow ϕ is feasible, if the di�erence of

25

Chapter 1 Introduction

incoming and outgoing �ow at each vertex equals its demand, i.e.,

dem(v) =
∑

(u,v)∈A
ϕ (u,v) −

∑
(v,u)∈A

ϕ (v,u) for all v ∈ V .

The cost of a given �ow ϕ is the total cost of the arcs caused by the �ow ϕ, i.e.,

cost(ϕ) =
∑
a∈A

costa (ϕ (a)).

A feasible �ow ϕ in N is called optimal if cost(ϕ) ≤ cost(ϕ ′) holds for every feasible
�ow ϕ ′.

If the cost function of an arc a is 0 on an interval [0,c (a)] and ∞ on (c (a),∞),
we say that a has capacity c (a). If all arcs of N have such a cost function, we also
write N = (V ,A,c,dem) instead of N = (V ,A,cost,dem), where c : A → N0 are the
capacities.

Flows and Orthogonal Representations. Orthogonal representations have the
following connection to �ow networks. It was �rst discovered by Tamassia [Tam87].
Assume we have an orthogonal representation R for a graph G with planar embed-
ding E. The rotation of a vertex v in a face f is interpreted as �ow between v and f ,
where a positive and negative rotation corresponds to �ow from v to f and �ow from
f to v , respectively. Similarly, a positive and negative rotation of an edge e in a face f
corresponds to �ow from e to f and from f to e , respectively. Clearly, Property 1 of
the orthogonal representation R (sum of all rotations in a face is 4) is equivalent to
setting the demand of f to 4. Similarly, Property 2 requires the demand of edges to
be 0 and by Property 3, the demand of vertices is 2 · deg(v) − 4. That the rotations at
vertices lie in the range [−2,1] (Property 4) can be enforced using capacities for the
corresponding edges. Clearly, a feasible �ow in the resulting network corresponds to
an orthogonal representation with planar embedding E of G and every orthogonal
representation of G with planar embedding E corresponds to a feasible �ow in the
network. Moreover, the number of bends an edge e has in the resulting orthogonal
representation is equal to the �ow going through e . Hence, one can use cost functions
on the corresponding arcs to punish bends.

Modeling bend minimization in orthogonal drawings using this �ow network only
works if we know the faces ofG , i.e., if the planar embedding ofG is �xed. Nonetheless,
we will use a similar �ow network as a subroutine when optimizing over all planar
embeddings.

Notation and Basic Properties of Flow Networks. In the following, we provide
some more de�nitions related to �ow networks and show basic properties we rely on
in later chapters.

26

Preliminaries Section 1.4

A �ow network N is called convex if the cost functions on its arcs are convex. In the
�ow networks we consider, every arc a ∈ A has a corresponding arc a′ ∈ A between
the same vertices pointing in the opposite direction. A �ow ϕ is normalized if ϕ (a) = 0
or ϕ (a′) = 0 for each of these pairs. In a convex �ow network, every optimal �ow can
be easily transformed to a normalized optimal �ow. As all �ow networks we consider
are convex, we can assume all �ows to be normalized.

We simplify the notation as follows. If we talk about an amount of �ow on the arc a
that is negative, we instead mean the same positive amount of �ow on the opposite
arc a′.

Many algorithms computing minimum-cost �ows in networks can only handle linear
cost functions, i.e., each unit of �ow on an arc causes a constant cost de�ned for that
arc. Note that the cost functions in a convex �ow network N are piecewise linear and
convex according to our de�nition. Thus, it can be easily formulated as a �ow network
with linear costs by splitting every arc into multiple arcs, each having linear costs. It is
well known that �ow networks of this kind can be solved in polynomial time [EK72].
When using an algorithm computing a minimum-cost �ow in a �ow network N as a
subroutine, we usually denote the running time by T�ow (|N |). This re�ects the fact
that �nding a better algorithm for a certain �ow problem also improves the running
time of our algorithms. Applying for example the algorithm by Orlin [Orl93] leads
to the running time T�ow (n) ∈ O (n2 log2 n), assuming that the number of edges of the
�ow network is linear in its number of vertices.

Let u,v ∈ V be two nodes of the convex �ow network N with demands dem(u) and
dem(v). The parameterized �ow network with respect to the nodes u and v is de�ned
the same as N but with a parameterized demand of dem(u) − ρ for u and dem(v) + ρ
for v where ρ is a parameter. The cost function costN (ρ) of the parameterized �ow
network N is de�ned to be cost(ϕ) of an optimal �ow ϕ in N with respect to the
parameterized demands determined by ρ. Note that increasing ρ by 1 can be seen as
pushing one unit of �ow from u to v . We de�ne the optimal parameter ρ0 to be the
parameter for which the cost function is minimal among all possible parameters. The
correctness of the minimum weight path augmentation method to compute �ows with
minimum costs implies the following theorem [EK72].

Theorem 1.1. The cost function of a parameterized �ow network is convex on the
interval [ρ0,∞), where ρ0 is the optimal parameter.

Proof. Let N = (V ,A,cost,dem) be a parameterized �ow network and let ϕ0 be
a minimum-cost �ow in N with respect to the optimal parameter ρ0. To simplify
notation, we assume ρ0 = 0. The residual network R0 with respect to ϕ0 is the graph
(V ,A) with a constant cost cost0 (a) assigned to every arc a such that cost0 (a) is the
amount of cost in N that has to be payed to push an additional unit of �ow along
a, with respect to the given �ow ϕ0. Note that this cost may be negative. It is well
known that an optimal �ow ϕ1 with respect to the parameter 1 can be computed by

27

Chapter 1 Introduction

pushing one unit of �ow along a path from u to v with minimum weight in R0 [EK72].
Moreover, we can continue and compute an optimal �ow ϕk+1 by augmenting ϕk along
a minimum weight path in the residual network Rk with respect to the �owϕk . Assume
we augmentϕk along the path πk causing cost costk (πk) to obtain an optimal �owϕk+1
with respect to the parameter k + 1 and then we augment along a path πk+1 in Rk+1
with cost costk+1 (πk+1) to obtain an optimal �ow ϕk+2 with respect to the parameter
k+2. To obtain the claimed convexity we have to show that costk (πk) ≤ costk+1 (πk+1)
holds.

If πk and πk+1 contain an arc a in the same direction, then costk (a) ≤ costk+1 (a)
holds by the convexity of the cost function of a. If πk contains the arc a and πk+1
contains the arc a′ in the opposite direction then costk (a) = − costk+1 (a

′) holds.
Assume πk and πk+1 share such an arc in the opposite direction. Then we remove this
arc in both directions, splitting each of the paths πk and πk+1 into two subpaths. We
de�ne two new paths π and π ′ by concatenating the �rst part of πk with the second
part of πk+1 and vice versa, respectively. This can be done iteratively, thus we can
assume that π and π ′ do not share arcs in the opposite direction. We consider the
cost of π and π ′ in the residual network Rk . Obviously, for an arc a that is exclusively
contained either in π or in π ′ we have costk (a) = costk+1 (a). For an arc that is
contained in π and π ′ we have costk (a) ≤ costk+1 (a). Moreover, for every pair of arcs
a and a′ that was removed, we have costk (a) = − costk+1 (a

′). This yields the inequality
costk (πk) + costk+1 (πk+1) ≥ costk (π) + costk (π ′). Since πk was a path with smallest
possible weight in Rk we have costk (πk) ≤ costk (π) and costk (πk) ≤ costk (π ′). With
the above inequality this yields costk+1 (πk+1) ≥ costk (πk). �

In Chapter 4, we will need the following result on the existence of feasible �ows in
�ow networks where the capacity of edges is large compared to the absolute demands
of the nodes in network.

Lemma 1.1. Let N = (V ,A,c,dem) be a �ow network with
∑
v ∈V dem(v) = 0. If

c (a) ≥ ∑
v ∈V | dem(v) | holds for each arc a ∈ A, then there exists a feasible �ow in N .

Proof. Let ϕ be an arbitrary �ow satisfying the demands at all vertices, but possibly
violating the capacity constraints. Let a = (u,v) ∈ A with ϕ (a) > c (a). If there exists
a directed path from v to u all whose arcs have positive �ow, we can decrease the
amount of �ow on this cycle by 1. After �nitely many such steps, we then obtain
the desired �ow. Hence, assume for the sake of contradiction that such a path does
not exist. Let S ⊆ V be the vertices that can be reached from v . Note that v ∈ S and
u < S . Hence, S de�nes a cut in N whose outgoing arcs have �ow 0. In any valid �ow
the amount of �ow entering S minus the �ow leaving S must equal ∑v ∈S dem(v) ≤∑
v ∈S | dem(v) | ≤ ∑

v ∈V | dem(v) | ≤ c (e). On the other hand, the �ow entering S is at
least ϕ (a) > c (e) while no �ow is leaving S , a contradiction. �

28

Preliminaries Section 1.4

Figure 1.12: (a) A Kandinsky draw-
ing of the wheel of size 5. (b) A
Kandinsky drawing with an empty
face. (a) (b)

1.4.5 Kandinsky Drawings

Let G be a planar graph. Recall that an orthogonal drawing of G maps each vertex to
a grid point and each edge to a path in the grid; see Figure 1.9. Recall further that G
has an orthogonal drawing only if it has maximum degree 4. The Kandinsky model
introduced by Fößmeier and Kaufmann [FK95] is a way to overcome this limitation.
A Kandinsky drawing of G maps each vertex to a box of constant size centered at a
grid point and each edge to a path in a �ner grid; see Figure 1.12a for an example. The
problem of �nding a Kandinsky drawing with the minimum number of bends is called
Kandinsky Bend Minimization.

In a Kandinsky drawing, a face is empty if it does not include a grid cell of the coarser
grid; see Figure 1.12b. Empty faces are empty in the sense that there is not enough
space to add a vertex inside. Usually, one forbids empty faces in Kandinsky drawings
as allowing empty faces requires a special treatment for faces of size 3 compared to
larger faces and cycles that are no faces. We always assume that empty faces are
forbidden except when explicitly allowing them.

Every Kandinsky drawing has the so called bend-or-end property, which can be
stated as follows. One can declare a bend on an edge e = uv to be close to v if it is the
�rst bend when traversing e from v to u with the additional requirement that a bend
cannot be close to both endpoints u and v . The bend-or-end property requires that
an angle of 0◦ between edges uv and vw in the face f implies that at least one of the
edges uv and vw has a bend close to v that is concave in f (270◦ angle). Note that the
triangle in Figure 1.12b does not have this property as the two concave bends cannot
be close to all three vertices with 0◦ angles.

In contrast to Chapters 2 and 3, the graphs we consider in Chapter 4 have a �xed
planar embedding, i.e., they are plane (for planar graphs with a variable embedding,
Kandinsky Bend Minimization is known to be NP-hard [GT01]). When writing
about an orthogonal or Kandinsky drawing of a plane graph, we of course require that
this drawing respects the �xed embedding of the graph.

29

Chapter 1 Introduction

(a) (b)

rot: 2
e1e2 rot: 1 rot: 0

rot: −1 rot: −2

v v v

v v

e1

e2

e1e2

e1
e2 e1e2 vu

rot: 1

Figure 1.13: (a) The possible rotations at a vertex in the face f (shaded blue). (b) The rotation
of an edge.

Kandinsky Representation

A Kandinsky drawing of a planar graph G can be speci�ed in three stages. First, its
topology is �xed by choosing a combinatorial embedding of G (which we assume to
get with the input in case of Kandinsky drawings). Second, its shape in terms of angles
between edges and sequences of bends on edges is �xed. Third, the geometry is �xed
by specifying integer coordinates for all vertices and bend points. As with orthogonal
representations for orthogonal drawings, we can de�ne Kandinsky representations as
the equivalence classes of Kandinsky drawings with the same topology and the same
shape. As the number of bends (and thus the cost of a drawing) depends only on the
shape and not on the geometry, we can focus on �nding Kandinsky representations and
thus neglect the geometry (at least if we make sure that every Kandinsky representation
has a geometric realization as a Kandinsky drawing). As mentioned before, this
approach was introduced for orthogonal drawings by Tamassia [Tam87]. It was
extended to Kandinsky drawings by Fößmeier and Kaufmann [FK95].

The following de�nitions are very similar to the ones for orthogonal representations.
However, we need slightly more notation as we can for example no longer assume
drawings to be normalized, i.e., an edge may have bends in both directions.

Let G be a planar graph with the Kandinsky drawing Γ. Let f be a face with the
edge e1 in its boundary and let e2 be the successor of e1 in clockwise direction (counter-
clockwise if f is the outer face). Let further v be the vertex between e1 and e2 and let
α be the angle at v in f . We de�ne the rotation rotf (e1,e2) between e1 and e2 to be
rotf (e1,e2) = 2 − α/90◦; see Figure 1.13a. The rotation rotf (e1,e2) can be interpreted
as the number of right turns between the edges e1 and e2 at the vertex v in the face f .
Note that e1 = e2 if v has degree 1, which yields rotf (e1,e2) = −2. In case it is clear
from the context which two edges are meant when referring to the vertex v in the
face f , we also write rotf (v) instead of rotf (e1,e2) and call it the rotation of v in f .

The shape of every edge can also be described in terms of its rotation. Let u be a
vertex in the boundary of the face f and let v be its successor in clockwise direction
(counter-clockwise if f is the outer face). Let further e = uv be the corresponding edge.
The rotation rotf (e) of e in f is the number of right bends minus the number of left
bends one encounters, when traversing e from u tov ; see Figure 1.13b. Note that every

30

Preliminaries Section 1.4

edge has two rotations, one in each face it bounds. Note further, that our notation is
not precise for bridges, as a bridge is incident to the same face twice. However, it will
always be clear from the context which incidence is meant, hence there is no need to
complicate the notation.

Let (u,v,w) be a path of length 2 in the face f . If the two edges form an angle of 0◦
(i.e., rotf (v) = 2), the bend-or-end property of Kandinsky drawings ensures that at
least one of the two edges uv or vw has a bend close to v that forms an angle of 270◦
in f . To represent this information of which bends are declared to be close to vertices
we introduce some additional rotations. Consider the edge uv and let f be an incident
face. If uv has a bend close to v , we de�ne the rotation rotf (uv[v]) at the end v of uv
to be 1 if it is a right bend and −1 if it is a left bend. If uv has no bend close to v , we
set rotf (uv[v]) = 0.

It is easy to see that every Kandinsky representation satis�es the following properties.
Moreover, it is known that a set of values for the rotations is a Kandinsky representation
if it satis�es these properties [FK95] (i.e., there exists a Kandinsky drawing with these
rotation values).

(1) The sum over all rotations in a face is 4 (−4 for the outer face).

(2) For every edge uv with incident face f` and fr , we have rotf` (uv) + rotfr (uv) = 0,
rotf` (uv[u]) + rotfr (uv[u]) = 0, and rotf` (uv[v]) + rotfr (uv[v]) = 0.

(3) The sum of rotations around a vertex v is 2 · deg(v) − 4.

(4) The rotations at vertices lie in the range [−2,2].

(5) If rotf (uv,vw) = 2 then rotf (uv[v]) = −1 or rotf (vw[v]) = −1.

If the face is clear from the context, we often omit the subscript in rotf . Note that the
rotation of an edge uv is split into three parts; the rotations rot(uv[u]) and rot(uv[v])
at the ends of uv and a rotation rot(uv[−]) in the center of uv . It holds rot(uv) =
rot(uv[u]) + rot(uv[−]) + rot(uv[v]) (thus it is not necessary to have rot(uv[−])
contained in the representation). We can assume without loss of generality that all
bends accounting for the rotation in the center bend in the same direction, thus the
edge uv has | rot(uv[u]) | + | rot(uv[−]) | + | rot(uv[v]) | bends. Hence, the number of
bends depend only on the Kandinsky representation and not on the actual drawing.

Let f be a face ofG and letu andv be two vertices on the boundary of f . By πf (u,v)
we denote the path from u to v on the boundary of f in clockwise direction (counter-
clockwise for the outer face). As for orthogonal drawings, the rotation rotf (π) of a
path π in the face f is de�ned as the sum of all rotations of edges and inner vertices
of π in f .

Note that an orthogonal drawing of a 4-planar graph is basically a Kandinsky
drawing without 0◦ angles at vertices. It is thus not surprising that the de�nition of

31

Chapter 1 Introduction

Figure 1.14: (a) A clustered graph
consisting of a graph (top) and a hi-
erarchical clustering of the vertices
described by a rooted tree (bottom).
(b) A c-planar drawing of the clus-
tered graph in (a). (a)

1 4 5 6

87

2 3

3 2

1 4

5 6 87

(b)

3 2

1 4

5

6

87

orthogonal representation from Section 1.4.4 is the same as the above de�nition of
Kandinsky representation when forbidding 0◦ angles.

1.4.6 Clustered Planarity

A clustered graph (G,T) is a graph G together with a rooted tree T whose leaves are
the vertices of G; see Figure 1.14a. Let µ be a node of T . The tree Tµ is the subtree ofT
consisting of all successors of µ together with the root µ. The graph induced by the
leaves ofTµ is a cluster in G . We identify this cluster with the node µ. We call a cluster
proper if it is neither the whole graph (root cluster) nor a single vertex (leaf cluster).

A c-planar drawing of (G,T) is a planar drawing of G in the plane together with
a simple (= simply-connected) region Rµ for every cluster µ satisfying the following
properties; see Figure 1.14b. (i) Every region Rµ contains exactly the vertices of the
cluster µ. (ii) Two regions have non-empty intersection only if one contains the other.
(iii) Edges cross the boundary of a region at most once. A clustered graph is c-planar
if and only if it admits a c-planar drawing. The problem Clustered Planarity asks
whether a clustered graph is c-planar.

The above de�nition of c-planarity relies on embeddings in the plane using terms
like “outside” and “inside”. Instead, one can consider drawings on the sphere by
considering the tree T to be unrooted instead of rooted, using cuts instead of clusters,
and simple closed curves instead of simple regions. Let ε be an edge in T . Removing ε
splits T in two connected components. As the leaves of T are the vertices of G, this
induces a corresponding cut (Vε ,V ′ε) withV ′ε = V \Vε onG . For a c-planar drawing ofG
on the sphere, we require a planar drawing ofG together with a simple closed curveCε
for every cut (Vε ,V ′ε) with the following properties. (i) The curve Cε separates Vε
from V ′ε . (ii) No two curves intersect. (iii) Edges of G cross Cε at most once.

Note that using clusters instead of cuts corresponds to orienting the cuts, using
one side as the cluster and the other side as the cluster’s complement; the co-cluster.
This notion of c-planarity on the sphere is equivalent to the one on the plane; one
simply has to choose an appropriate point on the sphere to lie in the outer face. The
unrooted view has the advantage that it is more symmetric (i.e., there is no di�erence

32

Preliminaries Section 1.4

Figure 1.15: Two graphs G 1 and
G 2 , their common graph G, and
their union graphG∪. The drawings
of G 1 and G 2 are simultaneously
planar as they are planar and coin-
cide on G. G 1 G 2 G G∪

between clusters and co-clusters), which is sometimes desirable. We use the rooted
and unrooted view interchangeably.

1.4.7 Simultaneous Planarity

Let G 1 = (V 1 ,E 1) and G 2 = (V 2 ,E 2) be two graphs. We call their intersection
G = G 1 ∩ G 2 the common graph and their union G∪ = G 1 ∪ G 2 the union graph.
Drawings Γ 1 and Γ 2 of G 1 and G 2 form a simultaneous planar drawing, if Γ 1 and Γ 2

are both planar and coincide on the common graph G; see Figure 1.15. The problem
Sefe has a pair of graphs (G 1 ,G 2) as input and asks whether they admit a simultaneous
planar drawing.

Clearly, the de�nition directly extends to more than two graphs. A special case is
the so-called sun�ower case, in which the intersection graph is the same for every
pair of input graphs. If not otherwise mentioned, we always consider the case of two
graphs.

Edges belonging to the common graph G are called common edges, edges belonging
to G 1 or G 2 but not to the common graph G are called exclusive.

Jünger and Schulz [JS09] showed that two graphs G 1 and G 2 admit a simultaneous
planar drawing if and only if they have a simultaneous embedding, i.e., if they have
planar embeddings that coincide on the common graph. Thus, solving Sefe for two
graphs G 1 and G 2 boils down to �nding embeddings of G 1 and G 2 that induce
the same edge orderings (consistent edge orderings) and the same relative positions
(consistent relative positions) on the common graph G.

33

Part I

Orthogonal Drawings

2 Inflexible Edges in
Orthogonal Drawings

In this chapter, we investigate the problem FlexDraw in the presence of in�exible
edges. I.e., we want to decide whether a given 4-planar graph admits a planar or-
thogonal drawing such that no edge e has more bends than allowed by its �exibility
�ex(e). Recall that requiring positive �exibilities makes FlexDraw polynomial-time
solvable [Blä+14], whereas it is NP-hard in the presence of in�exible edges [GT01],
i.e., edges with �exibility 0.

To close the gap between the NP-hardness for �ex(e) = 0 and the e�cient algorithm
for �ex(e) ≥ 1, we investigate the computational complexity of FlexDraw in case
only few edges are in�exible. We show that for any ε > 0 FlexDraw is NP-complete
for instances with O (nε) in�exible edges of pairwise distance Ω(n1−ε) (including the
case where they induce a matching). On the other hand, we give an FPT-algorithm
with running time O (2k · n ·T�ow (n)), whereT�ow (n) is the time necessary to compute
a maximum �ow in a planar �ow network with multiple sources and sinks, and k is
the number of in�exible edges having at least one endpoint of degree 4. It is known
that T�ow (n) ∈ O (n log3 n) [Bor+11] for this type of �ow problem.

This chapter is based on joint work with Sebastian Lehmann and Ignaz Rutter [BLR15].

2.1 Introduction

The problem of minimizing the number of bends in orthogonal drawings was �rst
considered by Storer [Sto80] in 1980. However, the research on bend minimization is
usually considered to be initiated by a result of Tamassia [Tam87] from 1984. Tamassia
showed that bend minimization for plane graphs, i.e., for planar graphs with a �xed
planar embedding, can be reduced to �nding a minimum-cost �ow in a planar �ow
network. Thus, OptimalFlexDraw can be solved e�ciently if the planar embedding
is �xed and the cost functions are convex. Cornelsen and Karrenbauer [CK12] recently
showed that this kind of �ow problem can be solved in O (n3/2) time.

However, the restriction to a �xed planar embedding can have a huge impact on
the number of bends; see Figure 2.1. Unfortunately, minimizing the number of bends
over all planar embeddings is NP-hard, as shown by Garg and Tamassia [GT01]. In
fact, they showed that it is already NP-hard to test whether a graph admits a drawing
without bends. This is equivalent to the problem FlexDraw if all edges are in�exible.

On the positive side, Di Battista et al. [DLV98] showed that FlexDraw can be solved
e�ciently for series-parallel and maximum-degree-3 graphs. In fact, their algorithm

37

Chapter 2 Inflexible Edges in Orthogonal Drawings

Figure 2.1: Two orthogonal drawings of the same graph with di�erent planar embeddings.
They are both bend-minimal with respect to their planar embeddings. Three cycles are colored
to make a comparison of the two drawings easier.

can even do bend minimization, solving OptimalFlexDraw with coste (β) = β for
each edge e . Biedl and Kant [BK98] showed that every 4-planar graph (except for the
octahedron) admits an orthogonal drawing with at most two bends per edge. Thus,
from a complexity point of view, FlexDraw is trivial if the �exibility of every edge is
at least 2. Bläsius et al. [Blä+14] gave a polynomial time algorithm solving FlexDraw
if the �exibility of every edge is at least 1.

Contribution and Outline

In this chapter, we consider FlexDraw (and to a small degree also OptimalFlexDraw)
for instances that may contain in�exible edges, closing the gap between the general NP-
hardness result [GT01] and the polynomial-time algorithm in the absence of in�exible
edges [Blä+14]. We do this, by strengthening both results, the NP-hardness proof if
�ex(e) = 0 and the polynomial-time algorithm if �ex(e) ≥ 1 for every edge e . The
latter is extended into another direction in Chapter 3, where we give an e�cient
algorithm solving positive-convex instances of OptimalFlexDraw.

In Section 2.2, we show that FlexDraw remains NP-hard even for instances with
only O (nε) (for any ε > 0) in�exible edges that are distributed evenly over the graph,
i.e., they have pairwise distance Ω(n1−ε). This includes the cases where the in�exible
edges are restricted to form very simple structures such as a matching.

On the positive side, we describe a general algorithm that can be used to solve
OptimalFlexDraw by solving smaller subproblems (Section 2.3). This provides a
framework for the uni�ed description of bend minimization algorithms which covers
both, previous work and results presented in this paper. We use this framework in
Section 2.4 to solve OptimalFlexDraw for series-parallel graphs with monotone
cost functions. This extends the algorithm of Di Battista et al. [DLV98] by allowing

38

A Matching of Inflexible Edges Section 2.2

a signi�cantly larger set of cost functions (in particular, the cost functions may be
non-convex).

In Section 2.5, we present the main result of this chapter, which is an FPT-algorithm
with running timeO (2k ·n ·T�ow (n)), where k is the number of in�exible edges incident
to degree-4 vertices, and T�ow (n) is the time necessary to compute a maximum �ow
in a planar �ow network of size n with multiple sources and sinks. Note that we can
require an arbitrary number of edges whose endpoints both have degree at most 3 to
be in�exible without increasing the running time.

2.2 A Matching of Inflexible Edges

In this section, we show that FlexDraw is NP-complete even if the in�exible edges
form a matching. In fact, we show the stronger result of NP-hardness of instances with
O (nε) in�exible edges (for ε > 0) even if these edges are distributed evenly over the
graph, i.e., they have pairwise distance Ω(n1−ε). This for example shows NP-hardness
for instances with O (

√
n) in�exible edges with pairwise distances of Ω(

√
n).

We adapt the proof of NP-hardness by Garg and Tamassia [GT01] for the case that
all edges of an instance of FlexDraw are in�exible. For a given instance of Nae-3Sat
(Not All Equal 3SAT) they show how to construct a graphG that admits an orthogonal
representation without bends if and only if the instance of Nae-3Sat is satis�able.
The graph G is obtained by �rst constructing a graph F that has a unique planar
embedding [GT01, Lemma 5.1] and replacing the edges of F by special st-graphs, the
so called tendrils and wiggles. Both, tendrils and wiggles, have degree 1 at both poles
and a unique planar embedding up to possibly a �ip. It follows for each vertex v of G,
that the cyclic order of incident edges around v is �xed up to a �ip. This implies the
following lemma.

Lemma 2.1 (Garg & Tamassia [GT01]). FlexDraw is NP-hard, even if the order of
edges around each vertex is �xed up to reversal.

We assume that our instances do not contain degree-2 vertices; their incident edges
can be replaced by a single edge with higher �exibility. In the following, we �rst show
how to replace vertices of degree 3 by graphs of constant size such that each in�exible
edge is incident to two vertices of degree 4. Afterwards, we can replace degree-4
vertices by smaller subgraphs with positive �exibility, which increases the distance
between the in�exible edges. We start with the description of an st-graph that has
either 1 or 2 bends in every valid orthogonal representation.

The wheel W4 of size 4 consists of a 4-cycles v1, . . . ,v4 together with a center u
connected to each of the vertices v1, . . . ,v4; see Figure 2.2a. We add the two vertices
s and t together with the in�exible edges sv1 and tv2 to W4. Moreover, we set the
�exibility of v3v4 to 2 and the �exibilities of all other edges to 1. We call the resulting

39

Chapter 2 Inflexible Edges in Orthogonal Drawings

(c)

v ′3

v ′2

v ′1

(b)

s

t

s t

π (s,t) π (t ,s)

(a)

u

v3

v2

v1

v4

Figure 2.2: The bold edges are in�exible; dashed edges have �exibility 2; all other edges have
�exibility 1. (a) The wheel W4. (b) The bend gadget B1,2. (c) The gadget W ′

3 for replacing
degree-3 vertices. The marked subgraphs are bend gadgets.

st-graph bend gadget and denote it by B1,2. We only consider embeddings of B1,2 where
all vertices except for u lie on the outer face. Figure 2.2b shows two valid orthogonal
representations of B1,2, one with 1, the other with 2 bends. Clearly, the number of
bends cannot be reduced to 0 (or increased above 2) without violating the �exibility
constraints of edges on the path π (s,t) (or on the path π (t ,s)). Thus, B1,2 has either 1
or 2 bends in every orthogonal representation. Moreover, if its embedding is �xed,
then the direction of the bends is also �xed.

We now use the bend gadget as building block for a larger gadget. We start with the
wheelW3 of size 3 consisting of a triangle v1,v2,v3 together with a center u connected
to v1, v2, and v3. The �exibilities of the edges incident to the center are set to 1, each
edge in the triangle is replaced by a bend gadget B1,2. To �x the embedding of the bend
gadgets, we add three vertices v ′1, v ′2, and v ′3 connected with in�exible edges to v1, v2,
and v3, respectively, and connect them to the free incidences in the bend gadgets, as
shown in Figure 2.2c. We denote the resulting graph byW ′

3 . Clearly, in the cycle of
bend gadgets, two of them have one bend and the other has two bends in every valid
orthogonal representation ofW ′

3 . Thus, replacing a vertex v with incident edges e1, e2,
and e3 byW ′

3 , attaching the edge ei to v ′i , yields an equivalent instance of FlexDraw.
Note that such a replacement increases the degree of one incidence of e1, e2, and e3
form 3 to 4. Moreover, every in�exible edge contained inW ′

3 is incident to two vertices
of degree 4. We obtain the following lemma.

Lemma 2.2. FlexDraw is NP-hard, even if the endpoints of each in�exible edge have
degree 4 and if the order of edges around each vertex is �xed up to reversal.

Proof. Let G be an instance of FlexDraw such that the order of edges around each
vertex is �xed up to reversal. As FlexDraw restricted to these kinds of instances is
NP-hard, due to Lemma 2.1, it su�ces to �nd an equivalent instance where additionally
the endpoints of each in�exible have degree 4. Pairs of edges incident to a vertex
of degree 2 can be simply replaced by an edge with higher �exibility. Thus, we can

40

The General Algorithm Section 2.3

assume that every vertex in G has degree 3 or degree 4. Replacing every degree-3
vertex incident to an in�exible edge by the subgraphW ′

3 described above clearly leads
to an equivalent instance with the desired properties. �

Similar to the replacement of degree-3 vertices by W ′
3 , we can replace degree-4

vertices by the wheelW4, setting the �exibility of every edge ofW4 to 1. It is easy to
see, that every valid orthogonal representation ofW4 has the same outer shape, i.e.,
a rectangle, with one of the vertices v1, . . . ,v4 on each side; see Figure 2.2a. Thus,
replacing a vertex v with incident edges e1, . . . ,e4 (in this order) by W4, attaching
e1, . . . ,e4 to the vertices v1, . . . ,v4 yields an equivalent instance of FlexDraw. We
obtain the following theorem.

Theorem2.1. FlexDraw is NP-complete even for instances of sizenwithO (nε) in�exible
edges with pairwise distance Ω(n1−ε).

Proof. As FlexDraw is clearly in NP, it remains to show NP-hardness. Let G be the
instance of FlexDraw such that the endpoints of each in�exible edge have degree 4
and such that the order of edges around each edge is �xed up to reversal. FlexDraw
restricted to these kinds of instances is NP-hard due to Lemma 2.2. We show how
to build an equivalent instance with O (nε) in�exible edges with pairwise distance
Ω(n1−ε) for any ε > 0.

Let e be an in�exible edge in G with incident vertices u and v , which both have
degree 4. Replacing each of the vertices u and v by the wheelW4 yields an equivalent
instance of FlexDraw and the distance of e to every other in�exible edge is increased
by a constant. Note that this does not increase the number of in�exible edges. Let nG
be the number of vertices in G . Applying this replacement n1/ε−1

G times to the vertices
incident to each in�exible edge yields an equivalent instance G ′. In G ′ every pair of
in�exible edges has distance Ω(n1/ε−1

G). Moreover, G ′ has size O (n1/ε
G), as we have nG

in�exible edges. Substituting n1/ε
G by n shows that we get an instance of size n with

O (nε) in�exible edges with pairwise distance Ω(n1−ε). �

Note that the instances described above may contain edges with �exibility larger
than 1. We can get rid of that as follows. An edge e with �exibility �ex(e) > 0 can have
the same numbers of bends like the st-graph consisting of the wheelW4 (Figure 2.2a)
with the additional edges sv1 with �ex(sv1) = 1 and tv3 with �ex(tv3) = �ex(e) − 1.
Thus, we can successively replace edges with rotation above 1 by these kinds of
subgraphs, leading to an equivalent instance where all edges have �exibility 1 or 0.

2.3 The General Algorithm

In this section we describe a general algorithm that can be used to solve OptimalFlex-
Draw by solving smaller subproblems for the di�erent types of graph compositions

41

Chapter 2 Inflexible Edges in Orthogonal Drawings

(series, parallel, and rigid; see Section 1.4.3). To this end, we start with the de�nition of
cost functions for subgraphs, which is straightforward. The cost function cost(·) of an
st-graphG is de�ned such that cost(β) is the minimum cost of all orthogonal represen-
tations of G with β bends. The (σ ,τ)-cost function costστ (·) of G is de�ned analogously
by setting costστ (β) to the minimum cost of all (σ ,τ)-orthogonal representations of G
with β bends. Clearly, σ ,τ ∈ {1, . . . 4}, though, for a �xed graph G , not all values may
be possible. If for example deg(s) = 1, then σ is 1 for every orthogonal representation
of G. Note that there is a lower bound on the number of bends depending on σ and τ .
For example, a (2,2)-orthogonal representation has at least one bend and thus cost2

2 (0)
is unde�ned. We formally set unde�ned values to∞.

With the cost functions of G we refer to the collection of (σ ,τ)-cost functions of G
for all possible combinations of σ and τ . Let G be the composition of two or more (for
a rigid composition) graphs G1, . . . ,G` . Computing the cost functions of G assuming
that the cost functions of G1, . . . ,G` are known is called computing cost functions of a
composition. The following theorem states that the ability to compute cost functions of
compositions su�ces to solve OptimalFlexDraw. The terms TS , TP and TR (`) denote
the time necessary to compute the cost functions of a series, a parallel, and a rigid
composition with skeleton of size `, respectively.

Theorem 2.2. LetG be an st-graph containing the edge st . An optimal (σ ,τ)-orthogonal
representation of G with st on the outer face can be computed in O (nTS + nTP +TR (n))
time.

Proof. Let T be the SPQR-tree ofG . To compute an optimal orthogonal representation
of G with st on the outer face, we root T at the Q-node corresponding to st and
traverse it bottom up. When processing a node µ, we compute the cost functions of
pert(µ), which �nally (in the root) yields the cost functions of the st-graph G and thus
optimal (σ ,τ)-orthogonal representations (for all possible values of σ and τ) with st
on the outer face.

If µ is a Q-node but not the root, then pert(µ) is an edge and the cost function of
this edge is given with the input.

If µ is an S-node, its pertinent graph can be obtained by applying multiple series
compositions. Since the skeleton of an S-node leaves no embedding choice, we can
compute the cost function of pert(µ) by successively computing the cost functions of
the compositions, which takes O (| skel(µ) | ·TS) time.

If µ is a P-node, then pert(µ) can be obtained by applying multiple parallel compo-
sitions. In contrast to S-nodes the skeleton of a P-node leaves an embedding choice,
namely changing the order of the parallel edges. As composing the pertinent graphs
of the children of µ in a speci�c order restricts the embedding of skel(µ), we cannot
apply the compositions in an arbitrary order if skel(µ) contains more than two parallel
edges (not counting the parent edge). However, since skel(µ) contains at most three
parallel edges (due to the restriction to degree 4), we can try all composition orders

42

The General Algorithm Section 2.3

and take the minimum over the resulting cost functions. As there are only constantly
many orders and for each order a constant number of compositions is performed,
computing the cost function of pert(µ) takes O (TP) time.

If µ is an R-node, the pertinent graph of µ is the rigid composition of the pertinent
graphs of its children with respect to the skeleton skel(µ). Thus, the cost functions of
pert(µ) can be computed in O (TR (| skel(µ) |)) time.

If µ is the root, i.e., the Q-node corresponding to st , then pert(µ) = G is a parallel
composition of the pertinent graph of the child of µ and the edge st and thus its cost
function can be computed in O (TP) time.

As the total size of S-node skeletons, the number of P-nodes and the total size of R-
node skeletons is linear in the size ofG , the running time is inO (n·TS+n·TP+TR (n)). �

Applying Theorem 2.2 for each pair of adjacent nodes as poles in a given instance
of OptimalFlexDraw yields the following corollary.

Corollary 2.1. OptimalFlexDraw can be solved in O (n · (nTS + nTP +TR (n))) time
for biconnected graphs.

In the following, we extend this result to the case where G may contain cutvertices.
The extension is straightforward, however, there is one pitfall. Given two blocks
B1 and B2 sharing a cutvertex v such that v has degree 2 in B1 and B2, we have to
ensure for both blocks that v does not form an angle of 180◦. Thus, for a given graph
G, we get for each block a list of vertices and we restrict the set of all orthogonal
representations of G to those where these vertices form 90◦ angles. We call these
orthogonal representations restricted orthogonal representations. Moreover, we call the
resulting cost functions restricted cost functions. We use the terms T r

S , T r
P and T r

R (`)
to denote the time necessary to compute the restricted cost functions of a series, a
parallel, and a rigid composition, respectively. We get the following extension of the
previous results.

Theorem 2.3. OptimalFlexDraw can be solved in O (n · (nT r
S + nT

r
P +T

r
R (n))) time.

Proof. Let G be an instance of OptimalFlexDraw. We use the BC-tree (Block–
Cutvertex Tree) of G to represent all possible ways of combining embeddings of
the blocks of G to an embedding of G . The BC-tree T of G contains a B-node for each
block of G, a C-node for each cutvertex of G and an edge between a C-node and a
B-node if and only if the corresponding cutvertex is contained in the corresponding
block, respectively.

Rooting T at some B-node restricts the embeddings of the blocks as follows. Let µ
be a B-node (but not the root) corresponding to a block B and let v be the cutvertex
corresponding to the parent of µ. Then the embedding of B is required to have v on its
outer face. It is easy to see that every embedding of G is such a restricted embedding

43

Chapter 2 Inflexible Edges in Orthogonal Drawings

with respect to some root of T . Thus, it su�ces to consider each B-node of T as root
and restrict the embeddings as described above.

Before we deal with the BC-tree T , we preprocess each block B of G. Let v be a
cutvertex of B. For an edge e incident to v , we can use Theorem 2.2 to compute an
optimal orthogonal representation ofB with e on the outer face inO (n·TS+n·TP+TR (n))
time. Since ever orthogonal representation with v on the outer face has one of its
incident edges on the outer face, we can simply force each of these edges to the outer
face once, to get an optimal orthogonal representation of B with v on the outer face.
Clearly, using the computation of restricted cost functions yields an optimal restricted
orthogonal representation. Doing this for each block of G and for each cutvertex in
this block leads to a total running time of O (n · (n ·TS +n ·TP +TR (n))). Moreover, we
can compute an optimal restricted orthogonal representation of each block (without
forcing a vertex to the outer face) with the same running time (Corollary 2.1).

To compute an optimal orthogonal representation of G we choose every B-node
of the BC-tree T as root and consider for the block corresponding to the root the
optimal orthogonal representation (without forcing vertices to the outer face). For all
other blocks we consider the optimal orthogonal representation with the cutvertex
corresponding to its parent on the outer face. Note that these orthogonal represen-
tations can be easily combined to an orthogonal representation of the whole graph,
as we enforce angles of 90◦ at vertices of degree 2, if they have degree 2 in another
block. The minimum over all roots leads to an optimal orthogonal representation.
As computing this minimum takes O (n2) time, it is dominated by the running time
necessary to compute the orthogonal representation of the blocks. �

Note that Theorem 2.3 provides a framework for uniform treatment of bend min-
imization over all planar embeddings in orthogonal drawings. In particular, the
polynomial-time algorithm for FlexDraw with positive �exibility [Blä+14] can be
expressed in this way. There, all resulting cost functions of st-graphs are 0 on a non-
empty interval containing 0 (with one minor exception) and∞, otherwise. Thus, the
cost functions of the compositions can be computed using Tamassia’s �ow network.
The results on OptimalFlexDraw [BRW13] can be expressed similarly. When re-
stricting the number of bends of each st-graph occurring in the composition to 3, all
resulting cost functions are convex (with one minor exception). Thus, Tamassia’s �ow
network can again be used to compute the cost functions of the compositions. The
overall optimality follows from the fact that there exists an optimal solution that can
be composed in such a way. In the following sections we see two further applications
of this framework, resulting in e�cient algorithms.

44

Series-Parallel Graphs Section 2.4

2.4 Series-Parallel Graphs

In this section we show that the cost functions of a series composition (Lemma 2.3) and
a parallel composition (Lemma 2.4) can be computed e�ciently. Using our framework,
this leads to a polynomial-time algorithm for OptimalFlexDraw for series-parallel
graphs with monotone cost functions (Theorem 2.4). We note that this is only a
slight extension to the results by Di Battista et al. [DLV98]. However, it shows the
easy applicability of the above framework before diving into the more complicated
FPT-algorithm in the following section.

Lemma 2.3. If the (restricted) cost functions of two st-graphs are∞ for bend numbers
larger than `, the (restricted) cost functions of their series composition can be computed
in O (`2) time.

Proof. We �rst consider the case of non-restricted cost functions. Let G1 and G2 be
the two st-graphs with poles s1, t1 and s2, t2, respectively, and let G be their series
composition with poles s = s1 and t = t2. For each of the constantly many valid
combinations of σ and τ , we compute the (σ ,τ)-cost function separately. Assume for
the following, that σ and τ are �xed. Since G1 and G2 both have at most ` bends, G
can only have O (`) possible values for the number of bends β . We �x the value β and
show how to compute costστ (β) in O (`) time.

Let R be a (σ ,τ)-orthogonal representation with β bends and let R1 and R2 be the
(σ1,τ1)- and (σ2,τ2)-orthogonal representations induced for G1 and G2, respectively.
Obviously, σ1 = σ and τ2 = τ holds. However, there are the following other parameters
that may vary (although they may restrict each other). The parameters τ1 and σ2;
the number of bends β1 and β2 of R1 and R2, respectively; the possibility that for
i ∈ {1,2} the number of bends of Ri are determined by π (si ,ti) or by π (ti ,si), i.e.,
βi = − rot(π (si ,ti)) or βi = − rot(π (ti ,si)); and �nally, the rotations at the vertex v in
the outer face, where v is the vertex of G belonging to both, G1 and G2.

Assume we �xed the parameters τ1 and σ2, the choice by which paths β1 and β2 are
determined, the rotations at the vertex v , and the number of bends β1 of R1. Then
there is no choice left for the number of bends β2 of R2, as choosing a di�erent value
for β2 also changes the number of bends β of G, which was assumed to be �xed. As
each of the parameters can have only a constant number of values except for β1, which
can have O (`) di�erent values, there are only O (`) possible choices in total. For each
of these choices, we get a (σ ,τ)-orthogonal representation of G with β bends and cost
costσ1

τ1 (β1) + costσ2
τ2 (β2). By taking the minimum cost over all these choices we get the

desired value costστ (β) in O (`) time.
If we consider restricted cost functions, it may happen that the vertexv has degree 2.

Then we need to enforce an angle of 90◦ there. Obviously, this constraint can be easily
added to the described algorithm. �

45

Chapter 2 Inflexible Edges in Orthogonal Drawings

Lemma 2.4. If the (restricted) cost functions of two st-graphs are∞ for bend numbers
larger than `, the (restricted) cost functions of their parallel composition can be computed
in O (`) time.

Proof. If the compositionG ofG1 andG2 has β bends, either the graphG1 or the graph
G2 also has β bends. Thus, the cost function of G is∞ for bend numbers larger than `.
Let the number of bends of G be �xed to β . Similar to the proof of Lemma 2.3, there
are the following parameters. The number of bends β1 and β2 of G1 and G2; σi and τi
for i ∈ {1,2}; σ and τ ; the order of the two graphs; and the decision whether π (s,t) or
π (t ,s) determines the number of bends of G . All parameters except for β1 and β2 have
O (1) possible values. As mentioned before, we have β = β1 or β = β2. In the former
case, �xing all parameters except for β2 leaves no choice for β2. The case of β = β2
leaves no choice for β1. Thus, each of the O (`) values can be computed in O (1) time,
which concludes the proof. �

Theorem 2.4. For series-parallel graphs with monotone cost functions OptimalFlex-
Draw can be solved in O (n4) time.

Proof. To solve OptimalFlexDraw, we use Theorem 2.3. As the graphs we consider
here are series parallel, it su�ces to give algorithms that compute the cost functions
of series and parallel compositions. Applying Lemma 2.3 and Lemma 2.4 gives us
running times TS ∈ O (`2) and TP ∈ O (`) for these compositions. In the following,
we show that it su�ces to compute the cost functions for a linear number of bends,
leading to running times Ts ∈ O (n2) and TP ∈ O (n). Together with the time stated by
Theorem 2.3, this gives us a total running time of O (n4).

Let G be an st-graph with monotone cost functions assigned to the edges. We
show the existence of an optimal orthogonal representation of G such that every split
component of G has O (n) bends. To this end, consider the �ow network N introduced
by Tamassia [Tam87] and let d be the total demand of all its sinks. Let R be an optimal
orthogonal representation of G such that a split component H has at least d + 1 bends.
Then one of the two faces incident to edges of H and to edges of G − H has at least
d + 1 units of outgoing �ow. As the total demand of sinks in the �ow network is only
d , there must exist a directed cycle C in N such that the �ow on each of the arcs in
C is at least 1. Reducing the �ow on C by 1 yields a new orthogonal representation
and as the number of bends on no edge is increased, the cost does not increase. As
in every step the total amount of �ow is decreased, the process stops after �nitely
many steps. The result is an optimal orthogonal representation of G such that each
split component has at most d bends. Thus, we can restrict our search to orthogonal
representations in which each split component has only up to d bends. This can be
done by implicitly setting the costs to∞ for larger values than d . This concludes the
proof, as d ∈ O (n) holds. �

46

An FPT-Algorithm for General Graphs Section 2.5

Figure 2.3: An orthogonal represen-
tation (the bold edge is in�exible, all
other edges have �exibility 1). Bend-
ing along the valid cycle (blue) in-
creases the green and decreases the
red angles.

bending

along

2.5 An FPT-Algorithm for General Graphs

LetG be an instance of FlexDraw. We call an edge inG critical if it is in�exible and at
least one of its endpoints has degree 4. We call the instance G of FlexDraw k-critical,
if it contains exactly k critical edges. An in�exible edge that is not critical is semi-
critical. The poles s and t of an st-graphG are considered to have additional neighbors
(which comes from the fact that we usually consider st-graphs to be subgraphs of
larger graphs). More precisely, in�exible edges incident to the pole s (or t) are already
critical if deg(s) ≥ 2 (or deg(t) ≥ 2). In the following, we �rst study cost functions of
k-critical st-graphs. Afterwards, we show how to use the insights we got to give an
FPT-algorithm for k-critical instances of FlexDraw.

2.5.1 The Cost Functions of k-Critical Instances

LetG be an st-graph and let R be a valid orthogonal representation ofG . We de�ne an
operation that transforms R into another valid orthogonal representation ofG . LetG?

be the double directed dual graph of G, i.e., each edge e of G with incident faces д and
f corresponds to the two dual edges (д, f) and (f ,д). We call a dual edge e? = (д, f)
of e valid if one of the following conditions holds.

(I) rot(ef) < �ex(e) (which is equivalent to − rot(eд) < �ex(e)).

(II) rot(vf) < 1 where v is an endpoint of e but not a pole.

A simple directed cycle C? in G? consisting of valid edges is called valid cycle. Then
bending along C? changes the orthogonal representation R as follows; see Figure 2.3.
Let e? = (д, f) be an edge in C? with primal edge e . If e? is valid due to Condition (I),
we reduce rot(eд) by 1 and increase rot(ef) by 1. Otherwise, if Condition (II) holds,
we reduce rot(vд) by 1 and increase rot(vf) by 1, where v is the vertex incident to e
with rot(vf) < 1.

Lemma 2.5. Let G be an st-graph with a valid (σ ,τ)-orthogonal representation R.
Bending along a valid cycle C? yields a valid (σ ,τ)-orthogonal representation.

Proof. First, we show that the resulting rotations still describe an orthogonal represen-
tation. Afterwards, we show that this orthogonal representation is also valid and that

47

Chapter 2 Inflexible Edges in Orthogonal Drawings

Figure 2.4: Illustration of Fact 2.1
for some values of σ and τ . βlow =

(σ ,τ) = (1,1)
0

(1,2) (2,2) (2,3) (3,3)
1 1 2 2

it is a (σ ,τ)-orthogonal representation. Let e? = (д, f) be an edge in C? with primal
edge e . If Condition (I) holds, then rot(eд) is reduced by 1 and rot(ef) is increased
by 1 and thus rot(eд) = − rot(ef) remains true. Otherwise, Condition (II) holds and
thus rot(vд) is reduced by 1 and rot(vf) is increased by 1. The total rotation around v
does obviously not change. Moreover, both rotations remain in the interval [−1,1].
Finally, the incoming arc to a face f in C? increases the rotation around f by 1 and
the outgoing arc decreases it by 1. Thus, the total rotation around each face remains
as it was.

It remains to show that the resulting orthogonal representation is a valid (σ ,τ)-
orthogonal representation. First, Condition (I) ensures that we never increase the
number of bends of an edge e above �ex(e). Moreover, due to the exception in Condi-
tion (II) where v is one of the poles, we never change the rotation of one of the poles.
Thus the number of free incidences to the outer face are not changed. �

As mentioned in Section 2.3, depending on σ and τ , there is a lower bound on the
number of bends of (σ ,τ)-orthogonal representations. We denote this lower bound by
βlow; see Figure 2.4.

Fact 2.1. A (σ ,τ)-orthogonal representation has at least βlow =
⌈σ + τ

2

⌉
− 1 bends.

For a valid orthogonal representation with a large number of bends, the following
lemma states that we can reduce its bends by bending along a valid cycle. This can
later be used to show that the cost function of an st-graph is 0 on a signi�cantly large
interval. Or in other words, arbitrary alterations of cost 0 and cost ∞ that are hard
to handle only occur on a small interval (depending on k). The lemma and its proof
are a generalization of Lemma 1 from [Blä+14] that incorporates in�exible edges. For
σ = τ = 3 a slightly weaker result holds.

Lemma 2.6. Let G be a k-critical st-graph and let R be a valid (σ ,τ)-orthogonal repre-
sentation with σ + τ ≤ 5. If − rot(π (t ,s)) ≥ βlow + k + 1 holds, then there exists a valid
cycle C? such that bending R along C? reduces − rot(π (t ,s)) by 1.

Proof. We show the existence of a valid cycle C? such that s and t lie to the left and
right ofC?, respectively. Obviously, such a cycle must contain the outer face. The edge
in C? having the outer face as target ensures that the rotation of an edge or a vertex
of π (t ,s) is increased by 1 (which is the same as reducing − rot(π (t ,s)) by 1), where
this vertex is neither s nor t (due to the exception of Condition (II)). Thus, rot(π (t ,s))

48

An FPT-Algorithm for General Graphs Section 2.5

is increased by 1 when bending along C? and thus C? is the desired cycle. We �rst
show the following claim.

Claim 1. There exists a valid edge e? that either has the outer face as source and
corresponds to a primal edge e on the path π (s,t), or is a loop with s to its left and t to
right.

Assume the claimed edge e? does not exist. We �rst show that the following
inequality follows from this assumption. Afterwards, we show that this leads to a
contradiction to the inequality in the statement of the lemma.

rot(π (s,t)) ≤

k, if deg(s) = deg(t) = 1
k − 1, otherwise

(2.1)

We �rst show this inequality for the case where we have no critical and no semi-
critical edges, in particular k = 0. We consider the rotation of edges and vertices
on π (s,t) in the outer face д. If an edge or vertex has two incidences to д, we implicitly
consider the incidence corresponding to π (s,t). Recall that the rotation along π (s,t)
is the sum over the rotations of its edges and of its internal vertices. The rotation
of every edge e is rot(eд) = − �ex(e) as otherwise e? = (д, f) would be a valid edge
due to Condition (I). At an internal vertex v we obviously have rot(vд) ≤ 1, as larger
rotations are not possible at vertices. Hence, as the �exibility of every edge is at least 1
and we have an internal vertex less than we have edges, we get rot(π (s,t)) ≤ −1 and
thus Equation (2.1) is satis�ed.

Next, we allow semi-critical edges, but no critical edges (k = 0 remains). If
π (s,t) contains a semi-critical edge, it has a rotation of 0 (instead of −1 for normal
edges). Note that we still assume that there is no critical edge in π (s,t), i.e., k = 0.
Moreover, if an internal vertex v is incident to a semi-critical edge, it cannot have
degree 4. In this case, there must be a face incident to v such that v has rotation at
most 0 in this face. If this face was not д, Condition (II) would be satis�ed. Thus,
rot(vд) ≤ 0 follows for this case. Consider the decomposition of π (s,t) into maximal
subpaths consisting of semi-critical and normal edges. If follows that each subpath
consisting of semi-critical and normal edges hat rotation at most 0 and −1, respectively.
Moreover, the rotation at vertices between two subpaths is 0. Hence, if π (s,t) contains
at least one edge that is not semi-critical, we again get rot(π (s,t)) ≤ −1 and thus
Equation (2.1) is satis�ed. On the other hand, if π (s,t) consists of semi-critical edges, we
get the weaker inequality rot(π (s,t)) ≤ 0. If deg(s) = deg(t) = 1 holds, Equation (2.1)
is still satis�ed as we have to show a weaker inequality in this case. Otherwise, one of
the poles has degree at least 2 and thus the edges incident to it cannot be semi-critical
by de�nition. Thus, the path π (s,t) cannot consist of semi-critical edges.

Finally, we allow critical edges, i.e., k ≥ 0. If π (s,t) contains critical edges, we
�rst consider these edges to have �exibility 1, leading to Equation (2.1) with k = 0.

49

Chapter 2 Inflexible Edges in Orthogonal Drawings

Replacing an edge with �exibility 1 by an edge with �exibility 0 increases the rotation
along π (s,t) by at most 1. As π (s,t) contains at most k critical edges, rot(π (s,t)) is
increased by at most k yielding Equation (2.1).

In the case that deg(s) = deg(t) = 1, the equation rot(π (s,t)) = − rot(π (t ,s)) holds.
Equation (2.1) together with the inequality in the statement of the lemma leads to
k ≥ βlow + k + 1, which is a contradiction. In the following, we only consider the case
where deg(s) = deg(t) = 1 does not hold. Since the total rotation around the outer
face sums up to −4, we get the following equation.

rot(π (s,t)) + rot(π (t ,s)) + rot(sд) + rot(tд) = −4

Recall that rot(sд) = σ−3 and rot(tд) = τ−3. Using Equation (2.1) (deg(s) = deg(t) = 1
does not hold) and the inequality given in the lemmas precondition, we obtain the
following.

(
k − 1

)
−

(βlow³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ⌈σ + τ
2

⌉
− 1+k + 1

)
+

(
σ − 3

)
+

(
τ − 3

)
≥ −4

⇔ −
⌈σ + τ

2

⌉
+ (σ + τ) ≥ 3

⇔
⌊σ + τ

2

⌋
≥ 3 (2.2)

Recall that σ + τ ≤ 5 is a requirement of the lemma. Thus, Equation (2.2) is a
contradiction, which concludes the proof of Claim 1.

Claim 2. The valid cycle C? exists.

Let e? be the valid edge existing due to Claim 1. If e? is a loop with s to its left and
t to its right, then C? = e? is the desired valid cycle. This case will serve as base case
for a structural induction.

Let e? = (д, f) be a valid edge dual to e having the outer face д as source. As e? is
not a loop, the graphG − e is still connected and thus s and t are contained in the same
block of the graphG−e+st . LetH be this block (without st) and letS be the orthogonal
representation of H induced by R. Then H is a k-critical st-graph, as H is a subgraph
of G and H + st is biconnected. Moreover, the path π (t ,s) is completely contained
in H and thus its rotation does not change. Hence, all conditions for Lemma 2.6 are
satis�ed and since H contains fewer edges than G, we know by induction that there
exists a valid cycle C?

H such that bending S along C?
H reduces − rot(π (t ,s)) by 1. As

the dual graph H? of H can be obtained from G? by �rst contracting e? and then
taking a subgraph, all edges contained in H? were already contained in G?. Moreover,
all valid edges in H? are also valid in G? and thus each edge in C?

H corresponds to a
valid edge in G?. If these valid edges form a cycle in G?, then this is the desired cycle

50

An FPT-Algorithm for General Graphs Section 2.5

Figure 2.5: A cost function with gap k .
? · · · ? ∞ 0 0 ∞· · · · · ·

βlow βlow + k βmax

gap

cost

C?. Otherwise, one of the two edges in C?
H incident to the outer face of H is in G?

incident to the outer face д of G and the other is incident to the face f of G. In this
case the edges ofC?

H from inG? a path from f to д and thus adding the edge e? yields
the cycle C?, which concludes the proof of Claim 2 and thus of this lemma. �

We get the following slightly weaker result for the case σ = τ = 3.

Lemma 2.7. Let G be a k-critical st-graph and let R be a valid (3,3)-orthogonal repre-
sentation. If − rot(π (t ,s)) ≥ βlow + k + 2 holds, then there exists a valid cycle C? such
that bending R along C? reduces − rot(π (t ,s)) by 1.

Proof. Since σ = τ = 3 holds, we have βlow = 2 and thus − rot(π (t ,s)) ≥ k + 4. We
add an edge e = ss ′ with �exibility 1 to G, where s ′ is a new vertex, and consider the
orthogonal representation R ′ of G + e where e has one bend such that e contributes
a rotation of 1 to π (t ,s ′). Since the rotation at s in the outer face is 1, we have
rot(π (t ,s ′)) = rot(π (t ,s)) + 2. If follows that − rot(π (t ,s ′)) ≥ k + 4 − 2 = k + 2 holds.
Since R ′ is a (1,3) orthogonal representation of G + e , and since the lower bound β ′low
is 1 for (1,3) orthogonal representations, the precondition of Lemma 2.6, namely the
inequality − rot(π (t ,s ′)) ≥ β ′low + k + 1, is satis�ed, which concludes the proof. �

The previous lemmas basically show that the existence of a valid orthogonal repre-
sentation with a lot of bends implies the existence of valid orthogonal representations
for a “large” interval of bend numbers. This is made more precise in the following.

Let Bστ be the set containing an integer β if and only if G admits a valid (σ ,τ)-
orthogonal representation with β bends. Assume G admits a valid (σ ,τ)-orthogonal
representation, i.e., Bστ is not empty. We de�ne the maximum bend value βmax to be
the maximum in Bστ . Moreover, let β ∈ Bστ be the smallest value, such that every
integer between β and βmax is contained in Bστ . Then we call the interval [βlow,β − 1]
the (σ ,τ)-gap of G . The value β − βlow is also called the (σ ,τ)-gap of G; see Figure 2.5.

Lemma 2.8. The (σ ,τ)-gap of a k-critical st-graph G is at most k if σ + τ ≤ 5. The
(3,3) gap of G is at most k + 1.

Proof. In the following, we assume σ + τ ≤ 5; the case σ = τ = 3 works literally the
same when replacing Lemma 2.6 by Lemma 2.7. Let R be a valid (σ ,τ)-orthogonal
representation with β ≥ βlow + k + 1 bends. We show the existence of a valid (σ ,τ)-
orthogonal representation with β − 1 bends. It follows that the number of bends can
be reduced step by step down to βlow + k , which shows that the gap is at most k .

51

Chapter 2 Inflexible Edges in Orthogonal Drawings

As R has β bends, either − rot(π (s,t)) = β or − rot(π (t ,s)) = β . Without loss of
generality, we assume − rot(π (t ,s)) = β ≥ βlow+k+1. Due to Lemma 2.6 there exists a
valid cycleC?, such that bending alongC? reduces− rot(π (t ,s)) by 1. This also reduces
the number of bends by 1 (and thus yields the desired orthogonal representation) if
− rot(π (s,t)) is not increased above β−1. Assume for a contradiction that − rot(π (s,t))
was increased above β−1. Then in the resulting orthogonal representation− rot(π (s,t))
is greater than βlow and − rot(π (t ,s)) is at least βlow. It follows, that every (σ ,τ)-
orthogonal representation has more than βlow bends, which contradicts the fact, that
βlow is a tight lower bound. �

The following lemma basically expresses the gap of an st-graph in terms of the
rotation along π (s,t) instead of the number of bends.

Lemma 2.9. Let G be an st-graph with (σ ,τ)-gap k . The set {ρ | G admits a valid
(σ ,τ)-orthogonal representation with rot(π (s,t)) = ρ} is the union of at most k + 1
intervals.

Proof. Recall that an orthogonal representation has β bends if either − rot(π (s,t)) = β
or − rot(π (t ,s)) = β . We �rst consider the case that − rot(π (s,t)) = β for any number
of bends β ∈ [βlow,βmax].

By the de�nition of the gap, there exists a valid orthogonal representation for
− rot(π (s,t)) ∈ [βlow + k,βmax], which forms the �rst interval. Moreover, G does
not admit a valid orthogonal representation with βlow + k − 1 bends, since the gap
would be smaller otherwise. Thus it remains to cover all allowed values contained
in [βlow,βlow + k − 2] by intervals. In the worst case, exactly every second value is
possible. As [βlow,βlow + k − 2] contains k − 1 integers, this results in d(k − 1)/2e
intervals of size 1. Thus, we can cover all allowed values for rot(π (s,t)) in case
− rot(π (s,t)) ∈ [βlow + k,βmax] holds using only d(k − 1)/2e + 1 intervals.

It remains to consider the case whereG has β bends due to the fact that the equation
− rot(π (t ,s)) = β holds. With the same argument we can cover all possible values of
π (t ,s) using d(k − 1)/2e + 1 intervals. As rot(π (s,t)) equals − rot(π (t ,s)) shifted by
some constant, we can cover all allowed values for rot(π (s,t)) using 2 · d(k − 1)/2e + 2
intervals. If k − 1 is even, this evaluates to k + 1 yielding the statement of the lemma. If
k−1 is odd and we assume the above described worst case, then we need one additional
interval. However, in this case there must exists a valid orthogonal representation with
βlow bends and we counted two intervals for this bend number, namely for the case
− rot(π (s,t)) = βlow and− rot(π (t ,s)) = βlow. We show that a single interval su�ces to
cover both cases by showing that either − rot(π (s,t)) = βlow or − rot(π (s,t)) = βlow−1
holds if − rot(π (t ,s)) = βlow. This again leads to the desired k + 1 intervals.

As the rotation around the outer face is −4, the equation − rot(π (s,t)) = σ + τ −

52

An FPT-Algorithm for General Graphs Section 2.5

2 + rot(π (t ,s)) holds. For − rot(π (t ,s)) = βlow we get the following.

σ + τ − 2 − βlow = σ + τ − 2 −
⌈σ + τ

2

⌉
+ 1 =

⌊σ + τ
2

⌋
− 1

If σ + τ is even, this is equal to βlow, otherwise it is equal to βlow − 1, which concludes
the proof. �

2.5.2 Computing the Cost Functions of Compositions

Let G be a graph with �xed planar embedding. We describe a �ow network, similar to
the one by Tamassia [Tam87] that can be used to compute orthogonal representations of
graphs with thick edges. In general, we consider a �ow network to be a directed graph
with a lower and an upper bound assigned to every edge and a demand assigned to
every vertex. The bounds and demands can be negative. An assignment of �ow-values
to the edges is a feasible �ow if it satis�es the following properties. The �ow-value of
each edge is at least its lower and at most its upper bound. For every vertex the �ow
on incoming edges minus the �ow on outgoing edges must equal its demand.

We de�ne the �ow network N as follows. The network N contains a node for
each vertex of G, the vertex nodes, each face of G, the face nodes, and each edge of G,
the edge nodes. Moreover, N contains arcs from each vertex to all incident faces, the
vertex-face arcs, and similarly from each edge to both incident faces, the edge-face arcs.
We interpret an orthogonal representation R of G as a �ow in N . A rotation rot(ef) of
an edge e in the face f corresponds to the same amount of �ow on the edge-face arc
from e to f . Similarly, for a vertex v incident to f the rotation rot(vf) corresponds to
the �ow from v to f .

Obviously, the properties (1)–(4) of an orthogonal representation are satis�ed if and
only if the following conditions hold for the �ow (note that we allow G to have thick
edges).

(1) The total amount of �ow on arcs incident to a face node is 4 (−4 for the outer face).

(2) The �ow on the two arcs incident to an edge node stemming from a (σ ,τ)-edge
sums up to 2 − (σ + τ).

(3) The total amount of �ow on arcs incident to a vertex node, corresponding to
the vertex v with incident edges e1, . . . ,e` occupying σ1, . . . ,σ` incidences of v is∑
(σi + 1) − 4.

(4) The �ow on vertex-face arcs lies in the range [−2,1].

Properties (1)–(3) are equivalent to the �ow conservation requirement when setting
appropriate demands. Moreover, property (4) is equivalent to the capacity constraints
in a �ow network when setting the lower and upper bounds of vertex-face arcs to −2

53

Chapter 2 Inflexible Edges in Orthogonal Drawings

and 1, respectively. In the following, we use this �ow network to compute the cost
function of a rigid composition of graphs. The termT�ow (`) denotes the time necessary
to compute a maximal �ow in a planar �ow network of size `.

Lemma 2.10. The (restricted) cost functions of a rigid composition of ` graphs can be
computed in O (2k ·T�ow (`)) time if the resulting graph is k-critical.

Proof. First note that in case of a rigid composition, computing “restricted” cost func-
tions makes only a di�erence for the poles of the skeleton (as all other vertices have
degree at least 3). However, enforcing 90◦ angles for the poles is already covered by
the number of incidences the resulting graph occupies at its poles.

Let H be the skeleton of the rigid composition of the graphs G1, . . . ,G` and let G be
the resulting graph with poles s and t . Before we show how to compute orthogonal
representations of G, we show that the number of incidences σi and τi a subgraph
Gi occupies at its poles si and ti is (almost) �xed. Assume si is not one of the poles
s or t of G. Then si has at least three incident edges in the skeleton H as H + st is
triconnected. Thus, the subgraphGi occupies at most two incidences in any orthogonal
representation of G, and hence si has either degree 1 or degree 2 in Gi . In the former
case σi is 1, in the latter σi has to be 2. If si is one of the poles of G, then it may
happen thatGi occupies incidences in some orthogonal representations ofG and three
incidences in another orthogonal representation. However, this results in a constant
number of combinations and thus we can assume that the values σi and τi are �xed
for i ∈ {1, . . . , `}.

To test whether G admits a valid (σ ,τ)-orthogonal representation, we can instead
check the existence of a valid orthogonal representation of H using thick edges for the
graphs G1, . . . ,G` (more precisely, we use a (σi ,τi)-edge for Gi). To ensure that substi-
tuting the thick edges with the subgraphs yields the desired orthogonal representation,
we have to enforce the following properties for the orthogonal representation of H .
First, the orthogonal representation of H has to occupy σ and τ incidences at its poles.
Second, the thick edge corresponding to a subgraph Gi is allowed to have βi bends
only if Gi has a valid (σi ,τi)-orthogonal representation with βi bends. Note that this
tests the existence of an orthogonal representation without restriction to the number
of bends. We will show later, how to really compute the cost function of G.

Restricting the allowed �ows in the �ow network such that they only represent
(σ ,τ)-orthogonal representations is easy. The graph H occupies σ incidences if and
only if rot(sf) = σ −3 (where f is the outer face). As the rotation rot(sf) is represented
by the �ow on the corresponding vertex-face arc, we can enforce rot(sf) = σ − 3 by
setting the upper and lower bound on the corresponding arc to σ − 3. Analogously,
we can ensure that H occupies τ incidences of t .

In the following we show how to restrict the number of bends of a thick edge
ei = siti to the possible number of bends of the subgraph Gi it represents. Assume Gi
is ki -critical. It follows from Lemma 2.8 that Gi has gap at most ki . Thus, the possible

54

An FPT-Algorithm for General Graphs Section 2.5

values for rot(π (si ,ti)) can be expressed as the union of at most ki + 1 intervals due to
Lemma 2.9. Restricting the rotation to an interval can be easily done using capacities.
However, we get ki + 1 possibilities to set these capacities, and thus combining these
possibilities for all thick edges results in ∏

(ki + 1) �ow networks.
We show that ∏

(ki + 1) is in O (2k). To this end, we �rst show that ∑
ki ≤ k holds,

by proving that an edge that is critical in one of the subgraphs Gi is still critical in the
graph G. This is obviously true for critical edges in Gi not incident to a pole of Gi , as
these in�exible edges already have endpoints with degree 4 in Gi . An edge e incident
to a pole, without loss of generality si of Gi is critical in Gi if si has degree at least 2.
If si remains a pole of G, then e is also critical with respect to G. Otherwise, si has
degree 4 in G, which comes from the fact that the skeleton H becomes triconnected
when adding the edge st .

As the 0-critical subgraphs do not play a role in the product ∏
(ki + 1), we only

consider the d subgraphs G1, . . . ,Gd such that Gi (for i ∈ {1, . . . ,d}) is ki -critical
with ki ≥ 1. To �nd the worst case, we want to maximize ∏

(ki + 1) with respect to∑
ki ≤ k (which is equivalent to �nding a hypercuboid of dimension d with maximal

volume and with �xed perimeter). We get the maximum by setting ki = k/d for all
subgraphs, which results in (k/d + 1)d combinations. Substituting k/d = x leads
to xk/x , which becomes maximal, when x1/x is maximal. Since f (x) = x1/x is a
decreasing function, we get the worst case for x = 1 (when restricting x to positive
integers), which corresponds to d = k graphs that are 1-critical. Thus, in the worst
case, we get O (2k) di�erent combinations.

Since the �ow networks have size O (`), we can test the existence of a valid orthog-
onal representation of G in O (2k ·T�ow (`)) time. However, we want to compute the
cost function instead. Assume we want to test the existence of a valid orthogonal
representation with a �xed number of bends β . In the following, we show how to
restrict each of the �ow networks to allow only �ows corresponding to orthogonal
representation with β bends. Then G clearly admits a valid orthogonal representation
with β bends if and only if one of these �ow networks admits a valid �ow. The or-
thogonal representation of H (and thus the resulting one of G) has β bends if either
− rot(π (s,t)) = β or − rot(π (t ,s)) = β . We can consider these two cases separately,
resulting in a constant factor in the running time. Thus, it remains to ensure that
− rot(π (s,t)) is �xed to β . This can be done by splitting the face node corresponding
to the outer face such that exactly the arcs entering f from edge nodes or vertex
nodes corresponding to edges and internal vertices of π (s,t) are incident to one of the
resulting nodes. Restricting the �ow between the two resulting nodes representing
the outer face f to β obviously enforces that − rot(π (s,t)) = β holds. Thus, we could
get the cost function of G by doing this for all possible values of β . However, we can
get the cost function more e�ciently.

Instead of �xing the value of − rot(π (s,t)) to β , we can compute maximum �ows

55

Chapter 2 Inflexible Edges in Orthogonal Drawings

to minimize or maximize it. Let rotmin and rotmax be the resulting minimum and
maximum for − rot(π (s,t)), respectively. Note that, if rotmax is less than βlow, then
there is no orthogonal representation where the number of bends are determined by
the rotation along π (s,t). Moreover, if rotmin < βlow, we set rotmin = βlow. It follows
from basic �ow theory that all values between rotmin and rotmax are also possible.
Thus, after computing the two �ows, we can simply set the cost function of G to 0
on that interval. To save a factor of k in the running time we do not update the
cost function of G immediately, but store the interval [rotmax,rotmin]. In the end, we
have O (2k) such intervals. The maximum of all upper bounds of these intervals is
clearly βmax (the largest possible number of bends of G). It remains to extract the cost
function of G on the interval [βlow,βlow + k − 1], since the cost function of G has gap
at most k (Lemma 2.8). This can be done by sorting all intervals having their lower
bound in [βlow,βlow + k − 1] by their lower bound. This can be done in O (k + 2k)
time, since we sort O (2k) values in a range of size k . Finally, the cost function on
[βlow,βlow + k − 1] can be easily computed in O (k + 2k) time by scanning over this list.
As this is dominated by the computation of all �ows, we get an overall running time
of O (2k ·T�ow (`)). �

Lemma 2.11. The (restricted) cost functions of a series and a parallel composition can
be computed in O (k2 + 1) time if the resulting graph is k-critical.

Proof. First, consider only the non-restricted case. Let G1 and G2 be the two graphs
that should be composed and let G be the resulting graph. As in the rigid case, we can
use �ow networks to compute the cost functions of G. However, this time the �ow
network has constant size and thus we do not have to be so careful with the constants.

Assume G1 and G2 are k1- and k2-critical, respectively. Up to possibly a constant
number, all critical edges in Gi are also critical in G, i.e., ki ∈ O (k + 1) (note that the
“+1” is necessary for the case k = 0). Thus, both graphs G1 and G2 have a gap of size
O (k + 1). It follows that the possible rotations values for π (si ,ti) (where si and ti are
the poles ofGi) are the union of O (k + 1) intervals, which results in O (k2 + 1) possible
combinations and thus O (k2 + 1) �ow networks of constant size. Note that we get
an additional constant factor by considering all possible values for the number of
occupied incidences of the graphs Gi . Extracting the cost functions out of the results
from the �ow computation can be done analogously to the case where we had a rigid
composition (proof of Lemma 2.10), which �nally results in the claimed running time
O (k2 + 1).

To compute the restricted cost functions, one possibly has to restrict the rotation at
some vertices to −1 or 1, which can be obviously done without increasing the running
time. �

Theorem 2.5. FlexDraw for k-critical graphs can be solved in O (2k · n ·T�ow (n))

56

Conclusion Section 2.6

Proof. By Theorem 2.3, we get an algorithm with the running timeO (n · (n ·TS +n ·TP +
TR (n))), whereTS ,TP ∈ O (k2 + 1) (Lemma 2.11) andTR (`) = 2k ·T�ow (`) (Lemma 2.10)
holds. This obviously yields the running time O ((k2 + 1) · n2 + 2k · n · T�ow (n)) =
O (2k · n ·T�ow (n)). �

2.6 Conclusion

In this chapter, we have investigated the computational complexity of FlexDraw in
the presence of in�exible edges. The main result is the FPT-algorithm with running
time O (2k · n ·T�ow (n)). This is more or less the best one can hope for as the problem
becomes NP-hard for k ∈ O (nε) in�exible edges (for any ε > 0) that are evenly
distributed over the graph, which includes the case that the in�exible edges form a
matching.

In Chapter 3, we give an algorithm solving OptimalFlexDraw in the absence of
in�exible edges (with the additional requirement that the cost functions are convex).
It is a natural open question whether these results can be combined: Is there an FPT-
algorithm for OptimalFlexDraw if only k edges are in�exible, i.e., if only k edges
cause cost on the �rst bend?

One might try to apply a similar approach as in this chapter by showing that the cost
functions of st-graphs are only non-convex if they contain in�exible edges. Then, when
encountering a rigid composition, one could separate these non-convex cost functions
into convex parts and consider all combinations of these convex parts. Unfortunately,
this approach fails for reasons we discuss in the conclusion of Chapter 3.

57

3 Bend Minimization with
Convex Bend Costs

In this chapter, we consider bend minimization in planar orthogonal drawings. More
precisely, we investigate the problem OptimalFlexDraw, where each edge e has
its individual cost function coste : N0 → R. The cost caused by the edge e with ρ
bends is then coste (ρ). This formulation is very general, in fact, it generalizes the
bend-minimization problems usually considered in two directions. First, allowing
arbitrary cost functions uni�es multiple previous problems that usually �x the cost
function, e.g., to “each bend costs 1”. Second, allowing individual cost functions re�ects
the fact that edges have varying importance in typical applications.

This generality of the problem OptimalFlexDraw has the downside that it includes
an NP-hard problem [GT01] and thus is NP-hard itself. However, we show that it can
be solved e�ciently if (i) the cost function of each edge is convex and (ii) each edge
has positive �exibility, i.e., the �rst bend on each edge does not cause any cost. Our
algorithm takes timeO (n ·T�ow (n)) andO (n2 ·T�ow (n)) for biconnected and connected
graphs, respectively, whereT�ow (n) denotes the time to compute a minimum-cost �ow
in a planar network of size n with multiple sources and sinks. This result is the �rst
polynomial-time bend-optimization algorithm for general 4-planar graphs optimizing
over all embeddings. Previous work considers restricted graph classes and unit costs.
Moreover, the result is optimal in the sense that omitting one of the two conditions
makes OptimalFlexDraw NP-hard.

This chapter is based on joint work with Ignaz Rutter and Dorothea Wagner [BRW13].

3.1 Introduction

Tamassia [Tam87] showed that the total number of bends in orthogonal drawings
can be e�ciently minimized if the planar embedding of the input graph is �xed.
Tamassia’s algorithm is based on a reduction to a minimum-cost �ow network; see
the preliminaries in Section 1.4.4. In this �ow network, each unit of �ow on certain
arcs corresponds to a bend in the resulting drawing. To solve the more general
OptimalFlexDraw problem for plane graphs, one has to use the given cost functions
as cost functions in the �ow network. As minimum-cost �ows can be e�ciently
computed for convex �ow networks, OptimalFlexDraw can be solved e�ciently if
the cost functions are convex and the planar embedding of the graph is �xed; see
also Figure 3.1b. It is not hard to see, that the problem becomes NP-hard if the cost
functions are non-convex; see Figure 3.1a.

59

Chapter 3 Bend Minimization with Convex Bend Costs

�xed planar embedding

variable planar embedding

(a) (b)

(c) (d) (e)

arbitrary cost
NP-hard

0 1 2 3 4
0
1
2
3
4 convex cost

e�cient alg.

0 1 2 3 4
0
1
2
3
4

�ex(·) = 0
NP-hard

0

∞

0 1 2 3 4

�ex(·) ≥ 1
e�cient alg.

0

∞

0 1 2 3 4

�ex(·) ≥ 2
trivial

0

∞

0 1 2 3 4

(f)
0 1 2 3 4

0
1
2
3
4 unit cost

e�cient alg.

series-parallel
or 3-planar gr.

(g)
0 1 2 3 4

0
1
2
3
4 monotone cost

series-parallel gr.
e�cient alg.

(h)
0 1 2 3 4

0
1
2
3
4

e�cient alg.

convex cost
and �ex(·) ≥ 1

Figure 3.1: Illustration of the related work on OptimalFlexDraw. Each sub-�gure represents
one result (either NP-hardness or e�cient algorithm) by sowing a type of cost function and
maybe a restriction to a certain graph class for which the result holds. The number of bends
and the resulting costs are on the x- and y-axis, respectively.

Recall from Section 2.1 that the planar embedding of the graph may have a huge
impact on the number of bends; see Figure 2.1. We thus consider OptimalFlexDraw
in the variable embedding setting. Although this problem is NP-hard even for the base
case of testing whether there is a drawing without bends [GT01] (Figure 3.1c), it can
be solved e�ciently for restricted cases. The underlying decision problem FlexDraw
can be e�ciently solved if �ex(e) ≥ 1 for every edge e [Blä+14] and even becomes
trivial if �ex(e) ≥ 2 [BK98]; see Figure 3.1d and Figure 3.1e.

Di Battista et al. [DLV98] give an algorithm minimizing the total number of bends
for maximum-degree 3 and series-parallel graphs; see Figure 3.1f. In the previous
chapter (see Section 2.4), we showed that one still obtains an e�cient algorithm for
series-parallel graphs if arbitrary monotone cost functions are allowed; see Figure 3.1g.

60

Introduction Section 3.1

Contribution and Outline

The main result of this chapter is the �rst polynomial-time bend-minimization algo-
rithm for general 4-planar graphs optimizing over all planar embeddings. Previous
work considers only restricted graph classes and unit costs. We solve OptimalFlex-
Draw if (i) all cost functions are convex and (ii) the �rst bend is for free, i.e., the
instance has positive �exibility; see Figure 3.1h. We note that not requiring positive
�exibility makes the problem NP-hard as the base case of testing for cost 0 is already
hard; compare the NP-hardness in Figure 3.1c and the e�cient solvability in Figure 3.1d.
Moreover, requiring convex cost is necessary as non-convex cost makes the problem
NP-hard even for the �xed-embedding case; compare Figure 3.1a with Figure 3.1b.

Our algorithm in particular allows to e�ciently minimize the total number of bends
over all planar embeddings, where one bend per edge is free. Note that this is an
optimization version of FlexDraw where each edges has �exibility 1, as a drawing
with cost 0 exists if and only if FlexDraw has a valid solution. Moreover, as it is
known that every 4-planar graph has an orthogonal representation with at most two
bends per edge [BK98], our result can also be used to create such a drawing minimizing
the number of edges having two bends by setting the costs for three or more bends
to∞.

To derive the algorithm for OptimalFlexDraw, we show the existence of an optimal
solution with at most three bends per edge except for a single edge per block with up
to four bends, con�rming a conjecture of Rutter [Rut11].

Our strategy for solving OptimalFlexDraw for biconnected graphs optimizing
over all planar embedding is similar to the framework presented in Chapter 2. We use
dynamic programming on the SPQR-tree of the graph. Every node in the SPQR-tree
corresponds to a split component (its pertinent graph) and we compute cost functions
for these split components (which are st-graphs) determining the cost depending on
how strongly the split component is bent. We compute such a cost function from the
cost functions of the children using a �ow network similar to the one described by
Tamassia [Tam87].

As computing �ows with minimum cost is NP-hard for non-convex costs we need
to ensure that not only the cost functions of the edges but also the cost functions of
the split components we compute are convex. However, this is not true at all, see
Figure 3.2 for an example. This is not even true if every edge can have a single bend
for free and then has to pay cost 1 for every additional bend, see Figure 3.2c. To solve
this problem, we essentially show that it is su�cient to compute the cost functions on
the small interval [0,3]. We can then show that the cost functions we compute are
(almost) always convex on this interval.

We �rst consider the decision problem FlexDraw for the case that the planar
embedding is �xed in Section 3.2. In this restricted setting we are able to prove the
existence of valid drawings with special properties. Bläsius et al. [Blä+14] show that

61

Chapter 3 Bend Minimization with Convex Bend Costs

(b)

(c)(a)

E1

E2

cost
0

0

bends 1 2 3 4 5

0 2 5 8

1 2 3 6

0 1 2 3 4
0
1
2
3
4
5
6

5

cost

bends

not convex

Figure 3.2: (a) Two parallel edges, the black edge has one bend for free, every additional
bend costs 1, the blue edge has two bends for free, every additional bend costs 2. Whether
embedding E1 or E2 is better depends on the number of bends. The minimum (marked by
blue boxes) yields a non-convex cost function. (b) The non-convexity in (a) does not rely on
multiple edges; the blue edge could be replaced by the shown gadget where each edge of the
gadget has one bend for free and every additional bend costs 2. (c) This graph has a non-convex
cost function even if every edge has one bend for free and each additional bend costs 1.

“rigid” graphs do not exist in this setting in the sense that a drawing that is bent
strongly can be unwound under the assumption that the �exibility of every edge is at
least 1. In other words this shows that st-graphs with positive �exibility behave similar
to single edges with positive �exibility. We present a more elegant proof yielding a
stronger result that can then be used to reduce the number of bends of every edge
down to three (at least for biconnected graphs and except for a single edge on the
outer face).

In Section 3.3 we extend this to split components of a graph. More precisely, we show
that in a biconnected graph the split components corresponding to the nodes in its
SPQR-tree can be assumed to have only up to three bends. In Section 3.4 we show that
these results for the decision problem FlexDraw can be extended to the optimization
problem OptimalFlexDraw. With this result we are able to drop the �xed planar
embedding (Section 3.5). We �rst consider biconnected graphs in Section 3.5.1 and
compute cost functions on the interval [0,3], which can be shown to be (almost always)
convex on that interval, bottom up in the SPQR-tree. In Section 3.5.2 we extend this
result to connected graphs using the BC-tree (see the preliminaries in Section 1.4.3 for
a de�nition).

3.2 Valid Drawings with Fixed Planar Embedding

In this section we consider the problem FlexDraw for the case that the planar embed-
ding is �xed. We show that the existence of a valid orthogonal representation implies

62

Valid Drawings with Fixed Planar Embedding Section 3.2

(a)

s

t

π (s, t)

π (t, s)

(b)

s

t

(c)

s

t

t ′

(e)

s

t

(f)

s

t

t ′

(d)

s

t

π (s, t)

π (t, s)

Figure 3.3: A strictly directed path from t to s has a lower bound for its rotation. This yields
upper bounds for paths from s to t (Lemma 3.1).

the existence of a valid orthogonal representation with special properties. We �rst
show the following. Given a biconnected 4-planar graph with positive �exibility and
an orthogonal representation R such that two vertices s and t lie on the outer face f ,
then the rotation along πf (s,t) can be reduced by 1 if it is at least 0. This result is a
key observation for the algorithm solving the decision problem FlexDraw [Blä+14].
It in a sense shows that “rigid” graphs that have to bent strongly do not exists. This
kind of graphs play an important role in the NP-hardness proof of 0-embeddability by
Garg and Tamassia [GT01]. Moreover, we show the existence of a valid orthogonal
representation R ′ inducing the same planar embedding and having the same angles
around vertices as R such that every edge has at most three bends in R ′, except
for a single edge on the outer face with up to �ve bends. If we allow to change the
embedding slightly, this special edge has only up to four bends.

Let G be a 4-planar graph with positive �exibility and valid orthogonal represen-
tation R, and let e be an edge. If the number of bends of e equals its �exibility, we
orient e such that its bends are right bends. Otherwise, e remains undirected. As G
may include directed and undirected edges, we say that G is a mixed graph. A path
π = (v0, . . . ,vk) in a mixed graph G is a directed path if the edge connecting vi−1 with
vi is either undirected or directed from vi−1 to vi for i = 1, . . . ,k . A path containing
only undirected edges can be seen as directed path for both possible directions. The
path π is strictly directed if it is directed and does not contain undirected edges. These
de�nitions directly extend to (strictly) directed cycles.

Given a (strictly) directed cycle C the terms left(C) and right(C) denote the set of
edges and vertices ofG lying to the left and right ofC , respectively, with respect to the
orientation of C . A cut (U ,V \U) is said to be directed from U to V \U , if every edge
{u,v} withu ∈ U andv ∈ V \U is either directed fromu tov or undirected. According
to the above de�nitions a cut is strictly directed from U to V \ U if it is directed
and contains no undirected edges. Before we show how to unwind an orthogonal
representation that is bent strongly we need the following technical lemma.

Lemma 3.1. Let G be a graph with positive �exibility and vertices s and t such that
G + st is biconnected and 4-planar. Let further R be a valid orthogonal representation

63

Chapter 3 Bend Minimization with Convex Bend Costs

with s and t incident to the common face f such that πf (t ,s) is strictly directed from t
to s . Then the following holds.

(1) rotR (πf (s,t)) ≤ −3 if f is the outer face and G does not consist of a single path

(2) rotR (πf (s,t)) ≤ −1 if f is the outer face

(3) rotR (πf (s,t)) ≤ 5

Proof. We �rst consider the case where f is the outer face (Figure 3.3a), i.e., cases (1)
and (2). Due to the fact that πf (t ,s) is strictly directed from t to s and the �exibility
of every edge is positive, each edge on πf (t ,s) has rotation at least 1. Moreover, the
rotations at vertices along the path πf (t ,s) are at least −1 since πf (t ,s) is simple as
G+st is biconnected. Since the number of internal vertices on a path is one less than the
number of edges this yields rot(πf (t ,s)) ≥ 1; see Figure 3.3b. If G consists of a single
path this directly yields rot(πf (s,t)) ≤ −1 and thus concludes case (2). For case (1) �rst
assume that the degrees of s and t are not 1 (Figure 3.3b), i.e., rot(sf),rot(tf) ∈ {−1,0,1}
holds. Since f is the outer face the equation rot(πf (s,t)) + rot(tf) + rot(πf (t ,s)) +
rot(sf) = −4 holds and directly implies the desired inequality rot(πf (s,t)) ≤ −3. In
the case that for example t has degree 1 (and deg(s) > 0), we have rot(tf) = −2
and rot(sf) ∈ {−1,0,1}, thus the considerations above only yield rot(πf (s,t)) ≤ −2.
However, in this case there necessarily exists a vertex t ′ where the paths πf (s,t) and
πf (t ,s) split, as illustrated in Figure 3.3c. More precisely, let t ′ be the �rst vertex on
πf (s,t) that also belongs to πf (t ,s). Obviously, the degree of t ′ is at least 3 and thus
rot(t ′f) (with respect to the path πf (t ,s)) is at least 0. Hence we obtain the stronger
inequality rot(πf (t ,s)) ≥ 2 yielding the desired inequality rot(πf (s,t)) ≤ −3. If s and
t both have degree 1 we cannot only �nd the vertex t ′ but also the vertex s ′ where
the paths πf (s,t) and πf (t ,s) split. Since G + st is biconnected these two vertices are
distinct and the estimation above works, �nally yielding rot(πf (s,t)) ≤ −3.

If f is an internal face (Figure 3.3d), i.e., case (3) applies, we start with the equation
rot(πf (s,t))+rot(tf)+rot(πf (t ,s))+rot(sf) = 4. First we consider the case that neither
t nor s have degree 1. Thus, rot(tf),rot(sf) ∈ {−1,0,1}. With the same argument as
above we obtain rot(πf (t ,s)) ≥ 1 and hence rot(πf (s,t)) ≤ 5; see Figure 3.3e. Now
assume that t has degree 1 and s has larger degree. Then rot(tf) = −2 holds and
the above estimation does not work anymore. Again, at some vertex t ′ the paths
πf (t ,s) and πf (s,t) split as illustrated in Figure 3.3f. Obviously, the degree of t ′ needs
to be greater than 2 and thus rot(t ′f) is at least 0. This yields rot(πf (t ,s)) ≥ 2 in
the case that deg(t) = 1, compensating rot(tf) = −2 (instead of rot(tf) ≥ −1 in the
other case). To sum up, we obtain the desired inequality rot(πf (s,t)) ≤ 5. The case
deg(s) = deg(t) = 1 works analogously. �

The �ex graphG×R ofG with respect to a valid orthogonal representation R is de�ned
to be the dual graph of G such that the dual edge e? is undirected if e is undirected,

64

Valid Drawings with Fixed Planar Embedding Section 3.2

otherwise it is directed from the face right of e to the face left of e . Figure 3.4a shows
an example graph with an orthogonal drawing together with the corresponding �ex
graph. Assume we have a simple directed cycle C in the �ex graph. Then bending
along this cycle yields a new valid orthogonal representation R ′ which is de�ned as
follows. Let e? = (f1, f2) be an edge contained inC dual to e . Then we decrease rot(ef1)
and increase rot(ef2) by 1. It can be easily seen that the necessary properties for R ′
to be an orthogonal representation are satis�ed. Obviously, rotR′ (ef1) = − rotR′ (ef2)
holds and rotations at vertices did not change. Moreover, the rotation around a face f
does not change since f is either not contained in C or it is contained in C , but then it
has exactly one incoming and exactly one outgoing edge. Note that bending along a
cycle in the �ex graph preserves the planar embedding of G and for every vertex the
rotations in all incident faces. The following lemma shows that a high rotation along
a path πf (s,t) for two vertices s and t sharing the face f can be reduced by 1 using a
directed cycle in the �ex graph.

Lemma 3.2. Let G be a biconnected 4-planar graph with positive �exibility, a valid
orthogonal representation R and s and t on a common face f . The �ex graphG×R contains
a directed cycle C such that f ∈ C , s ∈ left(C) and t ∈ right(C), if one of the following
conditions holds.

(1) rotR (πf (s,t)) ≥ −2, f is the outer face and πf (s,t) is not strictly directed from t to s

(2) rotR (πf (s,t)) ≥ 0 and f is the outer face

(3) rotR (πf (s,t)) ≥ 6

Proof. Figure 3.4b shows the path πf (s,t) together with the desired cycle C . Due to
the duality of a cycle in the dual and a cut in the primal graph a directed cycleC inG×R
having s and t to the left and to the right of C , respectively, induces a directed cut in
G that is directed from s to t and vice versa. Recall that directed cycles and cuts may
also contain undirected edges. Assume for contradiction that such a cycle C does not
exist.

Claim 1. The graph G contains a strictly directed path π from t to s .

Every cut (S ,T) withT = V \ S , s ∈ S and t ∈ T separating s from t must contain an
edge that is directed from T to S , otherwise this cut would correspond to a cycle C
in the �ex graph that does not exist by assumption. Let T be the set of vertices in G
that can be reached by strictly directed paths from t . IfT contains s we found the path
π strictly directed from t to s . Otherwise, (S ,T) with S = V \T is a cut separating S
from T and there cannot be an edge that is directed from a vertex in T to a vertex in S
which is a contradiction, and thus the path π strictly directed from t to s exists, which
concludes the proof of the claim.

65

Chapter 3 Bend Minimization with Convex Bend Costs

(a) (b) (c) (d)

π (s,t)

f
C

s

t

s

t

π =
π (t ,s)

f ′

π (s,t)

s

t

π =
π (t ,s)

π (s,t)

f ′

Figure 3.4: (a) An orthogonal representation and the corresponding �ex graph (blue) where
every edge has �exibility 1. (b, c, d) Illustration of Lemma 3.2.

Let G ′ be the subgraph of G induced by the paths π and πf (s,t) together with the
orthogonal representation R ′ induced by R.

We �rst consider case (1). Let f ′ be the outer face of the orthogonal representation
R ′. Obviously, πf ′ (s,t) = πf (s,t) and π = πf ′ (t ,s) holds, see Figure 3.4c. Moreover,
the graph G ′ + st is biconnected and G ′ does not consist of a single path since πf ′ (s,t)
and πf ′ (t ,s) are di�erent due to the assumption that πf (s,t) is not strictly directed
from t to s . Since πf ′ (t ,s) is strictly directed from t to s we can use Lemma 3.1(1)
yielding rotR′ (πf ′ (s,t)) ≤ −3 and thus rotR (πf (s,t)) ≤ −3, which is a contradiction.

For case (2) exactly the same argument holds except for the case where the strictly
directed path π is the path πf (s,t) strictly directed from t to s . In this case we have to
use Lemma 3.1(2) instead of Lemma 3.1(1) yielding rotR (πf (s,t)) ≤ −1, which is again
a contradiction.

In case (3) the subgraph G ′ of G induced by the two paths π and πf (s,t) again
contains s and t on a common face f ′, which may be the outer or an inner face, see
Figure 3.4c and Figure 3.4d, respectively. In both cases we obtain rotR (πf (s,t)) ≤ 5
due to Lemma 3.1(3), which is a contradiction. �

Lemma 3.2 directly yields the following corollary, showing that graphs with positive
�exibility behave very similar to single edges with positive �exibility.

Corollary 3.1. Let G be a graph with positive �exibility and vertices s and t such that
G + st is biconnected and 4-planar. Let further R be a valid orthogonal representation
with s and t on the outer face f such that ρ = rotR (πf (s,t)) ≥ 0. For every rotation
ρ ′ ∈ [−1,ρ] there exists a valid orthogonal representation R ′ with rotR′ (πf (s,t)) = ρ ′.

Proof. For the case that G itself is biconnected, the claim follows directly from Lem-
ma 3.2(2), since we can reduce the rotation along πf (s,t) stepwise by 1, starting with
the orthogonal representation R, until we reach a rotation of −1. For the case that
G itself is not biconnected we add the edge {s,t} to the orthogonal representation R
such that the path πf (s,t) does not change, i.e., πf (t ,s) consists of the new edge {s,t}.
Again Lemma 3.2(2) can be used to reduce the rotation stepwise down to −1. �

66

Valid Drawings with Fixed Planar Embedding Section 3.2

(a) (b) (c)

f1
s

t
e

πf1 (s,t)

πf1 (t ,s)
s

t

f1

e πf1 (t ,s)πf1 (s,t)

s

t

u

v

π (t ,s)π (u,v)

π (s,u)

π (v,t)

ee ′

f

Figure 3.5: Reducing the number of bends on edges (Theorem 3.1).

As edges with many bends imply the existence of paths with high rotation, we can
use Lemma 3.2 to successively reduce the number of bends of every edge down to
three, except for a single edge on the outer face. Since we only bend along cycles in
the �ex graph, neither the embedding nor the angles around vertices are changed.

Theorem 3.1. Let G be a biconnected 4-planar graph with positive �exibility, having a
valid orthogonal representation. ThenG has a valid orthogonal representation with the
same planar embedding, the same angles around vertices and at most three bends per
edge, except for at most one edge on the outer face with up to �ve bends.

Proof. In the following we essentially pick an edge with more than three bends, reduce
the number of bends by one and continue with the next edge. After each of these
reduction steps we set the �exibility of every edge down to max{ρ,1}, where ρ is the
number of bends it currently has. This ensures that in the next step the number of
bends of each edge either is decreased, remains as it is or is increased from zero to one.

We start with an edge e = {s,t} that is incident to two faces f1 and f2 and has more
than three bends. Due to the fact that we traverse inner faces in clockwise and the
outer face in counter-clockwise direction, the edge e forms in one of the two faces
the path from s to t and in the other face the path from t to s . Assume without loss
of generality that πf1 (t ,s) and πf2 (s,t) are the paths on the boundary of f1 and f2,
respectively, that consist of e . Note that rot(πf1 (t ,s)) = − rot(πf2 (s,t)) holds and we
assume that rot(πf1 (t ,s)) is not positive. As e was assumed to have more than three
bends, the inequality rot(πf1 (t ,s)) ≤ −4 holds. We distinguish between the two cases
that f1 is an inner or the outer face. We �rst consider the case that f1 is an inner face;
Figure 3.5a illustrates this situation for the case where e has four bends. Then the
rotations around the face f1 sum up to 4. As the rotations at the vertices s and t can
be at most 1, we obtain rot(πf1 (s,t)) ≥ 6. Thus we can apply Lemma 3.2(3) to reduce
the rotation of πf1 (s,t) by bending along a cycle in the �ex graph that contains f1 and
separates s from t . Obviously, this increases the rotation along πf1 (t ,s) by 1 and thus
reduces the number of bends of e by 1.

67

Chapter 3 Bend Minimization with Convex Bend Costs

For the case that f1 is the outer face we �rst ignore the case where e has four or �ve
bends and show how to reduce the number of bends to �ve; Figure 3.5b shows the case
where e has six bends. Thus the inequality rot(πf1 (t ,s)) ≤ −6 holds. As the rotations
around the outer face f1 sum up to −4 and the rotations at the vertices s and t are at
most 1, the rotation along πf1 (s,t) must be at least 0. Thus we can apply Lemma 3.2(2)
to reduce the rotation of πf1 (s,t) by 1, increasing the rotation along πf1 (t ,s), and thus
reducing the number of bends of e by one.

Finally, we obtain an orthogonal representation having at most three bends per
edge except for some edges on the outer face with four or �ve bends having their
negative rotation in the outer face. If there is only one of these edges left we are
done. Otherwise let e = {s,t} be one of the edges with rot(πf (t ,s)) ∈ {−5,−4},
where f is the outer face. Then the inequality rot(πf (s,t)) ≥ −2 holds by the same
argument as before and we can apply Lemma 3.2(1) to reduce the rotation, if we can
ensure that πf (s,t) is not strictly directed from t to s . To show that, we make use
of the fact that πf (s,t) contains an edge e ′ = {u,v} with at least four bends due to
the assumption that e was not the only edge with more than three bends. Assume
without loss of generality that u occurs before v on πf (s,t), thus πf (s,t) splits into
the three parts πf (s,u), πf (u,v) and πf (v,t). Recall that rot(πf (s,t)) ≥ −2 holds and
thus rot(πf (s,u)) + rot(u) + rot(πf (u,v)) + rot(v) + rot(πf (v,t)) ≥ −2. As the rotation
at the vertices u and v is at most 1 and the rotation of πf (u,v) at most −4 it follows
that rot(πf (s,u)) + rot(πf (v,t)) ≥ 0. Figure 3.5c illustrates the situation for the case
where e and e ′ have four bends and rot(πf (s,u)) = rot(πf (v,t)) = 0. Note that at least
one of the two paths is not degenerate in the sense that s , u or v , t , otherwise the
total rotation around the outer face would be at most −6, which is a contradiction.
Assume without loss of generality that rot(πf (s,u)) ≥ 0. It follows that πf (s,u) cannot
be strictly directed fromu to s and since πf (s,u) is a subpath of πf (s,t) the path πf (s,t)
cannot be strictly directed from t to s . This �nally shows that we can use part (1) of
Lemma 3.2 implying that we can �nd a valid orthogonal representation such that at
most a single edge with four or �ve bends remains, whereas all other edges have at
most three bends. �

If we allow the embedding to be changed slightly, we obtain an even stronger result.
Assume the edge e lying on the outer face has more than three bends. If e has �ve
bends, we can reroute it in the opposite direction around the rest of the graph, i.e., we
can choose the internal face incident to e to be the new outer face. In the resulting
drawing e has obviously only three bends. Thus the following result directly follows
from Theorem 3.1.
Corollary 3.2. LetG be a biconnected 4-planar graph with positive �exibility having a
valid orthogonal representation. Then G has a valid orthogonal representation with at
most three bends per edge except for possibly a single edge on the outer face with four
bends.

68

Flexibility of Split Components and Nice Drawings Section 3.3

Figure 3.6: An instance of FlexDraw requiring linearly
many edges to have four bends. Flexibilites are 1 except
for the blue edges with �exibility 4.

Note that Corollary 3.2 is restricted to biconnected graphs. For general graphs it
implies that each block contains at most a single edge with up to four bends. Figure 3.6
illustrates an instance of FlexDraw with linearly many blocks and linearly many
edges that are required to have four bends, showing that Corollary 3.2 is tight.

Theorem 3.1 implies that it is su�cient to consider the �exibility of every edge to
be at most 5, or in terms of costs we want to optimize, it is su�cient to store the cost
function of an edge only in the interval [0,5]. However, there are two reasons why we
need a stronger result. First, we want to compute cost functions of split components
and thus we have to limit the number of “bends” they can have (see the next section
for a precise de�nition of bends for split components). Second, as mentioned in the
introduction (see Figure 3.2) the cost function of a split component may already be
non-convex on the interval [0,5]. Fortunately, the second reason is not really a problem
since there may be at most a single edge with up to �ve bends, all remaining edges
have at most three bends and thus we only need to consider their cost functions on
the interval [0,3].

In the following section we focus on dealing with the �rst problem and strengthen
the results so far presented by extending the limitation on the number of bends to split
components. Note that a split pair inside an inner face of G with a split component
H having a rotation less than −3 on its outer face implies a rotation of at least 6 in
some inner face of G. Thus, we can again apply Lemma 3.2(3) to reduce the rotation
showing that split components and single edges can be handled similarly. However,
by reducing the rotation for one split component, we cannot avoid that the rotation
of some other split component is increased. For single edges we did that by reducing
the �exibility to the current number of bends. In the following section we extend this
technique by de�ning a �exibility not only for edges but also for split components.
We essentially show that all results we presented so far still apply, if we allow this
kind of extended �exibilities.

3.3 Flexibility of Split Components and Nice Drawings

Let G be a biconnected 4-planar graph with SPQR-tree T and let T be rooted at some
node τ . Recall that we do not require τ to be a Q-node. Let µ be a node of T that is
not the root τ . Then µ has a unique parent and skel(µ) contains a unique virtual edge
ε = {s,t} that is associated with this parent. We call the split-pair {s,t} a principal
split pair and the pertinent graph pert(µ) with respect to the chosen root a principal

69

Chapter 3 Bend Minimization with Convex Bend Costs

split component. The vertices s and t are the poles of this split component. Note that a
single edge is also a principal split component except for the case that its Q-node is
chosen to be the root. A planar embedding of G is represented by T with the root τ if
the embedding of each skeleton has the edge associated with the parent on the outer
face.

Let R be a valid orthogonal representation of G such that the planar embedding
of R is represented by T rooted at τ . Consider a principal split component H with
respect to the split pair {s,t} and let S be the orthogonal representation of H in-
duced by R. Note that the poles s and t are on the outer face f of S. We de�ne
max{| rotS (πf (s,t)) |, | rotS (πf (t ,s)) |} to be the number of bends of the split compo-
nent H . Note that this is a straightforward extension of the term bends as it is used for
edges. With this terminology we can assign a �exibility �ex(H) to a principal split
component H and we de�ne the orthogonal representation R of G to be valid if and
only if H has at most �ex(H) bends. We say that the graph G has positive �exibility if
the �exibility of every principal split component is at least 1, which is straightforward
extension of the original notion.

We de�ne a valid orthogonal representation ofG to be nice if it is tight and if there is
a root τ of the SPQR-tree such that every principal split component has at most three
bends and the edge corresponding to τ in the case that τ is a Q-node has at most �ve
bends. The main result of this section will be the following theorem, which directly
extends Theorem 3.1.

Theorem 3.2. Every biconnected 4-planar graph with positive �exibility having a
valid orthogonal representation has an orthogonal representation with the same planar
embedding and the same angles around vertices that is nice with respect to at least one
node chosen as root of its SPQR-tree.

Before we prove Theorem 3.2 we need to make some additional considerations.
In particular we need to extend the �ex-graph such that it takes the �exibilities of
principal split components into account. The extended version of the �ex graph can
then be used to obtain a result similar to Lemma 3.2, which was the main tool to prove
Theorem 3.1. Another di�culty is that it depends on the chosen root which split
components are principal split components. For the moment we avoid this problem
by choosing an arbitrary Q-node to be the root of the SPQR-tree T . Thus we only
have to care about the �exibilities of the principal split components with respect to
the chosen root. One might hope that the considerations we make for the �ex-graph
in the case of a �xed root still work, if we consider the principal split components
with respect to all possible roots at the same time. However, this fails as we will see
later, making it necessary to consider internal vertices as the root.

Assume that the SPQR-tree T of G is rooted at the Q-node corresponding to an
arbitrary chosen edge. Let H be a principal split component with respect to the chosen
root with the poles s and t . In the embedding ofG the outer face f of H splits into two

70

Flexibility of Split Components and Nice Drawings Section 3.3

H

π (s, t) π (t, s)

f1 f2

s

t

H

eH (s, t) eH (t, s)
s

t

Figure 3.7: Augmentation of G with the safety edges eH (s,t) and eH (t ,s).

faces f1 and f2, where the path πf (s,t) is assumed to lie in f1 and πf (t ,s) is assumed
to lie in f2, i.e., πf1 (s,t) = πf (s,t) and πf2 (t ,s) = πf (t ,s). We augment G by inserting
the edge {s,t} twice, embedding one of them in f1 and the other in f2. We denote the
edge {s,t} inserted into the face f1 by eH (s,t) and the edge inserted into f2 by eH (t ,s).
Figure 3.7 illustrates this process and shows how the dual graph of G changes. We call
the new edges eH (s,t) and eH (t ,s) safety edges and de�ne the extended �ex graphG× as
before, ignoring that some edges have a special meaning. To simplify notation we often
use the term �ex graph, although we refer to the extended �ex graph. Note that every
cycle in the �ex graph that separates s from t and thus crosses π (s,t) and π (t ,s) needs
to also cross the safety edges eH (s,t) and eH (t ,s). Thus we can use the safety edges to
ensure that the �ex graph respects the �exibility of H by orienting them if necessary.
More precisely, we orient the safety edge eH (s,t) from t to s if rot(π (s,t)) = − �ex(H)
and similarly eH (t ,s) from s to t if rot(π (t ,s)) = − �ex(H). This ensures that the
rotations along π (s,t) and π (t ,s) cannot be reduced below − �ex(H) by bending along
a cycle in the �ex graph. Moreover, rot(π (s,t)) cannot be increased above �ex(H) as
otherwise rot(π (t ,s)) has to be below − �ex(H) and vice versa. To sum up, we insert
the safety edges next to the principal split component H and orient them if necessary
to ensure that bending along a cycle in the �ex graph respects not only the �exibilities
of single edges but also the �exibility of the principal split component H .

Since adding the safety edges for the graph H is just a technique to respect the
�exibility of H by bending along a cycle in the �ex graph, we do not draw them. Note
that the augmented graph does not have maximum degree 4 anymore but this is not
a problem since we do not draw the safety edges. However, we formally assign an
orthogonal representation to the safety edges by essentially giving them the shape
of the paths they “supervise”. More precisely, the edges eH (s,t) and eH (t ,s) have the
same rotations as the paths π (s,t) and π (t ,s) on the outer face of H , respectively.
Moreover, the angles at the vertices s and t are also assumed to be the same as for
these two paths.

As we do not only want to respect the �exibility of a single split component, we
add the safety edges for each of the principal split components at the same time. Note
that the augmented graph remains planar as we only add the safety edges for the

71

Chapter 3 Bend Minimization with Convex Bend Costs

principal split components with respect to a single root. It follows directly that the
considerations above still work, which would fail if the augmented graph was non-
planar. This is the reason why we cannot consider the principal split components with
respect to all roots at the same time. The following lemma directly extends Lemma 3.2
to the case where the extended �ex graph is considered.

Lemma 3.3. Let G be a biconnected 4-planar graph with positive �exibility, a valid
orthogonal representation R and s and t on a common face f . The extended �ex graph
G×R contains a directed cycle C such that f ∈ C , s ∈ left(C) and t ∈ right(C), if one of
the following conditions holds.

(1) rotR (πf (s,t)) ≥ −2, f is the outer face and πf (s,t) is not strictly directed from t to s

(2) rotR (πf (s,t)) ≥ 0 and f is the outer face

(3) rotR (πf (s,t)) ≥ 6

Proof. As in the proof of Lemma 3.2 we assume for contradiction that the cycle C
does not exists, yielding a strictly directed path from t to s in G. This directly yields
the claim, if we can apply Lemma 3.1 as before. The only di�erence to the situation
before is that the directed path from t to s may contain some of the safety edges.
However, by de�nition a safety edge eH (u,v) is directed from v to u if and only if
rot(π (u,v)) = − �ex(H). As �ex(H) is positive rot(π (u,v)) has to be negative and
thus the rotation along eH (u,v) when traversing it from v to u is at least 1. Thus, it
does not make a di�erence whether the directed path from t to s consists of normal
edges or may contain safety edges. Hence, Lemma 3.1 extends to the augmented graph
containing the safety edges, which concludes the proof. �

Now we are ready to prove Theorem 3.2. To improve readability we state it again.

Theorem 3.2. Every biconnected 4-planar graph with positive �exibility having a
valid orthogonal representation has an orthogonal representation with the same planar
embedding and the same angles around vertices that is nice with respect to at least one
node chosen as root of its SPQR-tree.

Proof. Let R be a valid orthogonal representation of G. We assume without loss of
generality that R is tight. Since the operations we apply to R in the following do not
a�ect the angles around vertices, the resulting orthogonal representation is also tight.
Thus it remains to enforce the more interesting condition for orthogonal representa-
tions to be nice, i.e., reduce the number of bends of principal split components down
to three. As mentioned before, the SPQR-tree T of G is initially rooted at an arbitrary
Q-node. Let eref be the corresponding edge. As in the proof of Theorem 3.1 we start
with an arbitrary principal split component H with more than three bends. Then one
of the two paths in the outer face of H has rotation less than −3 and we have the same

72

Flexibility of Split Components and Nice Drawings Section 3.3

situation as for a single edge, i.e., we can apply Lemma 3.3 to reduce the rotation of the
opposite site and thus reduce the number of bends of H by one. Afterwards, we can set
the �exibility of H down to the new number of bends ensuring that it is not increased
later on. However, this only works if the negative rotation of the split component H
lies in an inner face of G. On the outer face we can only increase to a rotation of −5
yielding an orthogonal representation such that every principal split component has
at most three bends, or maybe four or �ve bends, if it has its negative rotation in the
outer face. Note that this is essentially the same situation we also had in the proof
of Theorem 3.1. In the following we show similarly that the number of bends can be
reduced further, until either a unique innermost principal split component (where
innermost means minimal with respect to inclusion) or the reference edge eref may
have more than three bends.

First assume that eref has more than three, i.e., four or �ve, bends and that there is a
principal split component H with more than three bends having its negative rotation
on the outer face. Let {s,t} be the corresponding split pair and let without loss of
generality πf (t ,s) be the path along H with rotation less than −3 where f is the outer
face. Then the path πf (s,t) contains the edge eref = {u,v}, otherwise H would not be a
principal split component. Moreover, rot(πf (t ,s)) ≤ −4 implies that rot(πf (s,t)) ≥ −2
holds. As in the proof of Theorem 3.1 (compare with Figure 3.5c) the path πf (s,t) splits
into the paths πf (s,u), πf (u,v) and πf (v,t). Since πf (u,v) consists of the single edge
eref with more than three bends rot(πf (u,v)) ≤ −4 holds, implying that the rotation
along πf (s,u) or πf (v,t) is greater or equal to 0. This shows that πf (s,t) cannot be
strictly directed from t to s and thus we can apply Lemma 3.3(1) to reduce the number
of bends H has. Finally, there is no principal split component with more than three
bends left and the reference edge eref has at most �ve bends, which concludes this
case.

In the second case, eref has at most three bends. We show that if there is more than
one principal split component with more than three bends, then they hierarchically
contain each other. Assume that the number of bends of no principal split component
that has more than three bends can be reduced further. Assume further there are two
principal split components H1 and H2 with respect to the split pairs {s1,t1} and {s2,t2}
that do not contain each other, i.e, without loss of generality the vertices t1,s1,t2 and
s2 occur in this order around the outer face f when traversing it in counter-clockwise
direction and πf (t1,s1) and πf (t2,s2) belong to H1 and H2 respectively. Analogous to
the case where eref has more than three bends we can show that Lemma 3.3(1) can be
applied to reduce the number of bends of H1, which is a contradiction. Thus, either H1
is contained in H2 or the other way round. This shows that there is a unique principal
split component H that is minimal with respect to inclusion having more than three
bends. Due to the inclusion property, all nodes in the SPQR-tree corresponding to the
principal split components with more than three bends lie on the path between the

73

Chapter 3 Bend Minimization with Convex Bend Costs

Figure 3.8: The path between the new and the old root
in the SPQR-tree containing µ (top). The whole graph G
containing the principal split component H ′ correspond-
ing to µ with respect to the new root and the principal
split component H of the new root with respect to the old
root (bottom).

H
H ′

rot
≤ −4

t

s s ′

t ′

G

s ′

t ′t

s

τ µ eref

current root and the node corresponding to H . We denote the node corresponding
to H by τ and choose τ to be the new root of the SPQR-tree T . Since the principal
split components depend on the root chosen for T some split components may no
longer be principal and some may become principal due to rerooting. Our claim is
that all principal split components with more than three bends are no longer principal
after rerooting and furthermore that all split components becoming principal can be
enforced to have at most three bends.

First note that the principal split component corresponding to a node µ in the SPQR-
tree changes if and only if µ lies on the path between the old and the new root, i.e.,
between τ and the Q-node corresponding to eref . Since all principal split components
(with respect to the old root) that have more than three bends also lie on this path,
all these split components are no longer principal (with respect to the new root). It
remains to deal with the new principal split components corresponding to the nodes on
this path. Note that the new root τ itself has no principal split component associated
with it. Let µ , τ be a node on the path between the new and the old root and let H ′ be
the new principal split component corresponding to µ with the poles s ′ and t ′. Recall
that H is the former principal split component corresponding to the new root τ with
the poles s and t . Note that H of course is still a split component, although it is not
principal anymore. Figure 3.8 illustrates this situation. Now assume that H ′ has more
than three bends. Then there are two possibilities, either it has its negative rotation on
the outer face or in some inner face. If only the latter case arises we can easily reduce
the number of bends down to three as we did before. In the remaining part of the proof
we show that the former case cannot arise due to the assumption that the number of
bends of H cannot be reduced anymore. Assume H ′ has its negative rotation in the
outer face f , i.e., without loss of generality the path πf (t ,s) belongs to H ′ and has
rotation at most −4. Thus we have again the situation that the two split components
H ′ and H both have a rotation of at most −4 in the outer face. Moreover, these two
split components do not contain or overlap each other since s and t are not contained
in H ′ as τ is the new root and H does not contain s ′ or t ′ since µ is an ancestor of
τ with respect to the old root. Thus we could have reduced the number of bends of
H before we changed the root, which is a contradiction to the assumption we made
that the number of bends of principal split components with more than three bends

74

Optimal Drawings with Fixed Planar Embedding Section 3.5

cannot be reduced anymore. Hence, all new principal split components either have at
most three bends or they have their negative rotation in some inner face. Finally, we
obtain a valid orthogonal representation with at most three bends per principal split
component with respect to τ . �

3.4 Optimal Drawings with Fixed Planar Embedding

All results from the previous sections deal with the case where we are only interested
in the decision problem of whether a given graph has a valid drawing or not. More
precisely, we always assumed to have a valid orthogonal representation of an instance
of FlexDraw and showed that this implies that there exists another valid orthogonal
representation with certain properties. In this section, we consider positive-convex
instances of the optimization problem OptimalFlexDraw. The following generic
theorem shows that the results for FlexDraw that we presented so far can be extended
to OptimalFlexDraw.

Theorem 3.3. If the existence of a valid orthogonal representation of an instance of
FlexDraw with positive �exibility implies the existence of a valid orthogonal representa-
tion with property P , then every positive-convex instance of OptimalFlexDraw has an
optimal drawing with property P .

Proof. Let G be a positive-convex instance of OptimalFlexDraw. Let further R be an
optimal orthogonal representation. We can reinterpret G as an instance of FlexDraw
with positive �exibility by setting the �exibility of an edge with ρ bends in R to
max{ρ,1}. Then R is obviously a valid orthogonal representation of G with respect to
these �exibilities. Thus there exists another valid orthogonal representation R ′ having
property P . It remains to show that cost(R ′) ≤ cost(R) holds when going back to the
optimization problem OptimalFlexDraw. However, this is clear for the following
reason. Every edge e has as most as many bends in R ′ as in R except for the case
where e has one bend in R ′ and zero bends in R. In the former case the monotony
of coste (·) implies that the cost did not increase. In the latter case e causes the same
amount of cost in R as in R ′ since coste (0) = coste (1) = be holds for positive-convex
instances of OptimalFlexDraw. Note that this proof still works, if the cost functions
are only monotone but not convex. �

It follows that every positive-convex 4-planar graph has an optimal drawing that is
nice since Theorem 3.3 shows that Theorem 3.2 can be applied. Thus, it is su�cient to
consider only nice drawings when searching for an optimal solution, as there exists a
nice optimal solution. This is a fact that we crucially exploit in the next section since
although the cost function of a principal split component may be non-convex, we can
show that it is convex in the interval that is of interest when only considering nice
drawings.

75

Chapter 3 Bend Minimization with Convex Bend Costs

Figure 3.9: Split components with
as few bends as possible.

deg 2

00

deg 3

0−1

deg 4

−1−1

deg 4

−1−1

deg 5

−1−2

deg 6

−2−2

3.5 Optimal Drawings with Variable Planar Embedding

All results we presented so far were based on a �xed planar embedding of the input
graph G. In this section we present an algorithm that computes an optimal drawing
of G in polynomial time, optimizing over all planar embeddings of G. Our algorithm
crucially relies on the existence of a nice drawing among all optimal drawings of G.
For biconnected graphs (Section 3.5.1) we present a dynamic program that computes
the cost function of all principal split components bottom-up in the SPQR-tree with
respect to a chosen root. To compute the optimal drawing among all drawings that
are nice with respect to the chosen root, it remains to consider the embeddings of the
root itself. If we choose every node to be the root once, this directly yields an optimal
drawing of G taking all planar embeddings into account. In Section 3.5.2 we extend
our results to connected graphs that are not necessarily biconnected. To this end we
�rst modify the algorithm for biconnected graphs such that it can compute an optimal
drawing with the additional requirement that a speci�c vertex lies on the outer face.
Then we can use the BC-tree to solve OptimalFlexDraw for connected graphs. We
use the computation of a minimum-cost �ow in a network of size n as a subroutine
and denote the consumed running time byT�ow (n). In Section 3.5.3 we consider which
running time we actually need.

3.5.1 Biconnected Graphs

In this section we always assume G to be a biconnected 4-planar graph forming a
positive-convex instance of OptimalFlexDraw. Let T be the SPQR-tree of G. As
de�ned before, an orthogonal representation is optimal if it has the smallest possible
cost. We call an orthogonal representation τ -optimal if it has the smallest possible
cost among all orthogonal representation that are nice with respect to the root τ . We
say that it is (τ ,E)-optimal if it causes the smallest possible amount of cost among
all orthogonal representations that are nice with respect to τ and induce the planar
embedding E on skel(τ). In this section we concentrate on �nding a (τ ,E)-optimal
orthogonal representation with respect to a root τ and a given planar embedding E of
skel(τ). Then a τ -optimal representation can be computed by choosing every possible
embedding of skel(τ). An optimal solution can then be computed by choosing every
node in T to be the root once.

In Section 3.3 we extended the terms “bends” and “�exibility”, which were originally
de�ned for single edges, to arbitrary principal split components with respect to the

76

Optimal Drawings with Variable Planar Embedding Section 3.5

chosen root. We start out by making precise what we mean with the cost function
costH (·) of a principal split component H with poles s and t . Recall that the number
of bends of H with respect to an orthogonal representation S with s and t on the
outer face f is de�ned to be max{| rotS (πf (s,t)) |, | rotS (πf (t ,s)) |}. Assume S is the
nice orthogonal representation of H that has the smallest possible cost among all
nice orthogonal representations with ρ bends. Then we essentially de�ne costH (ρ) to
be the cost of S. However, with this de�nition the cost function of H is not de�ned
for all ρ ∈ N0 since H does not have an orthogonal representation with zero bends
at all, if deg(s) > 1 or deg(t) > 1, as at least one of the paths πf (s,t) and πf (t ,s)
has negative rotation in this case. More precisely, if deg(s) + deg(t) > 2, then H
has at least one bend, and if deg(s) + deg(t) > 4, then H has at least two bends.
Figure 3.9 shows for each combination of degrees a small example with the smallest
possible number of bends. In these two cases we formally set costH (0) = costH (1)
and costH (0),costH (1) = costH (2), respectively. Thus, we only need to compute the
cost functions for at least d(deg(s) + deg(t) − 2)/2e bends. We denote this lower
bound by `H = d(deg(s) + deg(t) − 2)/2e. Hence, it remains to compute the cost
function costH (ρ) for ρ ∈ [`H ,3]. For more than three bends we formally set the cost
to ∞. Note that the de�nition of the cost function only considers nice orthogonal
representations (including that they are tight). As a result of this restriction the cost
for an orthogonal representation with ρ bends might be less than costH (ρ). However,
due to Theorem 3.2 in combination with Theorem 3.3 we know that optimizing over
nice orthogonal representations is su�cient to �nd an optimal solution.

As for single edges, we de�ne the base cost bH of the principal split component H to
be costH (0). We will see that the cost function costH (·) is monotone and even convex
in the interval [0,3] (except for a special case) and thus the base cost is the smallest
possible amount of cost that has to be payed for every orthogonal drawing of H . The
only exception is the case where deg(s) = deg(t) = 3. In this case H has at least two
bends and thus the cost function costH (·) needs to be considered only on the interval
[2,3]. However, it may happen that costH (2) > costH (3) holds in this case. Then
we set the base cost bH to costH (3) such that the base cost bH is really the smallest
possible amount of cost that need to be payed for every orthogonal representation of
H . We obtain the following theorem.

Theorem 3.4. If the poles of a principal split component do not both have degree 3, then
its cost function is convex on the interval [0,3].

Before showing Theorem 3.4 we just assume that it holds and moreover we assume
that the cost function of every principal split component is already computed. We
�rst show how these cost functions can then be used to compute an optimal drawing.
To this end, we de�ne a �ow network on the skeleton of the root τ of the SPQR-tree,
similar to Tamassias �ow network [Tam87]. The cost functions computed for the
children of τ will be used as cost functions on arcs in the �ow network. As we can

77

Chapter 3 Bend Minimization with Convex Bend Costs

Figure 3.10: A single vertex can be replaced by a split component with three bends.

only solve �ow networks with convex costs we somehow have to deal with potentially
non-convex cost functions for the case that both endvertices of a virtual edge have
degree 3 in its expansion graph. Our strategy is to simply ignore these subgraphs by
contracting them into single vertices. Note that the resulting vertices have degree 2
since the poles of graphs with non-convex cost functions have degree 3. The process
of replacing the single vertex in the resulting drawing by the contracted component is
illustrated in Figure 3.10. The following lemma justi�es this strategy.

Lemma 3.4. LetG be a biconnected positive-convex instance of OptimalFlexDraw with
τ -optimal orthogonal representation R and let H be a principal split component with
non-convex cost function and base cost bH . Let further G ′ be the graph obtained from G
by contracting H into a single vertex and let R ′ be a τ -optimal orthogonal representation
of G ′. Then cost(R) = cost(R ′) + bH holds.

Proof. Assume we have a τ -optimal orthogonal representation R of G inducing the
orthogonal representation S on H . As H has either two or three bends we can
simply contract it yielding an orthogonal representation R ′ of G with cost(R ′) =
cost(R) − cost(S) ≤ cost(R) − bH . The opposite direction is more complicated. As-
sume we have an orthogonal representation R ′ of G ′, then we want to construct
an orthogonal representation R of G with cost(R) = cost(R ′) + bH . Let S be an
orthogonal representation of H causing only bH cost. Since costH (·) was assumed
to be non-convex, S needs to have three bends. It is easy to see that R ′ and S (or
S′ obtained from S by mirroring the drawing) can be combined to an orthogonal
representation of G if the two edges incident to the vertex v in G ′ corresponding to
H have an angle of 90◦ between them. However, this can always be ensured without
increasing the costs of R ′. Let e1 and e2 be the edges incident to v and assume they
have an angle of 180◦ between them in both faces incident to v . If neither e1 nor e2
has a bend, the �ex graph contains the cycle around v due to the fact that e1 and e2
have positive �exibilities. Bending along this cycles introduces a bend to each of the
edges, thus we can assume without loss of generality that e1 has a bend in R ′. Moving
v along the edge e1 until it reaches this bend decreases the number of bends on e1 by
one and ensures that v has an angle of 90◦ in one of its incident faces. Thus we can
replace v by the split component H with orthogonal representation S having cost bH
yielding an orthogonal representation R of G with cost(R) = cost(R ′) + bH . �

When computing a (τ ,E)-optimal orthogonal representation of G we make use of
Lemma 3.4 in the following way. If the expansion graph H corresponding to a virtual

78

Optimal Drawings with Variable Planar Embedding Section 3.5

(a) (b)

vertex node

face node
edge node

skel(µ)

edge-face arc

vertex-face arc
1

1 2 3

2

2

1

1

Figure 3.11: (a) The structure of the �ow network N E for the case that τ is an R-node with
skel(τ) = K4. The outer face is split into several vertices to improve readability. (b) A �ow
together with the corresponding orthogonal representation. The numbers indicate the amount
of �ow on the arcs. Undirected edges imply 0 �ow, directed arcs without a number have �ow 1.

edge ε in skel(τ) has a non-convex cost function, we simply contract this virtual edge
in skel(τ). Note that this is equivalent to contracting H in G. We can then make
use of the fact that all remaining expansion graphs have convex cost functions to
compute a (τ ,E)-optimal orthogonal representation of the resulting graph yielding a
(τ ,E)-optimal orthogonal representation of the original graph G since the contracted
expansion graphs can be inserted due to Lemma 3.4. Note that expansion graphs with
non convex cost functions can only appear if the root is a Q- or an S-node. In the
skeletons of P- and R-nodes every vertex has degree at least three, thus the poles of an
expansion graph cannot have degree 3 since G has maximum degree 4.

Now we are ready to de�ne the �ow network N E on skel(τ) with respect to the
�xed embedding E of skel(τ); see Figure 3.11a for an example. For each vertex v , each
virtual edge ε and each face f in skel(τ) the �ow network N E contains the nodes v ,
ε and f , called vertex node, edge node and face node, respectively. The network N E

contains the arcs (v, f) and (f ,v) with capacity 1, called vertex-face arcs, if the vertex
v and the face f are incident in skel(τ). For every virtual edge ε we add edge-face
arcs (ε, f) and (f ,ε), if f is incident to ε . We use costH (·) − bH as cost function of
the arc (f ,ε), where H is the expansion graph of the virtual edge ε . The edge-face
arcs (ε, f) in the opposite direction have in�nite capacity with 0 cost. It remains to
de�ne the demand of every node in N E . Every inner face has a demand of 4, the outer
face has a demand of −4. An edge node ε stemming from the edge ε = {s,t} with
expansion graph H has a demand of degH (s) + degH (t) − 2, where degH (v) denotes
the degree of v in H . The demand of a vertex node v is 4 − degG (v) − degskel(τ) (v).

In the �ow network N E the �ow entering a face node f using a vertex-face arc or
an edge-face arc is interpreted as the rotation at the corresponding vertex or along the
path between the poles of the corresponding child, respectively; see Figure 3.11b for

79

Chapter 3 Bend Minimization with Convex Bend Costs

an example. Incoming �ow is positive rotation and outgoing �ow negative rotation.
Let bH1 , . . . ,bHk be the base costs of the expansion graphs corresponding to virtual
edges in skel(τ). We de�ne the total base costs of τ to be bτ =

∑
i bHi . Note that the

total base costs of τ are a lower bound for the costs that have to be paid for every
orthogonal representation of G. We show that an optimal �ow ϕ in N E corresponds
to a (τ ,E)-optimal orthogonal representation R of G. Since the base costs do not
appear in the �ow network, the costs of the �ow and its corresponding orthogonal
representation di�er by the total base costs bτ , i.e., cost(R) = cost(ϕ) + bτ . We obtain
the following lemma.

Lemma 3.5. LetG be a biconnected positive-convex instance of OptimalFlexDraw, let
T be its SPQR-tree with root τ and let E be an embedding of skel(τ). If the cost function
of every principal split component is known, a (τ ,E)-optimal solution can be computed
in O (T�ow (| skel(τ) |)) time.

Proof. As mentioned before, we want to use the �ow network N E to compute an
optimal orthogonal representation. To this end we show two directions. First, given a
(τ ,E)-optimal orthogonal representation R, we obtain a feasible �ow ϕ in N E such
that cost(ϕ) = cost(R) − bτ , where bτ are the total base costs. Conversely, given an
optimal �ow ϕ in N E , we show how to construct an orthogonal representation R
such that cost(R) = cost(ϕ) + bτ . As the �ow network N E has size O (| skel(τ) |), the
claimed running time follows immediately.

Let R be a (τ ,E)-optimal orthogonal representation of G. As we only consider nice
and thus only tight drawings we can assume the orthogonal representation R to be
tight. Recall that being tight implies that the poles of the expansion graph of every
virtual edge have a rotation of 1 in the internal faces. We �rst show how to assign
�ow to the arcs in N E . It can then be shown that the resulting �ow is feasible and
causes cost(R) − bτ cost. For every pair of vertex-face arcs (f ,v) and (v, f) in N E

there exists a corresponding face f in the orthogonal representation R of G and we
set ϕ ((v, f)) = rot(vf). Let ε = {s,t} be a virtual edge in skel(µ) incident to the two
faces f1 and f2. Without loss of generality let πf1 (s,t) be the path belonging to the
expansion graph of ε . Then πf2 (t ,s) also belongs toH . We setϕ ((ε, f1)) = rotR (πf1 (s,t))
and ϕ ((ε, f2)) = rotR (πf2 (t ,s)). For the resulting �ow ϕ we need to show that the
capacity of every arc is respected, that the demand of every vertex is satis�ed, and
that cost(ϕ) = cost(R) − bτ holds.

First note that the �ow on the vertex-face arcs does not exceed the capacities of 1
since every vertex has degree at least 2. Since no other arc has a capacity, it remains
to deal with the demands and the costs.

For the demands we consider each vertex type separately. Let f be a face node. The
total incoming �ow entering f is obviously equal to the rotation in R around the face f .
As R is an orthogonal representation this rotation equals to 4 (−4 for the outer face),
which is exactly the demand of f . Let ε be an edge node corresponding to the expansion

80

Optimal Drawings with Variable Planar Embedding Section 3.5

(a) (b)

0

t

s

1
1

t

s

2
11

t

s

2
1

t

1

s

3
1

s

t

2
4
2

s

t

2
−2 −1 0

Figure 3.12: (a) Illustration of the demand of virtual edges. (b) Rotation of poles in the outer
face, depending on the degree.

graph H with poles s and t . Recall that dem(ε) = degH (s) + degH (t) − 2 is the demand
of ε . Figure 3.12a illustrates the demand of a virtual edge. Let S be the orthogonal
representation induced on H by R and let f be the outer face of S. Clearly, the �ow
leaving ε is equal to rotR (πf1 (s,t)) + rotR (πf2 (t ,s)) = rotS (πf (s,t)) + rotS (πf (t ,s)).
Since f is the outer face of H , the total rotation around this faces sums up to −4. The
rotation of the pole s in the outer face f is degH (s) − 3, see Figures 3.12b, and the same
holds for t . Thus we have rotS (πf (s,t))+rotS (πf (t ,s))+degH (s)−3+degH (t)−3 = −4.
This yields for the outgoing �ow rotS (πf (s,t))+rotS (πf (t ,s)) = 2−degH (s)−degH (t),
which is exactly the negative demand of ε . It remains to consider the vertex nodes.
Let v be a vertex node, recall that dem(v) = 4 − degG (v) − degskel(τ) (v) holds. The
outgoing �ow leaving v is equal to the summed rotation of v in faces not belonging to
expansion graphs of virtual edges in skel(τ). As R is an orthogonal representation,
the total rotation around every vertex v is 2 · (degG (v) − 2). Moreover, v is incident to
degskel(τ) (v) faces that are not contained in expansion graphs of virtual edges of skel(τ).
Thus there are degG (v)−degskel(τ) (v) faces incident tov belonging to expansion graphs.
As we assumed that the orthogonal representation of every expansion graph is tight,
the rotation of v in each of these faces is 1. Thus the rotation of v in the remaining
faces not belonging to expansion graphs is 2 · (degG (v)−2)− (degG (v)−degskel(τ) (v)).
Rearrangement yields a rotation, and thus an outgoing �ow, of degG (v)+degskel(τ) (v)−
4, which is the negative demand of v .

To show that cost(ϕ) = cost(R) − bτ holds it su�ces to consider the �ow on the
edge-face arcs as no other arcs cause cost. Let ε be a virtual edge and let f1 and f2
the two incident faces. The �ow entering f1 or f2 does not cause any cost, as (ε, f1)
and (ε, f2) have in�nite capacity with 0 cost. Thus only �ow entering ε over the arcs
(f1,ε) and (f2,ε) may cause cost. Assume without loss of generality that the number
of bends ρ the expansion graph H of ε has is determined by the rotation along πf1 (s,t),
i.e., ρ = − rotR (πf1 (s,t)). Let ρ ′ = − rotR (πf2 (t ,s)) be the negative rotation along the
path πf2 (t ,s) in the face f2. Note that ϕ ((f1,ε)) = ρ and ϕ ((f2,ε)) = ρ ′. Obviously, the
�ow on (f1,ε) causes the cost costH (ρ) − bH . We show that the cost caused by the
�ow on (f2,ε) is 0. If ρ ′ ≤ 0 this is obviously true, as there is no �ow on the edge
(f2,ε). Otherwise, 0 < ρ ′ ≤ ρ holds. It follows that the smallest possible number of
bends `H every orthogonal representation of H has lies between ρ ′ and ρ. It follows

81

Chapter 3 Bend Minimization with Convex Bend Costs

from the de�nition of costH (·) and from the fact that all cost functions are convex that
costH (ρ ′) = bH . To sum up, the total cost on edge-face arcs incident to the virtual edge
ε is equal to the cost caused by its expansion graph H with respect to the orthogonal
representation R minus the base cost bH . As neither ϕ nor R have additional cost we
obtain cost(ϕ) = cost(R) − bτ .

It remains to show the opposite direction, i.e., given an optimal �ow ϕ in N E , we can
construct an orthogonal representation R of G such that cost(R) = cost(ϕ) + bτ . This
can be done by reversing the construction above. The �ow on edge-face arcs determines
the number of bends for the expansion graphs of each virtual edge. The cost functions
of these expansion graphs guarantee the existence of orthogonal representations
with the desired rotations along the paths between the poles, thus we can assume
to have orthogonal representations for all children. We combine these orthogonal
representations by setting the rotations between them at common poles as speci�ed
by the �ow on vertex-face arcs. It can be easily veri�ed that this yields an orthogonal
representation of the whole graphG by applying the above computation in the opposite
direction. �

The above results rely on the fact that the cost functions of principal split compo-
nents are convex as stated in Theorem 3.4 and that they can be computed e�ciently.
In the following we show that Theorem 3.4 really holds with the help of a structural
induction over the SPQR-tree. More precisely, the cost functions of principal split
components corresponding to the leaves of T are the cost functions of the edges and
thus they are convex. For an inner node µ we assume that the pertinent graphs of the
children of µ have convex cost functions and show that H = pert(µ) itself also has a
convex cost function. The proof is constructive in the sense that it directly yields an
algorithm to compute these cost functions bottom up in the SPQR-tree.

Note that we can again apply Lemma 3.4 in the case that the cost function of the
expansion graph of one of the virtual edges in skel(µ) is not convex due to the fact
that both of its poles have degree 3. This means that we can simply contract such a
virtual edge (corresponding to a contraction of the expansion graph in H), compute the
cost function for the remaining graph instead of H and plug the contracted expansion
graph into the resulting orthogonal representations. Thus we can assume that the cost
function of each of the expansion graphs is convex, without any exceptions.

The �ow network N E that was introduced to compute an optimal orthogonal
representation in the root of the SPQR-tree can be adapted to compute the cost
function of the principal split component H corresponding to a non-root node µ.
To this end we have to deal with the parent edge, which does not occur in the root
of T , and we consider a parameterization of N E to compute several optimal orthogonal
representations with a prescribed number of bends, depending on the parameter in
the �ow network. Before we describe the changes in the �ow network we need
to make some considerations about the cost function. By the de�nition of the cost

82

Optimal Drawings with Variable Planar Embedding Section 3.5

function it explicitely optimizes over all planar embeddings of skel(µ). Moreover,
as the cost function costH (ρ) depends on the number of bends ρ a graph H has, it
implicitly allows to �ip the embedding of H since the number of bends is de�ned as
max{| rot(π (s,t)) |, | rot(π (t ,s)) |}. However, the �ow network N E can only be used
to compute the cost function for a �xed embedding. Thus we de�ne the partial cost
function costEH (ρ) of H with respect to the planar embedding E of skel(µ) to be the
smallest possible cost of an orthogonal representation inducing the planar embedding
E on skel(µ) with ρ bends such that the number of bends is determined by πf (s,t), i.e.,
rot(πf (s,t)) = −ρ, where f is the outer face. Note that the minimum over the partial
cost functions costEH (·) and costE′H (·), where E ′ is obtained by �ipping the embedding
E of skel(µ) yields a function describing the costs of H with respect to the embedding
E of skel(µ) depending on the number of bends H has (and not on the rotation along
πf (s,t) as the partial cost function does). Obviously, minimizing over all partial cost
functions yields the cost function of H .

The �ow network N E is de�ned as before with the following modi�cations. The
parent edge of skel(µ) does not have a corresponding edge node. Let f1 and f2 be
the faces in skel(µ) incident to the parent edge. These two faces together form the
outer face f of H , thus we could merge them into a single face node. However, not
merging them has the advantage that the incoming �ow in f1 and f2 corresponds to
the rotations along πf (s,t) and πf (t ,s), respectively (it might be the other way round
but we can assume this situation without loss of generality). Thus, we do not merge f1
and f2, which enables us to control the number of bends of H by setting the demands
of f1 and f2. This is also the reason why we remove the vertex-face arcs between the
poles and the two faces f1 and f2. Before we describe how to set the demands of f1
and f2, we �t the demands of the poles to the new situation. As we only consider tight
orthogonal representations we know that the rotation at the poles s and t in all inner
faces is 1. Thus, we set dem(s) = 2− degskel(µ) (s) and dem(t) = 2− degskel(µ) (t) as this
is the number of faces incident to s and t , respectively, after removing the vertex-face
arcs to f1 and f2. With these modi�cations the only �ow entering f1 and f2 comes from
the paths πf (s,t) and πf (t ,s), respectively. As the total rotation around the outer face
is −4 and the rotation at the vertices s and t is degH (s)−3 and degH (t)−3, respectively,
we have to ensure that dem(f1) + dem(f2) = 2 − degH (s) − degH (t). As mentioned
before, we assume without loss of generality that πf (s,t) belongs to the face f1 and
πf (t ,s) belongs to f2. Then the incoming �ow entering f1 corresponds to rot(πf (s,t))
of an orthogonal representation. We parameterize N E with respect to the faces f1
and f2 starting with dem(f1) = 0 and dem(f2) = 2 − degH (s) − degH (t). It obviously
follows that an optimal �ow in N E with respect to the parameter ρ corresponds
to an optimal orthogonal representation of H that induces E on skel(µ) and has a
rotation of −ρ along πf (s,t). Thus, up to the total base costs bµ , the cost function of
the �ow network equals to the partial cost function of H on the interval [`H ,3], i.e.,

83

Chapter 3 Bend Minimization with Convex Bend Costs

costN E (ρ) + bµ = costEH (ρ) for `H ≤ ρ ≤ 3. To obtain the following lemma it remains
to show two things for the case that deg(s) + deg(t) < 6. First, costN E (ρ) and thus
each partial cost function is convex for `H ≤ ρ ≤ 3. Second, the minimum over these
partial cost functions is convex.

Lemma 3.6. If Theorem 3.4 holds for each principal split component corresponding to a
child of the node µ in the SPQR-tree, then it also holds for pert(µ).

Proof. As mentioned before, we can use the �ow network N E to compute the partial
cost function costEH (ρ) for `H ≤ ρ ≤ 3 since costEH (ρ) = costN E (ρ) + bµ holds on this
interval. In the following we only consider the case where degH (s) + degH (t) < 6
holds for the poles s and t . For the case degH (s) = degH (t) = 3 we do not need to
show anything. To show that the partial cost function is convex we do the following.
First, we show that costEH (ρ) is minimal for ρ = `H . This implies that the cost function
costN E (ρ) of the �ow network is minimal for ρ = ρ0 ≤ `H . Then Theorem 1.1 can be
applied showing that costN E (ρ) is convex for ρ ∈ [ρ0,∞] yielding that the partial cost
function costEH (ρ) is convex for ρ ∈ [`H ,3]. Thus, it remains to show that costEH (ρ) is
minimal for ρ = `H to obtain convexity for the partial cost functions.

Let S be an orthogonal representation of H with ρ ∈ [`H ,3] bends such that πf (s,t)
determines the number of bends, i.e., rotS (πf (s,t)) = −ρ, where f is the outer face ofH .
We show the existence of an orthogonal representation S ′ with rotS′ (πf (s,t)) = −`H
and cost(S ′) ≤ cost(S). Since we assume S to be tight, the rotations at the poles
rotS (sf) and rotS (tf) only depend on the degree of s and t . More precisely, we have
rotS (sf) = degH (s) − 3 and the same holds for t . Since the total rotation around the
outer face f is −4 the following equation holds.

rotS (πf (t ,s)) = ρ + 2 − degH (s) − degH (t) (3.1)

In the following we show that rotS (πf (t ,s)) ≥ 0 holds if the number of bends ρ exceeds
`H . Then Corollary 3.1 in combination with Theorem 3.3 can be used to reduce the
rotation along πf (t ,s) and thus reduce the number of bends by 1, yielding �nally
an orthogonal representation with `H bends determined by πf (s,t). Recall that the
lower bound for the number of bends was de�ned as `H = d(deg(s) + deg(t) − 2)/2e.
First consider the case that degH (s) + degH (t) is even (and of course less than 6).
Then Equation (3.1) yields rotS (πf (t ,s)) = ρ − 2`H . If ρ is greater than `H this yields
rotS (πf (t ,s)) > −`H . Since `H is at most 1 in the case that deg(s) + deg(t) is even and
less than 6, this yields rotS (πf (t ,s)) > −1. The case that degH (s) + degH (t) is odd
works similarly. Then Equation (3.1) yields rotS (πf (t ,s)) = ρ − 2`H + 1. As before ρ
is assumed to be greater than `H yielding rotS (πf (t ,s)) > −`H + 1. As `H is at most 2
we again obtain rotS (πf (t ,s)) > −1, which concludes the proof that the partial cost
functions are convex.

It remains to show that the minimum over the partial cost functions is convex. First
assume that µ is an R-node. Then its skeleton has only two embeddings E and E ′

84

Optimal Drawings with Variable Planar Embedding Section 3.5

where E ′ is obtained by �ipping E. We have to show that the minimum over the
two partial cost functions costEH (·) and costE′H (·) remains convex. For the case that
deg(s)+deg(t) = 5 the equation `H = 2 holds and thus we only have to show convexity
on the interval [2,3]. Obviously, costH (·) is convex on this interval if and only if
costH (2) ≤ costH (3). As this is the case for both partial cost functions, it is also true
for the minimum. For deg(s) + deg(t) < 5 we �rst show that costEH (`H) = costE′H (`H)
holds. For the case that deg(s)+deg(t) is even this is clear since mirroring an orthogonal
representationS with rotS (πf (s,t)) = −`H inducing E on skel(µ) yields an orthogonal
representation S′ with rotS′ (πf (s,t)) = −`H inducing E ′ on skel(µ). For the case that
deg(s) + deg(t) = 3, the orthogonal representation S with rotation −1 along πf (s,t)
can also be mirrored yielding S′ with rotation 0 along πf (s,t). By Corollary 3.1
this rotation can be reduced to −1 without causing any additional cost. As this
construction also works in the opposite direction we have costEH (`H) = costE′H (`H) for
all cases. Moreover, costEH (0) = costEH (1) holds by de�nition, if deg(s) + deg(t) > 2.
If deg(s) = deg(t) = 1 this equation is also true as the rotation along πf (s,t) of an
orthogonal representation can be reduced by 1 if it is 0, again due to Corollary 3.1.
Thus it remains to show that the cost function costH (·) de�ned as the minimum of
costEH (·) and costE′H (·) is convex on the interval [1,3].

Assume for a contradiction that costH (ρ) is not convex for ρ ∈ [1,3], that is,
∆ costH (1) > ∆ costH (2). Assume without loss of generality that costH (3) = costEH (3)
holds. As we showed before costH (1) = costEH (1) also holds. Since costH (2) is the
minimum over costEH (2) and costEH (2) we additionally have costH (2) ≤ costEH (2). This
implies that the inequalities ∆ costEH (1) ≥ ∆ costH (1) and ∆ costEH (2) ≤ ∆ costH (2)
hold, yielding that the partial cost function costEH (ρ) is not convex for ρ ∈ [1,3], which
is a contradiction. Thus costH (·) is convex.

The case that µ is a P-node works similar to the case that µ is an R-node. If µ has
only two children, its skeleton has only two embeddings E and E ′ obtained from
one another by �ipping. Thus the same argument as for R-nodes applies. If µ has
three children, then deg(s) = deg(t) = 3 holds and thus we do not have to show
convexity. Note that in the case deg(s) = deg(t) = 3 the resulting cost function can be
computed by taking the minimum over the partial cost functions with respect to all
embeddings of skel(µ), although it may by non-convex. If µ is an S-node, we have a
unique embedding and thus the partial cost function with respect to this embedding is
already the cost function ofH . Note that considering only the rotation along πf (s,t) for
the partial cost function is not a restriction, as S-nodes are completely symmetric. �

Lemma 3.6 together with the fact that the cost function of every edge is convex
shows that Theorem 3.4 holds, i.e., the cost functions of all principal split components
are convex on the interesting interval [0,3] except for the special case where both
poles have degree 3. However, this special case is easy to handle as principal split
components of this type with non-convex cost functions can be simply contracted

85

Chapter 3 Bend Minimization with Convex Bend Costs

to a single vertex by Lemma 3.4. Moreover, the proof is constructive in the sense
that it shows how the cost functions can be computed e�ciently bottom up in the
SPQR-tree. For each node µ we have to solve a constant number of minimum-cost �ow
problems in a �ow network of size O (| skel(µ) |). As the total size of all skeletons in T
is linear in the number n of vertices in G, we obtain an overall O (T�ow (n)) running
time to compute the cost functions with respect to the root τ . Finally, Lemma 3.5
can be applied to compute an optimal orthogonal representation with respect to a
�xed root and a �xed embedding of the root’s skeleton in O (T�ow (| skel(τ) |)) time. To
compute an overall optimal solution, we have to compute a (τ ,E)-optimal solution for
every root τ and every embedding E of skel(τ). The number of embeddings of skel(τ)
is linear in the size of skel(τ) (since P-nodes have at most degree 4) and the total size
of all skeletons is linear in n. We obtain the following theorem.

Theorem 3.5. OptimalFlexDraw can be solved in O (n · T�ow (n)) time for positive-
convex biconnected instances.

3.5.2 Connected Graphs

In this section we extend the result obtained in Section 3.5.1 to the case that the input
graph G contains cutvertices. Let B be the BC-tree of G rooted at some B-node β .
Then every Block except for β has a unique cutvertex as parent and we need to �nd
optimal orthogonal representations with the restriction that this cutvertex lies on the
outer face. We claim that we can then combine these orthogonal representations of
the blocks without additional cost.

Unfortunately, with the so far presented results we cannot compute the optimal
orthogonal representation of a biconnected graph considering only embeddings where
a speci�c vertex v lies on the outer face. We may restrict the embeddings of the
skeletons we consider when traversing the SPQR-tree bottom up to those who have
v on the outer face. However, we can then no longer assume that the cost functions
we obtain are symmetric. To deal with this problem, we present a modi�cation of the
SPQR-tree, that can be used to represent exactly the planar embeddings that have v
on the outer face and are represented by the SPQR-tree rooted at a node τ .

Let τ be the root of the SPQR-tree T . If v is a vertex of skel(τ), then restricting the
embeddings of skel(τ) to those who have v on the outer face of skel(τ) forces v to be
on the outer face of the resulting embedding of G. Otherwise, v is contained in the
expansion graph of a unique virtual edge ε in skel(τ), we say that v is contained in ε .
Obviously, ε has to be on the outer face of the embedding of skel(τ). However, this
is not su�cient and it depends on the child µ of τ corresponding to ε whether v lies
on the outer face of the resulting embedding of G. Let Eτ be an embedding of skel(τ)
having ε on the outer face and let s and t be the endpoints of ε . Then there are two
possibilities, either ε = {s,t} has the outer face to the left or to the right, where the

86

Optimal Drawings with Variable Planar Embedding Section 3.5

terms “left” and “right” are with respect to an orientation from t to s . Assume without
loss of generality that the outer face lies to the right of ε and consider the child µ of τ
corresponding to ε . As T is rooted, we consider only embeddings of skel(µ) that have
the parent edge {s,t} on the outer face. As the choice of the outer face of skel(µ) does
not have any e�ect on the resulting embedding, we can assume that {s,t} lies to the
left of skel(µ), i.e., the inner face incident to {s,t} lies to the right of {s,t} with respect
to an orientation from t to s . A vertex contained in skel(µ) then lies obviously on the
outer face of the resulting embedding of G if and only if it lies on the outer face of
the embedding of skel(µ). Thus, if v is contained in skel(µ), restricting the embedding
choices such that v lies on the outer face of skel(µ) forces v to be on the outer face
of G. Note that in this case µ is either an R- or an S-node. For S-nodes there is no
embedding choice and every vertex in skel(µ) lies on the outer face in this embedding.
If µ is an R-node, there are only two embeddings and either v lies on the outer face of
exactly one of them or in none of them. In the latter case the SPQR-tree with respect
to the root τ does not represent an embedding of G with v on the outer face at all.

Assume that v is not contained in skel(µ). Then it is again contained in a single
virtual edge ε ′ and it is necessary that ε ′ lies on the outer face of the embedding of
skel(µ). Moreover, it depends on the child of µ corresponding to ε ′ whether v really
lies on the outer face. Note that �xing ε ′ on the outer face completely determines
the embedding of skel(µ) if it is not a P-node. If µ is a P-node, the virtual edge ε ′
has to be the rightmost, whereas the order of all other virtual edges can be chosen
arbitrarily. If this is the case we split the P-node into two parts, one representing the
�xed embedding of ε ′, the other representing the choices for the remaining edges; see
Figure 3.13a. More precisely, we split µ into two P-nodes, the �rst one containing the
parent edge {s,t}, the edge ε ′ and a new virtual edge corresponding to the second
P-node, which is inserted as child. The skeleton of the second P-node contains a parent
edge corresponding to the �rst P-node and the remaining virtual edges that were
contained in skel(µ) but are not contained in the �rst P-node. The children of µ are
attached to the two P-nodes depending on where the corresponding virtual edges are.
Note that by splitting the P-node µ, the virtual edge ε ′ can no longer be in between
two other virtual edges in µ. However, this is a required restriction, thus we do not
loose embeddings that we want to represent. Moreover, the new P-node containing
the virtual edge ε ′ that need to be �xed to the outer face contains only two virtual
edges (plus the parent edge) and thus the embedding of its skeleton is completely �xed
by requiring ε ′ to be on the outer face.

To sum up, if skel(τ) contains v , then we simply have to choose an embedding of
skel(τ) with v on the outer face. Otherwise, we have to �x the virtual edge containing
v to the outer face and additionally have to consider the child of τ corresponding to
this virtual edge. For the child we then have essentially the same situation. Either
v is contained in its skeleton, then the embedding is �xed to the unique embedding

87

Chapter 3 Bend Minimization with Convex Bend Costs

(a) (b)

µ1 µ2 µ3 µ4

s

t

s

t

µ1 µ2 µ3

s

t

µ4

t

s

t

s

µ2µ1
µ6 µ7

µ3
µ4
µ5

vµ1

µ6

µ7µ2 µ3

µ4 µ5

v

Figure 3.13: (a) Splitting a P-node into two P-nodes, the vertex v �xed to the outer face is
contained in the blue bold edges. (b) Contracting the path from the root to the node containing
v in its skeleton.

having v on the outer face or v is contained in some virtual edge. However, then the
embedding of the skeleton is again completely �xed (P-nodes have to be split up �rst)
and we can continue with the child corresponding to the virtual edge containingv . This
yields a path of nodes starting with the root τ having a completely �xed embedding
only depending on the embedding Eτ chosen for skel(τ). As the nodes on the path do
not represent any embedding choices, we can simply contract the whole path into a
single new root node, merging the skeletons on the path, such that the embedding of
the new skeleton of the root is still �xed. This contraction is illustrated in Figure 3.13b.
More precisely, let τ be the root and let ε be the edge containing v , corresponding to
the child µ. Then we merge τ and µ by replacing ε in τ by the skeleton of µ without the
parent edge. The children of µ are of course attached to the new root τ ′ since skel(τ ′)
contains the corresponding virtual edges. As mentioned before, the embedding of
skel(µ) was �xed by the requirement that v is on the outer face, thus the new skeleton
skel(τ ′) has a unique embedding Eτ ′ inducing Eτ on skel(τ) and having v or the new
virtual edge containing v on the outer face. The procedure of merging the root with
the child corresponding to the virtual edge containingv is repeated untilv is contained
in the skeleton of the root. We call the resulting tree the restricted SPQR-tree with
respect to the vertex v and to the embedding Eτ of the root.

To come back to the problem OptimalFlexDraw, we can easily apply the algorithm
presented in Section 3.5.1 to the restricted SPQR-tree. All nodes apart from the root are
still S-, P-, Q- or R-nodes and thus the cost functions with respect to the corresponding
pertinent graphs can be computed bottom up. The root τ may have a more complicated
skeleton, however, its embedding is �xed, thus we can apply the �ow algorithm as
before, yielding an optimal drawing with respect to the chosen root τ and to the
embedding Eτ of skel(τ) with the additional requirement that v lies on the outer face.
Since the restricted SPQR-tree can be easily computed in linear time for a chosen root
τ and a �xed embedding E of skel(τ), we can compute a (τ ,E)-optimal orthogonal

88

Optimal Drawings with Variable Planar Embedding Section 3.5

representation with the additional requirement that v lies on the outer face in T�ow (n)
time, yielding the following theorem.

Theorem 3.6. OptimalFlexDraw with the additional requirement that a speci�c vertex
lies on the outer face can be solved inO (n ·T�ow (n)) time for positive-convex biconnected
instances.

As motivated before, we can use the BC-tree to solve OptimalFlexDraw for in-
stances that are not necessarily biconnected. We obtain the following theorem.

Theorem 3.7. OptimalFlexDraw can be solved in O (n2 · T�ow (n)) time for positive-
convex instances.

Proof. Let G be a positive-convex instance with positive �exibility of OptimalFlex-
Draw and let B be its BC-tree rooted at some B-node β . We show how to �nd an
optimal drawing of G, optimizing over all embeddings represented by B with respect
to the root β . Then we can simply choose every B-node in B to be the root once,
solving OptimalFlexDraw. The algorithm consumesO (n ·T�ow (n)) time for each root
β and thus the overall running time is O (n2 ·T�ow (n)). For the block corresponding
to the root β we use Theorem 3.5 to �nd the optimal orthogonal representation. For
all other blocks we use Theorem 3.6 to �nd the optimal orthogonal representation
with the cutvertex corresponding to the parent in B on the outer face. It remains
to stack these orthogonal representations together without causing additional cost.
This can be easily done, if a cutvertex that is forced to lie on the outer face has all
free incidences in the outer face and every other cutvertex has all free incidences in a
single face. The former can be achieved as we can assume orthogonal representations
to be tight. If the latter condition is violated by a cutvertex v , then v has two incident
edges e1 and e2 and the rotation of v is 0 in both incident faces. If both edges e1 and e2
have zero bends, we bend along a cycle around v in the �ex graph and thus we can
assume without loss of generality that e1 has a bend. Moving v along e1 to this bend
yields an orthogonal representation where v has both free incidences in the same face.
Thus given the orthogonal representations for the blocks, we can simply stack them
together without causing additional cost. �

3.5.3 Computing the Flow

In the previous sections we used T�ow (n) as placeholder for the time necessary to
compute a minimum-cost �ow in a �ow network of size n. Most minimum-cost �ow
algorithms do not consider the case of multiple sinks and sources. However, this is not
a real problem as we can simply add a supersink connected to all sinks and a supersource
connected to all sources. Unfortunately, the resulting �ow network is no longer planar.
Orlin [Orl93] gives a strongly polynomial time minimum-cost �ow algorithm with
running time O (m logn(m + n logn)), where n is the number of vertices and m the

89

Chapter 3 Bend Minimization with Convex Bend Costs

number of arcs. Since our �ow network is planar (plus supersink and supersource) the
number of arcs is linear in the number of nodes. Thus with this �ow algorithm we
have T�ow (n) ∈ O (n2 log2 n).

This can be slightly improved using the algorithm by Borradaile et al. [Bor+11] to
compute a feasible �ow in a planar �ow network with multiple sources and sinks,
consumingO (n log3 n) time. Afterwards, it remains to minimize the cost in the residual
network. As this network is planar, the shortest path computation in the algorithm by
Orlin [Orl93] can be done in linear time due to Henzinger et al. [Hen+97], yielding
the running time O (n2 logn).

Cornelsen and Karrenbauer give a minimum-cost �ow algorithm for planar �ow
networks with multiple sources and sinks consuming O (

√
χ n log3 n) time [CK12],

where χ is the cost of the resulting �ow. Since the cost functions in an instance
of OptimalFlexDraw may de�ne exponentially large costs in the size of the input,
we cannot use this �ow algorithm in general to obtain a polynomial time algorithm.
However, in practice it does not really make sense to have exponentially large costs.
Moreover, in several interesting special cases, an optimal solution has cost linear in
the number of vertices. We obtain the following results.

Corollary 3.3. A positive-convex instance G of OptimalFlexDraw can be solved in
O (n4 logn) or O (

√
χ n3 log3 n) time, where χ is the cost of an optimal solution. The

running time can be improved by a factor of O (n) for biconnected graphs.

3.6 Conclusion

We have presented an e�cient algorithm for the problem OptimalFlexDraw. As a
�rst step, we have considered biconnected 4-planar graphs with a �xed embedding
and have shown that they always admit a nice drawing, which implies at most three
bends per edge except for a single edge on the outer face with up to four bends.

Our algorithm for optimizing over all planar embeddings requires that the �rst bend
on every edge does not cause any cost as the problem becomes NP-hard otherwise.
Apart from that restriction we allow the user to specify an arbitrary convex cost
function independently for each edge. This enables the user to control the resulting
drawing.

In particular, our algorithm can be used to minimize the total number of bends,
neglecting the �rst bend of each edge. This special case is the natural optimization
problem arising from the decision problem FlexDraw. As another interesting special
case, one can require every edge to have at most two bends and minimize the number
of edges having more than one bend. This enhances the algorithm by Biedl and
Kant [BK98] generating drawings with at most two bends per edge with the possibility
of optimization. Note that in both special cases the cost of an optimal solution is linear

90

Conclusion Section 3.6

in the size of the graph, yielding a running time in O (n
7
2 log3 n) (O (n

5
2 log3 n) if the

graph is biconnected).
We want to conclude with some notes on the open question already mentioned in

the conclusion of Chapter 2. There we asked whether one can obtain an FPT-algorithm
for OptimalFlexDraw with respect to the number of in�exible edges. I.e., we allow k
edges to already cause cost with the �rst bend and want to obtain an algorithm that is
polynomial in the size of the graph but maybe exponential (or even super-exponential)
in k .

To adapt the idea from Chapter 2, one would need to show that the cost function
one obtains for a split component in the dynamic program is non-convex only if the
split component contains in�exible edges. For each node, one could then split the
non-convex cost functions into convex pieces and try all combinations. Unfortunately,
this does not work for the following reason. The cost functions of the split components
may already be non-convex, even though they do not contain in�exible edges. The
algorithm for OptimalFlexDraw presented in this chapter only works due to the
fact that the cost functions need to be considered only on a small interval, on which
they are convex. However, in the presence of in�exible edges, an optimal drawing
may require a split component to have more than three bends even if this particular
split component does not contain in�exible edges. Thus, although the algorithms
from this and from the previous chapter use similar techniques, the algorithm for
OptimalFlexDraw does not allow even a small number of in�exible edges.

91

4 Higher-Degree Nodes in
the Kandinsky Model

In this chapter, we consider the Kandinsky model for orthogonal drawings that allows
vertices of degree larger than 4. We show that �nding bend-minimal Kandinsky
drawings of plane graphs is NP-complete, which solves a long-standing open problem.
On the positive side, we give an e�cient algorithm for several restricted variants, such
as graphs of bounded branch width and a subexponential exact algorithm for general
plane graphs.

This chapter is based on joint work with Guido Brückner and Ignaz Rutter [BBR14].

4.1 Introduction

The main drawback of the previous chapters, and of orthogonal drawings in general,
is the restriction to graphs with maximum degree 4. The usual solution to this issue is
to represent the vertices by rectangles instead of points, which allows multiple edges
to leave a vertex on the same side. The �rst algorithm for minimizing the number
of bends in such a drawing was given by Batini et al. [BTT84]. Their idea was to
replace each vertex of degree greater than 4 with a cycle. Then one can apply the
bend-minimization algorithm for 4-planar graphs by Tamassia [Tam87], additionally
enforcing that the cycles representing high-degree vertices are drawn as rectangles;
see Figure 4.1a. This approach is usually referred to as the Giotto model.

The general issue with the Giotto model is that the rectangles representing vertices
may be very large. In fact, every planar graph admits a visibility representation where
every vertex is represented by a vertical bar and every edge is represented by a hori-
zontal line segment; see Figure 4.1b. Although a visibility representation is technically
an orthogonal drawing (with very high and thin rectangles) without any bends, it is

(a) (b)

Figure 4.1: (a) In the Giotto model, a high-degree vertex is replaced with a cycle that is forced
to have rectangular shape. (b) A visibility representation of the complete graph on four vertices.

93

Chapter 4 Higher-Degree Nodes in the Kandinsky Model

surely not what the user usually expects. Thus, algorithms using the Giotto model
usually add some restrictions. In the original algorithm by Batini et al. [BTT84], the
edges incident to a vertex are required to be evenly distributed over the four sides of
the vertex, e.g., if a vertex has degree 8, then two edges enter the vertex on each of
the sides top, bottom, left, and right. This approach was reconsidered by Tamassia et
al. [TDB88], who coined the term Giotto. With this additional requirement, it can still
happen that vertices are very large. However, for practical instances, the vertices are
usually not too large.

Another way to distribute the edges incident to a vertex to the four sides was
given by Batini et al. [BNT86]. They compute a so-called k-gonal representation with
the minimum number of bends. The concept of k-gonal representations is a direct
extension of orthogonal representations to more than 4 directions. In contrast to
orthogonal representations, the resulting k-gonal representation has in general no
geometric realization. However, the slope of an edge in the k-gonal representation
can be used to determine the side at which it leaves its incident vertex. This way of
distributing the edges seems more natural than just distributing them evenly to the
four sides.

Another way of restricting the Giotto model is to require vertices of maximum
degree 4 to have only a single edge in each direction [KM98]. This restriction makes
the most sense if many vertices have degree 4 or less. If all vertices have larger degree,
the algorithm may actually compute a visibility representation, as mentioned before.
This approach was proposed in conjunction with the quasi-orthogonal drawing style,
where a post-processing step replaces each rectangle representing a high-degree vertex
with a single point inside the rectangle. The edge segments incident to these points
may then be non-orthogonal. This post-processing step could of course be also applied
when there are other restrictions (e.g., the ones mentioned above).

To summarize, the Giotto model allows drawing arbitrary plane graphs orthogonally
with the minimum number of bends. The drawback of too large vertices is reduced by
requiring additional restriction that usually lead to smaller vertices and more bends.
However, the user has no in�uence on how large speci�c vertices are and there is no
guarantee that the vertices are not too large. To the best of our knowledge, there exists
unfortunately no paper comparing the e�ect of di�erent types of restrictions to the
size of the vertices.

To overcome the issue of generating potentially large vertices, Fößmeier and Kauf-
mann [FK95] de�ned theKandinskymodel (originally called podevsnef). In a Kandinsky
drawing, vertices are mapped to squares of constant size centered at grid points on a
coarse grid, while edges are routed on a �ner grid; see Figure 4.2a and also Section 1.4.5.
This allows several edges to emanate from the same side of a vertex while the vertices
have constant size. Similar to the work by Tamassia [Tam87] on orthogonal drawings,
Fößmeier and Kaufmann transformed the problem Kandinsky Bend Minimization

94

Introduction Section 4.1

Figure 4.2: (a) A Kandinsky draw-
ing of the wheel of size 5. (b) An
edge crossing three edges close to
a vertex. This is not allowed in a
Kandinsky drawing when represent-
ing the crossings with vertices. (a) (b)

for plane graphs into the problem of computing a minimum-cost �ow in a network.
The resulting �ow network has bundle capacities, i.e., the total amount of �ow on
some pairs of edges is limited. It has been claimed that this �ow network can be
reduced to an ordinary minimum-cost �ow network, which can then be solved e�-
ciently [FK95]. Unfortunately, this reduction turned out to be �awed [Eig03]. Before
showing in this chapter that bend minimization in the Kandinsky model is actually
NP-hard, we mention several papers on the Kandinsky model. They are mostly ordered
chronologically.

Fößmeier et al. [FKK97] showed that every plane graph admits a 1-bend Kandinsky
drawing that can be computed in linear time. They also adapt the original bend-
minimization algorithm to compute bend minimum Kandinsky drawings under the
restriction that every edge has at most one bend. As for the original algorithm, the
reduction to a minimum-cost �ow network is �awed. In fact, our NP-hardness proof
also shows hardness for this restricted version of bend minimization.

Another extension of the Kandinsky model aims for drawing planarizations of non-
planar graphs. To do that, one could simply handle the dummy vertices (representing
crossings) as normal vertices. However, this may require more bends than actually
necessary; see Figure 4.2b. Fößmeier and Kaufmann [FK97] extend the Kandinsky
model to treat dummy vertices in a special way such that these unnecessary bends
are avoided. The bend-minimization problem in this setting can again be reduced to
an NP-hard �ow network with bundle capacities. Fößmeier and Kaufmann also run
experiments for this model using an ILP solver, which performs well.

Bertolazzi et al. introduce the simple-Kandinsky model [BDD00]. It requires that
all bends that correspond to a 0◦ angle at a vertex must be right bends. This leads
to drawings with more bends than in the general Kandinsky model. However, it
eliminates the bundle capacities in the �ow network, making bend minimization in
this restricted model e�ciently solvable. Moreover, they give a branch-and-bound
algorithm that optimizes over all planar embeddings of a biconnected graph.

The Kandinsky model was further extended by Di Battista et al. [Di +99] to represent
vertices by rectangles of prescribed size (instead of squares of constant size). Their
algorithm computing drawings in this extended model relies on an initial drawing

95

Chapter 4 Higher-Degree Nodes in the Kandinsky Model

in the basic Kandinsky model. In their experiments they use the simple-Kandinsky
model (allowing e�cient bend minimization) for the initial drawings.

Eiglsperger et al. [EFK00] give an ILP-formulation computing bend-minimum
Kandinsky drawings subject to additional constraints. Among other restrictions,
their algorithm also supports vertices of prescribed size.

Brandes et al. [Bra+02] present an algorithm that generates Kandinsky drawings
that look similar to a sketch of the graph given in the input. The aim is to �nd a good
trad-o� between a drawing with few bends and a drawing that looks similar to the
given sketch. The formal problem statement includes the problem Kandinsky Bend
Minimization and the algorithm by Brandes et al. [Bra+02] relies on the fact that
Kandinsky Bend Minimization can be solved e�ciently, which we show to be false
unless P = NP. However, their experiments perform well using an ILP formulation.

Eiglsperger points out that the reduction from the �ow problem with bundle capaci-
ties to a normal �ow problem is �awed [Eig03]. He moreover gives a 2-approximation
for Kandinsky Bend Minimization. A 2-approximation performing better in practice
is given by Barth et al. [BMY07].

Besides these mostly theoretical papers, there are several algorithms generating
Kandinsky drawings that are actually of practical use. E.g., algorithms that allow
labeled nodes and edges [Bin+05] or algorithms generating layouts of UML class
diagrams [Eig+04]. Although the Kandinsky model has received much attention and
despite its relevance for practical use, the fundamental question about the complexity
of Kandinsky Bend Minimization has remained open for almost two decades.

Contribution and Outline

In this work, we show that Kandinsky Bend Minimization is NP-complete even for
graphs with a �xed planar embedding (no matter if we allow or forbid empty faces; see
Section 1.4.5). This also holds if each edge may have at most one bend; see Section 4.2.
As an intermediate step, we show NP-hardness of the problem Orthogonal 01-
Embeddability, which asks whether a plane graph (with maximum degree 4) admits
an orthogonal drawing when requiring some edges to have exactly one and the
remaining edges to have zero bends. This is an interesting result on its own, as it can
serve as tool to show hardness of other orthogonal drawing problems. In particular,
it gives a simpler proof for the hardness of deciding whether a 4-planar graph with
variable planar embedding has a 0-bend orthogonal drawing.

We then study the complexity of Kandinsky Bend Minimization subject to struc-
tural graph parameters in Section 4.3. For graphs with branch width k , we obtain an
algorithm with running time 2O (k logn) . For �xed branch width this yields a polynomial-
time algorithm (running timeO (n3) for series-parallel graphs), for general plane graphs
the result is an exact algorithm with subexponential running time 2O (

√
n logn) .

96

Complexity Section 4.2

Figure 4.3: The instance of Planar
Monotone 3-Sat with variables
x1, . . . ,x4 and clauses {x1,x2,x3},
{x1,x3,x4}, {¬x2,¬x3,¬x4}, and
{¬x1,¬x2,¬x4}.

x1

¬x1
x2

¬x2
x3

¬x3
x4

¬x4

c1 = {x1,x2,x3}

c2 = {x1,x3,x4}

c3 = {¬x2,¬x3,¬x4}

c4 = {¬x1,¬x2,¬x4}

4.2 Complexity

Let S = (X,C) be an instance of 3-Sat with variables X = {x1, . . . ,xn} and clauses
C = {c1, . . . ,cm}. A clause is a positive clause if it contains only positive literals, a
negative clause if it contains only negative literals, and a mixed clause otherwise. In
the variable-clause graph, every variable and ever clause is a vertex and there is an
edge xc connecting a variable x ∈ X with a clause c ∈ C if and only if x ∈ c or ¬x ∈ c .

In a monotone rectilinear representation of the variable-clause graph, the variables are
represented as horizontal line segments on the x-axis, the positive and negative clauses
are represented as horizontal line segments below and above the x-axis, respectively,
and a variable is connected to an adjacent clause by a vertical line segment such that
no two line segments cross. Note that an instance admitting a monotone rectilinear
representation cannot contain mixed clauses. An instance of PlanarMonotone 3-Sat
is an instance S = (X,C) of 3-Sat together with a monotone rectilinear representation
of its variable-clause graph; see Figure 4.3 for an example. De Berg and Khosravi [BK12]
show that Planar Monotone 3-Sat is NP-hard.

The problem Orthogonal 01-Embeddability is de�ned as follows. Given a 4-
plane graph G = (V ,E) and partitioned edge set E = E0 ·∪E1, test whether G admits an
orthogonal drawing such that every edge in Ei has exactly i bends. We also refer to
the edges in E0 and E1 as 0- and 1-edges, respectively. In the following, we always
consider the variant of Orthogonal 01-Embeddability where we allow to �x angles
at vertices, i.e., the value of rotf (v) for a vertex v with incident face f might be given
with the input. Fixing the angles at vertices does not make the problem harder since
augmenting a vertex v to have degree 4 by adding degree-1 vertices incident to v
has the same e�ect as �xing the angles at v (when choosing the planar embedding
appropriately). Note that this reduces the case with �xed angles at vertices to the one
without �xed angles. In the following we implicitly allow angles at vertices to be �xed.

In this section we �rst show that Orthogonal 01-Embeddability is NP-hard by
a reduction from Planar Monotone 3-Sat. Afterwards, we show that Kandinsky
Bend Minimization is NP-hard by a reduction from Orthogonal 01-Embeddability.

97

Chapter 4 Higher-Degree Nodes in the Kandinsky Model

G[1,1] G[−2,3]G[0,1]

≡

Figure 4.4: Three di�erent interval gadgets. The vertices s and t are marked blue. In future
�gures, G[0,1] is represented by a directed green edge. It either has no bend or one bend to
the right.

4.2.1 Orthogonal 01-Embeddability

Consider a single 1-edge e . When drawing it, we have to make the decision to either
bend it in one or the other direction. In the reduction from Planar Monotone 3-Sat,
this basic decision will encode the decision to set a variable either to true or to false.
In addition to that, the construction consists of several building blocks. For every
variable, we need a gadget that outputs its positive and its negative literal. Moreover,
we build gadgets representing clauses that admit a correct drawing if and only if at
least one out of three edges that require one bend is bent in the desired direction. Since
the same literal usually occurs in several clauses, we need to copy the decision made
for one edge to several edges. Finally, we need to bring the decisions of the variables
to the clauses without restricting the possible drawings of the clauses too much.

In the following we �rst present some simple gadgets that are used as building
blocks in the following constructions. Then we start with the variable gadget that
outputs the positive and negative literal of a variable. Afterwards, we show how to
duplicate literals and then present the so called bendable pipes that are used to bring
the value of a literal to the clauses. Finally, we present the clause gadget. In the end,
we put these building blocks together and show the correctness of the construction.

Building Blocks

An interval gadget is a small graph G[ρ1,ρ2] with two designated degree-1 vertices
(its endpoints) s and t on the outer face. It has the property that the rotation of π (s,t)
is in the interval [ρ1,ρ2] for any orthogonal drawing. The construction is similar to
the tendrils used by Garg and Tamassia [GT01]; see Figure 4.4 for some examples.

Lemma 4.1. The interval gadgetG[ρ1,ρ2] admits an orthogonal 0-bend drawing with
rotation ρ if and only if ρ ∈ [ρ1,ρ2].

The interval gadget we use most frequently in the following isG[0,1], which behaves
like an edge that may have one bend, but only into a �xed direction (recall that the

98

Complexity Section 4.2

(a)
s t

s ′t ′

(b)
s t

s ′t ′

s t

s ′t ′

(c)
s t

s ′t ′

s t

s ′t ′

(d)
s t

s ′

Figure 4.5: Building blocks for our gadgets. The edges are color-coded; 0-edges are black,
1-edges are blue and 01-edges are green and directed such that they may bend right but not
left. The building blocks are (a) the box; (b) the bendable box; (c) the merger; (d) the splitter.

planar embedding of our graph is �xed). To simplify the illustrations, we draw G[0,1]
as shown in Figure 4.4 and we refer to them as 01-edges.

To simplify the description of the hardness proof, we next describe a number of
basic building blocks, which we combine in di�erent ways to obtain the gadgets for
our construction. The building blocks are shown in Figure 4.5.

Except for the last of the building blocks, each of them consists of a 4-cycle s,t ,s ′,t ′.
They only di�er in the types of edges. In the box st and s ′t ′ are 1-edges and the other
edges are 0-edges; see Figure 4.5a. In a bendable box the two zero-bend edges of a
box are replaced by 01-edges directed from t to s ′ and from t ′ to s , respectively; see
Figure 4.5b. In a merger the edge st is a 1-edge, s ′t ′ and st ′ are 01-edges (with this
orientation) and ts ′ is a 0-edge; see Figure 4.5c. Finally, a splitter is a 3-cycle s,t ,s ′,
where ss ′ is a 1-edge and s ′t and ts are 01-edges (with this orientation); see Figure 4.5d.

Symmetric versions of the bendable box and the splitter can be obtained by reversing
the directions of both 01-edges, as shown in Figure 4.5b,c. Since they di�er from the
original only by exchanging the inner and outer face and mirroring the instance, their
behavior is completely symmetric. Note that, apart from the 0-edges, all edges of
the building blocks admit precisely two possible rotation values in each face. Thus,
each edge attains its maximum rotation value in one of its incident faces and the
minimum rotation in the other one. We call an orthogonal 01-representation of a
building block right-angled if all inner angles at vertices are 90◦. The following lemma
states the functionality of these building blocks, which is essentially that in a right-
angled orthogonal 01-representation the rotation values of some of the edges are not
independent of one another but are linked in the sense that exactly one of them must
attain its minimum (maximum) rotation value in f . In Figure 4.5 such dependencies
are displayed as red arrows. We will later interpret the rotation values as an encoding
of truth values. The red arrows then correspond to a transmission of the encoded
information.

Lemma 4.2. Consider a building block B and assume that we are given rotation values
for each of the edges incident to the inner face f of B that respect the bend constraints
of the edges. The following conditions for each of the building blocks are necessary and

99

Chapter 4 Higher-Degree Nodes in the Kandinsky Model

su�cient for the existence of a right-angled orthogonal 01-representation of B respecting
the given rotation values.

(1) Box: Exactly one of {st ,s ′t ′} attains its minimum (maximum) rotation in f .

(2) Bendable box: Exactly one of {st ,s ′t ′} and exactly one of {st ′,ts ′} attains its mini-
mum (maximum) rotation in f .

(3) Merger: st attains its minimum (maximum) rotation in f if and only if st ′ and s ′t ′

attain their maximum (minimum) rotation in f .

(4) Splitter: st attains its minimum (maximum) rotation in f if and only if s ′t and t ′s
attain their maximum (minimum) rotation in f .

Proof. We �rst treat the building blocks that consist of a 4-cycle. Denote the rotation
values of ts,st ′,t ′s ′ and s ′t by ρ1,ρ2,ρ3,ρ4, respectively. Note that, in any valid drawing,
each of the vertices contributes a rotation of 1 to the inner face f . Since the total
rotation around f must be 4, this implies ρ1 + ρ2 + ρ3 + ρ4 = 0 is necessary and
su�cient for the existence of a valid drawing.

For the box, we have ρ2 = ρ4 = 0, and thus ρ1 = −ρ3 is necessary and su�cient,
which implies the claim.

For the bendable box, observe that ρ2 ∈ {0,1} and ρ4 ∈ {−1,0}, and thus ρ2 + ρ4 ∈
{−1,0,1}. Similarly, ρ1,ρ3 ∈ {−1,1}, and thus ρ1 + ρ3 ∈ {−2,0,2}. To achieve a total
sum of 0, it follows that ρ1 + ρ3 = 0 and ρ2 + ρ4 = 0 is necessary and su�cient. The
claim follows.

For the merger observe that ρ4 = 0. Moreover, we have ρ2 ∈ {0,1} and ρ3 ∈ {−1,0},
and thus ρ2 + ρ3 ∈ {−1,0,1}. Since ρ1 ∈ {−1,1}, it follows that ρ2 + ρ3 = 0 can be
excluded. This together with the fact that ρ1 = −ρ2 − ρ3 is necessary and su�cient
proves the claim.

Finally, we consider the splitter. We denote the rotations of ss ′, s ′t and ts in f
by ρ1,ρ2 and ρ3, respectively. Since each of the three vertices incident to f supplies
a rotation of 1, the existence of a valid drawing is equivalent to ρ1 + ρ2 + ρ3 = 1.
Note that ρ1 ∈ {−1,1}, whereas ρ2,ρ3 ∈ {0,1}, and thus ρ2 + ρ3 ∈ {0,1,2}. It
follows immediately that ρ2 + ρ3 = 1 is not possible, and thus ρ2 = ρ3 is necessary.
Then ρ1 = 1 − 2ρ2 follows, showing the claim. �

We will now construct our gadgets from these building blocks. To this end, we
take copies of building blocks and glue them together by identifying certain edges
(together with their endpoints). As mentioned above, we will use rotations of the
1-edges to encode certain information. Thus, our gadgets will always have such edges
on the boundary of the outer face. In the �gures, we will again indicate the necessary
conditions from Lemma 4.2 by red edges as in Figure 4.5. It follows from Lemma 4.2
that when there is a path of such red edges from one edge to another edge, then they

100

Complexity Section 4.2

(b)(a) (c)

positive output
s t

s ′t ′
negative output

s

ts ′

t ′

¬x
=
false

x
=
true

s

t

s ′

t ′
x
=
false

¬x
=
true

Figure 4.6: (a) The variable gadget. (b–c) The two possible orthogonal representations corre-
sponding to x = true and x = false, respectively.

are synchronized. In particular, if both are incident to the outer face than exactly one
of them attains the minimum and one of them attains the maximum rotation there in
any valid drawing.

Gadget Constructions

Variable Gadget. The variable gadget for a variable x consists of a single box with
vertices s,t ,s ′,t ′. The two 1-bend edges st and s ′t ′ are called the positive and negative
output, respectively. It immediately follows from Lemma 4.2 that it has exactly two
di�erent valid drawings. We use the interpretation that x has value true if the
rotation of the the positive output in the outer face is maximum, and false otherwise;
see Figure 4.6. The following lemma summarizes the properties; it follows immediately
from Lemma 4.2.

Lemma 4.3. Assume the rotations ρp and ρn of the positive and negative output edges
in the outer face are �xed. There is a right-angled orthogonal 01-representations of the
variable gadget respecting ρp and ρn if and only if ρp = −ρn ∈ {−1,1}.

Literal Duplicator. A duplicator is a structure that has three 1-bend edges on the
outer face, one of which is the input edge, the other two are the output edges. The key
property is that the structure is such that the state of the inputs is transferred to both
outputs in any right-angled orthogonal 01-representation, i.e., the input attains its
maximum (minimum) rotation in the outer face if and only if the outputs attains their
minimum (maximum) rotation in the outer face. The duplicator is formed by a splitter,
which is glued to two mergers via its {0,1}-edges; see Figure 4.7. The fact that indeed
the information encoded in the input edge is copied to the output edges follows from
the red paths connecting the input to the outputs and Lemma 4.2.

Lemma 4.4. Assume the rotations ρi of the input edge and the rotations ρo and ρ ′o of
the two output edges in the outer face are �xed. There is a right-angled orthogonal 01-

101

Chapter 4 Higher-Degree Nodes in the Kandinsky Model

(c)(b)(a)

s

t

inp
ut

output

output input

output

s

t

s1

t1

v
output

s2

t2
f

f1

f2

f4

input

output

output

Figure 4.7: (a) The literal duplicator. (b–c) The two possible orthogonal representations
corresponding to the values false and true, respectively.

representations of the variable gadget respecting these rotations if and only if ρi = −ρo =
−ρ ′o ∈ {−1,1}.

By concatenating several duplicators in a tree-like fashion, we can of course take
as many copies of the state of a literal as there are clauses containing that literal. We
make this more precise later.

Bendable Pipes. The bendable pipe gadget is used for transmitting the information
about a literal to a clause. It has an input and an output edge, and has the property
that in any valid drawing the information encoded in the input is transmitted to the
output. To remedy the fact that the duplicators change their shape depending on the
state of the literal they copy, we allow some �exibility of the pipes, allowing them to
change how strongly the pipe is bent. This is achieved as follows.

A zig-zag consists of a bendable box and a bendable box where the 01-edges are
reversed, such that two of their 1-edges are identi�ed. One of the 1-bend edges
on the outer face is the input, the other is the output; see Figure 4.8. It follows
immediately from Lemma 4.2 that the information from the input is transferred to
the output. Moreover, it also follows from Lemma 4.2 that the decision which of the
bendable boxes bend their 01-edges can be taken independently. Thus, the zig-zag
allows to choose the rotation ρ,ρ ′ of the paths between the input and the output edge
with ρ = −ρ ′ for each ρ ∈ {−1,0,1}.

A k-bendable pipe is obtained by concatenating k zig-zags; see Figure 4.8e. Again
Lemma 4.2 easily implies that the information is transmitted from the input to the
output, and moreover, by concatenating suitable drawings of the zig-zags, for each
rotation ρ ∈ {−k, . . . ,k}, the paths between the input and the output edge along the
outer face can have rotation ρ and −ρ, respectively. In a high-level view, a k-bendable
pipe looks like an edge that transfers information between its endpoints and can be
bent up to k times either to the left or to the right. The following lemma summarizes
the properties of k-bendable pipes.

102

Complexity Section 4.2

(e)

(a) (b) (d)(c)

t1

s1 s3

in
pu

t

ou
tp
ut

s2

t2 t3 f1

f2

f3

s1

t1

s2 s3

t2

t3

input

output

in
pu

t · · ·

ou
tp
ut

zig-zag

k times

Figure 4.8: (a) The zig-zag. (b–d) Drawings of the zig-zag with di�erent rotations 0, 1, and −1
when the input edge has rotation −1 in the outer face. Corresponding drawings where the
rotation of the input edge is +1 are symmetric. (e) The k-bendable pipe.

Lemma 4.5. Assume the rotations ρi and ρo of the input edge and the output edge
as well as the rotations ρ and ρ ′ of the two counterclockwise paths on the outer face
connecting the input and the output edge are �xed.
There is a right-angled orthogonal 01-representations of the k-bendable pipe if and

only if ρi = −ρo ∈ {−1,1} and ρ = −ρ ′ ∈ {−k, . . . ,k}.

Clause Gadget. The clause gadget is a cycle C of length 4, consisting of three 1-
edges, the input edges, and the interval gadgetG[−2,3]; see Figure 4.9a. The embedding
is �xed such that the inner face of the clause lies to the right of the interval gadget
G[−2,3] (i.e., the rotation ofG[−2,3] in the inner face lies in the interval [−2,3]). Again
we only consider right-angled drawings, where the rotations at the vertices in the
internal face are all �xed to 1.

The clause gadget interprets a rotation of −1 for an input edge in the inner face as
true and a rotation of 1 as false. In Figure 4.9a all three input edges are set to true.
In Figure 4.9b two of the three input edges represent the value false. In Figure 4.9c
all input edges are false, thus G[−2,3] would need to have a rotation of −3 in the
inner face, which is not possible. The following lemma states more precisely that the
clause gadget admits a valid drawing with the given rotations of the input edges if
and only if at least one of the input edges represents the value true.

Lemma 4.6. Assume that the rotation ρ1,ρ2,ρ3 of the input edges in the inner face

103

Chapter 4 Higher-Degree Nodes in the Kandinsky Model

(a) (b) (c)
G[−2,3]

input

true

true

true

true

false

false

false

false
false

not possible

Figure 4.9: (a–c) The clause gadget with three di�erent combinations of values on the input
edges.

are �xed. There exists a right-angled orthogonal 01-representation of the clause gadget
respecting these rotations if and only if ρi ∈ {−1,1} for i ∈ {1,2,3} and ρi = −1 for at
least one i ∈ {1,2,3}.

Proof. Each of the four vertices of the clause gadget C has rotation 1 in the inner face
of C . Thus the sum of the rotations ρ1, ρ2, ρ3, and the rotation of G[−2,3] in the inner
face of C must be 0. The possible rotation of G[−2,3] are exactly the integers in the
interval [−2,3] (Lemma 4.1). Thus, we get an orthogonal 01-representation if and only
if ρ1+ ρ2+ ρ3 ∈ [−3,2], which is the case if and only if not all three rotations are 1. �

Pu�ing Things Together

Let S = (X,C) together with a monotone rectilinear representation be an instance of
Planar Monotone 3-Sat. The plan is to create a variable gadget for every variable
and a clause gadget for every clause, duplicate the literals (using the literal duplicator)
outputted by the variable gadget as many times as they occur in clauses, and bring the
values of the duplicated literals to the input of the clauses using bendable pipes.

Thus, if we have two gadgets A and B, we want to use an output edge of A as the
input edge of B. To make the description simpler, we assume each input edge and each
output edge of the gadgets to be oriented such that the outer face lies to its left and to
its right, respectively. We can combine A and B by identifying an output edge eA of A
with an input edge eB of B such that their sources and targets coincide. All input and
output edges of the two gadgets remain input and output edges in the resulting graph,
except for eA and eB .

Let x ∈ X be a variable. We take one variable gadget X representing the decision
made for x . Let k be the number of clauses containing the literal x . We successively
add k − 1 literal duplicators. The input edge of the �rst literal duplicator is identi�ed
with the positive output edge of X . The input edge of every following literal duplicator
is identi�ed with an output edge of a previously added literal duplicator. The graph
we get has the negative output edge at X and k output edges belonging to literal

104

Complexity Section 4.2

Figure 4.10: Variable tree Tx of a
variable x whose positive and nega-
tive literal have �ve and two occur-
rences, respectively. The variable
gadget is shaded white, duplicators
are shaded in yellow and zig-zags
(forming bendable pipes) are shaded
blue. Adjacent gadgets of the same
type are shaded with di�erent satu-
rations.

X

duplicators. To each of these k output edges we add a K-bendable pipe for a suitably
large K by identifying the output edge with the input edge of the bendable pipe. We
choose K = 3m2 + 4m, wherem is the number of edges in the variable-clause graph
of S . Let k ′ be the number of clauses containing the literal ¬x . As for the positive
literal, we add k ′ − 1 literal duplicators, this time identifying the input edge of the
�rst literal duplicator with the negative output edge of X . As before, we also add
K-bendable pipes to each of the k ′ output edges. We call the resulting graph variable
tree of x and denote it byTx . We call the k output edges of the bendable pipes attached
to literal duplicators attached to the positive output edge of the variable gadget X the
positive output edges of Tx . The k ′ other output edges are negative output edges of Tx .
The variable tree for the case k = 5 and k ′ = 2 is illustrated in Figure 4.10.

For the instance S = (X,C) of Planar Monotone 3-Sat we create the following
instance of Orthogonal 01-Embeddability. For every variable x ∈ X, we take the
variable tree Tx . For every clause c ∈ C, we add a copy of the clause gadget. We
connect them by identifying the output edges of the variable trees with the input edges
of the clause gadget in the following way.

Consider a variable x and a positive clause c with x ∈ c in the monotone rectilinear
representation of S . We say that c is the ith positive clause of x if the edge connecting
c and x is the ith edge incident to x (ordered from left to right). Analogously, x is the
jth variable of c if this edge is the jth edge incident to c . In the instance shown in
Figure 4.3 and Figure 4.11, the clause c1 is the �rst positive clause of x2 and x2 is the
second variable of c1. Analogously, we de�ne the ith negative clause.

Let c be the ith positive clause of x and let x be the jth variable of c . Let further C
be the clause gadget corresponding to c . Traversing the outer face of C in counter-

105

Chapter 4 Higher-Degree Nodes in the Kandinsky Model

clockwise order starting with the interval gadget de�nes an order on the input edges
of C . Moreover, traversing the variable tree Tx in counter-clockwise order starting
with an edge incident to the variable gadget de�nes an order on the positive output
edges of Tx . We identify the ith positive output edge of Tx with the jth input edge of
C . For a negative clause containing ¬x , we do exactly the same except for de�ning
the order of the negative output edges by traversing the outer face of Tx in clockwise
order. This identi�cation of input with output edges is done for every edge in the
variable-clause graph. We denote the resulting graph by G (S). Figure 4.11 shows the
monotone rectilinear representation (rotated by 45◦) of an example instance S and
the graph G (S). The graph G (S) has two kinds of faces. Faces that are inner faces in
the variable tree or in the clause gadget are called small faces. The other faces are
large faces. Note that there is a one-to-one correspondence between the large faces of
G (S) and the faces of the variable-clause graph of S . We obtain the following theorem
by proving that S admits a satisfying truth assignment if and only if G (S) admits an
orthogonal 01-representation.

Theorem 4.1. Orthogonal 01-Embeddability is NP-complete.

Proof. Let S = (X,C) be an instance of Monotone Planar 3-Sat and let G (S) be
the graph constructed from S as de�ned above. We �rst show that the existence of
an orthogonal 01-representation of G (S) implies the existence of a satisfying truth
assignment for S .

Let O be an orthogonal 01-representation of G (S). Let x ∈ X be a variable and
let X be the corresponding variable gadget in G (S). If the positive output edge of
X has rotation −1 in its outer face, we set x = true (as illustrated in Figure 4.6b).
Otherwise, we set x = false (as illustrated in Figure 4.6c). We claim that this gives
a satisfying truth assignment for S . Let c ∈ C be a positive clause and let C be the
corresponding clause gadget in G (S). By Lemma 4.6, at least one of the input edges of
C has rotation −1 in its inner face. By construction ofG (S), this input edge is identi�ed
with an positive output edge of the variable tree Tx for a variable x . Let X be the
corresponding variable gadget. As there is a path of literal duplicators and bendable
pipes from the positive output edge of X to every positive output edge ofTx , it follows
from Lemma 4.4 and Lemma 4.5 that the positive output edge of X has rotation −1 in
its outer face if and only if any positive output edge of Tx has rotation −1 in the outer
face of Tx . Thus, it follows that the positive output edge of X has rotation −1 in its
outer face and thus x = true, which satis�es the clause c .

If c is a negative clause, we �nd a variable x such that the negative output edge of
the corresponding variable gadget X has rotation −1 in its outer face. By Lemma 4.3,
the positive output edge of X has rotation 1 in its outer face, thus x = false holds,
which satis�es the negative clause c containing ¬x .

It remains to show the opposite direction. Assume we have a satisfying truth
assignment for S . We show how to construct an orthogonal 01-representation of G (S).

106

Complexity Section 4.2

X2

X4

X3

X1

C2

C1

C3

C4
x 1

¬x 1

x 2
¬x 2

x 3
¬x 3

x 4
¬x 4

c 1
=
{x 1
,x 2
,x 3

}

c 2
=
{x 1
,x 3
,x 4

}

c 3
=
{¬x

2,
¬x 3
,¬x

4}

c 4
=
{¬x

1,
¬x 2
,¬x

4}

Figure 4.11: Example reduction of Planar Monotone 3-Sat to Orthogonal 01-Embed-
dability. The bendable pipes have been shortened for clarity.

As G (S) consists of gadgets for which the rotations around every vertex are �xed,
it remains to specify a rotation for every edge such that the rotation around every
inner face is 4. We start with the small faces. Consider the variable tree Tx of a
variable x containing the variable gadget X . If x = true, we choose the orthogonal
01-representation of X where the positive output edge has rotation −1. This yields a
feasible representation by Lemma 4.3; see Figure 4.6b–c.

This already �xes the rotation of the literal duplicators inTx that are directly attached
to the output edges of X . By Lemma 4.4 this �xes the rotation of the corresponding
output edge (to the same behavior as the input edge) and a corresponding orthogonal
01-representation of the duplicator exists; see Figure 4.7b–c. Applying this procedure
iteratively to every literal duplicator whose input edge has a �xed rotation �xes the
orthogonal representation of every literal duplicator in Tx .

Similarly, we (partially) �x the orthogonal 01-representation of the bendable pipes
contained in Tx iteratively according to Lemma 4.5. More precisely, the rotation of the

107

Chapter 4 Higher-Degree Nodes in the Kandinsky Model

1-edges is �xed according to the rotation of the input edge; see Figure 4.8e. However,
we do not �x the rotation of the bendable pipes. Recall that, by Lemma 4.5 this rotation
can be anything in {−K , . . . ,K}. We will need the �exibility of choosing this rotation
to get the rotations in the large faces right.

Note that the resulting orthogonal 01-representations of the variable tree have the
following properties. The positive output edges of Tx have rotation −1 if x = true
and rotation 1 otherwise. The negative output edges have rotation −1 if ¬x = true
and rotation 1 otherwise. By �xing the orthogonal representations of the variable trees
in this way, we already �x the orthogonal representation of the input edges of the
clause gadgets in G (S). Let C be a clause gadget in G (S). Since S is a satisfying truth
assignment, it follows that the rotation of at least one input edge of C in the inner
face of C is −1. Thus, C admits an orthogonal 01-representation by Lemma 4.6. The
choices made so far imply that every small face in our orthogonal 01-representation
has rotation 4, as required.

It remains to choose the rotations of the bendable pipes such that the rotation in
the large inner faces is 4. Initially, assume that the rotation of every bendable pipe is 0.
We �rst bound the maximum deviation from a rotation of 4 around large faces.

Let f be a large face and let fS be the corresponding face in the variable-clause graph
of S . The boundary of f can be naturally subdivided into paths belonging to di�erent
variable trees and paths on the outer face of clause gadgets. Let x be a variable on the
boundary of fS . A path between two output edges of Tx consists of three subpaths.
Two paths with rotation 0 consisting of edges belonging to bendable pipes and, in
between, one path of edges belonging to literal duplicators. Clearly, this path has
length at most deg(x) and since the absolute value of the rotation at edges and vertices
is at most 1, we get a total rotation between −2 deg(x) and 2 deg(x) in the large face.
Summing over all variables incident to fS gives us a rotation between −2m and 2m,
wherem is the number of edges in the variable-clause graph. Moreover, for each clause
incident to fS the boundary of f contains a path having absolute rotation at most 3.
As there are m/3 clauses, the total rotation around the large face f is between −3m
and 3m.

Changing the rotation of a bendable pipe increases the rotation of one incident large
face by 1 and decreases it in the other incident large face by −1. (Note that this does
not a�ect the rotations at small faces.) Thus, choosing the rotations of the bendable
pipes such that the rotation in every large face is 4 (except for the outer face with
rotation −4) is equivalent to �nding a �ow in the �ow network N de�ned as follows;
see also Section 1.4.4 in the preliminaries. The underlying graph of N is the dual graph
of the variable-clause graph of S . The demand of the node corresponding to the face
fS is the di�erence between the rotation in the corresponding large face f of G (S)
and 4 (−4 if f is the outer face). Note that the demands sum up to 0. The capacity
on an edge connecting fS and f ′S is equal to the total length of the bendable pipes

108

Complexity Section 4.2

incident to the corresponding faces f and f ′ in G (S), and thus at least K . As shown
above, the absolute value of the demand of each node in the �ow network is at most
3m + 4. As the �ow network contains at mostm nodes (otherwise it would be a tree or
disconnected), the sum of the absolute values of the demands is bounded by 3m2 + 4m.
The capacity of every edge in N is at least K = 3m2 + 4m by the construction of the
variable tree. By Lemma 1.1 the network N has a solution. �

Theorem 4.2. Orthogonal 01-Embeddability is NP-hard for all combinations of the
following variations.

• The input has a �xed planar embedding or a �xed planar embedding up to the
choice of an outer face.

• The angles at vertices incident to 1-edges are �xed or variable, while angles at
vertices incident to 0-edges are variable.

Proof. In the construction showing Theorem 4.1, we already �xed all angles at vertices
incident to 1-edges (the only vertices whose angles are not �xed lie inside interval
gadgets). Thus, we already established hardness for the case that all angles at vertices
incident to 1-edges are �xed. As mentioned before, �xing angles is not a really a
restriction, as we can enforce �xed angles by attaching degree-1 vertices.

It remains to show that the problem remains hard when allowing to choose a
di�erent outer face. Clearly, when choosing a di�erent large face as outer face all
arguments leading to a satisfying truth assignment remain valid. Moreover, choosing
a small face as outer face can never lead to a valid orthogonal 01-representation
for the following reason. Each small face is one of the building blocks presented in
Section 4.2.1 (see Figure 4.5), or the inner face of a clause gadget (Figure 4.9). For the
building blocks it is easy to see that the total rotation in the inner face is at least 0
(by the �xed angles and the restriction of bends on the edges). Thus, none of them
can be chosen as the outer face (which would require a rotation of −4). Similarly, the
rotations at every vertex in the clause gadget is 1 in its inner face, which sums up to a
rotation of 4. The three input edges have rotation at least −1 in the inner face and the
interval gadget has rotation at last −2. Thus, the total rotation is at least −1, which
makes it impossible to choose it as the outer face. �

By the equivalence of orthogonal representations to �ow networks [Tam87], it
follows that it is NP-hard to test whether there is a valid �ow in a planar �ow network
with the properties that (i) the capacity on every edge is 1 and (ii) some undirected
edges require to have one unit of �ow (no matter in which direction). Note that Garg
and Tamassia [GT01] show hardness for the less restrictive case that the capacities
and the lower bounds for �ow on undirected edges is unbounded. They use this to
show NP-hardness of Orthogonal 0-Embeddability of 4-planar graph (with variable

109

Chapter 4 Higher-Degree Nodes in the Kandinsky Model

(a) (b)

v

e3

e1
e2

v v3

v−1

v2

v1

v+1

a

b

Figure 4.12: (a) Construction for transforming an instance of Orthogonal 01-Embeddability
into a subdivision of a 3-connected graph. A vertexv of degree 3 with variable angles (left) and
the corresponding gadget for the construction (right). (b) The routing of three disjoint paths
from a to b in G ′; subdivision vertices are omitted. Vertices u and v are marked green, and the
corresponding path in G is bold green. The three blue paths between a and b follow the bold
green path. Note that at the beginning at the end of a path some rerouting via vertices not on
the path may be necessary, however, the rerouting is such that the paths remain disjoint.

planar embedding); i.e., for the problem of testing whether the given graph admits an
orthogonal drawing without bends.

Theorem 4.3. All variants of Orthogonal 01-Embeddability are NP-hard even if the
input graph is a subdivision of a 3-connected graph.

Proof. We reduce from Orthogonal 01-Embeddability with �xed planar embedding
and variable angles. Let G = (V ,E0 ·∪E1) be a connected instance of this problem. We
replace each degree-1 vertex v by a cycle C of four 0-edges such that one vertex of C
is adjacent to the neighbor of v . It is not hard to see that the resulting graph has an
orthogonal 01-embedding if and only ifG has one. In the following we assume without
loss of generality that G has minimum degree 2.

For each vertex v with incident edges e1, . . . ,ed (in clockwise order around v), we
make the following construction. First, we subdivide its incident edges ei with new
vertices vi and connect them to form a cycle (in the clockwise ordering around v),
and subdivide the edges of this cycle �ve times. The vertices before and after vi
in clockwise direction are denoted v−i and v+i . Afterwards, each edge uv has been
subdivided intouui ,uivj ,vjv . We now add for each such edge the edgesu−i v+j andu+i v−j .
The edges uivj , u−i v+j , and u+i v

−
j are 1-edges if and only if the original edge uv was

a 1-edge. All other edges are 0-edges. Figure 4.12a illustrates the construction for a
vertex of degree 3.

We claim that the resulting graph G ′ (i) admits an orthogonal 01-representation if
and only if G does, and (ii) is a subdivision of a 3-connected graph. Once the claim is
proved, the statement of the theorem follows since the reduction can be performed in
polynomial time.

110

Complexity Section 4.2

We start with (i). First assume that G ′ has an orthogonal 01-representation O
and let uv be an edge of G that is subdivided into uivj . By construction both ui
and vj have degree 4 and the edges uui and vjv are 0-edges. That is all bends of the
pathuuivjv lie on the edgeuivj . Hence, the representation on the subgraph containing
the vertices {v,v1, . . . ,vdeg(v) | v ∈ V } has all bends on the edges vivj . We can then
undo the subdivisions and obtain an orthogonal 01-representation of G. Conversely,
if O is an orthogonal 01-representation of G, we can �rst subdivide each edge uv
close to vertices u and v to obtain vertices ui and vj with uui and vjv having 0 bends.
Then we add the edges the edges u−i v+j and u+i ,v

−
j parallel to uivj . Finally, we add

the remaining edges of the cycle around v , which can be done without bends on the
edges since the paths from v+i to v−i+1 (indices taken modulo deg(v)) have su�ciently
many degree-2 vertices, which can serve as bends. We have obtained an orthogonal
01-representation of G ′.

For (ii), we show that in G ′ any two vertices a and b of degree 3 or more are
connected by three (internally) vertex-disjoint paths. Let u and v be the two vertices
of G to whose construction a and b belong. If u = v it is not hard to �nd three disjoint
paths; one path goes through the center vertex v , the remaining paths are routed
clockwise and counterclockwise along the cycle around v . It may be necessary to
route through a neighboring gadget to get around the attachment vertices of v; see
Figure 4.12b.

If u , v , we pick a shortest path u = u1, . . . ,uk = v from u to v in G. This path
corresponds to a path u1a1b2u2, . . . ,ak−1bkuk , where ai and bi are vertices of the cycle
around vertex ui . We �nd three disjoint paths from a−1 ,a1 and a+1 to b−k ,bk and b+k ,
respectively, simply by taking for each edge uiui+1 for 1 < i < k − 1 the path from a+i
in clockwise direction along the cycle around ui via b−i to a+i+1, from ai via the center
vertex ui and bi to ai+1, and from a+i in counterclockwise direction along the cycle
around ui via b+i to a−i+1; this is illustrated in the middle vertex of the green path in
Figure 4.12b. We also extend these paths by adding edges ak−1bk , a+k−1b

−
k and a−k−1b

+
k

so that we have disjoint paths from a−1 to b+k , from a1 to bk and from a+1 to b−k . It then
remains to �nd disjoint paths from a to a−1 ,a1 and a+1 and from b−k ,bk and b+k to b. This
can be done by routing in the gadget around u and v , respectively. Note that it may be
necessary to visit the gadget of an adjacent vertex. This does, however, not interfere
with the paths constructed so far since we assumed that it is a shortest path, and hence
the corresponding neighbors are not part of the constructed paths. This �nishes the
proof of the claim. �

Corollary 4.1. Orthogonal 0-Embeddability is NP-hard for 4-planar graphs with a
variable planar embedding.

Proof. We reduce from Orthogonal 01-Embeddability where the input graph is a
subdivision of a 3-connected graph. Note that the embedding is unique up to the choice

111

Chapter 4 Higher-Degree Nodes in the Kandinsky Model

of the outer face. We now replace each 1-edge by a copy of the interval gadget G[1,1]
(see Figure 4.4). Changing the embedding of this gadget decides the bend direction
of the 1-edge and vice versa. It is not hard to see that the resulting graph admits
a 0-embedding if and only if the original instance admits an orthogonal 01-embedding.
Clearly the reduction runs in polynomial time. �

4.2.2 Kandinsky Bend Minimization

In the following, we show how to reduce Orthogonal 01-Embeddability to Kandin-
sky Bend Minimization. The reduction consists of two basic building blocks. In an
orthogonal drawing, every side of a vertex can be occupied by at most one edge. We
show how to enforce this requirement also for Kandinsky drawing. Moreover, we
construct a subgraph whose Kandinsky drawing behave like the drawings of an edge
with exactly one bend.

Corner Blocker. Let B be the graph consisting of a 4-cycle together with an addi-
tional attachment vertex connected to two non-adjacent vertices of the 4-cycle. The
graph B is called corner blocker. Figure 4.13a shows a corner blocker with attachment
vertex v . Let v be a vertex in a planar graph G. Blocking a corner of v denotes the
process of attaching a corner blocker to v by identifying the attachment vertex of B
with v . Consider a Kandinsky drawing of G + B. The corners of the box representing
the vertex v are also called the corners of v . We say that a corner of v is blocked by
the corner blocker B if it lies in the inner face of B incident to v . Figure 4.13b shows a
vertex v with four corner blockers attached to it such that all four corners of v are
blocked. Note that the Kandinsky representation of a Kandinsky drawing already
determines which corners are blocked by a corner blocker.

The idea behind the corner blocker is to enforce a blocking of all four corners of a
vertex. Recall that we assume a �xed planar embedding of the input graph and thus a
�xed order of edges around every vertex. Thus, blocking all four corners is equivalent
to enforcing edges to leave a vertex at a speci�c side, as in Figure 4.13b. The following
two lemmas show that the corner blocker de�ned above is well suited for this purpose,
as it admits an optimal drawing blocking only a single corner but blocking no corner
causes additional cost.

Lemma 4.7. Every Kandinsky representation of a corner blocker has at least two bends.

Proof. Let B be a corner blocker. Denote the degree-2 vertices of B with u, v , and w
and the degree-3 vertices with s and t and let B be embedded such that the boundary
of the outer face f contains u, v , s , and t ; see Figure 4.13a. In every Kandinsky
representation, the total rotation around f is −4. We show that this already implies
that every Kandinsky representation has at least two bends.

112

Complexity Section 4.2

(a) (b) (c) (d)

v

w

us

t

v

v

f ′
f

−2
1 −1
2

s

t v

f ′
f

−1
0

1
0

s

t

Figure 4.13: (a) A corner blocker with attachment vertex v . (b) A Kandinsky representation
of a vertex v with four attached corner blockers (and four outgoing edges). (c–d) Illustration
of the proof of Lemma 4.7.

Let f ′ be the inner face incident to v . If v has rotation 2 in f ′ for a �xed Kandinsky
representation, then one of the two edges vs or vt has rotation −1 at v . We assume
without loss of generality that vs has rotation −1 at v , thus we get the following
rotation values (see Figure 4.13c): rotf ′ (v) = 2, rotf (v) = −2, rotf ′ (vs[v]) = −1, and
rotf (vs[v]) = 1. As v has degree 2, we obtain another Kandinsky representation
by setting rotf ′ (v) = 1, rotf (v) = −1, rotf ′ (vs[v]) = 0, and rotf (vs[v]) = 0; see
Figure 4.13d. As this new Kandinsky representation has fewer bends, we can assume
in the following that rotf ′ (v) , 2, which shows that the rotation atv in f is at least −1.
Clearly, the same holds for u.

A similar argument shows that the rotations at s and t in f are at least 0. It follows
that the total rotation of vertices in the outer face is at least −2. Thus, to get a total
rotation of −4, there need to be two bends on edges incident to the outer face, which
shows the claim. �

Lemma 4.8. Every Kandinsky representation of a corner blocker that blocks no corner
of its attachment vertex has at least three bends.

Proof. As shown in the proof of Lemma 4.7, one can reduce the number of bends of a
Kandinsky representation of a corner blocker if the rotation at the attachment vertex
in the outer face is −2; see Figure 4.13c,d. �

We can make the corner blockers stronger by nesting them. The nested corner
blocker Bd of depth d is obtained by taking d corner blockers and identifying their
attachment vertices. The nested corner blocker Bd is embedded such that v lies on the
outer face and the innermost face has distance d to the outer face (in the dual graph);
see Figure 4.14 for an example. Clearly, the statements from Lemma 4.7 and Lemma 4.8
extend to nested corner blockers, where all bend numbers have to be multiplied with d .

113

Chapter 4 Higher-Degree Nodes in the Kandinsky Model

Figure 4.14: (a) The nested corner blocker B2 of depth 2.
(b) Kandinsky representation of B2 with 4 bends. (a) (b)

v v

One-Bend Gadget. Let Γ be the graph consisting of the 2 × 3-grid with the two
columns v1,v2,v3 and u1,u2,u3 (from bottom to top) together with the vertex v con-
nected to v1, v2, and v3 and the vertex u connected to u2; see Figure 4.15a. We call
Γ the one-bend gadget with its two endvertices u and v . The path π = (u,u2,v2,v)
is called the bending path of Γ. In the following we show that the bending path of
a one-bend gadget is (more or less) forced to have either rotation 1 or −1 in every
Kandinsky representation. As for the corner blocker, we say that the one-bend gadget
blocks k corners of the vertex v in a given Kandinsky representation if k corners of v
lie in the inner face of Γ.

Lemma 4.9. LetK be a bend-minimal Kandinsky representation of the one-bend gadget
Γ blocking no corner of its degree-3 end vertex. Then K has three bends and the rotation
of the bending path in Γ is either 1 or −1.

Proof. Note that the Kandinsky representation of Γ in Figure 4.15a does not block a
corner of v and has three bends. It remains to show that this drawing is optimal and
that the rotation of the bending path π is always 1 or −1.

We consider all Kandinsky representations of Γ with at most three bends blocking no
corner of v and show that each of these representations has three bends and rotation 1
or −1 on π . We start with two simple facts. First, blocking no corner of v requires
that at least two of the edges vv1, vv2, and vv3 to have a bend, as they all leave v at
the same side. Second, the edges in each of the triangles vv1v2 and vv2v3 require at
least two bends, as they have rotation 2 at v . We use these facts several times in the
following case distinction on the number of bends of vv2.

Assume thatvv2 has three bends. As at least two of the edges vv1, vv2, and vv3
have bends, we get at least four bends in total (but we consider only drawings with
at most three bends). Assume that vv2 has zero bends. Then the two bends of the
triangle vv1v2 must be on the edges vv1 and v1v2 and the bends of the triangle vv2v3
must be on the edges vv3 and v2v3. Thus, there are at least four bends, which again
contradicts the restriction to at most three bends.

If vv2 has two bends, one of the two edges vv1 or vv3 has one bend, the other has
no bend (as we have more than three bends otherwise). Assume thatvv3 has one bends,
the other case is symmetric. As vv1 has no bend, the direction of the bend of vv3 and
of the �rst bend of vv2 is �xed. The remaining choice is the second bend of vv2; see
Figure 4.15b and c for an illustration of the two possible Kandinsky representations.

114

Complexity Section 4.2

Figure 4.15: (a) The one bend gad-
get Γ with three bends without
blocked corners atv with | rot(π) | =
1. (b–c) The two possible represen-
tations of the edges incident to v ,
whenvv2 (blue) has two bends. Both
cannot be extended to Γ without ad-
ditional bends. (d–f) The possible
ways to draw vv1, when vv2 (blue)
has one bend together with the im-
plied drawing on some other edges
(dashed). Either we get no Kandin-
sky representation of Γ (d), or the
path π has absolute rotation 1 (e–f).

(a)

v1

v2

v3

u

v

u1

u2

u3

π

(b)

v1 v2

v3

v

(c)

v1

v2v3

v

(d)

v1 v2

v3

v

(e)

v1

v2

v3

v

(f)

v1

v2

v3

v

u2

u3

Since we already used three bends, the 2 × 3 grid consisting of the nodes v1 . . .v3 and
u1 . . .u3 must be drawn without any bends. However, the Kandinsky representation
without bends of the 2 × 3 grid is unique (see Figure 4.15a) and can obviously not be
merged with one of the Kandinsky representations of the three edges incident to v
shown in Figure 4.15b and c.

Assume thatvv2 has one bend. Assume without loss of generality that the bend on
vv2 is a left bend, when traversing it fromv tov2 (i.e.,vv2 has rotation 1 in the triangle
vv2v3). This implies that the edge vv3 has at least one bend as in Figure 4.15d–f. If
vv1 has a bend but in the other direction then all remaining edges have to be straight,
which is not possible for v1v2 without creating an empty triangle (Figure 4.15d). Thus,
v1v2 has either a bend in the same direction as vv1 or no bend. Consider the former
case �rst; see Figure 4.15e. We split the bending path π into two parts, the edge vv2
and the path fromv2 to u. Clearly, the absolute rotation ofvv2 is 1. As we already used
three bends, the Kandinsky representation of Γ −v is unique. Thus, the path from v2
to u must have rotation 0. To show | rot(π) | = 1, it remains to show that the rotation
of π at v2 is 0, which is the case if there is no 0◦ angle at v2. This angle would have to
be adjacent to the edge vv2 as it is the only one having a bend. However, vv2 has only
one bend and, since rotf (vv2[v]) = 1, it follows that rotf (vv2[v2]) = 0, where f is the
face bounded by vv2v3. But then there can be no 0◦ bend at v2.

It remains to deal with the case thatvv1 has no bend; see Figure 4.15f. As the triangle
vv1v2 needs two bends, the edge v1v2 must be drawn with a bend. All remaining
edges must have zero bends, as three bends are already used. As before, this shows
that the subpath of π from v2 to u has rotation 0 and for | rot(π) | = 1 it remains to

115

Chapter 4 Higher-Degree Nodes in the Kandinsky Model

show that the rotation of π at v2 is 0. To this end, consider the triangle vv2v3 and the
quadrangle v2u2u3v3. In the quadrangle, all edges are straight lines, which ensures
that the rotation at v2 is 1. In the triangle, the rotation at v2 must also be 1 (otherwise
the rotation at v3 would need to be 2, but there is no edge that can assign its bend to
this 0◦ angle). Thus, the rotation of v2 in the path π is 0, which shows | rot(π) | = 1.

It follows that the path π has rotation 1 or −1 in every Kandinsky representation of
Γ that has only three bends and blocks no corner of v . Moreover, we showed that all
such Kandinsky representations require three bends. �

Pu�ing Things Together

LetG = (V ,E = E0 ·∪E1) (together with a planar embedding) be an instance of Orthog-
onal 01-Embeddability. We assume that the angles at vertices that are incident to
a 1-edge are �xed. We construct an embedded graph G ′ that then serves as instance of
Kandinsky Bend Minimization. To construct G ′, we start with G. Let v be a vertex
incident to the face f . If the angle ofv in f is �xed to α , we attach α/90◦ nested corner
blockers of depth 4 to v embedded next to each other into the face f ; see Figure 4.16a.
Otherwise, if the angle is not �xed, we attach a single corner blocker of depth 4 at v
in f . By suitably increasing the depth of some corner blockers we ensure that each
vertex is incident to exactly 16 corner blockers; see Figure 4.16b. This is not strictly
necessary but simpli�es some of our computations. Finally, we replace every edge
uv ∈ E1 (i.e., every edge that requires one bend) by a copy of the one-bend gadget Γ,
identifying u and v with the endvertices of Γ. Note that, by assumption, both u and v
have four corner blockers of depth 4. To obtain the following theorem, we show that
the resulting graph G ′ admits a Kandinsky representation with at most 32|V | + 3|E1 |
bends if and only ifG admits an orthogonal 01-embedding (note that deciding whether
a planar embedded graph admits a Kandinsky representation with at most k bends is
clearly in NP).

Theorem 4.4. Kandinsky Bend Minimization is NP-complete.

Proof. Let G be an instance of Orthogonal 01-Embeddability (with �xed angles at
vertices incident to 1-edges) and let G ′ be the corresponding instance of Kandinsky
Bend Minimization. Assume we have an orthogonal 01-representation O of G. We
show how to construct an Kandinsky representationK of G ′ with 32|V | + 3|E1 | bends.
We interpret O as a Kandinsky representation. We �rst add the nested corner blockers
to the representation. Let v be a vertex with incident face f . By construction, v has at
least as many corners in f as there are nested corner blockers incident to v embedded
in the face f . Thus, these corner blockers can be added with 2 bends for each corner
blocker (see the drawing in Figure 4.13b). This yields 32|V | bends in total.

Moreover, the drawings of the 1-edges can be replaced by drawings of one-bend
gadgets with three bends (the drawing in Figure 4.15a or the symmetric drawing

116

Complexity Section 4.2

v v

4 4

4 4
8

4

4

(a) (b)

Figure 4.16: (a–b) A degree-3 vertex with and without �xed angles and attached corner
blockers, respectively.

where the bending path π is bent to the other direction). This yields 3|E1 | bends for all
1-edges. Hence, we get a Kandinsky representation K of G ′ with 32|V | + 3|E1 | bends
in total.

For the opposite direction, we show that a Kandinsky representation K of G ′ with
at most 32|V | + 3|E1 | bends implies the existence of a orthogonal 01-embedding O
of G. We show that the following three facts hold for K .

1. Every nested corner blocker blocks a corner.

2. Every one-bend gadget has three bends and blocks no corner of its degree-3
endvertex in K .

3. All remaining edges (the edges in E0) have 0 bends.

We use a charging argument assigning the costs for bends either to corner blockers,
to one-bend gadgets or to the edges in E0, such that the total cost is at most the total
number of bends. By Lemma 4.7, every corner blocker of depth d requires at least
2d bends. Moreover, if such a nested corner blocker does not block a corner, it has
at least 3d bends (Lemma 4.8). For corner blockers that block a corner, we charge
cost 2d (which is equal to the number of bends). For corner blockers blocking no
corner, we charge cost 2d + 1 (which is d − 1 ≥ 3 less than the number of bends;
note that all corner blockers have depth at least 4). A one-bend gadget with more
than three bends is charged cost 4. A one-bend gadget that does not block a corner of
its degree-3 endvertex has at least three bends by Lemma 4.9 and we charge cost 3
for it. If a one-bend gadget blocks a corner of its degree-3 endvertex, then at least
one of the adjacent nested corner blockers does not block a corner. As we charged
cost 2d + 1 for this corner blocker although it has at least 3d bends, we can again

117

Chapter 4 Higher-Degree Nodes in the Kandinsky Model

charge cost 3d − (2d + 1) = d − 1 ≥ 3 for the one-bend gadget. For the remaining
edges in E0 we simply charge cost equal to the number of bends.

Hence, every nested corner blocker of depth d is charged at least cost 2d and every
one-bend gadget is charged at least cost 3. Recall that there are 16|V | corner blockers
and |E1 | one bend gadgets. To get a total cost of at most 32|V | + 3|E1 |, every corner
blocker of depthd must be charged exactly cost 2d , which implies that it blocks a corner
and thus shows the �rst fact. Since the endvertices of one-bend gadgets are incident
to four corner blockers, each of which indeed blocks a corner, this also implies that no
one-bend gadget can block a corner of its degree-3 endvertex. Thus, by Lemma 4.9,
every one-bend gadget has at least three bends. Moreover, every one-bend gadget has
no more than three bends as it would otherwise be charged cost 4, which shows the
second fact. The third fact follows as the cost charged to edges in E0 must be 0.

By the second fact and Lemma 4.9 the bending path of every one-bend gadget has
absolute rotation 1 in K . Thus, we can replace each one-bend gadget by an edge
with exactly one bend. Removing the corner blockers yields a representation of G
in which no two edges leave a common incident vertex on the same side, as every
nested corner blocker blocks a corner (�rst fact). Moreover, the edges in E0 have zero
bends. Hence, the resulting representation of G is an orthogonal representation (and
not only a Kandinsky representation) and the edges in E1 and E0 have one and zero
bends, respectively. �

Theorem 4.5. Kandinsky Bend Minimization is NP-complete, even if we allow empty
faces or require every edge to have at most one bend (or both).

Proof. That the problem remains NP-hard when we require each edge to have at most
one bend is obvious, as all Kandinsky representations involved in the construction
above have at most one bend per edge. In fact, this requirement would even make
some arguments simpler. The only place where we argued with empty faces is in the
proof of Lemma 4.9 to exclude the situation shown in Figure 4.15d. It is not hard to
see that this situation can also be excluded when allowing empty faces, as even in this
case, it is not possible to complete the drawing without additional bends. �

4.3 A Subexponential Algorithm

In this section, we give an algorithm for computing optimal Kandinsky representations
of planar graphs with �xed planar embedding in subexponential running time. To this
end, we use dynamic programming on sphere cut decompositions, which are special
types of branch decompositions [Dor+10].

The basic idea is as follows. Consider two graphs G1 and G2 with disjoint edge sets
that share a set of attachment vertices. We assume that the union G of G1 and G2 is
planar and has a �xed planar embedding. We say that G1 and G2 are glueable if both

118

A Subexponential Algorithm Section 4.3

(a) (b) (c)

glueable

G1

G2

not glueable

G1

G2
v

not glueable

G1

G2

Figure 4.17: (a) The decomposition of a graph into two glueable subgraphs G1 and G2. The
attachment vertices are red. (b) This decomposition is not glueable, as a closed curve separating
G1 from G2 cannot be simple (v must be visited twice). (c) The decomposition is not glueable
since G2 is disconnected.

graphs are connected and there is a simple closed curve in the embedding of G that
separates G1 from G2 (note that this curve must contain the attachment vertices); see
Figure 4.17. We also say that G1 (G2) is a glueable subgraph of G.

Now assume that we know two Kandinsky representations K1 and K2 of G1 and G2.
Depending on K1 and K2 one might be able to merge them into a Kandinsky repre-
sentation of the whole graph G. We can generate every Kandinsky representation
of G in this way, by merging every representation of G1 with every representation
of G2. Clearly, considering all pairs of representations of G1 and G2 is not e�cient.
Thus, we group Kandinsky representations of G1 that behave the same with respect to
merging them with representations of G2 into equivalence classes. If we know an opti-
mal Kandinsky representation for each equivalence class of G1 and G2, it is su�cient
to merge those optimal representatives of equivalence classes to obtain an optimal
representation of G. If G is hierarchically decomposed, one can start with optimal
Kandinsky representations of the edges and merge them step by step to obtain G.

In the following we �rst characterize which Kandinsky representations of a glueable
subgraph are equivalent in the sense that they can be merged with the same Kandinsky
representation of the remaining graph (Section 4.3.1). Afterwards, we estimate in
how many di�erent ways the Kandinsky representations of subgraphs can be merged
into one (Section 4.3.2). Finally, we conclude with the algorithm and some interesting
special cases (Section 4.3.3).

4.3.1 Interfaces of Kandinsky Representations

Let K be a Kandinsky representation of G and let K1 be the representation induced
on G1. Let K ′1 be another Kandinsky representation of G1. By replacing K1 with K ′1 in

119

Chapter 4 Higher-Degree Nodes in the Kandinsky Model

(a) (b)

K1 K ′1
v1

v2 v0

π (v1,v2)

π (v2,v0)

π (v0,v1)

e in0

eout0

e in1eout1

e in2

eout2

Figure 4.18: (a) The graphG with glueable subgraphG1 (shaded blue). The attachment vertices
and the faces shared by G1 and G2 are red. The two Kandinsky representations K1 (left) and
K ′1 (right) of G1 are interchangeable: In any representation of G inducing K1 on G1, one can
replace K1 by K ′1 and vice versa. (b) Illustration of the notation used to de�ne the interface
paths, the attachment rotations and the 0◦ �ags.

K we mean the following. Every rotation value in K involving only edges belonging
to G1 are set to the value speci�ed in K ′1 while all other values remain as they are. In
other words the following rotations in K are changed to their value in K ′1 : rot(e) if
the edge e belongs toG1; rot(uv[u]) and rot(uv[v]) (the rotation of uv at the vertices u
andv) ifuv belongs toG1; and rot(e1,e2) (for two edges e1 and e2 incident to a common
vertex) if both edges e1 and e2 belong to G1. Note that the resulting set of rotation
values is not necessarily a Kandinsky representation, as some properties of Kandinsky
representations might be violated.

We say that the two Kandinsky representations K1 and K ′1 of G1 have the same
interface if replacing K1 with K ′1 (and vice versa) in any Kandinsky representation of
G yields a Kandinsky representation of G. We will see later (Lemma 4.10) that it does
not depend on the remaining graph G \G1, whether two representations of G1 have
the same interface. The two Kandinsky representations in Figure 4.18a have the same
interface. Clearly, having the same interface is an equivalence relation. We call the
equivalence classes of this relation the interface classes.

Now consider again two glueable subgraphs G1 and G2 of a plane graph G. Since
G1 and G2 are glueable, we know that G2 lies in a single face f of G1. Let Cf be the
facial cycle of f and assume for now, that Cf is simple (i.e., G1 contains no cutvertex
incident to f). Let v0, . . . ,v` be the attachment vertices appearing in that order in
Cf (clockwise for inner, counter-clockwise for outer faces). This decomposes Cf into
the paths πf (v0,v1),πf (v1,v2), . . . ,πf (v` ,v0), which we call interface paths. As the
face we consider is unique, we often omit the subscript and simply write π (vi ,vi+1).
Moreover, the values for i , i − 1 and i + 1 are always meant modulo ` + 1. For an
attachment vertex vi , denote the last edge of the path π (vi−1,vi) by e in

i and the �rst
edge of the path π (vi ,vi+1) by eout

i ; see Figure 4.18b.

120

A Subexponential Algorithm Section 4.3

Let K1 and K ′1 be two Kandinsky representations of G1. We say that K1 and K ′1
have compatible interface paths if π (vi ,vi+1) has the same rotation in K1 and K ′1 (i.e.,
rotK1 (π (vi ,vi+1)) = rotK ′1 (π (vi ,vi+1))) for every i = 1, . . . ,k . Moreover, K1 and K ′1
have the same attachment rotations if for every attachment vertex vi , the rotation
rot(e in

i ,e
out
i) is the same in K1 and K ′1 . In Figure 4.18b, the interface paths π (v0,v1),

π (v1,v2), and π (v2,v0) have rotations −1, 1, and 0, respectively, and the attachment
rotations at the vertices v0, v1, and v2 are −1, −1, and −2, respectively.

When considering orthogonal representations (with maximum degree 4) and not
Kandinsky representations, having compatible interface paths and the same attachment
rotations is su�cient for two representations to have the same interface. In case of
Kandinsky representations, we have to care about 0◦ angles at the attachment vertices.
Thus, for an attachment vertex vi , the rotations at the end vi of the edges e in

i and eout
i

(rot(e in
i [vi]) and rot(eout

i [vi])), which can take the values −1, 0, or 1 are of importance.
The actual value of these rotations is not important, we only care about whether they
are −1 or something else. We call these information the 0◦ �ags, which has the value
true for a rotation of −1 and false otherwise. We say thatK1 andK ′1 have the same
0◦ �ags if all their 0◦ �ags have the same values. Possible values for the 0◦ �ags in
Figure 4.18b are true for eout

0 [v0] and for e in
1 [v1] and false for all other �ags.

In case the facial cycle Cf is not simple, it might contain an attachment vertex
vi several times. However, since G1 and G2 are glueable, the simple closed curve
separating G1 from G2 gives an order of the attachment vertices. We simply take this
order to de�ne the interface paths. All remaining de�nitions work as before.

Lemma 4.10. Two Kandinsky representations have the same interface if and only if they
have compatible interface paths, the same attachment rotations, and the same 0◦ �ags.

Proof. We �rst show the only-if part. LetG be a plane graph with Kandinsky represen-
tationK with restrictionK1 to the glueable subgraphG1. LetK ′1 be another Kandinsky
representation of G1. Assume there is an interface path π that has a di�erent rotation
in K1 than in K ′1 . Let f be the face incident to π shared by G1 and the remaining
graph G2 (one of the red faces in Figure 4.18a). By replacing K1 with K ′1 the rotation
of π in f changes, but all other rotations in f stay the same. Thus, the total rotation
around f cannot be 4 (−4 if f is the outer face), which shows that the resulting set of
rotations is not a Kandinsky representation ofG (contradiction to Property (1)). Hence,
K1 and K ′1 do not have the same interface. A similar argument shows that having the
same attachment rotations is necessary, since otherwise the total rotation around a
vertex would change by replacing K1 with K ′1 , which contradicts Property (3).

Finally, assume that K1 and K ′1 have di�erent 0◦ �ags. Thus, there exists an at-
tachment vertex v with incident edge e1 (belonging to an interface path) such that
rot(e1[v]) is (without loss of generality) −1 inK1 (value true) and 0 or 1 inK ′1 (value
false). As v is an attachment vertex, the remaining graph G2 contains an edge inci-
dent to v . Let e2 be the edge of G2 incident to v that shares a face f with e1. Then one

121

Chapter 4 Higher-Degree Nodes in the Kandinsky Model

might choose the Kandinsky representation K of G such that the rotation rotf (e1,e2)
at v in f is 2 (angle of 0◦) while rotf (e2[v]) is 0 or 1. Then rot(e1[v]) must be −1 by
Property (5), which is true for K1 but not for K ′1 . Hence, replacing K1 with K ′1 does
not yield a Kandinsky representation of G , which shows that having the same 0◦ �ags
is also necessary for having the same interface.

For the other direction, let G1 and G2 be glueable graphs with union G and let K be
a Kandinsky representation ofG with restrictionsK1 andK2 toG1 andG2, respectively.
Let K ′1 be a Kandinsky representation of G1 with compatible interface paths, the same
attachment rotations, and the same 0◦ �ags. We show that replacingK1 withK ′1 inK
yields a Kandinsky representation of G by showing that the resulting rotation values
satisfy properties (1)–(5) from Section 1.4.5.

Property (2) is trivially satis�ed, as all rotations concerning a single edge come
either fromK ′1 or fromK2, which are both Kandinsky representations and thus satisfy
this property. Property (4) is also satis�ed, as the rotation at a vertex either stays as it
is in K or it is changed to its value in K ′1 and thus lies in the interval [−2,2].

For Property (1), consider a face f of G. If all edges in the boundary of f belong
to only one of the graphs G1 and G2, then the total rotation in f is equal to its total
rotation in K ′1 or K2, respectively. As K ′1 and K2 are Kandinsky representations, they
satisfy Property (1). If the boundary of f contains edges from both graphs G1 and G2
(one of the red faces in Figure 4.18a), it is composed of two interface paths π1 and π2
belonging toG1 andG2, respectively, that share their endvertices u andv . By replacing
K1 withK ′1 , the representation of π2 does not change. Moreover, the rotations atu and
v in f remain unchanged. The representation of π1 might of course change, however,
the rotation remains the same as K1 and K ′1 have compatible interface paths.

A similar argument shows that Property (5) is satis�ed. Let v be a vertex with
rotation 2 (corresponding to an angle of 0◦) in a face f , i.e., rotf (uv,vw) = 2. We only
need to consider the case where (without loss of generality) uv belongs to G1 and vw
belongs toG2, as all other cases are trivial. Then rotf (uv[v]) = −1 or rotf (vw[v]) = −1
holds inK . In the latter case, rotf (vw[v]) does not change by replacingK1 withK ′1 as
vw belongs toG2. In the former case, rotf (uv[v]) = −1 implies that the corresponding
0◦ �ag in K1 is true. As K1 and K ′1 have the same 0◦ �ags, this �ag is also true in
K ′1 , which implies that rotf (uv[v]) = −1 is still true in K ′1 and thus in K ′.

Finally, to show Property (3), consider a vertex v . If v is not an attachment vertex,
all rotations at v come either from K ′1 or from K2 and thus satisfy Property (3). Let v
be an attachment vertex and let f1 be the face of G1 that completely contains G2. The
only rotations at v that might change by replacing K1 with K ′1 are the rotations in
faces not shared with G2. These are exactly the faces of G1 incident to v except for f1.
As K1 and K ′1 have the same rotations at attachment vertices, the rotation rotf1 (v) is
the same in K1 and K ′1 . Thus, by Property (3) the sum of all other rotations around
v in G1 must also be the same in both representations K1 and K ′1 . Hence, the total

122

A Subexponential Algorithm Section 4.3

sum of rotations at v does not change by replacing K1 with K ′1 , which concludes the
proof. �

It follows that each interface class is uniquely described by the rotations of the
interface paths, by the rotations at the attachment vertices, and by the values of the
0◦ �ags. We simply call this set of information the interface of G1 (G2) in G. Note
that this rede�nes what it means for two Kandinsky representations to have the same
interface. However, the de�nitions are consistent due to Lemma 4.10 and we will use
them interchangeably.

4.3.2 Merging two Kandinsky Representations

So far, we considered the case that there is a Kandinsky representation K of G that
can be altered by replacing the Kandinsky representation of the subgraph G1. Now
we change the point of view and assume that we have Kandinsky representations
K1 and K2 of G1 and G2, respectively, that we want to combine to get a Kandinsky
representation of G . We say that K1 and K2 can be merged if there exists a Kandinsky
representation K of G whose restrictions to G1 and G2 are K1 and K2, respectively.
Note that the only rotations in K that occur neither in K1 nor in K2 are rotations at
attachment vertices between an edge of G1 and an edge of G2. We call these rotations
the shared rotations; see Figure 4.19a. Thus, merging K1 and K2 is the process of
choosing values for the shared rotations, such that the resulting set of rotations is a
Kandinsky representation of G.

In the following, we consider the case where G itself is a glueable subgraph of a
larger graph H . We call this the merging step G = G1 tG2. Note that G1 and G2 are
not only glueable subgraphs of G but also of H . Note further that the interface of G1
(G2) in G can be deduced from the interface of G1 (G2) in H . When dealing with a
merging step, we always consider the interfaces ofG1 andG2 inH (which contain more
information than their interfaces in G). The width of a merging step is the maximum
number of attachment vertices of G1, G2, and G in H ; see Figure 4.19b for an example.

If the Kandinsky representations K1 and K2 can be merged, then every Kandinsky
representation K ′1 with the same interface as K1 can be merged in the same way (i.e.,
with the same shared rotations) with K2 as one can �rst merge K1 with K2 and then
replace K1 by K ′1 . Moreover, the resulting Kandinsky representations K and K ′ of G
have the same interface for the following reason. In every Kandinsky representation
of H the representation K can be replaced by K ′ as this is equivalent to replacing
K1 by K ′1 (which can be done as K1 and K ′1 have the same interface). Thus, the
only choices that matter when merging two Kandinsky representations are to choose
shared rotations and interfaces for G1 and G2. Thus, the term of merging Kandinsky
representations extends to merging interfaces. We call a choice of shared rotations and

123

Chapter 4 Higher-Degree Nodes in the Kandinsky Model

(b)(a) (c)

G1
G2

G1
G2

H −G

v v

f

f ′

f

f ′

Figure 4.19: (a) Merging G1 and G2. The shared rotations are marked red. (b) Illustration of a
merging step. The width of this merging step is 5 (G1 has 5 attachment vertices). (c) Two ways
to choose the shared rotations.

interfaces forG1 andG2 compatible, if these interfaces can be merged using the chosen
rotations.

The following lemma bounds the number of compatible combinations. It is pa-
rameterized with the width k of the merging step and the maximum rotation ρ. The
maximum rotation of a graph H is ρ if H admits an optimal Kandinsky representation
such that the absolute rotations of the interface paths in every glueable subgraph of H
are at most ρ. With the maximum rotation of a merging step, we mean the maximum
rotation of the whole graph H . We give bounds for ρ in Lemma 4.13.

Lemma 4.11. In a merging step G = G1 t G2 of width k with maximum rotation ρ,
there are at most (2ρ + 1) b1.5k c−1 · 330k compatible choices for the shared rotations and
the interfaces of G1 and G2.

Proof. Let k12 be the number of attachment vertices shared by G1 and G2 and let k1
and k2 be the number of exclusive attachment vertices of G1 and G2, respectively. In
the example in Figure 4.19b, k = 5, k12 = 3, k1 = 2, and k2 = 1. AsG1 andG2 both have
at most k attachment vertices, we have k1 + k12 ≤ k and k2 + k12 ≤ k . Moreover, every
exclusive attachment vertex is an attachment vertex of G, thus k1 + k2 ≤ k holds. By
summing these three inequalities we directly get k1 + k2 + k12 ≤ b1.5kc. We start with
a rough estimation of the possible combinations and then show how to reduce the
number by ruling out choices that are not compatible and thus will never lead to a
Kandinsky representation.

The graph G1 has k1 + k12 ≤ k attachment vertices and thus also k1 + k12 ≤ k
interface paths. The absolute rotation of each interface path is at most ρ, thus there
are at most 2ρ + 1 possible values for those rotations. This leads to at most (2ρ + 1)k
combinations. For every attachment vertex there is the attachment rotation that can
be any of the �ve integers in [−2,2]. Moreover, there are two binary 0◦ �ags for each
attachment vertex which gives 5 ·2 ·2 = 20 possible con�gurations for each attachment
vertex. Thus, there are up to 20k combinations for the k1 +k12 ≤ k attachment vertices
in G1. We get the same bounds for G2. Hence, there are at most (2ρ + 1)2k · 400k

124

A Subexponential Algorithm Section 4.3

combinations for choosing an interface for G1 and G2. For every shared attachment
vertex, there are two shared rotations we need to set, which gives 25 combinations
as these rotations can take values in [−2,2]. For the k12 shared rotations, this gives
25k12 ≤ 25k combinations, which makes (2ρ + 1)2k · 10000k combinations in total.

We start with the exponent in the factor (2ρ + 1)2k . The exponent 2k came from
the fact that we chose rotations of k1 + k12 + k2 + k12 interface paths. Assume we have
�xed the interface of G1 except for the rotation of a single interface path. As the total
rotation around the face bounded by the interface paths is 4 (−4 for the outer face) in
every Kandinsky representation, there is no choice left for the rotation of this path.
Thus, we only have to choose the rotation of k1 + k12 − 1 interface paths in G1. The
same holds for G2, which gives k1 + k12 + k2 + k12 − 2 interface paths in total. As there
are k12 shared attachment vertices, the graph G has k12 − 1 faces that are bounded
by one interface path of G1 and one interface path of G2. Assume the rotation of the
interface paths of G1 is �xed and the shared rotations are �xed. Then the rotations
of these k12 − 1 interface paths of G2 are also �xed as the rotation around these faces
must sum to 4 (−4). Thus, there are k12 − 1 additional interface paths whose rotation
is automatically �xed. Hence, we get the exponent down to k1 + k2 + k12 − 1 which is
at most b1.5kc − 1.

To reduce the basis of the 10000k factor, �rst note that some con�gurations of
choosing attachment rotations and 0◦ �ags are not possible. Let f be the face of G1
containing all attachment vertices and let v be an attachment vertex. Let e in and eout

be the two edges incident to v and f , i.e., rotf (e in,eout) is the attachment rotation
at v . Assume rotf (e in,eout) = 2, i.e., there is an angle of 0◦ at v . Due to Property (5),
e in or eout must have a rotation of −1 at the vertex v in f (rotf (e in[v]) = −1 or
rotf (eout[v]) = −1). Thus if the attachment rotation at v is 2, at least one of the two
0◦ �ags at v must be true. A similar argument shows that an attachment rotation
of −2 at v implies that at least one of the 0◦ �ags at v is false. Thus, there are only
18 (instead of 20) possibilities for choosing the attachment rotation and the 0◦ �ags
at an attachment vertex. Thus, for the exclusive attachment vertices in G1 and G2
we get 18k1+k2 combinations. Moreover, we have 182k12 combinations for the shared
attachment vertices in G1 and G2 and 25k12 combinations for the shared rotations.

We show that not all these 182k12 · 25k12 need to be considered. Let v be a shared
attachment vertex and let rot1 and rot2 be the attachment rotations for v in G1 and G2,
respectively. Let further f and f ′ be the two faces incident to v shared by G1 and G2
and let rotf and rotf ′ be the corresponding shared rotations at v in f and f ′. Finally,
let xf (xf ′) be a variable with the value 1 if the 0◦ �ags do not allow a 0◦ angle in
f (f ′) and the value 0 if they allow a 0◦ angle, which is the case if and only if at
least one of the corresponding �ags is true. It is not hard to see, that �xing the
attachment rotations rot1 and rot2 and the 0◦ �ags leaves − rot1 − rot2 +1 − xf − xf ′
possible combinations (or 0 if this value is negative) to set the shared rotations when

125

Chapter 4 Higher-Degree Nodes in the Kandinsky Model

the result must obey the properties of a Kandinsky representation. In Figure 4.19c,
rot1 = −1 and rot2 = −1 holds. The 0◦ �ags allow for a 0◦ angle in f but not in f ′,
thus xf = 0 and xf ′ = 1. This leaves only two ways to �x the shared rotations, namely
rotf = 2, rotf ′ = 0 and rotf = 1, rotf ′ = 1. Counting those combinations for each
of the 18 ways to �x the interface rotations and 0◦ �ags of v in G1 and G2 (which
can be done with a simple computer program) results in 330 combinations. Thus, the
182k12 · 25k12 combinations for the shared attachment vertices reduce to 330k12 . Hence,
there are at most 18k1+k2 · 330k12 combinations for choosing attachment rotations, 0◦
�ags, and shared rotations. Note that 182 = 324 ≤ 330 and thus we get the following.

18k1+k2 · 330k12 ≤ √330k1+k2 · √3302k12 =
√

330k1+k12+k2+k12 ≤ √3302k = 330k

To conclude, we get at most 330k possibilities to choose all attachment rotations,
all 0◦ �ags, and all shared rotations. Once those are chosen, at most (2ρ + 1) b1.5k c−1

ways to choose rotations of the interface paths remain. Note that it is easy to list these
combinations e�ciently (without considering unnecessary combinations). �

Let G be a glueable subgraph of H . The cost of an interface class is the minimum
cost of the Kandinsky representations it contains (recall that an interface class is a set
of Kandinsky representations that have the same interface). The cost table of G is a
table containing the cost of each interface class of G.

Lemma 4.12. LetG = G1 tG2 be a merging step of width k with maximum rotation ρ.
Given the cost tables of G1 and G2, the cost table of G can be computed on O (k · (2ρ +
1) b1.5k c−1 · 330k) time.

Proof. Start with a cost table for G with cost∞ for every interface class. We iterate
over all (2ρ + 1) b1.5k c−1 · 330k compatible choices for the shared rotations and the
interfaces of G1 and G2 (Lemma 4.11). Consider a �xed choice and let [K1] and [K2]
be the chosen interface classes of G1 and G2 with cost c1 and c2. In O (k) time we can
compute the interface class [K] we get for G. If c1 + c2 is less than the current cost
[K], we set it to c1 + c2.

Note that the cost c1 and c2 imply the existence of Kandinsky representations K ′1 ∈
[K1] and K ′1 ∈ [K2] with cost c1 and c2. These two Kandinsky representations can be
merged (using the �xed shared rotations) to a Kandinsky representation K ′ ∈ [K].
This representation clearly has cost c1 + c2 and thus the cost of [K] is at most c1 + c2.

On the other hand, assume that there exists a Kandinsky representation K of G
with cost c . Let K1 and K2 be the restrictions of K to G1 and G2, respectively. Let
further c1 and c2 be the costs of K1 and K2, respectively. Then c = c1 + c2 holds.
Moreover, the costs of the equivalence classes [K1] and [K2] are c ′1 ≤ c1 and c ′2 ≤ c2,
respectively. As [K1] and [K2] can be merged to [K], at some point we set the cost of
[K] c ′1 + c ′2 ≤ c1 + c2 = c . Thus, on one hand, the cost of each equivalence class [K] of

126

A Subexponential Algorithm Section 4.3

G is never set to something below its actual cost, and on the other hand it is at some
point set to a value that is at most its actual cost. Hence, this procedure yields the cost
table of G. �

4.3.3 The Algorithm

The previous three lemmas together with a dynamic program on a sphere cut de-
composition (which is a special type of branch decomposition) yield the following
theorem.

Theorem 4.6. An optimal Kandinsky representation of a plane graphG can be computed
in O (n3 + n · k · (2ρ + 1) b1.5k c−1 · 330k) time, where k is the branch width and ρ the
maximum rotation of G.

Proof. Let H be the plane graph. If H contains a degree-1 vertex, we can attach a cycle
of length 4 to it. Computing an optimal Kandinsky representation of the resulting graph
and removing this cycle from it obviously gives an optimal Kandinsky representation
of H . Thus, we can assume without loss of generality that H does not contain degree-1
vertices.

In planar graphs, a branch decomposition with minimum width can be computed
in polynomial [ST94] and even O (n3) [GT08] time. Moreover, Dorn et al. [Dor+10,
Theorem 1] show that one can compute a sphere cut decomposition of width k from a
given branch decomposition of width k in O (n3) time, if G does not contain degree-1
vertices. Without de�ning sphere cut decomposition precisely, it is essentially a rooted
binary tree T (every node has two children or is a leaf) with a bijection between the
edges of H and the leaves of T such that the following property holds. For every
node µ of T , the edges of H corresponding to leaves that are ancestors of µ induce a
glueable subgraph of H . Denote this subgraph by Gµ .

Clearly, this implies that for an inner node µ with children µ1 and µ2, we get a
merging stepGµ = Gµ1 tGµ2 . We process the inner nodes of T bottom up to compute
the cost table of Gµ for every node µ. If a child µi (for i = 1,2) of µ is a leaf, it
corresponds to a single edge for which the cost tables are trivially known. Otherwise,
we already processed the child µi and thus know the cost table of Gµi . Hence, by
Lemma 4.12, we can compute the cost table of Gµ in O (k · (2ρ + 1) b1.5k c−1 · 330k) time.
Doing this for every inner node of T gives the claimed running time, since T contains
O (n) inner nodes. Moreover, for the root τ , we have Gτ = H . Thus, after processing
the root τ , we know the cost of an optimal Kandinsky representation of H . To actually
compute an optimal Kandinsky representation of H (and not only its cost) one simply
has to track the interface classes that lead to the optimal solution through the dynamic
program. �

We get the following bounds for the maximum rotation ρ of a graph.

127

Chapter 4 Higher-Degree Nodes in the Kandinsky Model

Lemma 4.13. Let G be a graph with Kandinsky representation K . Let ∆F be the maxi-
mum face degree of G and let ρ be the maximum absolute rotation of interface paths of
glueable subgraphs of G. The following holds.

• ρ ≤ m + ∆F − 2, if K is an optimal Kandinsky representation.

• ρ ≤ (b + 1) · ∆F − b − 2, if K is a b-bend Kandinsky representation.

Proof. First note that every interface path of a glueable subgraph is a subpath of a face
of G. Thus, interface paths have length at most ∆F − 1. We show that the maximum
rotation of a path of this length satis�es the claimed bounds. Proving that the absolute
value of the minimum rotation also satis�es these bounds is symmetric.

Consider the case that K is an optimal Kandinsky representation. As G admits a
1-bend representation [FKK97], there exists a representation with m bends and an
optimal representation K has at most m bends. Thus, the edges on the interface path
have at most m bends contributing rotation at most m. An interface path of length
(in terms of number of edges) at most ∆F − 1 has at most ∆F − 2 inner vertices. If the
rotation of each inner vertex is at most 1 we get the claimed inequality ρ ≤ m +∆F − 2.
Consider a vertex v with rotation 2. Due to Property (5), at least one of the two edges
in the path incident to v must have rotation −1. Thus, we can account rotation 1 even
for vertices with rotation 2, yielding ρ ≤ m + ∆F − 2.

In case K is a b-bend Kandinsky representation, the rotation contributed by the
edges is at most b · (∆F − 1). Together with the ∆F − 2 upper bound for the vertices,
this gives ρ ≤ b · ∆F − b + ∆F − 2 = (b + 1) · ∆F − b − 2. �

We get the following corollaries by plugging the bounds of Lemma 4.13 into Theo-
rem 4.6, using that the branch width of series-parallel graphs is 2, and that the branch
width of planar graphs is in O (

√
n) (in fact, the branch width of a planar graph is at

most 2.122
√
n [FT06]).

Corollary 4.2. Let G be a plane graph with maximum face-degree ∆F, and branch
width k . An optimal Kandinsky representation can be computed in O (n3 + n · k · (2m +
2∆F − 3) b1.5k c−1 · 330k) time. An optimal b-bend Kandinsky representation can be
computed in O (n3 + n · k · ((2b + 2) · ∆F − 2b − 3) b1.5k c−1 · 330k) time.

Corollary 4.3. For series-parallel graphs an optimal Kandinsky representation can be
computed in O (n3) time.

Corollary 4.4. For plane graphs an optimal Kandinsky representation can be computed
in 2O (

√
n logn) time.

128

Conclusion Section 4.4

4.4 Conclusion

In this chapter we have shown that bend minimization in the Kandinsky model is
NP-complete, thus answering a question that was open for almost two decades. The
proof also extends to the case that every edge may have at most one bend and to the
case that empty faces are allowed.

On the positive side, we gave an algorithm with running time 2O (k logn) for graphs
of branch width k . In fact, the problem is FPT with respect to k +b +∆F, where k is the
branch width, b is the maximum number of bends on a single edge in the drawing and
∆F is the size of the largest face in the planar embedding. For general planar graphs
this gives a subexponential exact algorithm with running time 2O (

√
n logn) .

We leave open the question whether the number of parameters used to obtain an
FPT algorithm can be decreased. Is the problemW [1]-hard when parameterized by
branch width only?

129

Part II

Constrained Planarity

5 An Introduction to
Simultaneous PQ-Ordering

The problem Simultaneous PQ-Ordering and its algorithmic solution for restricted
cases [BR13] is a strong tool for solving constrained planarity problems. This chapter
gives a short introduction to Simultaneous PQ-Ordering. It does not intend to
provide all formal de�nitions or details on algorithmic solutions. It rather explains by
means of multiple examples how to use the results on Simultaneous PQ-Ordering
as a tool. It is not mandatory to read this chapter before the following chapters as the
ingredients actually needed in Chapters 6 and 8 are formally de�ned in those chapters.
However, they are certainly easier to understand after reading this chapter.

5.1 PQ-Trees Representing Cyclic Orders

Consider the tree T in Figure 5.1a. When walking around the embedded tree, we visit
the leaves of T in a speci�c cyclic order, namely [a,b,v,d ,e, f ,д]. When changing the
edge orderings of inner nodes, we get a di�erent cyclic order. For example we get the
order [a, f ,e,d ,д,b,c] for the same treeT in Figure 5.1b by changing the edge ordering
for two inner nodes. However, we cannot get every cyclic order. E.g., let µ be the
marked inner node in Figure 5.1b. Then µ separates the leaves of T into four subsets
{a}, {b,c}, {d ,e, f }, and {д}. By changing the edge ordering for µ, we can reorder
these subsets arbitrarily, but the leaves of each subset remain consecutive. In fact, we
can get any cyclic order for the leaves in which these subsets are consecutive. We say
that T represents this set of cyclic orders.

So far, we allowed to choose an arbitrary edge ordering for every inner node of T .
In a PQ-tree, we have two di�erent types of inner nodes, namely P-nodes and Q-nodes.

(a) (b) (c)

a b

c

de

f

д a

b c

f e

d

д

a b

c

de

f

д

L4

L3 L2

L1

P-node
Q-node

Figure 5.1: (a) A tree inducing a cyclic order on the leaves. (b) The same tree inducing a
di�erent order. (c) A PQ-tree.

133

Chapter 5 An Introduction to Simultaneous PQ-Ordering

For each P-node, we allow to choose an arbitrary edge ordering (as for all nodes in the
above example). For Q-nodes, we assume the edge ordering to be �xed up to reversal,
i.e., we can only choose its orientation. Figure 5.1c shows a PQ-tree with one P-node
and two Q-nodes. Note that the PQ-tree in Figure 5.1c is more restrictive than the
one in Figure 5.1a. E.g., the tree from Figure 5.1a allows an order of the leaves that
contains [a,e,d , f] as suborder (see Figure 5.1b). This is not possible for the tree in
Figure 5.1c, as the marked Q-node forces these four leaves to have the order [a,d ,e, f]
or its reversal [a, f ,e,d].

Let T be the PQ-tree form Figure 5.1c. How do the inner nodes of T exactly restrict
the possible cyclic orders we can get for the leaves? As before, the P-node yields
the four subsets {a}, {b,c}, {d ,e, f }, and {д}, each of which must be consecutive.
Consider the marked Q-node µ. It also partitions the leaves into subsets, namely
L1 = {a,b,c,д}, L2 = {d}, L3 = {e}, and L4 = {f }. Again, each of the subsets must
appear consecutively. Moreover, as µ is a Q-node, the subsets must have the cyclic
order [L1,L2,L3,L4] or its reversal [L1,L4,L3,L2]. Note that requiring L1 and L2 to
be next to each other in the cyclic ordering is equivalent to requiring L1 ∪ L2 to be
consecutive. Thus, the restriction to the cyclic order [L1,L2,L3,L4] or its reversal is
equivalent to requiring that each of the leaf sets L1 ∪ L2, L2 ∪ L3, L3 ∪ L4, and L4 ∪ L1
appears consecutive.

It follows that the a cyclic order of the leaves is represented by T if and only if
certain subsets appear consecutively in this order. Conversely, if we have a family
{L1, . . . ,Lk} of subsets of the leaves, then there exists a PQ-tree that represents all
cyclic orders in which Li appears consecutive for each i ∈ {1, . . . ,k} [BL76] (excluding
the case where no such order exists).

A set of orders is PQ-representable if there exists a PQ-tree representing this set of
orders.

5.2 PQ-Tree Reduction

Consider the PQ-tree T in Figure 5.2a. Assume we want to represent all cyclic orders
that are represented by T with the additional requirement that the set {a,д} is con-
secutive. This set of orders can again be represented by a PQ-tree and we denote this
PQ-tree by T + {a,д}; see Figure 5.2a. The tree T + {a,д} is the reduction of T with
respect to {a,д}. We use the notation T + {a,д} to represent the reduction for the
following reason. As mentioned above, the PQ-tree T represents all orders in which
certain subsets of the leaves appear consecutive. Thus, reducing T with {a,д} simply
adds {a,д} to this family of subsets.

In the reduction in Figure 5.2a, most parts of T remain unchanged. In fact, only
the P-node is split into two smaller P-nodes. When a reduction changes something
for a Q-node of the PQ-tree, then the behaviour is somewhat reversed. Reducing T

134

PQ-Tree Projection Section 5.3

P-node
Q-node(a) (b)

T + {a,д}

a

b

c

de

f

д

T

a b

c

de

f

д

T + {c ,d}

a

b

c

d
e

f

д

T

a

b

c

de

f

д

Figure 5.2: (a) A PQ-tree and its reduction with {a,д}. (b) A PQ-tree and its reduction
with {c,d}.

in Figure 5.2b with the set {c,d} merges the two Q-nodes (together with one P-node)
into a single Q-node. Note that this on the �rst sight contradicting behaviour makes
sense for the following reason. The PQ-tree consisting of a single large Q-node is the
most restrictive PQ-tree we can get as it only represents a single cyclic order on the
leaves (and its reversal). Thus, merging nodes into larger Q-nodes results in stronger
restrictions. On the other hand, a P-node is the least restrictive PQ-tree as it allows all
cyclic orders. Thus, splitting a P-node into multiple nodes (P- or Q-nodes) also results
in stronger restrictions.

To conclude, a reduction of T can be obtained from T by splitting P-nodes and
merging several nodes into a single Q-node. This leads to two simple de�nitions for a
PQ-tree T and its reduction T + S with a set of leaves S . Every P-node µS of T + S was
either already a P-node µ in T or is obtained by splitting a P-node µ in T . We say that
µS stems from µ. The two marked P-nodes of T + {a,д} in Figure 5.2a stem from the
marked P-node of T . Moreover, for every Q-node µ of T , we �nd a Q-node µS in T + S
such that µS was obtained by merging µ with (maybe zero) other nodes. We say that
µS is the representative of µ in T + S . The marked Q-node of T + {c,d} in Figure 5.2b
is the representative of both marked Q-nodes of T .

5.3 PQ-Tree Projection

Consider the PQ-treeT in Figure 5.3a with the leaves a, . . . ,д. Assume we are actually
only interested in the subset of leaves {a,c,e,д} and how these leaves are ordered
in orders represented by T . We get a PQ-tree representing exactly these orders by
removing the remaining laves; see Figure 5.3a. We call the resulting PQ-tree the
projection of T to {a,c,e,д}. We denote the projection of T to a subset S by T |S .

Assume we want to project T to the leaves {a,b,c,d} instead. Removing all other
leaves results in a tree with a P-node of degree 2; see the colored edges in Figure 5.3b.
Note that this P-node is super�uous as it has a unique edge ordering. We obtain the
projection T |{a,b,c,d} shown in Figure 5.3b.

135

Chapter 5 An Introduction to Simultaneous PQ-Ordering

(c)(a) (b)

µ1
µ2

µ3
T T |{a,c ,e,h,i,j}

a c

e

hi

j

a b
c

d
e

fд
hi

j

k

`

T

a
b

c

de

f

д

T |{a,c ,e,д}

a

c

e

д

T

a
b

c

de

f

д

T |{a,b,c ,d }

a b

cd

Figure 5.3: (a) The PQ-tree T and its projection to A = {a,c,e,д}. (b) The projection of T to
B = {a,b,c,d}. (d) A larger PQ-tree T with its projection to C = {a,c,e,h,i, j}.

LetA = {a,c,e,д} and B = {a,b,c,d} be the leaf sets from Figure 5.3a and Figure 5.3b,
respectively. The two projections T |A and T |B are di�erent in the sense that every
inner node of T is still contained in T |A, whereas the P-node of T disappeared in T |B .
This has the following e�ect. Assume we already �xed the order [a,c,e,д] for A (as in
the embedding of T |A in Figure 5.3a). The only order represented by T that contains
[a,c,e,д] as suborder is [a,b,c,d ,e, f ,д] (as in the embedding of T in Figure 5.3a).
In other words, �xing the edge ordering of the P-node in T |A determines the edge
ordering of the P-node inT and �xing the orientation of the Q-node in T |A determines
the orientation of the Q-node in T .

Now consider T |B . Fixing the orientation of the Q-node of T |B determines the
orientation of the Q-node in T . However, the P-node of T does not exist in T |B . Thus,
we are free to choose an arbitrary edge ordering for this P-node. In terms of orders,
we get two orders represented by T that extend the given order [a,b,c,d]. These two
orders are [a,b,c,d ,e, f ,д] and [a,д,b,c,d,e, f]. We say that the Q-node of T is �xed
by T |B , whereas the P-node is free.

Let us consider the larger example in Figure 5.3c. We projected the PQ-tree T to the
leavesC = {a,c,e,h,i, j}. The Q-node µ1 and the P-nodes µ2 and µ3 are contained in T
and T |C , while the two other Q-nodes of T disappeared in T |C . These two Q-nodes
are free as choosing their orientations is completely independent from ordering the
leaves in C . The Q-node µ1 is �xed as �xing an order for C determines the orientation
of µ1. Similarly, the P-node µ3 is �xed as �xing an order for C completely determines
the edge ordering for µ3. The P-node µ2 is only partially �xed as �xing an order for
C determines only the order of three edges around µ2. The two other edges incident
to µ2 can be added arbitrarily to this order. However, we do not distinguish between
P-nodes being partially or completely �xed. Thus, in this example, the nodes µ1, µ2,
and µ3 are �xed, and the two remaining Q-nodes are free.

136

Simultaneously Ordering Two PQ-Trees Section 5.4

(a)

T ′

a

b

c

d

T ∩ T ′

a

b

c

d

T

a

b

c

d

(c)

a

b

cd

e

a

b

ce

d

a

b

ec

d

a

e

bc

d

(b)

T

T ′

T

a

b

cd

e

T ′

a

b

c

d

Figure 5.4: (a) Two di�erent PQ-trees with the same leaf set and their intersection. (b) Two
PQ-trees such that the leaves of T include the leaves of T ′. (c) All orders (up to reversal)
represented by T and T ′ in (b).

5.4 Simultaneously Ordering Two PQ-Trees

In the previous section, we already considered multiple PQ-trees at the same time,
namely a tree T together with its projection T |S to a subset S of its leaves. We were
then interested in simultaneously embedding T and T |S such that the resulting leaf
orders �t to each other, i.e., the order for T is an extension of the order for T |S . Now
we consider the more general situation that T and T ′ are PQ-trees with leaf sets L and
L′ that share some leaves, i.e., L ∩ L′ , ∅.

The example in Figure 5.4a shows the simplest case where L = L′. The two P-nodes
inT require the leaf sets {a,d} and {b,c} to be consecutive. The treeT ′ requires {a,b}
and {c,d} to be consecutive. If we want to satisfy the constraints of both PQ-trees at
the same time, we essentially want all four sets to be consecutive. This results in a
new PQ-tree, which we denote byT ∩T ′; see Figure 5.4a. In general, there is either no
order represented by T and by T ′ or we can �nd such a PQ-tree T ∩T ′. In the former
case one can formally say that T ∩T ′ is the null tree, representing the empty set of
orders. To conclude, every set of orders that can be represented by two PQ-trees with
the same leaf set can also be represented by a single PQ-tree.

Now consider the trees T and T ′ with L′ ⊆ L in Figure 5.4b. Actually, we only
require that we have an injective map from L′ to L. To keep it simpler, we work with
the stricter requirement L′ ⊆ L where possible. We say that T ′ and T are in a child-
parent relation, whereT is the parent andT ′ is the child. We also interpret this kind of
relation as an arc from T to T ′. The child T ′ requires the leaves a, b, c , and d to have
the order [a,b,c,d] or its reversal [a,d ,c,b]. As the parentT consists of a single P-node,
the leaf e (which is only contained in T) can be added to this order arbitrarily. Thus,

137

Chapter 5 An Introduction to Simultaneous PQ-Ordering

T

a b
c

d

e

fд

hi

j

k

`

T ′

a c

e

hi

j

T |L′

a c

e

hi

j

T ′′ = T ′ ∩ T |L′

a c

e

hi

j

T

T ′

T

T ′′

≡

Figure 5.5: Two PQ-treesT andT ′, the reduction ofT to the leaves L′ ofT ′, and the intersection
of T ′ with this projection.

the trees T and T ′ represent together the orders [a,b,c,d,e], [a,b,c,e,d], [a,b,e,c,d],
[a,e,b,c,d], and the reversal of these four orders; see also Figure 5.4c. This set of eight
orders cannot be represented by a single PQ-tree for the following reason. Consider
for example the subset of leaves S = {a,b}. Then S is not consecutive in the order
[a,e,b,c,d]. The same holds for every other set S of size 2 or 3. Clearly, if S has size 1
or size 4, then S is trivially consecutive in any leaf order. Thus, the set of orders
simultaneously represented byT andT ′ cannot be expressed in terms of consecutivity
constraints, which makes it impossible to represent it with a single PQ-tree. Hence,
the combination of two PQ-trees is more powerful than a single PQ-tree.

Note that �nding an order in the previous example that is represented by T and T ′
is easy. One can simply take an arbitrary order represented by the child T ′ and extend
it to an order represented by the parent T . This is not true in general. Let T and T ′

be the PQ-trees in Figure 5.5. Clearly, there is an order represented by T and T ′; in
Figure 5.5, the order for T extends the order for T ′. However, not every order of the
leaves L′ represented by the childT ′ can be extended to an order of the larger leaf set L
represented by the parentT . Exchanging for example c and e is possible forT ′ but not
forT without also changing the order of a and e . Can we somehow systematically �nd
an order for the child T ′ that can be extended to an order of the parent T , or decide
that no such order exists?

To answer this question, it would be helpful to know which orders of L′ can be
extended to an order of L that is represented by T . Fortunately, we already know that
this set of orders is represented by the projection T |L′ of T to L′; see Figure 5.5. It
then remains to choose an order of L′ that is not only represented by T ′ but also by
T |L′ , which can then be extended to an order of L represented by the parent T . Which
orders are represented by T ′ and by T |L′? Exactly those, that are represented by the
PQ-tree T ′′ = T ′ ∩ T |L′ ; which is also shown in Figure 5.5. To conclude, an order
is represented by T and T ′ if and only if it is represented by T and T ′′ = T ′ ∩ T |L′ .
If we then actually want to have an order represented by T and T ′, we can simple
choose an arbitrary order forT ′′, which is also represented byT ′, and can be sure that
it is extendable to an order represented by T . This process of replacing the child T ′

138

Simultaneously Ordering Multiple PQ-Trees Section 5.5

(a) (b)

T1

a
c

de

д

T2

a b

d

e
f

д

T ′

a d

eд

T1

T ′

T2 a d

eд

T ′ ∩ T1 |L′ ∩ T2 |L′
T ′′ =

T1

T ′′

T2

Figure 5.6: (a) Two PQ-trees T1 and T2 with the common child T ′. (b) Normalizing both arcs
results in the new instance where T ′ is replaced by T ′′.

with the more restrictive (but in this situation equivalent) PQ-tree T ′′ is also called
normalization of the arc from the parent T to the child T ′.

5.5 Simultaneously Ordering Multiple PQ-Trees

In the previous section, we considered two PQ-treesT andT ′ that are in a child-parent
relation. Now we go a step further and consider multiple PQ-trees with multiple child-
parent relations at the same time. Let T1, T2, and T ′ be the PQ-trees from Figure 5.6a.
As the leaf set of T ′ is a subset of the leaves of T1 and a subset of the leaves of T2, we
can use T ′ as a child of T1 and as a child of T2. Can we now simultaneously choose
orders for all three PQ-trees, i.e., can we choose orders such that the orders chosen
for T1 and for T2 both extend the order chosen for T ′? The problem Simultaneous
PQ-Ordering consists of answering this question.

Note that the common child T ′ in a sense synchronizes the order of the leaves
{a,d ,e,д} inT1 andT2. Let us �rst focus on the arc fromT1 toT ′. We learned from the
previous section that we can �rst normalize the arc (by replacing T ′ with T ′ ∩ T1 |L′)
without loosing solutions. Afterwards, we can choose an arbitrary order for the child
and extend it to T1. In the example from Figure 5.6a, the arc from T1 to T ′ is already
normalized. Of course the same arguments apply to the arc fromT2 toT ′. Normalizing
this arc yields the tree T ′′ in Figure 5.6b. Thus, having T ′ as a common child of T1
and T2 is equivalent to having T ′′ as a common child of T1 and T2. Moreover, �nding
simultaneous orders in the latter case is easy: Choose an arbitrary order for T ′′ and
extend this order to both parentsT1 andT2. Thus, normalizing every arc is su�cient to
solve an instance of Simultaneous PQ-Ordering in which a single child has multiple
parents.

In the next example, we reverse this situation and consider a single parentT having
two children T1 and T2; see Figure 5.7a. Let L, L1, and L2 be the leaves of T , T1, and T2,
respectively. The two arcs from T to T1 and T2 are already normalized. Thus, if we �x
an order for T1, it can always be extended to an order of T and the same holds for T2.
However, we have to make sure that these two orders extend to the same order ofT . To

139

Chapter 5 An Introduction to Simultaneous PQ-Ordering

this end, we have to understand how the orders of T1 and T2 interact when extending
them to an order in T . First focus on the arc from T to T1. As it is normalized, T1 can
be obtained fromT , by �rst projectingT to the leaves L1 ofT1 and then applying some
reductions. In this case, the projection T |L1 contains the nodes µ1, µ2, and µ3 (but not
µ4). Recall that we called these nodes �xed, as �xing an order for the leaves L1 already
(partially) determines the choice at these nodes. In the same sense, the nodes µ1, µ2,
and µ3 are �xed with respect to T1, while µ4 is free.

Consider the Q-node µ1 that is �xed with respect toT1. Recall that Q-nodes are only
merged (and never split) by applying reductions, yielding a unique representative in
the resulting tree. In this example, the representative of µ1 in T1 is µ5. Thus, choosing
an orientation for µ5 in T1 determines the orientation of µ1 in T . Note that µ1 is also
�xed with respect to the other child T2, in which it has µ7 as representative. Thus,
to make sure that orders chosen for T1 and for T2 extend to the same order of T , it is
necessary that the orientations of µ5 and µ7 imply the same orientation for µ1. This
can be ensured using equations and inequalities on Boolean variables that represent
the orientation of Q-nodes; we call these constraints the Q-constraints. Thus, enforcing
that the orders we choose for T1 and T2 have no contradicting implications on the
orientation of Q-nodes in T is easy.

Consider the P-node µ3 that is �xed with respect to T1, i.e., choosing an order for T1
�xes the order of the four edges incident to µ3. Actually, the leaves b, e , h, and i of T1
are representatives of the top, right, bottom, and left edge incident to µ3, respectively.
I.e., choosing an order for these four leaves already determines the edge ordering
of µ3. Similarly, the leaves b, e , д, and i are representatives in the tree T2. If we have
for example the leaf order [b,e,h,i] for T1, then T2 must have the leaf order [b,e,д,i];
otherwise, we get con�icting implications on the edge ordering of the P-node µ3. Thus,
we want to ensure that some leaves are ordered the same in T1 and in T2. Recall that
this is (more or less) exactly what a common child ofT1 andT2 ensures. Thus, we create
a new PQ-tree T ′ consisting of a single P-node with leaf set L′ = {b,e,д/h,i} (the
elementд/h is a single leaf). We addT ′ to the instance of Simultaneous PQ-Ordering
as a common child of T1 and T2. Note that L′ is formally not a subset of L1 and L2.
However, we have the (natural) injective maps, mapping b, e , and i to themselves and
д/h to h and д inT1 andT2, respectively. Figure 5.7b shows the treeT ′ and the instance
of Simultaneous PQ-Ordering.

If we now have orders for T1 and T2 that both extend the same order of T ′, then
we know that T1 and T2 imply the same edge ordering of µ3 in T . We already know
that we can get orders of T1 and T2 that both extend an order of a common child by
�rst normalizing the two corresponding arcs, then choosing an arbitrary order for
the child, and �nally extending it to T1 and T2. The tree we obtain after normalizing
both arcs is T ′′ shown in Figure 5.7c. Note that the Q-nodes µ5 and µ6 are �xed by the
child T ′′. As before, we synchronize their orientation using Q-constraints.

140

Simultaneously Ordering Multiple PQ-Trees Section 5.5

xµ1 = xµ5

xµ2 = xµ5

xµ1 = xµ7

xµ5 = xµ10

xµ6 = xµ11

(a)

(b)

T2

T

T1

T

a

b
c

d

e

f
д

h

i

µ1

µ2

µ3

µ4
T1

c

d

h

i

b

e µ5

µ6

T

a

b
c

d

e

f
д

h

i

µ1

µ2

µ4

µ3

T2

a b

e

д

i

µ7

µ8

(c) (d)

T2

T

T1

T ′T ′

i

b

e

д/h
µ9

T2

T

T1

T ′′T ′′

i

д/h

b

e

µ10

µ11

Figure 5.7: (a) The PQ-tree T with the two children T1 and T2. For better comparability with
the two children, the parent T is drawn twice. (b) Adding a common child T ′ to T1 and T2
to make sure they imply the same edge ordering for µ3. (c) Normalized Instance. (d) The
Q-constraints.

To recap, consider the resulting instance of Simultaneous PQ-Ordering in Fig-
ure 5.7c, where T has the two children T1 and T2 that have T ′′ as a common child.
Figure 5.7d shows the Q-constraints we get for this instance; xµ represents the ori-
entation of µ, where xµ = 0 corresponds to the orientation shown in Figure 5.7 and
xµ = 1 to its reversal. To get a solution for this instance, we �rst choose an order
for T ′′; in this example, the order [b,e,д/h,i] was chosen. As the arcs from the two
parents were normalized, we know that we can extend this order to orders of T1 and
of T2. It remains to choose an order for T , which we do by looking at one inner node
of T after another. First consider the node µ1. It is a Q-node that is �xed by T1 and
T2 with the representatives µ5 and µ7. The Q-constraints make sure that they imply
the same orientation for µ1 and we simply choose this orientation. For µ2, it is even
simpler, as µ2 is only �xed by T1. Thus, we can simply orient µ2 according to its
representative µ5 in T1. The P-node µ4 is neither �xed by T1 nor by T2. Thus, we can
actually choose an arbitrary edge ordering for µ4. Finally, µ3 is �xed with respect to
both trees. Thus, T1 and T2 imply an edge ordering for µ3. However, they imply the
same edge ordering as they both extend the order chosen for T ′′, whose leaves are in
one-to-one correspondence with the edges incident to µ3.

141

Chapter 5 An Introduction to Simultaneous PQ-Ordering

In the example in Figure 5.7, we had to add one tree T ′′, also called expansion tree
as a common child of T1 and T2, as T had one P-node that was �xed with respect to T1
and T2. If T has multiple P-nodes that are �xed with respect to both children, we have
to add several expansion trees, one for each commonly �xed P-node.

In the case where we had multiple parents with a single common child, the case of
two parents directly extended to the case of an arbitrary number of parents. In the
case of a single parent with multiple children, this is no longer true for the following
reason. Assume the parent T has a P-node µ that is �xed with respect to multiple
children, each child �xing the order of an arbitrary subset of edges incident to µ.
Formulating constraints on the orders of these subsets such that all these orders can
be extended to an edge ordering of µ is not as simple as in the case with two children
�xing µ. In fact, deciding for given cyclic orders on subsets whether they can be
extended simultaneously to an order of the whole set is NP-hard [GM77]. However,
the approach presented above still works if T has multiple children, as long as every
P-node of T is �xed with respect to at most two children.

5.6 Solvable Instances

In the previous section, we already saw some simple instances of Simultaneous
PQ-Ordering together with algorithmic approaches to solve them that actually run
in polynomial time. In general, an instance of Simultaneous PQ-Ordering can be
an arbitrary DAG (with a PQ-tree associated with every node) and the problem is
NP-hard. However, the strategies developed above can be used to solve a signi�cant
set of instances.

We can summarize the overall strategy as follows. First, every arc is normalized
to make sure that an order chosen for the child can always be extended to an order
of the parent. To make sure that the Q-nodes of all trees are consistent, we use a set
of equations and inequalities on Boolean variables, the Q-constraints. If the instance
contains a tree T such that T has a P-node µ that is �xed with respect to two children
T1 andT2, we expand the instance by adding a common child, the expansion tree, toT1
and T2. After this process of adding expansion trees terminates (which it does if some
special cases are handled carefully), one can choose orders bottom up in the resulting
DAG.

There are two things to note. First, we are not able to solve an instance if we
encounter a P-node that is �xed with respect to three or more children during the
expansion process. Second, adding expansion trees may lead to additional P-nodes
that are �xed with respect to two or in the worst case even more children. In the
following we give a simple criterion for an instance of Simultaneous PQ-Ordering
that guarantees that the expansion terminates without encountering a P-node that is

142

Solvable Instances Section 5.6

�xed with respect to three ore children. For these instances, the above strategy yields
an algorithm solving Simultaneous PQ-Ordering in quadratic time.

Let D be an instance of Simultaneous PQ-Ordering (e.g., the one in Figure 5.8,
which is explained in detail in a moment) and let T be a PQ-tree that is a source of D
(i.e., T has no parents). For a P-node µ of T , we say that its �xedness �xed(µ) is the
number of children of T �xing µ. During the expansion, we never add new children to
sources in D. Thus, �xed(µ) ≤ 2 makes sure that µ will never be �xed with respect
to three or more children of T . For non-source trees, we have to be more careful. Let
T be a tree with parents T1, . . . ,T` and let µ be a P-node of T . Recall that T can be
obtained form Ti (for i = 1, . . . , `) by projecting Ti to the leaves of T and applying
some reductions. Applying reductions can split P-nodes into several P- or Q-nodes,
but it can never create new or larger P-nodes from something that was not a P-node
inTi . Thus, the P-node µ ofT stems from a unique (maybe larger) P-node µi ofTi . One
can see that a �xedness of 2 for µi can be responsible for adding one child to T that
�xes µ. This motivates the following de�nition of the �xedness for µ, where k is the
number of children that T already has in D that �x µ.

�xed(µ) = k +
∑̀
i=1

(�xed(µi) − 1) (5.1)

The instance D of Simultaneous PQ-Ordering is k-�xed, if the �xedness of every
P-node in every PQ-tree is at most k .

Theorem 5.1 ([BR13]). Simultaneous PQ-Ordering can be solved in quadratic time
for 2-�xed instances.

Now consider the example in Figure 5.8. The trees T1 and T2 are the sources of D.
Consider the node µ1 inT1. It is �xed by the childT3 and by the childT4. However, it is
not �xed by the third childT5, as the projection ofT1 to the leaf set {a,b,c,d ,e, f } ofT5
does not contain µ1. Thus, µ1 is �xed by two children, i.e., �xed(µ1) = 2. The second
P-node µ2 ofT1 is not �xed byT3 but it is �xed byT4 and byT5. Thus, the �xedness of µ2
is also 2. The P-node µ3 in the other source T2 is �xed by both children T5 and T6, thus
we have �xed(µ3) = 2. The P-node µ4 is not �xed with respect to T6 as the projection
of T2 to the leaves of T6 does not contain µ4. Thus, we have �xed(µ4) = 1.

Continue with the non-source treeT4 and �rst consider the P-node µ5. First note that
T4 has no children that could �x µ5. Thus, the k in Equation (5.1) is 0. We next have to
�gure out from which P-node of the parentT1 the node µ5 stems. Note thatT4 is simply
the projection of T1 to the leaves of T4. It is thus not hard to see that µ5 stems from µ1.
As this is the only parent of µ5 we get �xed(µ5) = k + (�xed(µ1)−1) = 1. Similarly, the
P-node µ6 stems from µ2 in T1, which has also �xedness 2, resulting in �xed(µ6) = 1.
For T5 it gets more interesting. First consider the P-node µ7. The child T7 does not �x
µ7, thus k = 0. Note that projecting T1 to the leaves of T5 results in a single P-node

143

Chapter 5 An Introduction to Simultaneous PQ-Ordering

a b

c

def

д

h

i

a b

c

de

fe

f

д

h a

c

ef

д

h

b

cd

a

a

b

c

d
e

f

j

d

e

i

a

T1

T4T3 T5

T2

T6

T7

µ1 µ2 µ3 µ4

µ5 µ6 µ7 µ8
�xed(µ1) = 2
�xed(µ2) = 2

�xed(µ3) = 2
�xed(µ4) = 1

�xed(µ5) = 1
�xed(µ6) = 1

�xed(µ7) = 2
�xed(µ8) = 2

T1

T4T3 T5

T2

T6

T7

Figure 5.8: A 2-�xed instance D of Simultaneous PQ-Ordering.

stemming from µ2. To obtain T5, this P-node is split into two P-nodes. Thus, both P-
nodes µ7 and µ8 stem from µ2. Considering the other parentT2, the node µ7 stems from
the node µ3. Thus, we get �xed(µ7) = k+ (�xed(µ2)−1)+ (�xed(µ3)−1) = 0+1+1 = 2.
The other P-node µ8 is �xed by the child T7, thus we have k = 1 in this case. As
mentioned before µ8 stems from µ2 in T1. Moreover, it stems from µ4 in T2. Thus, we
get �xed(µ8) = k + (�xed(µ2) − 1) + (�xed(µ4) − 1) = 1 + 1 + 0 = 2. As the �xedness
of no P-node exceeds 2, the instance in Figure 5.8 is 2-�xed and can be solved using
Theorem 5.1.

5.7 Representing Planar Embeddings

Consider the biconnected planar graph G in Figure 5.9a. Our goal is to represent
the planar embeddings of G (on the sphere) using an instance of Simultaneous PQ-
Ordering. Consider the vertex v with the incident edges a, b, c , d , e , and f . Which
edge orderings for v can we get in planar embeddings of G? We claim that all possible
edge orderings are represented by the PQ-tree Tv in Figure 5.9b having one leaf for
each edge incident to v . First note that u and v are a separating pair partitioning the
edges incident to v into the subsets {a,b}, {c}, {d ,e}, and {f }. We can reorder these
subsets arbitrarily but each subset has to be consecutive. The P-node in Tv models
exactly this behaviour. The split component with respect to {u,v} that contains the

144

Representing Planar Embeddings Section 5.7

edges a and b can be either embedded as in Figure 5.9a, or its embedding can be �ipped.
This binary decision corresponds to choosing an orientation for one of the Q-nodes in
Tv (the unmarked Q-node in Figure 5.9b). Similarly, the marked Q-node corresponds
to the decision of �ipping the split component containing the edges d and e . Thus,
the possible edge orderings at v are represented by the PQ-tree Tv . We call Tv the
embedding tree of v .

Conversely, for any PQ-treeT , one can build a planar graph such that a vertex v has
T as embedding tree (e.g., [Len89]). However, in this section, we are more interested
in representing planar embeddings using PQ-trees than in simulating PQ-trees using
planar graphs.

As for the vertex v , we get the embedding tree Tu for the vertex u. As before,
reordering the edges incident to the P-node of Tu corresponds to reordering the four
split components with respect to {u,v}.

Consider the SPQR-tree T ofG; see Figure 5.9c. The embedding choice of reordering
the split components with respect to the separating pair {u,v} is represented by the
P-node µ1 of T . Thus, the order we choose for the virtual edges when embedding
skel(µ1) determines the orders of the P-nodes in the PQ-trees Tu and Tv . Similarly,
choosing one of the two embeddings for the skeleton of the R-node µ2 of T determines
the orientation of the marked Q-nodes of Tu and Tv . The orientation of the other
Q-node of Tv is determined by the embedding of the skeleton of the R-node µ3 in the
SPQR-tree T .

To conclude, the embedding tree Tv of v , which is a PQ-tree representing all edge
orderings of v , has a P-node for every P-node of the SPQR-tree T for which v is a
vertex of the skeleton. Similarly,Tv has a Q-node for every R-node of T for which v is
a vertex of the skeleton. The fact that P-nodes of the PQ-trees correspond to P-nodes
of the SPQR-trees is by coincidence and one should not be confused by the fact that
Q-nodes of PQ-trees correspond to R-nodes of the SPQR-tree (and not to its Q-nodes).

For a biconnected planar graph G , we now know that every vertex v has an embed-
ding tree Tv , which is a PQ-tree representing exactly the edge orderings of v that we
can get in a planar embedding of G . However, this does not su�ce to represent planar
embeddings of G as the choices for di�erent embedding trees are not independent.
Consider again the example in Figure 5.9. Choosing an orientation for the marked
Q-node ofTv determines the embedding of skel(µ2) in the SPQR-tree. Similarly, choos-
ing an orientation for the Q-node of Tu also determines the embedding of skel(µ2).
Thus, we have to make sure that these two choices are consistent, i.e., they imply the
same embedding for skel(µ2). This can be done by adding a common child Tµ2 to Tv
and Tu with three leaves that are identi�ed with d , e , and f in Tv and with k , j, and i
in Tu ; see Figure 5.9d.

Similarly, the edge orderings of the P-nodes in Tv and Tu both determine the order
of virtual edges in skel(µ1). ForTv we can choose the leaves a, c , d , and f to represent

145

Chapter 5 An Introduction to Simultaneous PQ-Ordering

(a)

(b)

(c)

(d)

u

va

b
c

d

e

f

д

h i
j

k

` µ1µ3

µ2

u

v

a b

c d e

f

д

h
i j k

`

uu

u u

v v v

v v

Tv

a

b c d

e
f

Tu

д

h i

j

k` Tv

Tµ2

Tu

Tµ1
Tµ1

c/h

f /`

a/д d/j

Tµ2

d/k

e/j

f /i

Figure 5.9: (a) A biconnected planar graph G. (b) The embedding trees Tv and Tu describing
the possible edge orderings of u and v in G. (c) The SPQR-tree of G . The embedding decisions
of the P-node µ1 and the R-node µ2 correspond to the ordering and orientation decisions of
the P-nodes and marked Q-nodes, respectively, in the embedding trees Tv and Tu . (d) Adding
children to Tu and Tv to enforce consistent edge orderings.

this order and for Tu this order can be represented by the leaves д, h, j, and `. Note
that a and д correspond to each other as they both belong to the same split component.
Similarly, c and h represent the second split component, d and j the third, and f and `
the fourth. As for the Q-node, we can ensure that these representatives for the split
components are ordered the same with respect to both embedding trees by adding a
PQ-treeTµ1 as common child ofTu andTv . These treesTµ1 andTµ2 are called consistency
trees.

The consistency treeTµ1 for the P-node µ1 does actually not exactly what we want it
to do for the following reason. It ensures that the cyclic order of split components with
respect to {u,v} around v is the same as the cyclic order of these split components
around u. However, in a planar embedding of G, the cyclic order of split components
around v is the reversal of the cyclic order of split components around u. Thus, we
actually do not want to ensure that these orders are the same but that one is the reversal
of the other. We can achieve this by slightly extending the problem Simultaneous
PQ-Ordering. As de�ned in the previous section, the arc from Tv to Tµ1 requires the
order chosen forTv to be an extension of the order chosen forTµ1 . For the arc fromTu
toTµ1 , we instead require that the order chosen forTu is an extension of the reversal of

146

Representing Planar Embeddings Section 5.7

the order chosen forTµ1 . We say that this arc is an reversing arc (note that the reversing
arc is illustrated di�erently in Figure 5.9d). The algorithm solving Simultaneous
PQ-Ordering for 2-�xed instances still works in the presence of reversing arcs [BR13].

To conclude, the instance of Simultaneous PQ-Ordering in Figure 5.9d includes
the embedding trees Tu and Tv that describe all possible edge orderings for the nodes
u and v , respectively. Moreover, when choosing orders for both trees at the same time
(i.e., �nding a solution of the Simultaneous PQ-Ordering instance), the consistency
trees ensure that G admits a planar embedding realizing the chosen edge orderings
for both nodes u and v at the same time. Clearly, we can extend this instance to have
an embedding tree for every vertex of the graph. The resulting instance is called the
PQ-embedding representation ofG . Every solution to this PQ-embedding representation
�xes an edge ordering for every vertex and the consistency trees make sure that these
edge orderings correspond to a planar embedding of G. Moreover, the edge orderings
of every planar embedding yield a solution for the PQ-embedding representation. Thus
the solutions of the PQ-embedding representation are in one-to-one correspondence
with the planar embeddings of the biconnected graph G.

With the PQ-embedding representation, it is easy to restrict the edge orderings in
planar embeddings by applying these restrictions to the embedding trees. Consider for
example the situation where we have two biconnected planar graphs G 1 and G 2 that
share a common subgraph. Assume we want planar embeddings of G 1 and G 2 such
that the order of the common edges around a vertex v is the same in both embeddings.
Then the PQ-embedding representations of G 1 and G 2 both include an embedding
tree forv . LetT 1

v andT 2
v be these embedding trees. We have to enforce that the leaves

shared by T 1
v and T 2

v (representing the common edges incident to v) are ordered the
same, which can be done by adding a PQ-tree as common child to T 1

v and T 2
v . This

leads to a polynomial-time algorithm for the simultaneous embedding problem Sefe
when both graphs are biconnected with a connected common graph.

The �nal consideration we want to make in this chapter concerns the �xedness of
the PQ-embedding representation. Recall, that we can only solve 2-�xed instances of
Simultaneous PQ-Ordering e�ciently. Consider the embedding treeTv in Figure 5.9b.
Its P-node corresponds to the P-node µ1 of the SPQR-tree and thus it is �xed by the
child Tµ1 . However, the P-node is not �xed by any other child. Thus, its �xedness
is 1. The same holds for the P-node of Tu (as for each P-node in every embedding
tree). The consistency tree Tµ1 consists of a single P-node. It has no children (and
thus no children �xing its P-node). Moreover, as skel(µ1) has only two vertices (as
every P-node skeleton has), Tu and Tv are the only parents of Tµ1 . For both parents,
the P-node of Tµ1 stems from a P-node with �xedness 1. Thus, the �xedness of Tµ1

is 0. Note that adding a child to the embedding tree Tv may increase the �xedness of
a P-node in Tv to 2. Similarly, adding a child to Tu may increase the �xedness of its
P-node to 2. For Tµ1 this also results in a �xedness of 2.

147

Chapter 5 An Introduction to Simultaneous PQ-Ordering

To conclude, the PQ-embedding representation is 1-�xed. It remains 2-�xed when
adding one child to each embedding tree. In fact, one can add multiple children to
the same embedding tree, as long as each P-node of this embedding tree is �xed by at
most one of these additional children.

148

6 A New Perspective on
Clustered Planarity

In this chapter, we consider the problem Clustered Planarity. We introduce the
cd-tree data structure and give a new characterization of c-planarity based on the
cd-tree. This characterization leads to e�cient algorithms for Clustered Planarity
in the following cases. (i) Every cluster and every co-cluster (complement of a cluster)
has at most two connected components. (ii) Every cluster has at most �ve outgoing
edges. For both cases, the computational complexity was unknown before.

Moreover, the cd-tree reveals interesting connections between c-planarity and planar
embedding with constraints on the edge orderings. On one hand, this gives rise to a
bunch of new constrained planarity problems related to Clustered Planarity. On
the other hand it provides a new perspective on previous results, partially explaining
why seemingly unnatural restrictions help to e�ciently solve Clustered Planarity.

This chapter is based on joint work with Ignaz Rutter [BR14].

6.1 Introduction

We want to begin this chapter with a short story about a king stumbling over a variant
of Clustered Planarity while drawing up his last will.

~ A King and his Sons ~
Once upon a time there was a powerful and wise king ruling a prosper-
ous kingdom. He was in the best of health and his physician assured
him a long-lasting life. However, in his wisdom the king knew that the
time would come when his four sons inherit the kingdom. Though he
loved his sons and was proud of their peacefulness and sense of justice,
he was well aware of their rivalry when it came to power and feared
that a struggle of his sons about his legacy might plunge his kingdom
into civil war. To prevent this from happening, he decided to meet with
his sons to arrange a subdivision of his kingdom. After a long and ex-
hausting discussion, they had succeeded to divide the villages, towns,
and castles into four partitions such that each son was satisfied with
the places he was promised. At this night, the king fell asleep with a
smile on his face, knowing that his kingdom would be cared for after
his death.

149

Chapter 6 A New Perspective on Clustered Planarity

In the next morning the king awoke with the strange feeling that
he had done a mistake. At the previous day he had decided which
son should rule which place without dividing the surrounding terrain.
Knowing that his sons did not care so much about the unsettled terrain,
the king decided to do this subdivisionwithout another discussionwith
his sons. He asked his cartographer for a map of his kingdom and
colored the places in the map in the sons’ colors.
After he finished, he immediately spotted his mistake: The places of

each son were scattered over the whole kingdom, making it impossible
for each son to transport goods between two places without passing
through the place of a brother. The king feared that the sons would
charge each other high fees for passing through their places, inevitably
leading to conflicts.
After thinking for a moment, the king had the idea to subdivide his

kingdom into four connected regions, each containing the places of one
son. In this way, each son would be able to avoid excessive fees by
building new roads directly connecting his places. The king actually
hoped that the potential to build these roads would suffice to keep the
fees at a reasonable level.
When trying to implement his idea, he encountered the problem that

choosing a region for one son sometimes made it impossible to choose
a connected region for another son. He had the feeling that it should
be possible to choose a connected region for each son but he was not
sure about it. To not waste too much time in finding something non-
existing, he called for his mathematician, described his problem and
asked, “Can I be sure to find a solution if I search for a while or may
this problem be unsolvable?” The mathematician thought for a moment
before he answered, “You can be sure to find a solution. The problem
here is that one gets easily distracted by the geometry although your
problem is of topological nature.”
With this useful hint, it did not take long for the king to find a

solution to his problem. At the end of the day, the king went to bed
with the good feeling that he spotted and corrected his mistake from
the previous day before it was too late.
At the next day, he decided to take another look at the map before

showing it to his sons. He already convinced himself that he chose a
good way of dividing his kingdom when he spotted an issue: The blue
place in the east had a road to a green place passing through the red
region. Thus, trading goods between these two places would require

150

Introduction Section 6.1

to pass through the land of a son not involved in the trade. This son
might then require a fee for passing through his land and the king did
not like that. To make it even worse, the king spotted two more places
where this issue occurred: A road connecting a green and a yellow place
passing through the blue region in the west, and a road connecting a
blue and a red place passing through the green region in the south-west.
Before trying to rearrange the regions, the king again called for his

mathematician and asked him, “I’m not satisfied with just finding a
connected region for each son’s places. I also want no road to passes
through a region. Is that possible?” The mathematician thought for
a moment before he answered, “It looks like you encountered a diffi-
cult problem. I’m pretty sure that the places could have been divided
into four, such that it is impossible to find such regions. Whether it is
possible with the partitioning you and your sons agreed upon? I don’t
know yet. But I will think about it.”

Will the king’s mathematician �nd a solution to this problem? Will such a solution
ensure a peaceful future for the kingdom? And most importantly, could a computer
have helped the king to solve this problem? Find out in the conclusion of this chapter
at page 164!

As most people do not have a Kingdom that needs to be separated, the more realistic
motivation for considering the problem Clustered Planarity is the wish to visualize
graphs whose nodes are hierarchically structured. In this settings, one usually has two
objectives. First, the graph should be drawn nicely. Second, the hierarchical structure
should be expressed by the drawing. Regarding the �rst objective, we require planar
drawings as the number of crossings in a drawing of a graph is a major aesthetic
criterion. A natural way to represent a cluster is a simple (= simply connected) region
containing exactly the vertices in the cluster. To express the hierarchical structure,
the boundaries of two regions must not cross and edges of the graph can cross region
boundaries at most once, namely if only one of its endpoints lies inside the cluster.
Recall that such a drawing is called c-planar; see the preliminaries in Section 1.4.6
for a formal de�nition. Determining the computational complexity of the problem
Clustered Planarity of recognizing c-planar clustered graphs is a fundamental open
question in the �eld of Graph Drawing.

Clustered Planarity was �rst considered by Lengauer [Len89] but in a completely
di�erent context. He gave an e�cient algorithm for the case that every cluster is
connected. Feng et al. [FCE95b], who coined the name c-planarity, rediscovered the
problem and gave a similar algorithm. They also presented an algorithm for actually
drawing c-planar clustered graphs [FCE95a]. Cornelsen and Wagner [CW06] showed
that Clustered Planarity is equivalent to testing planarity when every cluster and
every co-cluster is connected.

151

Chapter 6 A New Perspective on Clustered Planarity

Relaxing the condition that every cluster must be connected makes Clustered Pla-
narity surprisingly di�cult. E�cient algorithms are known only for very restricted
cases and many of these algorithms are very involved. One example is the e�cient
algorithm by Jelínek et al. [Jel+09b; Jel+09a] for the case that every cluster consists
of at most two connected components while the planar embedding of the underlying
graph is �xed. Another e�cient algorithm by Jelínek et al. [Jel+09c] solves the case
that every cluster has at most four outgoing edges.

A popular restriction is to require a �at hierarchy, i.e., every pair of clusters has
empty intersection. For example, Di Battista and Frati [DF08] solve the case where the
clustering is �at, the graph has a �xed planar embedding and the size of the faces is
bounded by �ve. Sections 6.3.1 and 6.3.2 contain additional related work viewed from
the new perspective we present in this chapter.

Contribution and Outline

We �rst present the cd-tree data structure (Section 6.2), which is similar to a data
structure used by Lengauer [Len89]. We use the cd-tree to characterize c-planarity
in terms of a combinatorial embedding problem. We believe that our de�nition of
the cd-tree together with this characterization provides a very useful perspective on
Clustered Planarity and signi�cantly simpli�es some previous results.

In Section 6.3 we de�ne di�erent constrained-planarity problems. We use the cd-
tree to show in Section 6.3.1 that these problems are equivalent to di�erent versions
of Clustered Planarity of �at-clustered graphs. We also discuss which cases of
the constrained embedding problems are solved by previous results on c-planarity
of �at-clustered graphs. Based on these insights, we derive a generic algorithm for
Clustered Planarity with di�erent restrictions in Section 6.3.2 and discuss previous
work in this context.

In Section 6.4, we show how the cd-tree characterization together with results on the
problem Simultaneous PQ-Ordering (see Chapter 5) leads to e�cient algorithms for
the cases that (i) every cluster and every co-cluster consists of at most two connected
components; or (ii) every cluster has at most �ve outgoing edges. The latter extends
the result by Jelínek et al. [Jel+09c], where every cluster has at most four outgoing
edges.

6.2 The CD-Tree

Let (G,T) be a clustered graph. We introduce the cd-tree (cut- or cluster-decomposition-
tree) by enhancing each node ofT with a multi-graph that represents the decomposition
of G along its cuts corresponding to edges in T ; see Figure 6.1a and b for an example.
We note that Lengauer [Len89] uses a similar structure. Our notation is inspired by
SPQR-trees.

152

The CD-Tree Section 6.2

Let µ be a node of T with neighbors µ1, . . . ,µk and incident edges εi = {µ,µi} (for
i = 1, . . . ,k). Removing µ separates T into k subtrees T1, . . . ,Tk . Let V1, . . . ,Vk ⊆ V be
the vertices of G represented by leaves in these subtrees. The skeleton skel(µ) of µ is
the multi-graph obtained from G by contracting each subset Vi into a single vertex
νi (the resulting graph has multiple edges but we remove loops). These contracted
vertices νi are called virtual vertices. Note that skeletons of inner nodes of T contain
only virtual vertices, while skeletons of leaves consist of one virtual and one non-
virtual vertex. The node µi is the neighbor of µ corresponding to νi and the virtual
vertex in skel(µi) corresponding to µ is the twin of νi , denoted by twin(νi). Note that
twin(twin(νi)) = νi .

The edges incident to νi are exactly the edges ofG crossing the cut that corresponds
to the tree edge εi . Thus, the same edges of G are incident to νi and twin(νi). This
gives a bound on the total size c of the cd-tree’s skeletons (which we brie�y call the
size of the cd-tree). The total number of edges in skeletons ofT is twice the total size of
all cuts represented by T . As edges might cross a linear number of cuts (but obviously
not more), the size of the cd-tree is at most quadratic in the number of vertices of G,
i.e., c ∈ O (n2).

Assume the cd-tree is rooted. Recall that in this case every node µ represents a
cluster of G. In analogy to the notion for SPQR-trees, we de�ne the pertinent graph
pert(µ) of the node µ to be the cluster represented by µ. Note that one could also
de�ne the pertinent graph recursively, by removing the virtual vertex corresponding
to the parent of µ (the parent vertex) from skel(µ) and replacing each remaining virtual
vertex by the pertinent graph of the corresponding child of µ. Clearly, the pertinent
graph of a leaf of T is a single vertex and the pertinent graph of the root is the whole
graph G. A similar concept, also de�ned for unrooted cd-trees, is the expansion graph.
The expansion graph exp(νi) of a virtual vertex νi in skel(µ) is the pertinent graph
of its corresponding neighbor µi of µ, when rooting T at µ. One can think of the
expansion graph exp(νi) as the subgraph of G represented by νi in skel(µ). In the
following we use the rooted and unrooted points of view interchangeably.

The leaves of a cd-tree represent singleton clusters that exist only due to technical
reasons. It is often more convenient to consider cd-trees with all leaves removed as
follows. Let µ be a node with virtual vertex ν in skel(µ) that corresponds to a leaf.
The leaf contains twin(ν) and a non-virtual vertex v ∈ V in its skeleton (with an edge
between twin(ν) and v for each edge incident to v in G). We replace ν in skel(µ) with
the non-virtual vertex v and remove the leaf containing v . Clearly, this preserves all
clusters except for the singleton cluster. Moreover, the graph G represented by the
cd-tree remains unchanged as we replaced the virtual vertex ν by its expansion graph
exp(ν) = v . In the following we always assume the leaves of cd-trees to be removed.

153

Chapter 6 A New Perspective on Clustered Planarity

(a) (b) (c)

h
1 2
3 e
c
a

6i д
e

h

b d

дh
e f

4

5

bd

д
b

7 8
e

h
i

d

e
f

i

c

a
b

d

bd

д
h

e b
d

д
h

д
e h

e
h i

1

2

3

7 8

6
5

4

a

b

c d

e

f

дh

i

1 4

23

7 8

6

5

Figure 6.1: (a) A c-planar drawing of a clustered graph. (b) The corresponding (rooted) cd-tree
(without leaves). The skeletons are drawn inside their corresponding (blue) nodes. Every pair
of twins (boxes with the same color) has the same edge-ordering. (c) Construction of a c-planar
drawing from the cd-tree.

The CD-Tree Characterization

We show that Clustered Planarity can be expressed in terms of edge-orderings in
embeddings of the skeletons of T .

Theorem 6.1. A clustered graph is c-planar if and only if the skeletons of all nodes in
its cd-tree can be embedded such that every virtual vertex and its twin have the same
edge-ordering.

Proof. Assume G admits a c-planar drawing Γ on the sphere. Let µ be a node of T
with incident edges ε1, . . . ,εk connecting µ to its neighbors µ1, . . . ,µk , respectively.
Let further νi be the virtual vertex in skel(µ) corresponding to µi and let Vi be the
nodes in the expansion graph exp(νi). For every cut (Vi ,V ′i) (with V ′i = V \ Vi), Γ
contains a simple closed curve Ci representing it. Since the Vi are disjoint, we can
choose a point on the sphere to be the outside such thatVi lies insideCi for i = 1, . . . ,k .
Since Γ is a c-planar drawing, the Ci do not intersect and only the edges of G crossing
the cut (Vi ,V ′i) cross Ci exactly once. Thus, one can contract the inside of Ci to a
single point while preserving the embedding of G. Doing this for each of the curves
Ci yields the skeleton skel(µ) together with a planar embedding. Moreover, the edge-
ordering of the vertex νi is the same as the order in which the edges cross the curve
Ci , when traversing Ci in clockwise direction. Applying the same construction for
the neighbour µi corresponding to νi yields a planar embedding of skel(µi) in which
the edge-ordering of twin(νi) is the same as the order in which these edges cross the
curve Ci , when traversing Ci in counter-clockwise direction. Thus, in the resulting
embeddings of the skeletons, the edge-ordering of a virtual vertex and its twin is the
same up to reversal. To make them the same one can choose a 2-coloring of T and
mirror the embeddings of all skeletons of nodes in one color class.

154

The CD-Tree Section 6.2

Conversely, assume that all skeletons are embedded such that every virtual vertex
and its twin have the same edge-ordering. Let µ be a node ofT . Consider a virtual vertex
νi of skel(µ) with edge-ordering e1, . . . ,e` . We replace νi by a cycle Ci = (ν1

i , . . . ,ν
`
i)

and attach the edge ej to the vertex ν ji ; see Figure 6.1c. Recall that twin(νi) has in
skel(µi) the same incident edges e1, . . . ,e` and they also appear in this order around
twin(νi). We also replace twin(νi) by a cycle of length `. We say that this cycle is
the twin of Ci and denote it by twin(Ci) = (twin(ν1

i), . . . , twin(ν `i)) where twin(ν ji)
denotes the new vertex incident to the edge ej . As the interiors of Ci and twin(Ci) are
empty, we can glue the skeletons skel(µ) and skel(twin(µ)) together by identifying
the vertices of Ci with the corresponding vertices in twin(Ci) (one of the mbeddings
has to be �ipped). Applying this replacement for every virtual vertex and gluing it
with its twin leads to an embedded planar graph G+ with the following properties.
First, G+ contains a subdivision of G. Second, for every cut corresponding to an edge
ε = {µ,µi} in T , G+ contains the cycle Ci with exactly one subdivision vertex of an
edge e of G if the cut corresponding to ε separates the endpoints of e . Third, no two of
these cycles share a vertex. The planar drawing of G+ gives a planar drawing of G.
Moreover, the drawings of the cycles can be used as curves representing the cuts,
yielding a c-planar drawing of G. �

Cutvertices in Skeletons

We show that cutvertices in skeletons correspond to di�erent connected components in
a cluster or in a co-cluster. More precisely, a cutvertex directly implies disconnectivity,
while the opposite is not true. Consider the example in Figure 6.1. The cutvertex
in the skeleton containing the vertices 7 and 8 corresponds to the two connected
components in the blue cluster (containing 7 and 8). However, the two connected
components in the orange cluster (containing 6–8) do not yield a new cutvertex in
the skeleton containing the vertex 6. The following lemma in particular shows that
requiring every cluster to be connected implies that the parent vertices of skeletons
cannot be cutvertices.

Lemma 6.1. Let ν be a virtual vertex that is a cutvertex in its skeleton. The expansion
graphs of virtual vertices in di�erent blocks incident to ν belong to di�erent connected
components in exp(twin(ν)).

Proof. Let µ be the node whose skeleton contains ν . Recall that one can obtain the
graph exp(twin(ν)) by removing ν from skel(µ) and replacing all other virtual vertices
of skel(µ) with their expansion graphs. Clearly, this yields (at least) one di�erent
connected component for each of the blocks incident to ν . �

Lemma 6.2. Every cluster in a clustered graph is connected if and only if in every node
µ of the rooted cd-tree the parent vertex is not a cutvertex in skel(µ).

155

Chapter 6 A New Perspective on Clustered Planarity

Proof. By Lemma 6.1, the existence of a cutvertex implies a disconnected cluster.
Conversely, let pert(µ) be disconnected and assume without loss of generality that
pert(µi) is connected for every child µ1, . . . ,µk of µ in the cd-tree. One obtains skel(µ)
without the parent vertex ν by contracting in pert(µ) the child clusters pert(µi) to
virtual vertices νi . As the contracted graphs pert(µi) are connected while the initial
graph pert(µ) is not, the resulting graph must be disconnected. Thus, ν is a cutvertex
in skel(µ). �

6.3 Clustered and Constrained Planarity

We �rst describe several constraints on planar embeddings, each restricting the edge-
orderings of vertices. We then show the relation to Clustered Planarity.

Consider a �nite set S (e.g., edges incident to a vertex). Denote the set of all cyclic
orders of S by OS . An order-constraint on S is simply a subset of OS (only the orders in
the subset are allowed). A family of order-constraints for the set S is a set of di�erent
order constraints, i.e., a subset of the power set of Os . We say that a family of order-
constraints has a compact representation, if one can specify every order-constraint in
this family with polynomial space (in |S |). In the following we describe families of
order-constraints with compact representations.

A partition-constraint is given by partitioning S into subsets S1 ·∪ . . . ·∪Sk = S . It
requires that no two partitions alternate, i.e., elements ai ,bi ∈ Si and aj ,bj ∈ S j must
not appear in the order ai ,aj ,bi ,bj . A PQ-constraint requires that the order of elements
in S is represented by a given PQ-tree with leaves S . A full-constraint contains only
one order, i.e., the order of S is completely �xed.

A partitioned full-constraint restricts the orders of elements in S according to a
partition constraint (partitions must not alternate) and additionally completely �xes the
order within each partition. Similarly, partitioned PQ-constraints require the elements
in each partition to be ordered according to a PQ-constraint. Clearly, this notion of
partitioned order-constraints generalizes to arbitrary order-constraints.

Consider a planar graphG . By constraining a vertexv ofG , we mean that there is an
order-constraint on the edges incident to v . We then only allow planar embeddings of
G where the edge-ordering of v is allowed by the order-constraint. By constraining G ,
we mean that several (or all) vertices of G are constrained.

6.3.1 Flat-Clustered Graph

Consider a �at-clustered graph, i.e., a clustered graph where the cd-tree is a star. We
choose the center µ of the star to be the root. Let ν1, . . . ,νk be the virtual vertices
in skel(µ) corresponding to the children µ1, . . . ,µk of µ. Note that skel(µi) contains
exactly one virtual vertex, namely twin(νi). The possible ways to embed skel(µi)
restrict the possible edge-orderings of twin(νi) and thus, by the characterization in

156

Clustered and Constrained Planarity Section 6.3

(a) (b)

a
b

c

d
e

f

a
b

c

d
e

f

a
b

c

def

νi

twin(νi)

µ

µi

a

b

c
d

e
a

b

c
d

e

a
b

cd

e
P

Q

a

b

cd

e

νi

twin(νi)

µ

µi

Figure 6.2: (a) A graph with a single cluster consisting of isolated vertices together with an
illustration of its cd-tree. An edge-ordering of twin(νi) corresponds to a planar embedding
of skel(µi) if and only if no two partitions of the partitioning {{a,b},{c,d , f },{e}} alternate.
(b) A graph with a single connected cluster and its cd-tree. The valid edge-orderings of twin(νi)
are represented by the shown PQ-tree.

Theorem 6.1, the edge-orderings of νi in skel(µ). Hence, the graph skel(µi) essentially
yields an order constraint for νi in skel(µ). We consider Clustered Planarity with
di�erently restricted instances, leading to di�erent families of order-constraints. To
show that Clustered Planarity is equivalent to testing whether skel(µ) is planar
with respect to order-constraints of a speci�c family, we have to show two directions.
First, the embeddings of skel(µi) only yield order-constraints of the given family.
Second, we can get every possible order-constraint of the given family by choosing an
appropriate graph for skel(µi).

Theorem 6.2. Clustered Planarity for �at-clustered graphs (i) where each proper
cluster consists of isolated vertices; (ii) where each cluster is connected; (iii) with �xed
planar embedding; (iv) without restriction is linear-time equivalent to testing planarity
of a multi-graph with (i) partition-constraints; (ii) PQ-constraints; (iii) partitioned
full-constraints; (iv) partitioned PQ-constraints, respectively.

Proof. We start with case (i); see Figure 6.2a. Consider a �at-clustered graph G and
let µi be one of the leaves of the cd-tree. As pert(µi) is a proper cluster, it consists of
isolated vertices. Thus, skel(µi) is a set of vertices v1, . . . ,v` , each connected (with
multiple edges) to the virtual vertex twin(νi). The vertices v1, . . . ,v` partition the
edges incident to twin(νi) into ` subsets. Clearly, in every planar embedding of skel(µi)
no two partitions alternate. Moreover, every edge-ordering of twin(νi) in which no
two partitions alternate gives a planar embedding of skel(µi). Thus, the edges incident
to νi in skel(µ) are constrained by a partition-constraint, where the partitions are
determined by the incidence of the edges to the vertices v1, . . . ,v` . One can easily

157

Chapter 6 A New Perspective on Clustered Planarity

construct the resulting instance of planarity with partition-constraints problem in
linear time in the size of the cd-tree. Note that the cd-tree has linear size in G for
�at-clustered graphs.

Conversely, given a planar graph H with partition-constraints, we set skel(µ) = H .
For every vertex ofH we have a virtual vertex νi in skel(µ) with corresponding child µi .
We can simulate every partitioning of the edges incident to νi by connecting edges
incident to twin(νi) (in skel(µi)) with vertices such that two edges are connected
with the same vertex if and only if they belong to the same partition. Clearly, this
construction runs in linear time.

Case (ii) is illustrated in Figure 6.2b. By Lemma 6.2 the condition of connected
clusters is equivalent to requiring that the virtual vertex twin(νi) in the skeleton of
any leaf µi of the cd-tree is not a cutvertex. The statement of the theorem follows from
the fact that the possible edge-orderings of non-cutvertices is PQ-representable and
that any PQ-tree can be achieved by choosing an appropriate planar graph in which
twin(νi) is not a cutvertex (see Section 5.7).

In case (iii) the embedding ofG is �xed. As in case (i), the blocks incident to twin(νi)
in skel(µi) partition the edges incident to νi in skel(µ) such that two partitions must
not alternate. Moreover, the �xed embedding of G �xes the edge-ordering of non-
virtual vertices and thus it �xes the embeddings of the blocks in skel(µi). Hence,
we get partitioned full-constraints for νi . Conversely, we can construct an arbitrary
partitioned full-constraint as in case (i).

For case (iv) the arguments from case (iii) show that we again get partitioned order-
constraints, while the arguments from case (ii) show that these order-constraints (for
the blocks) are PQ-constraints. �

Related Work

Biedl [Bie98] proposes di�erent drawing-models for graphs whose vertices are parti-
tioned into two subsets. The model matching the requirements of c-planar drawings
is called HH-drawings. Biedl et al. [BKM98] show that one can test for the existence of
HH-drawings in linear time. Hong and Nagamochi [HN14] rediscovered this result in
the context of 2-page book embeddings. These results solve Clustered Planarity
for �at-clustered graphs if the skeleton of the root node contains only two virtual
vertices. This is equivalent to testing planarity with partitioned PQ-constraints for
multi-graphs with only two vertices (Theorem 6.2). Thus, to solve Clustered Pla-
narity for �at-clustered graphs, one needs to solve an embedding problem on general
planar multi-graphs that is so far only solved on a set of parallel edges (with abso-
lutely non-trivial algorithms). This indicates that we are still far away from solving
Clustered Planarity even for �at-clustered graphs.

Cortese et al. [Cor+05] give a linear-time algorithm solving Clustered Planarity
for a �at-clustered cycle (i.e., G is a simple cycle) if the skeleton of the cd-tree’s root

158

Clustered and Constrained Planarity Section 6.3

is a multi-cycle. The requirement that G is a cycle implies that the skeleton of each
non-root node in T has the property that the blocks incident to the parent vertex are
simple cycles. Thus, in terms of constrained planarity, they show how to test planarity
of multi-cycles with partition-constraints where each partition has size two. The result
can be extended to a special case of Clustered Planarity where the clustering is
not �at. However, the cd-tree fails to have easy-to-state properties in this case, which
shows that the cd-tree perspective of course has some limitations. Later, Cortese et
al. [Cor+09b] extended this result to the case whereG is still a cycle, while the skeleton
of the root can be an arbitrary planar multi-graph that has a �xed embedding up to
the ordering of parallel edges. This is equivalent to testing planarity of such a graph
with partition-constraints where each partition has size two.

Jelínková et al. [Jel+09d] consider the case where each cluster contains at most
three vertices (with additional restrictions). Consider a cluster containing only two
vertices u and v . If u and v are connected, then the region representing the cluster
can be always added and we can omit the cluster. Otherwise, the region representing
the cluster in a c-planar drawing implies that one can add the edge uv to G, yielding
an equivalent instance. Thus, one can assume that every cluster has size exactly 3,
which yields �at-clustered graphs. In this setting they give e�cient algorithms for the
cases that G is a cycle and G is 3-connected. Moreover, they give an FPT-algorithm
for the case that G is an Eulerian graph with k nodes, i.e., a graph obtained from a
3-connected graph of size k by multiplying and then subdividing edges.

In case G is 3-connected, its planar embedding is �xed and thus the edge-ordering
of non-virtual vertices is �xed. Thus, one obtains partitioned full-constraints with
the restriction that there are only three partitions. Clearly, the requirement that G
is 3-connected also restricts the possible skeletons of the root of the cd-tree. It is an
interesting open question whether planarity with partitioned full-constraints with at
most three partitions can be tested e�ciently for arbitrary planar graphs. In case G is
a cycle, one obtains partition constraints with only three partitions and each partition
has size two. Note that this in particular restricts the skeleton of the root to have
maximum degree 6. Although these kind of constraints seem pretty simple to handle,
the algorithm by Jelínková et al. is pretty involved. It seems like one barrier where
constrained embedding becomes di�cult is when there are partition constraints with
three or more partitions (see also Theorem 6.4). The result about Eulerian graphs in
a sense combines the cases where G is 3-connected and a cycle. A vertex has either
degree two and thus yields a partition of size two or it is one of the constantly many
vertices with higher degree for which the edge-ordering is partly �xed.

Chimani et al. [Chi+14] give a polynomial time algorithm for embedded �at-clustered
graphs with the additional requirement that each face is incident to at most two vertices
of the same cluster. This basically solves planarity with partitioned full-constraints with
some additional requirements. We do not describe how these additional requirements

159

Chapter 6 A New Perspective on Clustered Planarity

exactly restrict the possible instances of constrained planarity. However, we give
some properties that shed a light on why these requirements make planarity with
partitioned full-constraints tractable.

Consider the skeleton skel(µ) of a (non-root) node µ of the cd-tree. As G is a �at-
clustered graph, skel(µ) has only a single virtual vertex. Assume we choose planar
embeddings with consistent edge orderings for all skeletons (i.e., we have a c-planar
embedding of G). Two non-virtual vertices u and v in skel(µ) that are incident to
the same face of skel(µ) are then also incident to the same face of G. Note that the
converse is not true, as a vertex adjacent to the virtual vertex of skel(µ) can be incident
to the same face as any other vertex with this property. As the non-virtual vertices of
skel(µ) belong to the same cluster, at most two of them can be incident to a common
face of skel(µ). Thus, every face of skel(µ) has at most two non-virtual vertices on
its boundary. One implication of this fact is that every connected component of the
cluster is a tree for the following reason. If a connected component contains a cycle, it
has at least two faces with more than two vertices on the boundary. In skel(µ) only
one of the two faces can be split into several faces by the virtual vertex, but the other
face remains.

More importantly, the possible ways how the blocks incident to the virtual vertex
of skel(µ) can be nested into each other is heavily restricted. In particular, embedding
multiple blocks next to each other into the same face of another block is not possible,
as this would result in a face of skel(µ) with more than two non-virtual vertices on
its boundary. In a sense, this enforces a strong nesting of the blocks. Thus, one
actually obtains a variant of planarity with partitioned full-constraints, where the
way how the partitions can nest is restricted beyond forbidding two partitions to
alternate. These and similar restrictions on how partitions are allowed to be nested
lead to a variety of new constrained planarity problems. We believe that studying
those restricted problems can help to deepen the understanding of the more general
partitioned full-constraints or even partitioned PQ-constraints.

6.3.2 General Clustered Graphs

Expressing c-planarity for general clustered graphs (not necessarily �at) in terms of
constrained planarity problems is harder for the following reason. Consider a leaf µ in
the cd-tree. The skeleton of µ is a planar graph yielding (as in the �at-clustered case)
partitioned PQ-constraints for its parent µ ′. This restricts the possible embeddings
of skel(µ ′) and thus the order-constraints one obtains for the parent of µ ′ are not
necessarily again partitioned PQ-constraints.

One can express this issue in the following, more formal, way. Let G be a planar
multi-graph with vertices v1, . . . ,vn and designated vertex v = vn . The map φvG maps
a tuple (C1, . . . ,Cn) where Ci is an order-constraint on the edges incident to vi to an
order-constraintC on the edges incident tov . The order-constraintC = φvG (C1, . . . ,Cn)

160

Clustered and Constrained Planarity Section 6.3

contains exactly those edge-orderings ofv that one can get in a planar embedding ofG
that respectsC1, . . . ,Cn . Note thatC is empty if and only if there is no such embedding.
Note further that testing planarity with order-constraints is equivalent to deciding
whether φvG evaluates to the empty set. We call such a map φvG a constrained-embedding
operation.

The issue mentioned above (with constraints iteratively handed to the parents) boils
down to the fact that partitioned PQ-constraints are not closed under constrained-
embedding operations. On the positive side, we obtain a general algorithm for solving
Clustered Planarity as follows. Assume we have a family of order-constraints C
with compact representations that is closed under constrained-embedding operations.
Assume further that we can evaluate the constrained embedding operations in polyno-
mial time on order-constraints in C. Then one can simply solve Clustered Planarity
by traversing the cd-tree bottom-up, evaluating for a node µ with parent vertex ν
the constrained-embedding operation φνskel(µ) on the constraints one computed in the
same way for the children of µ.

Clearly, when restricting the skeletons of the cd-tree or requiring properties for
the parent vertices in these skeletons, these restrictions carry over to the constrained-
embedding operations one has to consider. More precisely, let R be a set of pairs (G,v),
wherev is a vertex inG . We say that a clustered graph is R-restricted if (skel(µ),ν) ∈ R
holds for every node µ in the cd-tree with parent vertex ν . Moreover, the R-restricted
constrained-embedding operations are those operations φvG with (G,v) ∈ R. The
following theorem directly follows.

Theorem 6.3. One can solve Clustered Planarity for R-restricted clustered graphs in
polynomial time if there is a family C of order-constraints such that

• C has a compact representation,

• C is closed under R-restricted constrained-embedding operations,

• every R-restricted constrained-embedding operation on order-constraints in C can
be evaluated in polynomial time.

When dropping the requirement that C has a compact representation the algorithm
becomes super-polynomial only in the maximum degree d of the virtual vertices (the
number of possible order-constraints for a set of size d depends only on d). Moreover,
if φvG has only k order constraints (whose sizes are bounded by a function of d) as
input, then φvG can be evaluated by iterating over all combinations of orders, applying
a planarity test in every step. This gives an FPT-algorithm with parameter d + k
(running time O (f (d + k)p (n)), where f is a computable function depending only on
d + k and p is a polynomial). In other words, we obtain an FPT-algorithm where the
parameter is the sum of the maximum degree of the tree T and the maximum number

161

Chapter 6 A New Perspective on Clustered Planarity

of edges leaving a cluster. Note that this generalizes the FPT-algorithm by Chimani and
Klein [CK13] with respect to the total number of edges connecting di�erent clusters.

Moreover, Theorem 6.3 has the following simple implication. Consider a clustered
graph where each cluster is connected. This restricts the skeletons of the cd-tree
such that non of the parent vertices is a cutvertex (Lemma 6.1). Thus, we have R-
restricted clustered graphs where (G,v) ∈ R implies that v is not a cutvertex in G.
PQ-constraints are closed under R-restricted constrained-embedding operations as
the valid edge-ordering of non-cutvertices is PQ-representable and planarity with
PQ-constraints is basically equivalent to planarity (one can model a PQ-tree with a
simple gadget). Thus, Theorem 6.3 directly implies that Clustered Planarity can be
solved in polynomial time if each cluster is connected.

Related Work

The above algorithm resulting from Theorem 6.3 is more or less the one described by
Lengauer [Len89]. The algorithm was later rediscovered by Feng et al. [FCE95b] who
coined the term “c-planarity”. The algorithm runs inO (c) ⊆ O (n2) time (recall that c is
the size of the cd-tree). Dahlhaus [Dah98] improves the running time to O (n). Cortese
et al.[Cor+08] give a characterization that also leads to a linear-time algorithm.

Goodrich et al. [GLS06] consider the case where each cluster is either connected or
extrovert. Let µ be a node in the cd-tree with parent µ ′. The cluster pert(µ) is extrovert
if the parent cluster pert(µ ′) is connected and every connected component in pert(µ)
is connected to a vertex not in the parent pert(µ ′). They show that one obtains an
equivalent instance by replacing the extrovert cluster pert(µ) with one cluster for each
of its connected components while requiring additional PQ-constraints for the parent
vertex in the resulting skeleton. In this instance every cluster is connected and the
additional PQ-constraints clearly do no harm.

Another extension to the case where every cluster must be connected is given by
Gutwenger et al. [Gut+02]. They give an algorithm for the case where every cluster
is connected with the following exception. Either, the disconnected clusters form
a path in the tree or for every disconnected cluster the parent and all siblings are
connected. This has basically the e�ect that at most one order-constraint in the input
of a constrained-embedding operation is not a PQ-tree.

Jelínek et al. [Jel+09a; Jel+09b] assume each cluster to have at most two connected
components and the underlying (connected) graph to have a �xed planar embedding.
Thus, they consider R-restricted clustered graphs where (G,v) ∈ R implies that v
is incident to at most two di�erent blocks. The �xed embedding of the graph yields
additional restrictions that are not so easy to state within this model.

162

Cutvertices with Two Non-Trivial Blocks Section 6.4

6.4 Cutvertices with Two Non-Trivial Blocks

The input of the Simultaneous PQ-Ordering problem consists of several PQ-trees
together with child-parent relations between them (the PQ-trees are the nodes of a
directed acyclic graph) such that the leaves of every child form a subset of the leaves
of its parents. Simultaneous PQ-Ordering asks whether one can choose orders for
all PQ-trees simultaneously in the sense that every child-parent relation implies that
the order of the leaves of the parent are an extension of the order of the leaves of the
child. In this way one can represent orders that cannot be represented by a single
PQ-tree. For example, adding one or more children to a PQ-tree T restricts the set
of orders represented by T by requiring the orders of di�erent subsets of leaves to
be represented by some other PQ-tree. Moreover, one can synchronize the orders of
di�erent trees that share a subset of leaves by introducing a common child containing
these leaves.

Simultaneous PQ-Ordering is NP-hard but e�ciently solvable for so-called 2-�xed
instances [BR13]; see also Chapter 5. For every biconnected planar graphG , there exists
an instance of Simultaneous PQ-Ordering, the PQ-embedding representation, that
represents all planar embeddings of G; see Chapter 5. It has the following properties.

• For every vertex v in G there is a PQ-tree T (v), the embedding tree, that has the
edges incident to v as leaves.

• For every solution of the PQ-embedding representation, setting the edge-order-
ing of every vertex v to the order given by T (v) yields a planar embedding.
Moreover, one can obtain every embedding of G in this way.

• The instance remains 2-�xed when adding up to one child to each embedding
tree.

A PQ-embedding representation still exists if every cutvertex in G is incident to at
most two non-trivial blocks (blocks that are not just bridges) [BR11].

Theorem 6.4. Clustered Planarity can be solved in O (c2) ⊆ O (n4) time if every
virtual vertex in the skeletons of the cd-tree is incident to at most two non-trivial blocks.

Proof. Let G be a clustered graph with cd-tree T . For the skeleton of each node in T ,
we get a PQ-embedding representation with the above-mentioned properties. Let µ
be a node of T and let ν be a virtual vertex in skel(µ). By the above properties, the
embedding representation of µ contains the embedding tree T (ν) representing the
valid edge-orderings of ν . Moreover, for twin(ν) there is an embedding treeT (twin(ν))
in the embedding representation of the skeleton containing twin(ν). To ensure that ν
and twin(ν) have the same edge-ordering, one can simply add a PQ-tree as common
child of T (ν) and T (twin(ν)). We do this for every virtual node in the skeletons of T .

163

Chapter 6 A New Perspective on Clustered Planarity

Due to the last property of the PQ-embedding representations, the resulting instance
remains 2-�xed and can thus be solved e�ciently.

Every solution of this Simultaneous PQ-Ordering instance D yields planar em-
beddings of the skeletons such that every virtual vertex and its twin have the same
edge-ordering. Conversely, every such set of embeddings yields a solution forD. It thus
follows by the characterization in Theorem 6.1 that solving Clustered Planarity is
equivalent to solving D. The size of D is linear in the size c of the cd-tree T . Moreover,
solving Simultaneous PQ-Ordering for 2-�xed instances can be done in quadratic
time [BR13], yielding the running time O (c2). �

Theorem 6.4 includes the following interesting cases. The latter extends the result
by Jelínek et al. [Jel+09c] from four to �ve outgoing edges per cluster.

Corollary 6.1. Clustered Planarity can be solved in O (c2) ⊆ O (n4) time if every
cluster and every co-cluster has at most two connected components.

Proof. Note that the expansion graphs of nodes in skeletons of T are exactly the
clusters and co-clusters. Thus, the expansion graphs consist of at most two connected
components. By Lemma 6.1 the cutvertices in skeletons of T are incident to at most
two di�erent blocks. Thus, we can simply apply Theorem 6.4. �

Corollary 6.2. Clustered Planarity can be solved in O (n2) time if every cluster has
at most �ve outgoing edges.

Proof. Let µ be a node with virtual vertex ν in its skeleton. The edges incident to
ν in skel(µ) are exactly the edges that separate exp(ν) from the rest of the graph
exp(twin(ν)). Thus, if every cluster has at most �ve outgoing edges, the virtual
vertices in skeletons of T have maximum degree 5. With �ve edges incident to a
vertex ν , one cannot get more than two non-trivial blocks incident to ν . It follows
from Theorem 6.4 that we can solve Clustered Planarity in O (c2) time. As we have
a linear number of cuts, each of constant size (at most 5), we get c ∈ O (n). �

6.5 Conclusion

In this chapter we introduced the cd-tree and showed that it can be used to reformulate
the classic problem Clustered Planarity as a constrained embedding problem.
Afterwards, we interpreted several previous results on Clustered Planarity from
this new perspective. In many cases the new perspective simpli�es these algorithms
or at least gives a better intuition why the imposed restrictions are helpful towards
making the problem tractable. In some cases the new view allowed us to generalize
and extend previous results to larger sets of instances.

164

Conclusion Section 6.5

We believe that the constrained embedding problems we de�ned provide a promising
starting point for further research, e.g., by studying restricted variants to further deepen
the understanding of the problem Clustered Planarity.

It remains to answer the open questions from the story about the king and his sons.
Did the king’s mathematician �nd a solution? Indeed, he did, and it probably helped to
ensure a peaceful coexistence of the four sons.
Would a computer have helped to �nd this solu-
tion? As this particular instance is small, a brute-
force algorithm can solve it in reasonable time:
When considering the cd-tree, the skeleton of the
root cluster is K4 with multiple edges. Thus, the
embedding choices consist of reordering parallel
edges. As there are four edges between the blue
and red cluster, three edges between the blue
and the green, three between the green and the
yellow, and two between the green and the red
cluster, there are only 4! · 3! · 3! · 2! = 1728 embeddings of the root cluster. However,
a brute-force approach is no longer feasible for kings with a larger kingdom. Unfor-
tunately, we do not know whether there exists an e�cient algorithm for the king’s
problem. In fact, the king needs to solve Clustered Planarity for a �at clustered
planar graph with �xed planar embedding, which is equivalent to planarity with
partitioned full-constraints.

165

7 Disconnectivity in
Simultaneous Planarity

Previous approaches to the problem of testing whether two graphsG 1 andG 2 sharing
a common graph G are simultaneously planar always assume the common graph to
be connected. This restriction makes it su�cient to �nd planar embeddings of G 1 and
G 2 that imply the same edge orderings in G . If G has multiple connected components,
one additionally has to ensure that the relative positions of these components with
respect to each other are consistent. In this chapter, we consider the case that G 1 , G 2 ,
andG are not necessarily connected. In particular, we provide techniques for ensuring
consistent relative positions.

First, we show that a general instance of the problem Sefe (which asks whether
G 1 and G 2 are simultaneously planar; recall the de�nitions from the preliminaries in
Section 1.4.7) can be reduced in linear time to an equivalent instance where G 1 and
G 2 have the same vertex set and are both connected. Second, for the case where G is
the disjoint union of cycles, we introduce the CC-tree which represents all embeddings
ofG that extend to planar embeddings ofG 1 . We show that CC-trees can be computed
in optimal linear time, and that their intersection is again a CC-tree. This yields a
linear-time algorithm for Sefe ifG consists of cycles. Moreover, this algorithm directly
extends to the sun�ower case where multiple graphs intersect in the same common
graph G. These results, including the CC-tree, extend to the case where G consists of
arbitrary connected components, each with a �xed planar embedding on the sphere.
Then the running time is O (n2).

This chapter is based on joint work with Ignaz Rutter [BR15].

7.1 Introduction

The problem Sefe and its variants, such as Simultaneous Geometric Embedding,
where one insists on a simultaneous straight-line drawing, have been studied inten-
sively in the past years; see our recent survey [BKR13b] for an overview. As there are
planar graphs that cannot be embedded simultaneously although each of them is pla-
nar, the question of deciding whether given graphs admit a simultaneous embedding
is of high interest. Gassner et al. [Gas+06] show that it is NP-complete to decide Sefe
for three or more graphs. For two graphs the complexity status is still open.

However, there are several approaches yielding e�cient algorithms for special cases.
Fowler at al. [Fow+09] show how to solve Sefe e�ciently ifG 1 andG have at most two
and one cycle, respectively. Fowler et al. [Fow+11] characterize the class of common

167

Chapter 7 Disconnectivity in Simultaneous Planarity

Figure 7.1: An instance of Sefe that admits a simultaneous
embedding. This is no longer true if the vertex v , which is
an isolated vertex in the common graph, is connected to
the rest of the common graph by adding edges. The graph
G 1 is thin and black; G 2 is bold and blue; the common
graph is both.

v

graphs that always admit a simultaneous embedding. Angelini et al. [Ang+10] show
that if one of the input graphs has a �xed planar embedding, then Sefe can be solved
in linear time. Haeupler et al. [HJL10] solve Sefe in linear time for the case that
the common graph is biconnected. Angelini et al. [Ang+12] obtain the same result
with a completely di�erent approach. They additionally solve the case where the
common graph is a star and, moreover, show the equivalence of the case where the
common graph is connected to the case where the common graph is a tree and relate
it to a constrained book embedding problem. Besides the results in Chapter 8, the
currently least restrictive result (in terms of connectivity) is the algorithm by Bläsius
and Rutter [BR13] that solves Sefe in polynomial time for the case that both graphs
are biconnected and the common graph is connected.

These algorithms solving Sefe have in common that they use the result by Jünger
and Schulz [JS09] stating that the question of �nding a simultaneous embedding for
two graphs is equivalent to the problem of �nding planar embeddings of G 1 and G 2

such that they induce the same embedding onG . Moreover, they have in common that
they all assume that the common graph is connected, implying that it is su�cient to
enforce consistent edge orderings. Especially in the result by Bläsius and Rutter [BR13]
this is heavily used, as they explicitly consider only orders of edges around vertices
using PQ-trees; also see Chapter 5 about Simultaneous PQ-Ordering.

If the common graph is not connected, we additionally have to care about the relative
positions of connected components to one another, which introduces an additional
di�culty. Note that the case where the common graph is disconnected cannot be
reduced to the case where it is connected by inserting additional edges; see Figure 7.1.

Approaches not relying on the characterization by Jünger and Schulz [JS09] have
only appeared recently. Schaefer [Sch13] characterizes, for certain classes of Sefe
instances, the pairs of graphs that admit a simultaneous embedding via the independent
odd crossing number. Among others, this gives a polynomial-time algorithm for Sefe
when the common graph has maximum degree 3 and is not necessarily connected.

168

Introduction Section 7.1

Contribution

In this work we tackle Sefe from the opposite direction than the so far known results.
We assume that the cyclic order of edges around vertices in G is already �xed and we
only have to ensure that the embeddings chosen for the input graphs imply compatible
relative positions for the common graph. Initially, we assume that the graphG consists
of a set of disjoint cycles, each of them having a unique planar embedding. We present
a novel data structure, the CC-tree, which represents all embeddings of a set of disjoint
cycles that can be induced by an embedding of a graph containing them as a subgraph.
We moreover show that two such CC-trees can be intersected, again yielding a CC-
tree. Thus, for the case that G 1 and G 2 have the common graph G consisting of a
set of disjoint cycles, the intersection of the CC-trees corresponding to G 1 and G 2

represents all simultaneous embeddings. We show that CC-trees can be computed and
intersected in linear time, yielding a linear-time algorithm to solve Sefe for the case
that the common graph consists of disjoint cycles. Note that this obviously also yields a
linear-time algorithm to solve Sefe for more than two graphs if they all share the same
common graph consisting of a set of disjoint cycles, i.e., if we have the sun�ower case.
We show that these results can be further extended to the case where the common
graph may contain arbitrary connected components, each of them with a prescribed
planar embedding. However, in this case the corresponding data structure, called
CC⊕-tree, may have quadratic size. These results show that the choice of relative
positions of several connected components does not solely make the problem Sefe
hard to solve.

Note that these results have an interesting application concerning the problem
Partially Embedded Planarity. The input of Partially Embedded Planarity
is a planar graph G together with a �xed embedding for a subgraph H (including
�xed relative positions). It asks whether G admits a planar embedding extending the
embedding ofH . Angelini et al. [Ang+10] introduced this problem and solve it in linear
time. The CC⊕-tree can be used to solve Partially Embedded Planarity in quadratic
time as it represents all possible relative positions of the connected components in
H to one another that can be induced by an embedding of G. It is then easy to test
whether the prespeci�ed relative positions can be achieved. In fact, this solves the
slightly more general case of Partially Embedded Planarity where not all relative
positions have to be �xed.

The above described results have one restriction that was not mentioned so far. The
graphs G 1 and G 2 are assumed to be connected, otherwise the approach we present
does not work. Fortunately, we can show that both graphs of an instance of Sefe can
always be assumed to be connected, even if all vertices are assumed to be common
vertices (forming isolated vertices when not connected via a common edge). This
shows that Sefe can be solved e�ciently if the common graph consists of disjoint
cycles without further restrictions on the connectivity. Moreover, it is an interesting

169

Chapter 7 Disconnectivity in Simultaneous Planarity

result on its own as it applies to arbitrary instances of Sefe, not only to the special
case we primarily consider here.

Outline

In Section 7.2 we show that, for any given instance of Sefe, there exists an equivalent
instance such that both input graphs are connected, even if each vertex is assumed
to be a common vertex. With this result instances of Sefe can always be assumed
to have this property. In Section 7.3 we show how to solve Sefe in linear time if the
common graph consists of disjoint cycles, including a compact representation of all
simultaneous embeddings. In Section 7.4 we show how to extend these results to
solve Sefe in quadratic time for the case that the common graph consists of arbitrary
connected components, each with a �xed planar embedding.

7.2 Connecting Disconnected Graphs

Let G 1 = (V ,E 1) and G 2 = (V ,E 2) be two planar graphs with common graph
G = (V ,E) with E = E 1 ∩ E 2 . We show that the problem Sefe can be reduced to the
case where G 1 and G 2 are required to be connected. First note that the connected
components of the union of G 1 and G 2 can be handled independently. Thus we can
assume that G 1 ∪ G 2 is connected. We �rst ensure that G 1 is connected without
increasing the number of connected components in G 2 . Afterwards we can apply the
same steps to G 2 to make it connected, maintaining the connectivity of G 1 .

AssumeG 1 andG 2 consist of k 1 and k 2 connected components, respectively. Since
the union of G 1 and G 2 is connected, we can always �nd an edge e 2 = {v1,v2} ∈ E 2

such that the vertices v1 and v2 belong to di�erent connected components H 1

1 and
H 1

2 in G 1 . We construct the augmented instance (G 1
+ ,G

2
+) of Sefe with respect to

the edge e 2 by introducing a new vertex v12 and new edges e = {v1,v12} ∈ E and
e 1 = {v12,v2} ∈ E 1 . Note thatG 1

+ has k 1 −1 connected components since H 1

1 and H 2

2
are now connected via the two edges e and e 1 . Moreover, the number k 2 of connected
components in G 2 does not change, since the edge e connects the new vertex v12 to
one of its connected components. It remains to show that the original instance and
the augmented instance are equivalent.

Lemma 7.1. Let (G 1 ,G 2) be an instance of Sefe and let (G 1
+ ,G

2
+) be the augmented

instance with respect to the edge e 2 = {v1,v2}. Then (G 1 ,G 2) and (G 1
+ ,G

2
+) are equiva-

lent.

Proof. If the augmented instance admits a simultaneous embedding, then obviously
the original instance does. To show the other direction assume the original instance
(G 1 ,G 2) has a simultaneous embedding (E 1 ,E 2) inducing the embedding E for the

170

Connecting Disconnected Graphs Section 7.2

v2

v1

e 2f 2
1

f 2
2

f

f 1
1

f 1
2

v2

v1

f
G 1
2

G 1
1

v2

v1

f

v12

e 1

e

Figure 7.2: Illustration of Lemma 7.1; the common graph blue and black, G 1 is black and G 2

is blue. The graph G 2 with the edge e 2 = {v1,v2} lying in the common face f , which is the
outer face of G (left). The graph G 1 with the faces f 1

1 , f
1

2 ∈ F 1 (f) incident to v1 and v2,
respectively, partitioned into G 1

1 and G 1
2 (middle). The resulting graph G 1 after choosing f 1

i
as outer face of G 1

i (for i = 1,2) and inserting the vertex v12 and the edges e and e 1 (right).

common graph. We show how to construct an embedding E ′ 1 such that (i) (E ′ 1 ,E 2)
is a simultaneous embedding, and (ii) the vertices v1 and v2 lie on the border of a
common face in E ′ 1 . Then we can easily add the vertexv12 together with the two edges
e and e 1 , yielding a simultaneous embedding of the augmented instance (G 1

+ ,G
2
+).

Note that the �rst property, namely that (E ′ 1 ,E 2) is a simultaneous embedding, is
satis�ed if and only if the embeddings E 1 and E ′ 1 induce the same embedding E on
the common graph. Figure 7.2 illustrates the proof.

Consider a face f of the embedding E of the common graph. The embedding E 1

of the graph G 1 splits this face f into a set of faces F 1 (f) = {f 1

1 , . . . , f
1

k }. We say
that a face f 1 ∈ F 1 (f) is contained in f . Note that every face of E 1 is contained in
exactly one face of E. The same de�nition can be made for the second graph.

The edge e 2 = {v1,v2} borders two faces f 2

1 and f 2

2 of E 2 . Since e 2 belongs
exclusively to G 2 (otherwise v1 and v2 would not have been in di�erent connected
components in G 1) both faces f 2

1 and f 2

2 are contained in the same face f of the
embedding E of the common graph G . We assume without loss of generality that f is
the outer face. The face f may be subdivided by edges belonging exclusively to the
graph G 1 . However, we can �nd faces f 1

1 and f 1

2 of E 1 , both contained in f , such
that v1 and v2 are contained in the boundary of these faces. If f 1

1 = f 1

2 we are done
since v1 and v2 lie on the boundary of the same face in E 1 . Otherwise, we split G 1

into two subgraphs G 1

1 and G 1

2 with the embeddings E 1

1 and E 1

2 induced by E 1 as
follows. The connected component H 1

i (for i = 1,2) containing vi belongs to G 1
i and

all connected components that are completely contained in an internal face of H 1
i

also belong to G 1
i . All remaining connected components belong either to G 1

1 or to G 1

2 .
Note that this partition ensures that there is a simple closed curve in the outer face

171

Chapter 7 Disconnectivity in Simultaneous Planarity

of E 1 separating G 1

1 and G 1

2 . Thus, we can change the embeddings of E 1

1 and E 1

2
independently. In particular, we choose the faces f 1

1 and f 1

2 to be the new outer faces,
yielding the changed embeddings E ′ 1

1 and E ′ 1

2 , respectively. When combining these
to embeddings by putting G 1

1 into the outer face of G 1

2 and vice versa, we obtain a
new embedding E ′ 1 of G 1 with the following two properties. First, the embedding
induced for the common graph does not change since both faces f 1

1 and f 1

2 belong
to the outer face f of the embedding E of the common graph G. Second, the vertices
v1 and v2 both lie on the outer face of the embedding E ′ 1 . Hence, (E ′ 1 ,E 2) is still a
simultaneous embedding of the instance (G 1 ,G 2) and the vertex v12 together with
the two edges e and e 1 can be added easily, which concludes the proof. �

With this construction we can reduce the number of connected components of G 1

and G 2 and thus �nally obtain an equivalent instance of Sefe in which both graphs
are connected. We obtain the following Theorem.

Theorem 7.1. For every instance (G 1 ,G 2) of Sefe there exits an equivalent instance
(G 1
++,G

2
++) such that G 1

++ and G
2
++ are connected. Such an instance can be computed in

linear time.

Proof. Lemma 7.1 directly implies that an equivalent instance (G 1
++,G

2
++) in which

both graphs are connected exists. It remains to show that it can be computed in linear
time. To connect all the connected components of G 1 , we contract each of them to a
single vertex in the graph G 2 . Then an arbitrary spanning tree yields a set of edges
e 2

1 , . . . ,e
2

k ∈ E 2 , such that augmenting the instance with respect to these edges yields
a connected graph G 1

++. This works symmetrically for G 2 and can obviously be done
in linear time. �

7.3 Disjoint Cycles

In this section, we consider the problem Sefe for the case that the common graph
consists of a set of disjoint cycles. Due to Theorem 7.1, we can assume without loss
of generality that both graphs are connected. In Section 7.3.1 we show how to solve
this special case of Sefe in polynomial time. In Section 7.3.2 we introduce a tree-
like data structure, the CC-tree, representing all planar embeddings of a set of cycles
contained in a single graph that can be induced by an embedding of the whole graph.
We additionally show that the intersection of the set of embeddings represented by
two CC-trees can again be represented by a CC-tree, yielding a solution for Sefe even
for the case of more than two graphs if all graphs have the same common graph,
which consists of a set of disjoint cycles. In Section 7.3.3 we show how to compute the
CC-tree and the intersection of two CC-trees in linear time. Before we start, we �x
some de�nitions.

172

Disjoint Cycles Section 7.3

Figure 7.3: Three nested cycles. Their relative positions
are posCi (Cj) = posCi (Ck) = posCj

(Ck) = “left” and
posCk (Cj) = posCk (Ci) = posCj

(Ci) = “right”. Chang-
ing for example posCi (Ck) to “right” without changing
any other relative position is not possible.

Ci
Cj

Ck

Embeddings of Disjoint Cycles. Let C = {C1, . . . ,Ck} be a set of disjoint simple
cycles. We consider embeddings of these cycles on the sphere. Since a single cycle
has a unique embedding on the sphere only their relative positions to one another
are of interest. To be able to use the terms “left” and “right” we consider the cycles
to be directed. We denote the relative position of a cycle Cj with respect to a cycle
Ci by posCi (Cj). More precisely, we have posCi (Cj) = “left” and posCi (Cj) = “right”,
if Cj lies on the left and right side of Ci , respectively. We call an assignment of a
value “left” or “right” to each of these relative positions a semi-embedding of the cycles
C = {C1, . . . ,Ck}. Note that not every semi-embedding yields an embedding of the
cycles. For example if posCi (Cj) = posCj

(Ck) = “left” and posCj
(Ci) = “right”, then

posCi (Ck) also needs to have the value “left”; see Figure 7.3. However, two embeddings
yielding the same semi-embedding are the same.

Sometimes we do not only consider the relative position of cycles but also of some
other disjoint subgraph. We extend our notation to this case. For example the relative
position of a single vertex v with respect to a cycle C is denoted by posC (v).

7.3.1 A Polynomial-Time Algorithm

Let (G 1 ,G 2) be an instance of Sefe with common graph G consisting of pairwise
disjoint simple cycles C = {C1, . . . ,Ck}. We �rst assume that G 1 and G 2 are bicon-
nected and show later how to remove this restriction. Our approach is to formulate
constraints on the relative positions of the cycles to one another ensuring that G 1 and
G 2 induce the same semi-embedding on the common graph G. We show implicitly
that the resulting semi-embedding is really an embedding by showing that the graphs
G 1 and G 2 have planar embeddings inducing this semi-embedding. Note that this
only works for the case that G 1 and G 2 are connected. Thus, our approach crucially
relies on the result provided in Section 7.2.

Biconnected Graphs

Before considering two graphs, we determine for a single graph the possible embed-
dings it may induce on a set of disjoint cycles contained in it. Let G = (V ,E) be a
biconnected graph with SPQR-tree T , let C be a simple directed cycle in G and let µ
be a node in T . Obviously, C is either completely contained in the expansion graph

173

Chapter 7 Disconnectivity in Simultaneous Planarity

of a single virtual edge of µ or C induces a simple directed cycle of virtual edges in
skel(µ). We say that C is contracted in skel(µ) in the �rst case and that C is a cycle in
skel(µ) in the second case. IfC is a cycle in skel(µ), we also say that skel(µ) contains C
as a cycle. Consider the case where C is a cycle in skel(µ) and let κ denote this cycle.
By �xing the embedding of skel(µ) the virtual edges in skel(µ) not contained in κ
split into two groups, some lie to the left and some to the right of κ. Obviously, a
vertex v ∈ V \V (C) in the expansion graph of a virtual edge that lies to the left (to the
right) of κ lies to the left (to the right) ofC inG , no matter which embedding is chosen
for the skeletons of other nodes. In other words, the value of posC (v) is completely
determined by this single node µ. We show that for every vertex v ∈ V \V (C) there is
a node µ in T containing C as a cycle such that the virtual edge in skel(µ) containing
v in its expansion graph is not contained in the cycle κ induced by C . Hence such
a node µ ∈ T determining posC (v) always exists. Extending this to a pair of cycles
yields the following lemma.

Lemma 7.2. Let G be a biconnected planar graph with SPQR-tree T and let C1 and
C2 be two disjoint simple cycles in G. There is exactly one node µ in T determining
posC1 (C2). Moreover, µ contains C1 as cycle κ1 and C2 either as a cycle or contracted in
an edge not contained in κ1.

Proof. We choose some vertex v ∈ V (C2) as representative for the whole cycle. Con-
sider a Q-node µ1 in the SPQR-tree T corresponding to an edge contained in C1.
Moreover, let µk be a Q-node corresponding to an edge incident to v . We claim that
the desired node µ lies somewhere on the path µ1, . . . ,µk in the SPQR-tree T .

ObviouslyC1 is a cycle in µ1 and the vertex v belongs to the virtual edge in skel(µ1).
In µk the vertex v is a pole and C1 is contracted in the virtual edge of skel(µk) since
v < V (C1). Assume we are navigating from µ1 to µk and let µi be the current node. If
skel(µi) does not contain the vertex v , it belongs to a single virtual edge in skel(µi). In
this case µi+1 is obviously the node corresponding to this virtual edge. If v is a vertex
of skel(µi), then µi+1 corresponds to one of the virtual edges incident to v in skel(µi).
As long as C1 is a cycle in the current node and v belongs to a virtual edge in this
cycle, the next node in the path corresponds to this virtual edge and thusC1 remains a
cycle. Since C1 is contracted in µk , we somewhere need to follow a virtual edge not
contained in the cycle induced by C1; let µ be this node. By de�nition µ contains C1 as
cycle κ and the next node on the path belongs to a virtual edge that is not contained
in κ but contains v in its expansion graph. Thus posC1 (v) is determined by this node
µ. Since v is a node of the second cycle C2 also posC1 (C2) is completely determined by
this node. Moreover, µ contains C1 as cycle κ and C2 either as a cycle or contracted in
a virtual edge not belonging to κ. �

Now consider a set of pairwise disjoint cycles C = {C1, . . . ,Ck} in G. Let µ be
an arbitrary node in the SPQR-tree T . If µ is an S- or a Q-node it clearly does not

174

Disjoint Cycles Section 7.3

determine any of the relative positions since either every cycle is contracted in skel(µ)
or a single cycle is a cycle in skel(µ) containing all the virtual edges. In the following,
we consider the two interesting cases namely that µ is an R- or a P-node containing at
least one cycle as a cycle.

Let µ be a P-node in T with skel(µ) consisting of two vertices s and t with parallel
virtual edges ε1, . . . ,ε` between them. If C ∈ C is contained as a cycle in skel(µ), it
induces a cycle κ in skel(µ) consisting of two of the parallel virtual edges. Let without
loss of generality ε1 and ε2 be these virtual edges. Obviously, no other cycle C ′ ∈ C
is a cycle in skel(µ) since such a cycle would need to contain s and t , which is a
contradiction to the assumption that C and C ′ are disjoint. Thus, every other cycle C ′
is contracted in skel(µ), belonging to one of the virtual edges ε1, . . . ,ε` . If it belongs to
ε1 or ε2, which are contained in κ, then posC (C ′) is not determined by µ. If C ′ belongs
to one of the virtual edges ε3, . . . ,ε` , the relative position posC (C ′) is determined by
the relative position of this virtual edge with respect to the cycle κ. This relative
position can be chosen for every virtual edge ε3, . . . ,ε` arbitrarily and independently.
Hence, if there are two cycles Ci and Cj belonging to di�erent virtual edges in µ, the
positions posC (Ci) and posC (Cj) can be chosen independently. Furthermore, if the
two cycles Ci and Cj belong to the same virtual edge ε ∈ {ε3, . . . ,ε`}, their relative
position with respect to C is the same, i.e., posC (Ci) = posC (Cj), for every embedding
of G.

Let µ be anR-node inT . For the moment, we consider that the embedding of skel(µ)
is �xed by choosing one of the two orientations. LetC be a cycle inducing the cycle κ in
skel(µ). Then the relative position posC (C ′) of a cycleC ′ , C is determined by µ if and
only if C ′ is a cycle in skel(µ) or if it is contracted belonging to a virtual edge not con-
tained inκ. Since we consider only one of the two embeddings of skel(µ) at the moment,
posC (C ′) is �xed to one of the two values “left” or “right” in this case. The same can be
done for all other cycles that are cycles in skel(µ) yielding a �xed value for all relative
positions that are determined by µ. Finally, we have a partition of all positions deter-
mined by µ into the set of positions P1 = {posCa (1) (Cb (1)), . . . ,posCa (r) (Cb (r))} all hav-
ing the value “left” and the set of positions P2 = {posCc (1) (Cd (1)), . . . ,posCc (s) (Cd (s))}
having the value “right”. Now if the embedding of skel(µ) is not �xed anymore, we
have only the possibility to �ip it. By �ipping, all the positions in P1 change to
“right” and all positions in P2 change to “left”. Hence, we obtain that the equation
posCa (1) (Cb (1)) = · · · = posCa (r) (Cb (r)) , posCc (1) (Cd (1)) = · · · = posCc (s) (Cd (s)) is satis-
�ed for every embedding of the cycles C = {C1, . . . ,Ck} induced by an embedding
of G.

To sum up, we obtain a set of (in)equalities relating the relative positions of cycles
to one another. We call these constraints the PR-node constraints with respect to the
biconnected graph G. Obviously the PR-node constraints are necessary in the sense
that every embedding of G induces an embedding of the cycles C = {C1, . . . ,Ck}

175

Chapter 7 Disconnectivity in Simultaneous Planarity

satisfying these constraints. The following lemma additionally states the su�ciency
of the PR-node constraints.

Lemma 7.3. Let G be a biconnected planar graph containing the disjoint cycles C =
{C1, . . . ,Ck}. Let further EC be a semi-embedding of these cycles. There is an embedding
E of G inducing EC if and only if EC satis�es the PR-node constraints.

Proof. The “only if”-part of the proof is obvious, as mentioned above. It remains to
show the “if”-part. Let EC be a semi-embedding of C = {C1, . . . ,Ck} satisfying the
PR-node constraints given by G. We show how to construct an embedding E of G
inducing the embedding EC on the cycles C = {C1, . . . ,Ck}. We simply process the
nodes of the SPQR-tree one by one and choose an embedding for the skeleton of every
node. Let µ be a node in T . If µ is an S- or a Q-node, there is nothing to do, since there
is no choice for the embedding of skel(µ). If µ is a P-node several relative positions
may be determined by the embedding of skel(µ). However, these positions satisfy the
PR-node constraints stemming from µ, hence we can choose an embedding for skel(µ)
determining these positions as given by EC . Obviously, the same holds for the case
where µ is an R-node. Hence, we �nally obtain an embedding E of G determining the
positions that are determined by a node in T as required by EC . Due to Lemma 7.2
every pair of relative positions is determined by exactly one node in T , yielding that
the resulting embedding E induces EC on the cycles. Note that this shows implicitly
that EC is not only a semi-embedding but also an embedding. �

Now let G 1 and G 2 be two biconnected planar graphs with the common graph
G consisting of pairwise disjoint simple cycles C = {C1, . . . ,Ck}. If we �nd a semi-
embedding E of the cycles that satis�es the PR-node constraints with respect toG 1 and
G 2 simultaneously, we can use Lemma 7.3 to �nd embeddings E 1 and E 2 for G 1 and
G 2 both inducing the embedding E on the common graph G. Thus, satisfying the PR-
node constraints with respect to both G 1 and G 2 , is su�cient to �nd a simultaneous
embedding. Conversely, given a pair of embeddings E 1 and E 2 inducing the same
embedding E on G, this embedding E needs to satisfy the PR-node constraints with
respect to both, G 1 and G 2 , which is again due to Lemma 7.3. Since the PR-node
constraints form a set of boolean (in)equalities we can express them as an instance of
2-Sat. As this instance has polynomial size and can easily be computed in polynomial
time, we obtain the following theorem.

Theorem 7.2. Sefe can be solved in quadratic time for biconnected graphs whose
common graph is a set of disjoint cycles.

Proof. It remains to show that the PR-node constraints can be computed in quadratic
time, yielding an instance of 2-Sat with quadratic size. As this 2-Sat instance can be
solved consuming time linear in its size [EIS76; APT79], we obtain a quadratic-time
algorithm.

176

Disjoint Cycles Section 7.3

We show how to process each node µ of the SPQR-tree in O (n · | skel(µ) |) time,
computing the PR-node constraints stemming from µ. For each virtual edge ε we
compute a list of cycles in C that contain edges in the expansion graph expan(ε) by
traversing all leaves in the corresponding subtree, consuming O (n) time for each
virtual edge. Then the list of cycles that occur as cycles in skel(µ) can be computed in
linear time. For each of these cyclesC all constraints on relative positions with respect
toC determined by µ can be easily computed in O (n) time. As only O (| skel(µ) |) cycles
can be contained as cycles in skel(µ), this yields the claimed O (n · | skel(µ) |) time for
each skeleton. Since the total size of the skeletons is linear in the size of the graph,
this yields an overall O (n2)-time algorithm. �

Allowing Cutvertices

In this section we consider the case where the graphs may contain cutvertices. As
before, we consider a single graphG containing a set of disjoint cycles C = {C1, . . . ,Ck}
�rst. Let C ∈ C be one of the cycles and let v be a cutvertex contained in the same
block B that contains C . The cutvertex v splits G into ` cut components H1, . . . ,H` .
Assume without loss of generality that B (and with it also C) is contained in H1. We
distinguish between the cases that v is contained in C and that it is not.

If v is not contained in C , then the relative position posC (v) is determined by
the embedding of the block B and it follows that all the subgraphs H2, . . . ,H` lie on
the same side of C as v does. It follows from the biconnected case (Lemma 7.2) that
posC (v) is determined by the embedding of the skeleton of exactly one node µ in the
SPQR-tree of B. Obviously, the conditions that all cycles in H2, . . . ,H` are on the same
side of C as v can be easily added to the PR-node constraints stemming from the node
µ; call the resulting constraints the extended PR-node constraints. These constraints
are clearly necessary. On the other hand, if EC is a semi-embedding of the cycles
satisfying the extended PR-node constraints, we can �nd an embedding EB of the
block B such that all relative positions of cycles that are determined by single nodes
in the SPQR-tree of B are compatible with EC .

If v is contained in C , the relative position posC (v) does not exist. Assume the
embedding of each block is already chosen. Then for each subgraph H ∈ {H2, . . . ,H`},
the positions posC (H) can be chosen arbitrarily and independently. In this case we say
for a cycle C ′ in H that its relative position posC (C ′) is determined by the embedding
chosen for the cutvertex v . Obviously, in every embedding of G, a pair of cycles Ci and
Cj both belonging to the same subgraph H ∈ {H2, . . . ,H`} lie on the same side of C
yielding the equation posC (Ci) = posC (Cj). This equation can be set up for every pair
of cycles in each of the subgraphs, yielding the cutvertex constraints with respect to v .
Again we have that, given a semi-embedding EC of the cycles satisfying the cutvertex
constraints with respect to v , we can simply choose an embedding of the graph such

177

Chapter 7 Disconnectivity in Simultaneous Planarity

C v

posC (v) = “right”

a

b

c

d

C

v

posC (v) = “le�”

a

b

c

d

C

v

posC (v) = “right”

a

d

c

b

C v

posC (v) = “le�”

a

d

c

b

Figure 7.4: One component containing C (blue) and another consisting only of the vertex v .
Changing the face in which v lies may change the relative position posC (v). Moreover,
changing the embedding of the component containing C (in this case �ipping it) also changes
posC (v).

that the relative positions determined by the embedding around the cutvertex are
compatible with EC .

To sum up, a semi-embedding EC on the cycles C = {C1, . . . ,Ck} that is induced by
an embedding E of the whole graph always satis�es the extended PR-node and cutver-
tex constraints. Moreover, given a semi-embedding EC satisfying these constraints,
we can �nd an embedding E of G inducing compatible relative positions for each
relative position that is determined by a single node in the SPQR-tree of a block or by a
cutvertex. Obviously, the relative position of every pair of cycles is determined by such
a node or a cutvertex. Thus the extended PR-node and cutvertex constraints together
are su�cient, i.e., given a semi-embedding of the cycles satisfying these constraints,
we can �nd an embedding of G inducing this semi-embedding. This shows implicitly
that the given semi-embedding is an embedding. This result is stated again in the
following lemma.

Lemma 7.4. Let G be a connected planar graph containing the disjoint cycles C =
{C1, . . . ,Ck}. Let further EC be a semi-embedding of these cycles. There is an embedding
E of G inducing EC if and only if EC satis�es the extended PR-node and cutvertex
constraints with respect to G.

This result again directly yields a polynomial-time algorithm to solve Sefe for the
case that both graphsG 1 andG 2 are connected and their common graphG consists of
a set of disjoint cycles. Moreover, requiring both graphs to be connected is not really
a restriction due to Theorem 7.1. The extended PR-node and cutvertex constraints can
be computed similarly as in the proof of Theorem 7.2, yielding the following theorem.

Theorem 7.3. Sefe can be solved in quadratic time if the common graph consists of
disjoint cycles.

Note that we really need to use Theorem 7.1 to ensure that the graphs are connected
since our approach does not extend to the case where the graphs are allowed to be
disconnected. In this case it would still be easy to formulate necessary conditions in
terms of boolean equations. However, these conditions would only be su�cient if it is

178

Disjoint Cycles Section 7.3

additionally ensured that the given semi-embedding actually is an embedding. The
reason why this is not directly ensured by the embedding of the graph (as it is in the
connected case) is that the relative position of cycles to one another is not determined
by exactly one choice that can be made independently from the other choices; see
Figure 7.4.

7.3.2 A Compact Representation of all Simultaneous Embeddings

In the previous section we showed that Sefe can be solved in polynomial time for the
case that the common graph consists of disjoint cycles. In this section we describe a
data structure, the CC-tree, representing all embeddings of a set of disjoint cycles that
can be induced by an embedding of a connected graph containing them. Afterwards,
we show that the intersection of the sets of embeddings represented by two CC-trees
can again be represented by a CC-tree. In Section 7.3.3 we then show that the CC-tree
and the intersection of two CC-trees can be computed in linear time, yielding an
optimal linear-time algorithm for Sefe for the case that the common graph consists
of disjoint cycles. Note that this algorithm obviously extends to the case where k
graphs G 1 , . . . ,G k are given such that they all intersect in the same common graph G
consisting of a set of disjoint cycles.

C-Trees and CC-Trees

Let C = {C1, . . . ,Ck} be a set of disjoint cycles. A cycle-tree (C-tree) TC on these
cycles is a minimal connected graph containing C; see Figure 7.5. Obviously, every
embedding of TC induces an embedding of the cycles. We say that two embeddings of
TC are equivalent if they induce the same embedding of C and we are only interested
in the equivalence classes with respect to this equivalence relation. An embedding E
of the cycles in C is represented by TC if it admits an embedding inducing E. Note that
contracting each of the cycles C = {C1, . . . ,Ck} in a C-tree to a single vertex yields a
spanning tree on these vertices. In most cases we implicitly assume the cycles to be
contracted such that TC can be treated like a tree.

The embedding choices that can be made for TC are of the following kind. For every
edge e = {C,C ′} in TC , we can decide to put all cycles in the subtree attached to C
via e either to the left or to the right of C . In particular, we can assign a value “left”
or “right” to the relative position posC (C ′). Moreover, by �xing the relative positions
posC (C ′) and posC ′ (C) for every pair of cycles C and C ′ that are adjacent in TC , the
embedding represented by TC is completely determined. Thus, given a C-tree TC , we
call the relative positions posC (C ′) and posC ′ (C) withC,C ′ ∈ C crucial ifC andC ′ are
adjacent in TC ; see Figure 7.5. We note that, when determining an embedding of TC ,
the crucial relative positions can be chosen independently from one another.

Since the crucial relative positions with respect to a C-tree TC are binary variables,

179

Chapter 7 Disconnectivity in Simultaneous Planarity

C ′

posC (C ′) = “le�”

C
C ′′C ′

posC (C ′) = “right”

C

C ′′

Figure 7.5: Two embeddings of the same CC-tree. The only di�erence between the embeddings
is that di�erent values are chosen for the crucial relative position posC (C ′). Note that the tree
structure enforces the (non-crucial) relative position posC (C ′′) to be equal to posC (C ′).

we can use (in)equalities between them to further constrain the embeddings repre-
sented by TC . We call a C-tree with such additional constraints on its crucial relative
positions a constrained cycle-tree (CC-tree) on the set of cycles C. In this way, there is
a bijection between the embeddings of C represented by a CC-tree and the solutions
of an instance of 2-Sat given by the constraints on the crucial relative positions of TC .
We essentially prove two things. First, for every connected graph G containing the
cycles C, there exists a CC-tree representing exactly the embeddings of C that can be
induced by embeddings ofG . Essentially, we have to restrict the extended PR-node and
cutvertex constraints to the crucial relative positions of a C-tree compatible with G.
Second, for a pair of CC-trees T 1

C and T 2

C on the same set C of cycles, there exists
a CC-tree TC representing exactly the embeddings of C that are represented by T 1

C
and T 2

C .
Let G be a connected planar graph containing a set C of disjoint cycles. We say

that a C-tree TC is compatible with G if it is a minor of G, i.e., if it can be obtained by
contracting edges in a subgraph ofG . The corresponding compatible CC-tree is obtained
from TC by adding the subset of the extended PR-node and cutvertex constraints that
only involve crucial relative positions of TC . Note that there may be many compatible
CC-trees for a single graphG . However, in the following we arbitrarily �x one of them
and speak about the CC-tree of G.

Theorem 7.4. Let G be a connected planar graph containing the disjoint cycles C =
{C1, . . . ,Ck}. The CC-tree TC of G represents exactly the embeddings of C that can be
induced by an embedding of G.

Proof. Let E be an embedding of G and let EC be the embedding induced on the
cycles C = {C1, . . . ,Ck}. Obviously, the CC-tree TC can be obtained from G by
contracting the cycles C to single vertices, choosing a spanning tree, expanding the

180

Disjoint Cycles Section 7.3

cycles and contracting edges incident to non-cycle vertices. Since we essentially only
pick a subgraph of G containing all cycles C = {C1, . . . ,Ck} and contract edges, the
embedding EC is preserved. Moreover, by Lemma 7.4, it satis�es the extended PR-node
and cutvertex constraints since it is induced by the embedding E of G. Hence, EC is
represented by the CC-tree TC .

Conversely, let EC be an embedding on the cycles represented by the CC-tree TC .
By de�nition, the extended PR-node and cutvertex constraints are satis�ed for the
crucial relative positions. We show that the tree-like structure of TC ensures that they
are also satis�ed for the remaining relative positions, yielding that an embedding E of
G inducing EC exists due to Lemma 7.4.

We start with the PR-node constraints. Let B be a block of G with SPQR-tree T (B).
In a P-node µ containing a cycle C as cycle κ every other cycle in B is contracted,
belonging to a single virtual edge. Let Ci and Cj be two cycles in B belonging to the
same virtual edge ε not contained in κ. In this case the PR-node constraints stemming
from µ require posC (Ci) = posC (Cj), and we show that this equation is implied if the
extended PR-node constraints are satis�ed for the crucial relative positions. Let C ′i
and C ′j be the �rst cycles on the paths from C to Ci and Cj in TC , respectively. Note
thatC ′i andC ′j are not necessarily contained in the block B. However, we �rst consider
the case where both are contained in B. Then C ′i and C ′j are both contracted in the
same virtual edge ε as Ci and Cj since a path from a cycle belonging to ε to a cycle
belonging to a di�erent virtual edge would necessarily contain a pole of skel(µ) and
thus a vertex in C . Thus, the PR-node constraints restricted to the crucial relative
positions enforce posC (C ′i) = posC (C ′j). Furthermore, the tree structure of TC enforces
posC (Ci) = posC (C ′i) and posC (Cj) = posC (C ′j). Hence, in this case the PR-node
constraints stemming from µ are implied by their restriction to the crucial relative
positions.

For the case thatC ′i orC ′j are contained in a di�erent block, they are connected to B
via cutverticesvi orvj , which must belong to expan(ε) by the same argument as above,
namely that every path from Ci or Cj to a vertex that is contained in the expansion
graph of another virtual edge needs to contain one of the poles. Thus, the extended
PR-node constraints enforce posC (C ′i) = posC (C ′j) yielding the same situation as above.
In total, the extended PR-node constraints stemming from a P-node µ restricted to the
crucial relative positions enforce that the PR-node constraints stemming from µ are
satis�ed for all relative positions.

For the case that µ is an R-node a similar argument holds. IfC is a cycle κ in skel(µ)
and two cyclesCi andCj lie contracted or as cycles on the same side (on di�erent sides)
of κ, then the �rst cycles C ′i and C ′j on the path from C to Ci and Cj in the CC-tree TC
lie on the same side (on di�erent sides) of κ or the cutvertices connecting C ′i and C ′j to
the block B lie on the same side (on di�erent sides) of κ. Thus, the extended PR-node
constraints restricted to the crucial relative positions enforce posC (C ′i) = posC (C ′j)

181

Chapter 7 Disconnectivity in Simultaneous Planarity

(posC (C ′i) , posC (C ′j)) and the tree structure of TC yields posC (Ci) = posC (C ′i) and
posC (Cj) = posC (C ′j). Obviously, these arguments extend to the case of extended
PR-node constraints since a cutvertex not contained in C can be treated like a disjoint
cycle.

It remains to deal with the cutvertex constraints stemming from the case where C
is a cycle containing a cutvertex v splitting G into the cut components H1, . . . ,H` . Let
without loss of generality H1 be the subgraph containing C . The cutvertex constraints
ensure that a pair of cyclesCi andCj belonging to the same subgraphH ∈ {H2, . . . ,H`}
are located on the same side of C . Let C ′i and C ′j be the �rst cycles on the path from
C to Ci and Cj in the CC-tree TC , respectively. Obviously C ′i and C ′j belong to the
same subgraph H and hence the cutvertex constraints restricted to the crucial relative
positions enforce posC (C ′i) = posC (C ′j). Moreover, the tree structure of TC again
ensures that the equations posC (Ci) = posC (C ′i) and posC (Cj) = posC (C ′j) hold,
which concludes the proof. �

Intersecting CC-Trees

In this section we consider two CC-trees T 1

C and T 2

C on the same set of cycles C. We
show that the set of embeddings that are represented by both T 1

C and T 2

C can again
be represented by a single CC-tree. We will show this by constructing a new CC-tree,
which we call the intersection of T 1

C and T 2

C , showing afterwards that this CC-tree
has the desired property. The intersection TC is a copy of T 1

C with some additional
constraints given by the second CC-tree T 2

C . We essentially have to formulate two
types of constraints. First, constraints stemming from the structure of the underlying
C-tree of T 2

C . Second, the constraints given by the (in)equalities on the relative
positions that are crucial with respect to T 2

C . We show that both kinds of constraints
can be formulated as (in)equalities on the relative positions that are crucial with respect
to T 1

C .
Let C1 and C2 be two cycles joined by an edge in T 2

C . Obviously, C1 and C2 are
contained in the boundary of a common face in every embedding E 2 represented
by T 2

C . It is easy to formulate constraints on the relative positions that are crucial with
respect to T 1

C such that C1 and C2 are contained in the boundary of a common face
for every embedding represented by T 1

C . Consider the path π from C1 to C2 in T 1

C .
For every three cycles C , C ′ and C ′′ appearing consecutively on π it is necessary
that posC ′ (C) = posC ′ (C ′′) holds. Otherwise C1 and C2 would be separated by C ′.
Conversely, if this equation holds for every triple of consecutive cycles on π , then C1
and C2 always lie on a common face. We call the resulting equations the common-face
constraints. Note that all relative positions involved in such constraints are crucial
with respect to T 1

C .
To formulate the constraints given on the crucial relative positions of T 2

C , we

182

Disjoint Cycles Section 7.3

essentially �nd, for each of these crucial relative positions posC1 (C2), a relative position
posC1 (C

′
2) that is crucial with respect to T 1

C such that posC1 (C2) is determined by �xing
posC1 (C

′
2) in T 1

C . More precisely, for every relative position posC1 (C2) that is crucial
with respect to T 2

C we de�ne its representative in T 1

C to be the crucial relative position
posC1 (C

′
2), where C ′2 is the �rst cycle in T 1

C on the path from C1 to C2. We obtain the
crucial-position constraints on the crucial relative positions of T 1

C by replacing every
relative position in the constraints given for T 2

C by its representative. The resulting
set of (in)equalities on the crucial relative positions of T 1

C is obviously necessary.
We can now formally de�ne the intersection TC of two CC-trees T 1

C and T 2

C to be
T 1

C with the common-face and crucial-position constraints additionally restricting
its crucial relative positions. We obtain the following theorem, justifying the name
“intersection”.
Theorem 7.5. The intersection of two CC-trees represents exactly the embeddings that
are represented by both CC-trees.

Proof. Let T 1

C and T 2

C be two CC-trees and let TC be their intersection. Let further
E be an embedding represented by T 1

C and T 2

C . Then TC also represents E since
the common-face and crucial-position constraints are obviously necessary. Now let
E be an embedding represented by TC . It is clearly also represented by T 1

C since
TC is the same tree with some additional constraints. It remains to show that E is
represented by T 2

C . The embedding E induces a value for every relative position. In
particular, it induces a value for every relative position that is crucial with respect
to T 2

C . The crucial-position constraints ensure that these values satisfy the constraints
given for the crucial relative positions in the CC-tree T 2

C . Thus we can simply take
these positions, apply them to T 2

C and obtain an embedding E 2 that is represented
by T 2

C . It remains to show that E = E 2 . To this end, we consider an arbitrary pair
of cycles C1 and C2 and show the following equation, where posC1 (C2) and pos 2

C1
(C2)

denote the relative positions of C2 with respect to C1 in the embeddings E and E 2 ,
respectively.

posC1 (C2) = pos 2

C1
(C2) (7.1)

Consider the paths π and π 2 from C1 to C2 in TC and T 2

C , respectively. We use
induction on the length of π 2 , illustrated in Figure 7.6, with Equation (7.1) as induction
hypothesis. If |π 2 | = 1, then posC1 (C2) is crucial with respect to T 2

C and thus equal
in both embeddings E and E 2 by construction of E 2 . For the case |π 2 | > 1 let C ′1 and
C 2

1 be the neighbors of C1 in π and π 2 , respectively. Since C ′1 and C 2

1 lie on the path
between C1 and C2 in TC and T 2

C , the following two equations hold.

posC1 (C2) = posC1 (C
′
1) (7.2)

pos 2

C1
(C2) = pos 2

C1
(C 2

1) (7.3)

183

Chapter 7 Disconnectivity in Simultaneous Planarity

C1 C ′1

C2

C
2

2 C2
C1 C

2

1

C
2

2=

C1 C ′1

C2

C
2

2 C2
C1 C

2

1

C
2

2

=

C ′′1
=

π

π 2

π

π 2

TC

T 2

C

TC

T 2

C

Figure 7.6: The two cases arising in the proof of Theorem 7.5. If the path from C1 to C 2
2

starts with the edge {C1,C
′
1} (left) the equation posC1

(C ′1) = pos 2
C1
(C 2

1) follows by induction.
Otherwise (right) posC1

(C ′′1) = pos 2
C1
(C 2

1) follows by induction and the equation posC1
(C ′1) =

posC1
(C ′′1) holds due to the common-face constraint stemming from {C2,C

2
2 }.

Thus, it su�ces to show that posC1 (C
′
1) = pos 2

C1
(C 2

1) holds to obtain Equation (7.1).
Let C 2

2 be the neighbor of C2 on the path π 2 . Since the path from C1 to C 2

2 is shorter
than π 2 the equation posC1 (C

2

2) = pos 2

C1
(C 2

2) follows from the induction hypothesis
stated in Equation (7.1). There are two possibilities. The path from C1 to C 2

2 in TC has
either {C1,C

′
1} or {C1,C

′′
1 } for some other cycle C ′′1 as �rst edge. In the former case

the equation

posC1 (C
′
1) = pos 2

C1
(C 2

1) (7.4)

obviously follows. Together with Equations (7.2) and (7.3), this yields the induction
hypothesis (Equation (7.1)). In the latter case we have the following equation.

posC1 (C
′′
1) = pos 2

C1
(C 2

1) (7.5)

Moreover, the common-face constraints stemming from the edge {C 2

2 ,C2} in T 2

C
enforce

posC1 (C
′′
1) = posC1 (C

′
1), (7.6)

again yielding the induction hypothesis stated in Equation (7.1). This concludes the
proof. �

7.3.3 Linear-Time Algorithm

In this section we �rst show how to compute the CC-tree of a given graph containing
a set of disjoint cycles in linear time. Afterwards, we show that the intersection of two
CC-trees can be computed in linear time. Together, this yields a linear-time algorithm
for the variant of Sefe we consider.

184

Disjoint Cycles Section 7.3

Computing the CC-Tree in Linear Time

The �rst step of computing the CC-tree TC of a graph G is to compute the underlying
C-tree. Obviously, this can be easily done in linear time. Thus, the focus of this section
lies on computing the extended PR-node and cutvertex constraints restricted to the
crucial relative positions. To simplify notation we �rst consider the case where G is
biconnected. Before we start computing the PR-node constraints we need one more
de�nition. For each cycleC there is a set of inner nodes in the SPQR-tree T containing
C as a cycle. We denote the subgraph of T induced by these nodes by T |C and call
it the induced subtree with respect to C . To justify the term “subtree” we prove the
following lemma.

Lemma 7.5. Let G be a biconnected planar graph with SPQR-tree T containing the
disjoint cycles C = {C1, . . . ,Ck}. The induced subtrees T |C1 , . . . , T |Ck with respect to
C1, . . . ,Ck are pairwise edge-disjoint trees.

Proof. We �rst show that the induced tree with respect to a single cycle is really a tree.
Afterwards, we show that two disjoint cycles induce edge-disjoint trees, yielding that
they have linear size in total.

Let C be a cycle in G and let T |C be its induced tree. A Q-node in T contains C as
a cycle if and only if the corresponding edge is contained in C . For each pair of these
Q-nodes all nodes on the path between them are contained in T |C , thus the Q-nodes
are in the same connected component in the induced subtree. Moreover, an internal
node in T cannot be a leaf in T |C , implying that it contains only one connected
component.

Assume there are two cycles Ci and Cj inducing trees T |Ci and T |Cj that are not
edge-disjoint. Let {µ,µ ′} be an edge in T belonging to both. Let further κi and κj
be the cycles in skel(µ) induced by Ci and Cj , respectively. Since the neighbor µ ′ of
µ also contains Ci as a cycle, it corresponds to a virtual edge ε in µ that is contained
in κi . Similarly, ε is also contained in κj , which is a contradiction since Ci and Cj are
disjoint. �

Our algorithm computing the PR-node constraints consists of four phases, each
of them consuming linear time. In each phase we compute data we then use in the
next phase. Table 7.1 gives an overview about the data we compute. During all phases
we assume the SPQR-tree T to be rooted at a Q-node corresponding to an edge in G
that is not contained in any cycle in C. In the �rst phase we essentially compute the
induced trees T |C . More precisely, for every node µ in the SPQR-tree we compute a
list cyc(µ) containing a cycle C if and only if C is a cycle in skel(µ), i.e., if and only
if µ is contained in T |C . Moreover, we say a virtual edge ε in skel(µ) belongs to a
cycleC ifC induces a cycle in skel(µ) containing ε . Note that ε belongs to at most one
cycle. If ε belongs to C , we set bel(ε) = C; if ε does not belong to any cycle, we set

185

Chapter 7 Disconnectivity in Simultaneous Planarity

bel(ε) = ⊥. Finally, the root of an induced tree T |C with respect to the root chosen
for T is denoted by root(T |C). To sum up, in the �rst phase we compute cyc(µ) for
every node µ, bel(ε) for every virtual edge ε and root(T |C) for every induced subtree
T |C . In the second phase, we compute high(µ) as the highest edge in the SPQR-tree
T on the path from µ to the root whose endpoints are both reachable from µ without
using edges contained in any of the induced subtrees T |C . Note that high(µ) is the
edge in T incident to the root if no edge on the path from µ to the root is contained
in one of the induced subtrees. For the special case that the edge from µ to its parent
itself is already contained in one of the induced trees, the edge high(µ) is not de�ned
and we set high(µ) = ⊥. In the third phase we compute for every crucial relative
position posC (C ′) the node in the SPQR-tree determining it, denoted by det(posC (C ′)).
Moreover, for every virtual edge ε in skel(µ) we compute a list contr(ε) of relative
positions. A relative position posC (C ′) is contained in contr(ε) if and only if it is
crucial, determined by µ and C ′ is contracted in ε . Similarly, the list detcyc(µ) for an
R-node µ contains the crucial relative position posC (C ′) if and only if C and C ′ are
both cycles in skel(µ), implying that posC (C ′) is determined by µ. Finally, in the fourth
pase, we compute the PR-node constraints restricted to the crucial relative positions.
The next lemma states that the �rst phase can be implemented in linear time.

Lemma 7.6. Let G be a biconnected planar graph with SPQR-tree T containing the
disjoint cycles C. The data cyc(µ) for every node µ, bel(ε) for every virtual edge ε , and
root(T |Ci) for every cycle Ci can be computed in overall linear time.

Proof. We process the SPQR-tree T bottom-up, starting with the Q-nodes. If a Q-node
µ corresponds to an edge belonging to a cycle C , then cyc(µ) contains only C and
bel(ε) = C for the virtual edge in µ. If the edge corresponding to µ is not contained in
a cycle, then cyc(µ) is empty and bel(ε) = ⊥. Furthermore, a Q-node cannot be the
root of any induced subtree T |C as we chose as the root of T a Q-node corresponding
to an edge not contained in any of the cycles. Now consider an inner node µ. We �rst
process the virtual edges in skel(µ) not belonging to the parent of µ. Let ε be such a
virtual edge corresponding to the child µ ′ of µ and let ε ′ be the virtual edge in skel(µ ′)
corresponding to its parent µ. Then ε belongs to a cycle induced by C if and only if ε ′
does, thus we set bel(ε) = bel(ε ′). Moreover, if bel(ε) , ⊥ we need to add the cycle
bel(ε) to cyc(µ) if it was not already added. Whether bel(ε) is already contained in
cyc(µ) can be tested in constant time as follows. We de�ne a timestamp t , increase
t every time we go to the next node in T and we store the current value of t for a
cycle added to cyc(µ). Then a cycle C was already added to cyc(µ) if and only if the
timestamp stored forC is equal to the current timestamp t . Thus, processing all virtual
edges in skel(µ) not corresponding to the parent of µ takes time linear in the size of
skel(µ). Let now ε = {s,t} be the virtual edge corresponding to the parent of µ. If
bel(ε ′) = ⊥ for all virtual edges ε ′ incident to s , then ε cannot be contained in a cycle
induced by any of the cycles in C. Otherwise, there are two possibilities. There is a

186

Disjoint Cycles Section 7.3

Data Description

cyc(µ) For a node µ in the SPQR-tree the list of cycles in C that are cycles
in skel(µ).

bel(ε) For a virtual edge ε in skel(µ) either a cycle C ∈ C if C induces a
cycle in skel(µ) containing ε or ⊥ denoting that ε is not contained
in such a cycle.

root(T |C) The root for the induced tree T |C with respect to a chosen root
for the SPQR-tree T .

high(µ) For a node µ in the SPQR-tree T the highest edge in T on the
path from µ to the root that is reachable without using an edge in
any of the induced subtrees T |C .

det(posC (C ′)) The node in the SPQR-tree determining the relative position
posC (C ′) of the cycle C ′ with respect to another cycle C .

contr(ε) For a virtual edge ε in skel(µ) a list of relative positions containing
posC (C ′) if and only if it is crucial, determined by µ and C ′ is
contracted in ε .

detcyc(µ) For every R-node µ a list of crucial relative positions containing
posC (C ′) if and only if C and C ′ are cycles in skel(µ).

Table 7.1: Data that is computed to compute the PR-node constraints restricted to the crucial
relative positions.

cycle C ∈ C such that bel(ε1) = C for exactly one virtual edge ε1 incident to s or there
are two such edges ε1 and ε2 with bel(ε1) = bel(ε2) = C . In the former case the edges
belonging toC in skel(µ) form a path from s to t , thus the edge ε corresponding to the
parent also belongs to C and we set bel(ε) = C . In the latter case s is contained in the
cycle C but the virtual edge does not belong to C and we set bel(ε) = ⊥. This takes
time linear in the degree of s in skel(µ) and hence lies in O (| skel(µ) |). It remains to
set root(T |C) = µ for every cycle C inducing the subtree T |C having µ as root. The
tree T |C has µ as root if and only if C is contained as cycle κ in µ but the virtual edge
ε in skel(µ) corresponding to the parent of µ is not contained in κ. Thus we have to
set root(T |C) = µ for all cycles C in cyc(µ) except for bel(ε). Note that this again
consumes time linear in the size of skel(µ) since the number of cycles that are cycles
in µ is in O (| skel(µ) |). Due to the fact that the SPQR-tree T has linear size this yields
an overall linear running time. �

In the second phase we want to compute high(µ) for each of the nodes in T . We
obtain the following lemma.

187

Chapter 7 Disconnectivity in Simultaneous Planarity

Lemma 7.7. Let G be a biconnected planar graph with SPQR-tree T containing the
disjoint cycles C. For every node µ in T the edge high(µ) can be computed in linear time.

Proof. We make use of the fact that bel(ε) is already computed for every virtual edge
ε in each of the skeletons, which can be done in linear time due to Lemma 7.6. Note
that an edge {µ,µ ′} in the SPQR-tree T (where µ is the parent of µ ′) belongs to the
induced subtree T |C with respect to the cycle C ∈ C if and only if bel(ε) = C for
the virtual edge ε in skel(µ) corresponding to the child µ ′. In this case we also have
bel(ε ′) = bel(ε) = C where ε ′ is the virtual edge in skel(µ ′) corresponding to the
parent. Hence, we can compute high(µ) for every node µ in T by processing T
top-down remembering the latest processed edge not belonging to any of the induced
subtrees. This can easily be done in linear time. �

In the third phase we compute det(posC (C ′)) for every crucial relative position in
linear time. Moreover, we compute contr(ε) for every virtual edge ε and detcyc(µ) for
every R-node µ. We show the following lemma.

Lemma 7.8. Let G be a biconnected planar graph with SPQR-tree T containing the
disjoint cycles C. The node det(posC (C ′)) for each crucial relative position posC (C ′), the
list contr(ε) for each virtual edges ε and the list detcyc(µ) for each R-nodes µ can be
computed in overall linear time.

Proof. Let C and C ′ be two cycles such that posC (C ′) is a crucial relative position.
We show how to compute the node det(posC (C ′)) determining this relative position
in constant time. Moreover, if C ′ is contracted in a virtual edge ε in det(posC (C ′)),
we append the relative position posC (C ′) to contr(ε). Otherwise, det(posC (C ′)) is an
R-node containing C and C ′ as cycles and we add posC (C ′) to detcyc(det(posC (C ′))).
Since there are only linearly many crucial relative positions this takes only linear
time. Let µ = root(T |C) and µ ′ = root(T |C ′) be the roots of the induced trees with
respect to C and C ′, respectively, which are already computed due to Lemma 7.6. We
use that the lowest common ancestor of a pair of nodes can be computed in constant
time after a linear-time preprocessing [HT84; BF00]. In particular, let LCA(µ,µ ′) be
the lowest common ancestor of the two roots. There are three possibilities. First,
LCA(µ,µ ′) is above µ (Figure 7.7a). Second, LCA(µ,µ ′) = µ = µ ′ (Figure 7.7b). And
third, LCA(µ,µ ′) = µ lies above µ ′ (Figure 7.7c–f). Note that the �rst case includes the
situation where µ ′ = LCA(µ,µ ′) lies above µ.

In the �rst case the cycle C ′ is contracted in µ in the virtual edge ε corresponding
to the parent of µ, while µ contains C as cycle κ not containing the virtual edge ε
corresponding to the parent. Hence, µ determines posC (C ′). We set det(posC (C ′)) = µ
and insert posC (C ′) into contr(ε). In the second case C and C ′ are both cycles in
µ = µ ′, hence µ determines posC (C ′). We set det(posC (C ′)) = µ and insert posC (C ′)
into detcyc(µ) since skel(µ) contains C and C ′ as cycles.

188

Disjoint Cycles Section 7.3

(c)
det(posC (C′)) = µ

η

η′
high(µ′)

T |C′
T |C

µ

µ′

µ′′

(d)
det(posC (C′)) = η

T |C

T |C′

µ

µ′

η

η′
high(µ′)

(e)
posC (C′) not crucial

T |C′

µ′

T |C′′
T |C

µ

η

η′high(µ′)

(f)

high(µ′) = ⊥
det(posC (C′)) = µ′

T |C

T |C′

µ

µ′
(a)

det(posC (C′)) = µ

T |C T |C′

µ µ′
LCA

(b)
det(posC (C′)) = µ

µ = µ′

T |C T |C′

Figure 7.7: Illustration of the cases that occur in the proof of Lemma 7.8.

In the third case the node determining posC (C ′) lies somewhere on the path from
µ down to µ ′. In this situation high(µ ′) comes into play and we distinguish several
cases. We �rst assume that high(µ ′) , ⊥. Let {η,η′} = high(µ ′) be the highest edge
in T on the path from µ ′ to the root that is reachable without using an edge in any of
the induced trees, as computed by Lemma 7.7. Let η be the parent of η′. We claim that
either µ or η determines the crucial relative position posC (C ′).

More precisely, if η lies above or is equal to µ (Figure 7.7c), then the child µ ′′ of µ on
the path from µ ′ to µ does not contain C as a cycle. Otherwise the edge {µ,µ ′′} would
have been contained in T |C , which is a contradiction to the de�nition of high(µ ′).
Thus, C ′ is contracted in the virtual edge ε in skel(µ) corresponding to the child µ ′′
that is not contained in the cycle induced by C , implying that µ determines posC (C ′).
In this case we set det(posC (C ′)) = µ. Moreover, we want to insert the crucial relative
position posC (C ′) into contr(ε). Unfortunately, we cannot determine the virtual edge
ε belonging to the child µ ′′ in constant time. We handle that problem by storing a
temporary list temp(µ) for the node µ and insert posC (C ′) into this list. After we have
processed all crucial relative positions, we process T bottom-up, building a union-�nd
data structure by taking the union of µ with all its children after processing µ. Thus,
when processing µ, we can simply traverse the list temp(µ) once, �nd for every crucial
relative position posC (C ′) the virtual edge ε containing C ′ by �nding root(T |C ′) in
the union-�nd data structure and then add posC (C ′) to contr(ε). Note that this takes
overall linear time, because the union-�nd data structure consumes amortized constant
time per operation since the union-operations we apply are known in advance [GT85].

In the second case η lies below µ, where high(µ ′) = {η,η′}. We claim that η
contains C as a cycle and C ′ contracted in the virtual edge ε ′ in skel(η) corresponding
to the child η′, as depicted in Figure 7.7d. By de�nition of high(µ ′) there is a cycle C ′′
that is contained as a cycle in η and in the parent of η but not in η′. We show that
C ′′ = C or posC (C ′) is not a crucial relative position. Assume C ′′ , C ; see Figure 7.7e.

189

Chapter 7 Disconnectivity in Simultaneous Planarity

In skel(η) the cycleC ′ is contracted in the virtual edge ε ′ corresponding to the child η′,
whereasC is contracted in the virtual edge ε corresponding to the parent of η. SinceC ′′
is a cycle in η and in its parent, it induces a cycle in skel(η) containing ε . Consider
a path π from C ′ to C in the graph G. Then π contains one of the poles of skel(η)
and hence contains a vertex in C ′′. Thus the relative position posC (C ′) is not crucial,
which is a contradiction. Hence we can simply set det(posC (C ′)) = η and append
posC (C ′) to the list contr(ε ′).

Finally, high(µ ′) may be not de�ned, i.e., high(µ ′) = ⊥ since the edge connecting
µ ′ to its parent is already contained in one of the induced cycle trees. With a similar
argument as before, this induced tree is T |C , belonging to the cycle C , as depicted
in Figure 7.7f. Thus µ ′ contains C and C ′ as cycles and we set det(posC (C ′)) = µ ′ and
add posC (C ′) to the list detcyc(µ ′). This concludes the proof. �

In the fourth and last phase we process the SPQR-tree T once more to �nally
compute the PR-node constraints restricted to the crucial relative positions. We obtain
the following lemma.

Lemma 7.9. Let G be a biconnected planar graph. The PR-node constraints restricted to
the crucial relative positions can be computed in linear time.

Proof. We process each node in the SPQR-tree T of G once, consuming time linear
in the size of its skeleton plus some additional costs that sum up to the number of
crucial relative positions in total. Let µ be a node in T . If µ is not contained in any
induced tree T |C , it does not determine any relative position at all. Thus assume
there is at least one cycle that is a cycle in µ. If µ is a P-node, skel(µ) consists of `
parallel virtual edges ε1, . . . ,ε` and we can assume without loss of generality that the
cycle C induces in skel(µ) the cycle κ consisting of the two virtual edges ε1 and ε2.
For every crucial relative position posC (C ′) that is determined by µ there is a virtual
edge ε ∈ {ε3, . . . ,ε`} containingC ′ in the list contr(ε), which is already computed due
to Lemma 7.8. Hence, the PR-node constraints stemming from µ can be computed
by processing each of these lists contr(ε), setting posC (C ′) = posC (C ′′) for any two
cycles C ′ and C ′′ appearing consecutively in contr(ε). The time-consumption is linear
in the size of skel(µ) plus the number of crucial relative positions determined by µ.

If µ is an R-node, it may contain several cycles as a cycle, all of them stored in the
list cyc(µ) due to Lemma 7.6. Every crucial relative position posC (C ′) determined by
µ is either contained in the lists contr(ε) for a virtual edge ε in skel(µ) or in detcyc(µ)
if C and C ′ are both cycles in µ (Lemma 7.8). We �rst carry the relative positions in
detcyc(µ) over to the corresponding cycles. More precisely, we de�ne a list detcyc(C ′)
for every cycle C ′ in cyc(µ) and insert a crucial relative position posC (C ′) into it, if it
is contained in detcyc(µ). This can obviously be done consuming time linear in the
size of detcyc(µ). Afterwards, we start by �xing the embedding of skel(µ) and pick
an arbitrary vertex v0 in skel(µ). For each cycle C contained as cycle κ in skel(µ) we

190

Disjoint Cycles Section 7.3

de�ne a variable side(C) and initialize it with the value “left” or “right”, depending
on which side v0 lies with respect to κ in the chosen embedding of skel(µ), or with
the value “on” if v0 is contained in C . Due to Lemma 7.6 we know for every edge ε to
which cycle it belongs (or that it does not belong to a cycle at all). Thus side(C) can be
easily computed for every cycle C that is a cycle in skel(µ) consuming time linear in
| skel(µ) | by traversing skel(µ) once, starting at v0.

To sum up, each crucial relative position posC (C ′) determined by µ is either con-
tained in contr(ε) if C ′ is contracted in ε or in detcyc(C ′) if C ′ is a cycle in skel(µ).
Moreover, for each cycleC the value of side(C) describes on which side ofC the chosen
start-vertex v0 lies with respect to a chosen orientation of skel(µ). We now want to
divide the crucial relative positions determined by µ into two lists Left and Right
depending on which value they have with respect to the chosen embedding. If this
is done, the PR-node constraints stemming from µ restricted to the crucial relative
positions can be computed by simply processing these two lists once. To construct
the lists Left and Right, we make a DFS-traversal in skel(µ) such that each virtual
edge is processed once. More precisely, when we visit an edge {u,v} (starting at u),
then v is either an unvisited vertex and we continue the traversal from v or v was
already visited, then we go back to u. If all virtual edges incident to the current vertex
u were already visited, we do a back-tracking step, i.e., we go back to the vertex from
which we moved to u. Essentially, a normal step consists of three phases, leaving
the current vertex u, traveling along the virtual edge {u,v}, and �nally arriving at v
or back at u. In a back-tracking step we have only two phases, namely leaving the
current vertex u and arriving at its predecessor. During the whole traversal we keep
track of the sides side(·). More precisely, when leaving a vertex u that was contained
in a cycleC we may have to update side(C) if the target-vertex v is not also contained
in C . On the other hand, when arriving at a vertex v contained in a cycle C we have
to set side(C) = “on”. Since such an update has to be done for at most one cycle we
can keep track of the sides in constant time per operation and thus in overall linear
time. Now it is easy to compute the values of the crucial relative positions determined
by µ with respect to the currently chosen embedding. While traveling along a virtual
edge ε = {u,v} we process contr(ε). For a crucial relative position posC (C ′) contained
in contr(ε) we know that C ′ is contracted in ε . Thus, in the chosen embedding the
value of posC (C ′) is the current value of side(C) and we can insert posC (C ′) into the
list Left or Right depending on the value of side(C). This takes linear time in the
number of crucial relative positions contained in contr(ε). We deal with the crucial
relative positions contained in one of the lists detcyc(C ′) in a similar way. Every time
we reach a vertex v contained in a cycle C ′ we check whether this is the �rst time
we visit the cycle C ′. If it is the �rst time, we insert every crucial relative positions
posC (C ′) contained in detcyc(C ′) into one of the lists Left or Right, depending on
the current value of side(C). Clearly the whole traversal takes linear time in the size

191

Chapter 7 Disconnectivity in Simultaneous Planarity

of skel(µ) plus linear time in the number of crucial relative positions determined by
µ. Moreover, we obviously obtain the PR-node constraints restricted to the crucial
relative positions stemming form µ by processing each of the lists Left and Right
once, obtaining an equality constraint for positions that are adjacent in the lists and
additionally a single inequality for a pair of positions, one contained in Left and the
other in Right, unless one of them is empty. �

Corollary 7.1. The CC-tree TC of a biconnected planar graph G can be computed in
linear time.

It remains to extend the described algorithm to the case where G is not necessarily
biconnected. More precisely, we need to show how to compute the extended PR-node
constraints and the cutvertex constraints in linear time. This is done in the proof of
the following theorem.

Theorem 7.6. The CC-tree TC of a connected planar graphG can be computed in linear
time.

Proof. As before, the underlying C-tree can be easily computed in linear time. For a
�xed block B we have the SPQR-tree T and for a cycleC in B the induced tree T |C can
be de�ned as before. Obviously, Lemma 7.6 can be used as before to compute cyc(µ) for
every node µ, bel(ε) for every virtual edge and root(T |C) for every induced subtree
in linear time. Moreover, the edge high(µ) in T can be computed for every node µ as
in Lemma 7.7. For the computation of det(posC (C ′)) for every crucial relative position
posC (C ′) and contr(ε) for every virtual edge ε , we cannot directly apply Lemma 7.8
since the cycles C and C ′ may be contained in di�erent blocks. Thus, before we can
compute det(posC (C ′)), we need to �nd out whether C and C ′ are in the same block,
which can be done by simply storing for every cycle a pointer to the block containing
it. For the case that C and C ′ are contained in the same block det(posC (C ′)) can be
computed as before and posC (C ′) can be inserted into the list contr(ε) for some ε if
necessary. For the case that C and C ′ are contained in di�erent blocks B and B′, we
need to �nd the unique cutvertex v in B that separates B and B′. This can be done
in overall linear time by computing the BC-tree and using an approach combining
the lowest common ancestor and union-�nd data structure similar as in the proof of
Lemma 7.8.

If the resulting cutvertex v is not contained inC , we can treat the cutvertex v as if it
was the cycleC ′ and use the same algorithm as in Lemma 7.8 to compute det(posC (C ′))
and append posC (C ′) to contr(ε) for some ε if necessary. If v is contained in C , then
the crucial relative position posC (C ′) is not determined by any node in any SPQR-tree
at all, but by the embedding of the blocks around the cutvertex v . Thus there are
no extended PR-node constraints restricting posC (C ′). Finally, det(posC (C ′)) can be
computed in overall linear time for every crucial relative position posC (C ′) that is

192

Disjoint Cycles Section 7.3

determined by a node in the SPQR-tree of the block containing C . Moreover, for a
node µ in the SPQR-tree of the block B containing C every virtual edge ε has a list
contr(ε) containing all crucial relative positions posC (C ′) that are determined by µ
and for which either C ′ is contracted in ε or belongs to a di�erent block B′ and is
connected to B via a cutvertex contained in the expansion graph expan(ε). With these
information the extended PR-node constraints can be computed exactly the same as
the PR-node constraints are computed in Lemma 7.9.

It remains to compute the cutvertex constraints restricted to the crucial relative
positions. As mentioned above, we can compute a list of crucial relative positions
posC (C1), . . . ,posC (C`) determined by the embedding of the blocks around a cutvertex
v contained in C in linear time. We then process this list once, starting with posC (C1).
We store posC (C1) as reference position for the block B1 containing C1. Now, when
processing posC (Ci), we check whether the block Bi containing Ci already has a
reference position posC (Cj) assigned to it. In this case we set posC (Ci) = posC (Cj),
otherwise we set posC (Ci) to be the reference position. This obviously consumes
overall linear time and computes the cutvertex constraints restricted to the crucial
relative positions. �

Intersecting CC-Trees in Linear Time

Due to Theorem 7.5 we can test whether two graphs G 1 and G 2 with common graph
C consisting of a set of disjoint cycles have a simultaneous embedding by computing
the CC-trees T 1

C and T 2

C of G 1 and G 2 , respectively, which can be done in linear
time due to Theorem 7.6. Then the intersection TC of T 1

C and T 2

C represents exactly
the possible embeddings of the common graph G in a simultaneous embedding. It
remains to show that the intersection can be computed in linear time.

Theorem 7.7. The intersection of two CC-trees can be computed in linear time.

Proof. Let T 1

C and T 2

C be two CC-trees on a set C of cycles. We start with TC = T 1

C
and show how to compute the common-face and crucial-position constraints in overall
linear time. For the crucial-position constraints we essentially only show how to �nd
for each crucial relative position in T 2

C a crucial relative position in TC corresponding
to it. Computing the crucial-position constraints is then easy. We root TC at an
arbitrary vertex and again use that the lowest common ancestor of two vertices in TC
can be computed in constant time [HT84; BF00]. For every edge e 2 = {C1,C2} in
T 2

C we obtain a path in TC from C1 to the lowest common ancestor of C1 and C2
and further to C2. We essentially process these two parts of the path separately with
some additional computation for the lowest common ancestor. We say that the parts
of the paths belong to the half-edges e 2

1 and e 2

2 , respectively. We use the following
data structure. For every cycle C there is a list end(C) containing all edges in T 2

C
whose endpoints have C in TC as lowest common ancestor. This list can be computed

193

Chapter 7 Disconnectivity in Simultaneous Planarity

for every cycle in overall linear time. We then process TC bottom up, saving for the
cycle C we currently process a second list curr(C) containing all the half-edges in
T 2

C whose paths contain C . This can be done in overall linear time by ensuring that
every half-edge e 2

i (i = 1,2) is contained in at most one list curr(C) at the same time.
Then e 2

i can be removed from this list in constant time by storing for e 2
i pointers to

the previous and to the next element in that list, denoted by prev(e 2
i) and next(e 2

i).
Additionally, we build up the following union-�nd data structure. Every time we have
processed a cycle C , we union C with all its children in TC . Thus, when processing C ,
this data structure can be used to �nd for every cycle in the subtree belowC the child of
C it belongs to. Note that again this version of the union-�nd data structure consumes
amortized constant time per operation since the sequence of union operations is
known in advance [GT85]. Before starting to process TC , we process T 2

C once and for
every edge e 2 = {C1,C2} we insert the half-edges e 2

1 and e 2

2 to the lists curr(C1) and
curr(C2), respectively. While processing TC bottom up the following invariants hold
at the moment we start to process C .

1. The list curr(C) contains all half-edges starting at C .

2. For every child C ′ of C the list curr(C ′) contains the half-edge e 2
i if and only if

the path belonging to it contains C and C ′.

3. Every half-edge e 2
i is contained in at most one list curr(C), and prev(e 2

i) and
next(e 2

i) contain the previous and next element in that list, respectively.

When we start processing a leaf C the invariants are obviously true. To satisfy invari-
ant 2. for the parent ofC we have to ensure that all half-edges ending atC are removed
form the list curr(C). Since there are no half-edges ending in a leaf, we simply do
nothing. Invariants 1. and 3. obviously also hold for the parent of C .

Let C be an arbitrary cycle and assume that the invariants are satis�ed. To ensure
that invariant 2. holds for the parent of C , we need to build a list of all half-edges
whose paths contain C and do not end at C . Since invariants 1. and 2. hold for C
this are exactly the half-edges contained in curr(C) plus the half-edges contained
in curr(C ′) for each of the children C ′ of C that are not ending at C . Note that a
half-edge may also start at C and end at C . This is the case if the corresponding edge
connects C with another cycle C ′′ such that the lowest common ancestor of C and C ′′

is C . We �rst process the list end(C) containing the edges ending at C; let e 2 be an
edge in end(C). The two half-edges e 2

1 and e 2

2 belonging to e 2 are contained in the
lists curr(C1) and curr(C2), where C1 and C2 are di�erent cycles and each of them is
either C or a child of C . We remove e 2

i form curr(Ci) for i = 1,2. This can be done
by setting the pointers next(prev(e 2

i)) = next(e 2
i) and prev(next(e 2

i)) = prev(e 2
i),

taking constant time per edge since each half-edge is contained in at most one list due
to invariant 3. Afterwards, for every child C ′ of C , we append curr(C ′) to curr(C) and

194

Connected Components with Fixed Embedding Section 7.4

empty the list curr(C ′) afterwards, to ensure that invariant 3 remains satis�ed. This
takes constant time per child and thus overall time linear in the degree ofC . Obviously
this satis�es all invariants for the parent of C . Furthermore, we consume time linear
in the degree of C plus time linear in the number of half-edges ending at C . However,
every half-edge ends exactly once yielding overall linear time.

Now it is easy to compute the common-face and crucial-position constraints while
processing TC as described above. Essentially, when processing C , we compute all
the constraints concerning the relative position of other cycles with respect to C .
In particular, we need to add common-face constraints if two half-edges end at C
and if the path belonging to a half-edge contains C in its interior. Furthermore, we
�nd a corresponding crucial relative position for every half-edge starting at C . Let
e 2 = {C1,C2} be an edge whose half-edges end at C . There are two di�erent cases.
First, one of the cycles Ci (for i = 1,2) is C (its half edge starts and ends at C). Then
the other cycle (whose half-edge only ends atC) is contained in a subtree with rootC ′,
where C ′ is a child of C . Second, C1 and C2 are contained in the subtrees with roots
C ′1 and C ′2, respectively, where C ′1 and C ′2 are di�erent children of C . In this case, both
half-edges end at C . We consider the second case �rst. Then C ′1 and C ′2 can be found
in amortized constant time by �nding C1 and C2 in the union-�nd data structure. The
equation posC (C ′1) = posC (C ′2) is exactly the common-face constraint at the cycle
C stemming from the edge e 2 . In the second case we can again �nd the child C ′ in
constant time. Assume without loss of generality that C1 = C and C2 is contained
in the subtree having C ′ as root. Then posC (C ′) is the crucial relative position in
TC corresponding to the crucial relative position posC (C2) in T 2

C . The half-edges
containing C in its interior are exactly the half-edges contained in one of the lists
curr(C ′) for a child C ′ of C whose path does not end at C . Thus, for the parent C ′′
of C we have to add the common-face constraint posC (C ′) = posC (C ′′) if and only if
the list curr(C ′) is not empty after deleting all half-edges in end(C). These additional
computations obviously do not increase the running time and hence the common-face
and crucial-position constraints can be computed in overall linear running time. �

Theorems 7.4, 7.5, 7.6 and 7.7 directly yield the following results.

Theorem 7.8. Sefe can be solved in linear time if the common graph consists of disjoint
cycles.

Theorem 7.9. Sefe can be solved in linear time for the case of k graphs G 1 , . . . ,G k all
intersecting in the same common graph G consisting of disjoint cycles.

7.4 Connected Components with Fixed Embedding

In this section we show how the previous results can be extended to the case that the
common graph has several connected components, each of them with a �xed planar

195

Chapter 7 Disconnectivity in Simultaneous Planarity

embedding. Again, we �rst consider the case of a single graph G containing C as a
subgraph, where in this case C is a set of connected components instead of a set of
disjoint cycles. First note that the relative position posC (C ′) of a component C ′ with
respect to another component C can be an arbitrary face of C . Thus, the choice of the
relative positions is no longer binary and a set of inequalities on the relative positions
would lead to a coloring problem in the con�ict graph, which is NP-hard in general.
However, most of the constraints between relative positions are equations, in fact,
all inequalities stem from R-nodes in the SPQR-tree of G (or of the SPQR-tree of one
of the blocks in G). Fortunately, if a relative position is determined by an R-node,
there are only two possibilities to embed this R-node. Thus, the possible values for
the relative position is restricted to two faces, yielding a binary decision. Note that in
general the possible values for posC (C ′) are not all faces of C , even if posC (C ′) is not
determined by an R-node but by a P-node or by the embedding around a cutvertex.

Thus, we obtain for each relative position a set of possible faces as values and
additionally several equations and inequalities, where inequalities only occur between
relative positions with a binary choice. These conditions can be modeled as a con�ict
graph where each node represents a relative position with some allowed colors (faces)
and edges in this con�ict graph enforce both endvertices to be either colored the same
or di�erently. In the case of the problem Sefe each of the graphs yields such a con�ict
graph. These con�ict graphs can be easily merged by intersecting for each relative
position the sets of allowed colors (faces). Then a simultaneous embedding can be
constructed by �rst iteratively contracting edges requiring equality, intersecting the
possible colors of the involved nodes. If the resulting graph contains a node with the
empty set as choice for the color, then no simultaneous embedding exists. Otherwise,
we have to test whether each connected component in the remaining graph can be
colored such that adjacent nodes have di�erent colors, which can be done e�ciently
since such a component either consists of a single node or there are only up to two
possible colors for each connected component left due to the considerations above.

Moreover, the CC-tree can be adapted to work for the case of connected components
with �xed embeddings instead of disjoint cycles, as the extended PR-node and cutvertex
constraints on the crucial relative positions are still su�cient to imply them on all
relative positions. We call this tree on connected components the CC⊕-tree, standing
for constrained component-tree. In the following we quickly go through the steps we
did before in the case of disjoint cycles and describe the changes when considering
connected components instead.

PR-Node Constraints. LetG be a biconnected planar graph and let C be a subgraph
of G consisting of several connected components, each with a �xed planar embedding.
Let further C ∈ C be one of the connected components and let µ be a node in the
SPQR-tree T of G . The virtual edges in skel(µ) whose expansion graphs contain parts

196

Connected Components with Fixed Embedding Section 7.4

of the component C induce a connected subgraph in skel(µ). In the previous case,
where the subgraph consisted of disjoint cycles, this induced subgraph was either a
single edge or a cycle. In the case that C is an arbitrary component the induced graph
can be an arbitrary connected subgraph of skel(µ). If it is a single edge, we say that C
is contracted in µ, otherwise C is a component in µ.

We obviously obtain that the relative position posC (C ′) of another component C ′
with respect to C is determined by the embedding of skel(µ) if and only if C is a
component in µ and C ′ is not contracted in one of the virtual edges belonging to the
subgraph induced byC . Moreover, the embedding of skel(µ) is partially (or completely)
�xed by the embedding of C if the induced graph in skel(µ) contains a vertex with
degree greater than 2. More precisely, consider µ to be a P-node containing C as a
component. Then the virtual edges belonging to C have a �xed planar embedding
and each face in this induced graph represents a face in C . These faces are the
possible values for the relative positions with respect to C that are determined by
µ. The remaining virtual edges not belonging to C can be added arbitrarily and thus
components contracted in these edges can be put into one of the possible faces with
the restriction that two components contracted in the same virtual edge have to lie in
the same face, i.e., they have the same relative position with respect to C . To sum up,
we obtain a set of possible faces of C with respect to µ and a set of equations between
relative positions of components with respect to C .

For the case that µ is an R-node, either the embedding of skel(µ) is �xed due to
the fact that there exists a component whose induced graph in skel(µ) contains a
vertex with degree greater than 2. Otherwise, each component is either contracted
in µ or the induced subgraph is a cycle or a path. No matter which case arises, the
relative positions determined by µ are either completely �xed or there are only two
possibilities. If the embedding is �xed, the relative positions determined by µ are
�xed and thus there is no need for additional constraints. Otherwise, a crucial relative
position with respect to C is �xed if C induces a path in skel(µ) and it changes by
�ipping skel(µ) if C induces a cycle. For two components C and C ′ both inducing a
cycle in skel(µ) this yields a bijection between the two possible values for relative
positions with respect to C determined by µ and the two possible values for positions
with respect to C ′. Thus we can add the equations and inequalities as in the case of
disjoint cycles.

The resulting constraints are again called PR-node constraints. As for disjoint cycles
we obtain that an embedding of the components C respecting the �xed embeddings
for each component can be induced by an embedding chosen for G if and only if the
PR-node constraints are satis�ed. This directly yields a polynomial-time algorithm
to solve Sefe for the case that both graphs are biconnected and the common graph
consists of several connected components, each having a �xed planar embedding.

197

Chapter 7 Disconnectivity in Simultaneous Planarity

Extended PR-Node and Cutvertex Constraints. As for cycles the considerations
above can be easily extended to the case that the graphG containing the components C
is allowed to contain cutvertices. For a cutvertexv not contained in a componentC , the
relative position ofv with respect toC determines the relative positions of components
attached via v , which again yields the extended PR-node constraints. If v is contained
inC , then the relative position of another componentC ′with respect toC is determined
by the embedding aroundv if and only ifv splitsC fromC ′. In this caseC ′ can obviously
lie in one of the faces of C incident to v . Fortunately, the cutvertex constraints do not
contain inequalities as they only ensure that components attached to v via the same
block lie in the same face of C . With these considerations all results form Section 7.3.1
can be extended to the case of components with �xed embedding instead of cycles.
In particular, Sefe can be solved in polynomial time if the common graph consists of
connected components, each with a �xed planar embedding.

CC
⊕

-Trees. As mentioned before, the CC-tree can be adapted to represent all em-
beddings that can be induced on the set of components C by an embedding of the
graph G , yielding the CC⊕-tree. To this end, each node in the tree represents a compo-
nent C ∈ C and the incidence to C of an edge {C,C ′} in the CC⊕-tree represents the
choice for the crucial relative position posC (C ′). The possible values are restricted to
a subset of faces of C as described before and there may be some equations between
crucial relative positions with respect to C . Moreover, there may be inequalities be-
tween crucial relative positions even with respect to di�erent components. However,
if this is the case, then there are at most two possible choices and we have a bijection
between the possible faces of di�erent components. As in the proof of Theorem 7.4, it
follows from the structure of the underlying C-tree, that relative positions that are not
crucial are determined by a crucial relative position that is determined by the same
P- or R-node or by the same embedding choice around a cutvertex. The proof can
be easily adapted to the case of components instead of cycles yielding that satisfying
the constraints and restrictions to a subset of faces for the crucial relative positions
automatically satis�es these conditions for all relative positions.

To be able to solve Sefe with the help of CC⊕-trees, we need to intersect two
CC⊕-trees such that the result is again a CC⊕-tree. Assume as in the case of cycles
that we have the two CC⊕-trees T 1

C and T 2

C . As before we start with T 1

C and add
the restrictions given by T 2

C . More precisely, for every pair {C,C ′} of adjacent nodes
in T 2

C we have to add the common-face constraints to T 1

C , i.e., equations between
crucial relative positions on the path between C and C ′ in T 1

C enforcing C and C ′

to share a face. Moreover, for every relative position posC (C ′) that is crucial with
respect to T 2

C we have to add the equations and inequalities it is involved in to the
CC⊕-tree T 1

C . As for cycles posC (C ′) is in T 1

C determined by the crucial relative
position posC (C ′′), where C ′′ is the �rst node on the path from C to C ′. We have to

198

Connected Components with Fixed Embedding Section 7.5

do two things. First, we have to restrict the possible choices for posC (C ′′) to those
that are possible for posC (C ′), which can easily be done by intersecting the two sets.
Second, the equations and inequalities posC (C ′) is involved in have to be carried over
to posC (C ′′). This can be done as before by choosing for each crucial relative position
in T 2

C the representative in T 1

C . For the resulting intersection TC it remains to show
that every embedding represented by it is also represented by T 1

C and T 2

C . The former
is clear, the latter can be shown as in the proof of Theorem 7.5.

E�icient Implementation. Unfortunately, the constrained component-tree may
have quadratic size in contrast to the constrained cycle-tree, which has linear size. This
comes from the fact that a node C in the CC⊕-tree may have linearly many neighbors.
Moreover, each relative position posC (C ′) of a neighbor C ′ of C may have linearly
many possible values, as C may have that many faces. As these possible values need
to be stored for the edge {C,C ′} in the CC-tree it has quadratic size. On the other
hand, it is easy to see that the CC-tree can be computed in quadratic time. Moreover,
the proof of Theorem 7.7 providing a linear-time algorithm to intersect CC⊕-trees
can be adapted almost literally. The only thing that changes is that additionally the
possible values for posC (C ′′) and posC (C ′) need to be intersected, where posC (C ′) is a
relative position that is crucial with respect to T 2

C and posC (C ′′) is the representative
in T 1

C . Thus, two CC⊕-trees can be intersected consuming time linear in the size of
the CC⊕-trees, i.e., quadratic time in the size of the input graphs. We �nally obtain
the following theorem.

Theorem 7.10. Sefe can be solved in quadratic time, if the embedding of each connected
component of the common graph is �xed.

Let TC be the CC⊕-tree representing all embeddings of the components C that can be
induced by the graphG . It is worth noting that, although the explicit representation of
TC may have quadratic size, it also admits a compact representation of linear size. The
key idea is the following. In case there are more than two possible values for a crucial
relative position posC (C ′), this position is determined by a P-node or a cutvertex. Then
we can encode the possible values for posC (C ′) by pointing to a list that is stored at
that P-node or cutvertex, respectively. Since this set of values is independent of C ′ it
is su�cient to store one list for each P-node or cutvertex. It is not hard to see that the
total size of these lists is linear. Moreover, the fast algorithm for computing CC-trees
can be applied with obvious modi�cations to compute this compact representation in
linear time. It is, however, unclear whether the intersection of two or more CC⊕-trees
still admits a compact representation and whether it can be computed in linear time
from the given compact representations.

199

Chapter 7 Disconnectivity in Simultaneous Planarity

7.5 Conclusion

Contrary to the previous results on simultaneous embeddings, we focused on the
case where the embedding choice does not consist of ordering edges around vertices
but of placing connected components in relative positions to one another. We �rst
showed that both input graphs of an instance of Sefe can be always assumed to be
connected. We then showed how to solve Sefe in linear time for the case that the
common graph consists of simple disjoint cycles (or more generally has maximum
degree 2). We further extended the result to a quadratic-time algorithm solving the
more general case where the embedding of each connected component of the common
graph is �xed. These solutions include a compact and easy to handle data structure,
the CC-tree and CC⊕-tree, representing all possible simultaneous embeddings. We
will see in Chapter 8 that the techniques developed in this chapter can actually be
used and extended to also work in more general cases.

200

8 Edge Orderings, Relative Positions, and
Cutvertices in Simultaneous Planarity

In this chapter, we combine the techniques from Chapter 7 ensuring consistent relative
positions with existing and newly developed approaches for ensuring consistent
edge orderings. We present two types of results. First, a set of three linear-time
preprocessing algorithms that remove certain substructures from a given Sefe instance,
producing a set of equivalent Sefe instances without such substructures. The structures
we can remove are (1) cutvertices of the union graph, (2) most separating pairs of the
union graph, and (3) connected components of the common graph that are biconnected
but not a cycle.

Second, we give anO (n3)-time algorithm solving Sefe for instances with the follow-
ing restriction. Let u be a pole of a P-node µ in the SPQR-tree of G 1 or G 2 . Then at
most three virtual edges of µ may contain common edges incident to u. All algorithms
extend to the sun�ower case, i.e., to the case of more than three graphs pairwise
intersecting in the same common graph.

This chapter is based on joint work with Annette Karrer and Ignaz Rutter [BKR13a].

8.1 Introduction

There are two fundamental approaches to solving Sefe in the literature. The �rst
approach is based on the characterization of Jünger and Schulz [JS09] stating that
�nding a simultaneous embedding of two graphs G 1 and G 2 with common graph
G is equivalent to �nding planar embeddings of G 1 and G 2 that induce the same
embedding on G. The second very recent approach by Schaefer [Sch13] is based on
Hanani-Tutte-style redrawing results. One tries to characterize the existence of a Sefe
via the existence of drawings of the union graph G∪ where no two independent edges
of the same graph cross an odd number of times. The existence of such drawings can
be expressed using a linear system of boolean equations.

When following the �rst approach, we need two things to describe the planar
embedding of the common graph G. First, for each vertex v , a cyclic order of incident
edges around v . Second, for every pair of connected components H and H ′ of G, the
face f of H containing H ′, i.e., the relative position of H ′ with respect to H . To �nd a
simultaneous embedding, one needs to �nd a pair of planar embeddings that induce the
same cyclic edge orderings (consistent edge orderings) and the same relative positions
(consistent relative positions) on the common graph G.

201

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

Most previous results use the �rst approach but none of them considers both, consis-
tent edge orderings and relative positions. Most of them assume the common graph to
be connected or to contain no cycles, making it su�cient to ensure consistent relative
positions. The strongest results of this type are the two linear-time algorithms for the
case that G is biconnected by Haeupler et al. [HJL13] and by Angelini et al. [Ang+12]
and a quadratic-time algorithm for the case where G 1 and G 2 are biconnected and G
is connected [BR13]. In the latter result, Sefe is modeled as an instance of the problem
Simultaneous PQ-Ordering. On the other hand, as shown in the previous chapter,
there is a linear-time algorithm for Sefe if the common graph consists of disjoint
cycles, which requires to ensure consistent relative positions but makes edge orderings
trivially consistent.

The advantage of the second approach (Hanani-Tutte) is that it implicitly handles
both, consistent edge orderings and consistent relative positions, at the same time.
Thus, the results by Schaefer [Sch13] are the �rst that handle Sefe instances where
the common graph consists of several, non-trivial connected components. He gives
a polynomial-time algorithm for the cases where each connected component of the
common graph is biconnected or has maximum degree 3. Although this approach is
conceptionally simple, very elegant, and combines several notions of planarity within
a common framework, it has two disadvantages. The running time of the algorithms
are quite high and the high level of abstraction makes it di�cult to generalize the
results.

Contribution and Outline

In this chapter, we follow the �rst approach and show how to enforce consistent edge
orderings and consistent relative positions at the same time, by combining di�erent
recent approaches, namely the algorithm by Angelini et al. [Ang+12], the result on
Simultaneous PQ-Ordering [BR13] (see also Chapter 5) for consistent edge orderings,
and the result on disjoint cycles (Chapter 7) for consistent relative positions. Note that
the relative positions of connected components to each other are usually expressed
in terms of faces (containing the respective component). This is no longer possible if
the embeddings, and thus the set of faces, of connected components are not �xed. To
overcome this issue, we show that these relative positions can be expressed in terms
of relative positions with respect to cycles in a cycle basis. In addition to that, we are
able to handle certain cutvertices of G 1 and G 2 .

We classify a vertex v to be a union cutvertex, a simultaneous cutvertex, and an
exclusive cutvertex if v is a cutvertex ofG∪, ofG 1 andG 2 but not ofG∪, and ofG 1 but
notG 2 or the other way around, respectively. Similarly, we can de�ne union separating
pairs to be separating pairs in G∪. We present several preprocessing algorithms that
simplify given instances of Sefe; see Section 8.2. Besides a very technical preprocess-
ing step (Section 8.2.4), they remove union cutvertices and most (but not all) union

202

Preprocessing Algorithms Section 8.2

Figure 8.1: A P-node of G 1 with virtual edges ε1, . . . ,ε4.
The node has common P-node degree 3; for s the virtual
edges ε1, ε3, and ε4 count; for t the virtual edges ε1, ε2, and
ε3 count.

ε4ε1

ε2 ε3

s

t

separating pairs; see Theorem 8.3, and replace connected components of G that are
biconnected with cycles. They run in linear time and can be applied independently.
The latter algorithm together with the linear-time algorithm for disjoint cycles (The-
orem 7.8 in Chapter 7) improves the result by Schaefer [Sch13] for instances where
every connected component of G is biconnected to linear time.

In Section 8.4 we show how to solve instances that have common P-node degree 3
and simultaneous cutvertices of common degree at most 3 in cubic time. A vertex has
common degree k if it is a common vertex with degree k inG . To de�ne common P-node
degree, let µ be a P-node of G 1 . We say that µ has common P-node degree k if both
vertices in skel(µ) are incident to common edges in the expansion graphs of at most k
virtual edges (note that these can be di�erent edges for the two vertices); see Figure 8.1
for an example. We say that an instance of Sefe has common P-node degree k if
the P-nodes of G 1 and the P-nodes of G 2 all have common P-node degree k . Our
algorithm for instances with common P-node degree 3 and simultaneous cutvertices of
common degree 3 relies heavily on the preprocessing algorithms that exclude certain
structures. Together with the preprocessing steps, our algorithm can in particular
solve a given Sefe instance if every connected component of G is biconnected, has
maximum degree 3, or is outerplanar with maximum degree 3 cutvertices. As before,
this also applies to the sun�ower case.

8.2 Preprocessing Algorithms

In this section, we present several algorithms that can be used as a preprocessing
of a given Sefe instance. The result is usually a set of Sefe instances that admit
a solution if and only if the original instance admits one. The running time of the
preprocessing algorithms is linear, and so is the total size of the equivalent set of Sefe
instances. Each of the preprocessing algorithms removes certain types of structures
form the instance, in particular from the common graph. Namely, we show that we
can eliminate union cutvertices, simultaneous cutvertices with common-degree 3,
and connected components of G that are biconnected but not a cycle. None of these
algorithms introduces new cutvertices in G or increases the degree of a vertex. Thus,

203

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

G1

v

G2

v

G3

v

v

G∪

Figure 8.2: A union cutvertex separates a Sefe instance into independent subinstances.

the preprocessing algorithms can be successively applied to a given instance, removing
all the claimed structures.

Let (G 1 ,G 2) be a Sefe instance with common graph G = G 1 ∩ G 2 . We can
equivalently encode such an instance in terms of its union graph G∪ = G 1 ∪ G 2 ,
whose edges are labeled {1}, {2}, or {1,2}, depending on whether they are contained
exclusively in G 1 , exclusively in G 2 , or in G, respectively. Any graph with such an
edge coloring can be considered as a Sefe instance. Since sometimes the coloring
version is more convenient, we use these notions interchangeably throughout this
section.

8.2.1 Union Cutvertices

Recall that a union cutvertex of a Sefe instance (G 1 ,G 2) is a cutvertex of the union
graph G∪. The following theorem states that the Sefe instances corresponding to the
split components of a cutvertex of G∪ can be solved independently; see Figure 8.2.

Lemma 8.1. Let G∪ be a Sefe instance and let v be a cutvertex ofG∪ with split compo-
nentsG1, . . . ,Gk . ThenG∪ admits a Sefe if and only ifGi admits a Sefe for i = 1, . . . ,k .

Proof. Clearly, a Sefe ofG∪ contains a Sefe ofG1, . . . ,Gk . Conversely, given a Sefe Ei
of Gi for i = 1, . . . ,k , we can assume without loss of generality that v is incident to
the outer face in each of the Ei . Then these embeddings can be merged to a Sefe E
of G∪. �

Due to Lemma 8.1, it su�ces to consider the blocks of G∪ of a Sefe instance inde-
pendently. Clearly, the blocks can be computed in O (n) time, and, given a Sefe for
each block, a Sefe of the original instance can be computed in O (n) time.

Theorem 8.1. There is a linear-time algorithm that decomposes a Sefe instance into an
equivalent set of Sefe instances that do not contain union cutvertices.

204

Preprocessing Algorithms Section 8.2

(a) (b)

. + . +

Figure 8.3: (a) The original instance does not admit a Sefe but the split components with
respect to the separating pair {u,v} (marked vertices) do. (b) The original instance admits a
Sefe but one of the split components does not when adding the common edge uv .

8.2.2 Union Separating Pairs

In analogy to a union cutvertex, we can de�ne a union separating pair to be a separating
pair of the union graph G∪. It is tempting to proceed as for the union cutvertices:
separateG∪ according to a union separating pair, solve the subinstances corresponding
to the resulting subgraphs, and merge the partial solutions.

However, this approach fails as merging the partial solutions may be impossible;
see Figure 8.3a. Note that it is easy to merge the partial solutions if all of them have u
and v on the outer face of their union graph. One can enforce this kind of behaviour
by connecting u and v with a common edge in each subinstance. Unfortunately, this
is too restrictive as the subinstances may fail to have a Sefe with this additional edge
whereas the original instance has a solution; see Figure 8.3b.

We can, however, use the idea of adding the common edge uv in every subinstance
to get rid of most union separating pairs. Throughout the whole section, we assume
that u and v are vertices of the same block B of the common graph and that {u,v}
is a separating pair in B. If {u,v} separates B into three or more split components,
then u and v are poles of a P-node of T (B). The case when there are only two split
components is a somewhat special (less interesting) case. To achieve a more concise
notation, we thus assume in the following that u and v are the poles of a P-node.
However, all arguments extend to the special case with two split components.

Let µ be the P-node of T (B) with poles u and v . Two virtual edges ε1 and ε2 of
skel(µ) are linked in G 1 if G 1 contains a path from an inner vertex in expan(ε1) to
an inner vertex in expan(ε2) that is disjoint from B (except for the endvertices of the
path). The 1 -link graph L 1

µ of µ has the virtual edges of µ as nodes, with an edge
between two nodes if and only if the corresponding virtual edges are linked in G 1 .
Analogously, we can de�ne the 2 -link graph L 2

µ and the union-link graph L∪µ .
Note that the L 1

µ and L 2
µ are subgraphs of L∪µ . But L∪µ is no the union of L 1

µ and
L 2
µ , as two virtual edges may be linked in the union graph but in none of the two

exclusive graphs; see Figure 8.4. However, the union of L 1
µ and L 2

µ will also be of
interest later. We call it the exclusive-link graph and denote it by L 1

µ ∪ L 2
µ . An edge in

205

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

ε1 ε2 ε3 ε4

ε1 ε2 ε3 ε4 ε1 ε2 ε3 ε4

ε1 ε2 ε3 ε4
L

1
µ

L
2
µ L∪µ

L
1
µ ∪ L 2

µ

ε1 ε2
ε3

ε4

Figure 8.4: A P-node µ of the union graph with four virtual edges ε1, . . . ,ε4 together with the
link graphs L 1

µ , L 2
µ , L 1

µ ∪ L 2
µ , and L∪µ .

the exclusive-link graph indicates that the two corresponding virtual edges are either
linked in G 1 or in G 2 .

We note that the following two lemmas are neither entirely new (e.g., Angelini et al.
use a slightly weaker statement [Ang+12]) nor very surprising.

Lemma 8.2. Let L∪µ be a union-link graph of a given Sefe instance and let ε1 and ε2 be
adjacent in L∪µ . In every simultaneous embedding, ε1 and ε2 are adjacent in the embedding
of skel(µ).

Proof. First assume that ε1 and ε2 are already adjacent in L 1
µ . Then the expansion graphs

of ε1 and ε2 bound a face in every embedding of G that extends to an embedding of
G 1 . Thus, ε1 and ε2 must be adjacent in the embedding of skel(µ). The same holds if
ε1 and ε2 are adjacent in G 2 .

Otherwise, let B be the block whose SPQR-tree contains µ. Let π be a path in the
union graph connecting inner vertices v1 and v2 in the expansion graphs of ε1 and
ε2, respectively, that is disjoint from B. Clearly, then common vertices of π must be
embedded into a face B that is incident to v1 and to v2. Such a face only exists if ε1
and ε2 are adjacent in the embedding of skel(µ). �

Lemma 8.3. If (G 1 ,G 2) admits a Sefe, then each union-link graph is either a cycle or
a collection of paths.

Proof. Let B be a block of G and let µ be a P-node of T (B). Let skel(µ) be embedded
according to a simultaneous embedding of (G 1 ,G 2) . Let ε1, . . . ,εk be the virtual edges
of skel(µ) embedded in this order. Due to Lemma 8.2, two virtual edges εi and εj can
be adjacent in L∪µ only if i + 1 = j or i = k and j = 1. Thus, L∪µ is a subgraph of the
cycle ε1, . . . ,εk ,ε1. Hence, L∪µ is either a cycle or a collection of paths. �

Assume the union-link graph L∪µ of a P-node µ is connected (i.e., by Lemma 8.3 a
cycle or a path containing all virtual edges). Then Lemma 8.2 implies that the virtual
edges in skel(µ) have to be embedded in a �xed order up to reversal. In this case, it
remains to choose between two di�erent embeddings, although the k virtual edges

206

Preprocessing Algorithms Section 8.2

≡ + +

Figure 8.5: A union separating pair that separates a common cycle can be used to decompose
the instances into simpler parts.

of skel(µ) have (k − 1)! di�erent cyclic orders. In the following we show that we can
assume without loss of generality that every union-link graph is connected.

Assume L∪µ is not connected. Then the poles u and v of µ are a separating pair in
the union graph. Moreover, the expansion graphs of two virtual edges from di�erent
connected components of L∪µ end up in di�erent split components with respect to u
and v . Thus, we get at least two split components with a common path from u to v . If
this is the case, we say that the separating pair {u,v} separates a common cycle. We
obtain the following lemma; see Figure 8.5.

Lemma 8.4. Let {u,v} be a separating pair of the union graph G∪ that separates a
common cycle and letG∪1 , . . . ,G

∪
k be the split components. ThenG∪ admits a Sefe if and

only if G∪i with the additional common edge uv admits a Sefe for i = 1, . . . ,k .

Proof. Assume we have a solution for each subinstances G∪i + uv . As uv is a common
edge, we can assume without loss of generality that it lies in the boundary of the outer
face. It is thus easy to obtain a drawing of G∪ from these partial solutions without
introducing any new crossings. Thus, this yields a Sefe of G∪.

Conversely, assume G∪ admits a Sefe. As {u,v} separates a common cycle, we can
assume that G1 and G2 both contain a path of common edges connecting u and v . We
have to show that Gi + uv admits a Sefe for every i = 1, . . . ,k . Assume that i , 1. Let
π be the path of common edges connecting u and v in G1. The graph Gi + π (which is
a subgraph of G∪) admits a Sefe as the property of admitting a Sefe is closed under
taking subgraphs. Moreover, it is also closed under contracting common edges. Thus,
we can assume that π is actually the common edge uv . This yields a Sefe of Gi + uv .
For i = 1 we can use the common path connecting u and v in G2 instead. �

As argued above, a disconnected union-link graph implies the existence of a sepa-
rating pair that separates a common cycle. We thus obtain the following theorem.

Theorem 8.2. There is a linear-time algorithm that decomposes a Sefe instance into
an equivalent set of Sefe instances of total linear size in which all union-link graphs are
connected.

Proof. Clearly, applying the decomposition implied by Lemma 8.4 exhaustively results
in a set of instances of total linear size. It remains to show that we can apply all

207

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

decomposition steps in total linear time. To this end, consider the SPQR-tree T of the
union graphG∪. Note thatG∪ is non-planar in general and thus the R-nodes skeletons
of T may be non-planar. Nonetheless, T can be computed in linear time [GM01] and
represents all separating pairs of G∪.

Let µ be an inner node of T and let ε = uv be a virtual edge in skel(µ). We say that ε
is a common virtual edge if the expansion graph of ε includes a common uv-path from.
Note that {u,v} is a separating pair of G∪. Moreover, if we know for each virtual edge
whether it is a common virtual edge, we can determine whether {u,v} separates a
common cycle by only looking at skel(µ). More precisely, if µ is a P-node, then {u,v}
separates a common cycle if and only if two or more virtual edges are common virtual
edges. For S- and R-nodes, {u,v} separates a common cycle if and only if the virtual
edge ε is a common virtual edge and skel(µ) − ε includes a path of common virtual
edges from u to v .

Let us assume, we know for each virtual edge, whether it is a common virtual edge.
Then we can easily compute the decomposition by rooting T and processing it bottom
up. Thus, it remains to compute the common virtual edges in linear time. To this end,
�rst root T at a Q-node. By processing T bottom up, one can easily compute for each
virtual edge, except for the parent edges, whether it is a common virtual edge or not.

It remains to deal with the parent edges. We process T top down. When processing
a node µ, we assume that we know the common virtual edges of skel(µ) (potentially
including the parent edge). We then compute in O (| skel(µ) |) time for which children
of µ, the parent edge is a common virtual edge. If µ is the root (i.e., a Q-node), then
the only child of µ has a common virtual edge as parent edge if and only if the edge
corresponding to the Q-node µ is a common edge.

Let µ be a P-node and let ε be a virtual edge in skel(µ). Then twin(ε) (which is the
parent edge of the child corresponding to ε) is a common virtual edge if and only if
skel(µ) includes a common virtual edge di�erent from ε . Thus, µ can be processed in
O (| skel(µ) |) time. If µ is an S-node, it similarly holds that twin(ε) is a common virtual
edge if and only if all virtual edges of skel(µ) except maybe ε are common virtual
edges.

Finally, if µ is an R-node, consider the graph skel′(µ) obtained from skel(µ) by
deleting all non-common virtual edges. Let ε be an arbitrary virtual edge of skel(µ). If
ε is non-common, then twin(ε) is a common virtual edge if and only if the endvertices
of ε lie in the same connected component of skel′(µ). If ε is a common virtual edge,
then twin(ε) is a common virtual edge if and only if ε is not a bridge in skel′(µ). Note
that both of these properties can be checked in constant time for each virtual edge of
skel(µ) after O (| skel(µ) |) preprocessing time. Thus, we can also process R-nodes in
O (| skel(µ) |) time, which yields an overall linear running time. �

Let B be a block of the common graph and let µ be a P-node of T (B). By Theorem 8.2,
we can assume that the union-link graph L∪µ is connected. Thus, the ordering of the

208

Preprocessing Algorithms Section 8.2

Figure 8.6: (a–e) Common, exclu-
sive, 1 -, 2 -, and union connected
split components (in this order).
(f) The face between two virtual
edges that are 1 -linked. (a) (b) (c) (d) (e) (f)

ε1 ε2

virtual edges in skel(µ) is �xed up to reversal. Hence, the embedding choices for µ are
the same as those for an R-node.

In the following, we provide further simpli�cations by eliminating some types of
simultaneous separating pairs. Let u and v be the poles of the P-node µ. Consider
the case that {u,v} is a separating pair in the union graph G∪ with split components
G∪1 , . . . ,G

∪
k (we can assume by Theorem 8.1 that neither u nor v is a cutvertex in G∪).

As before, we denote the common graph and the exclusive graphs corresponding to
the Sefe instances G∪i (for i = 1, . . . ,k) by Gi , G 1

i and G 2
i , respectively.

We de�ne G∪i to be common connected if u and v are connected by a path in Gi ;
see Figure 8.6a. The split component G∪i is exclusive connected, if it is not common
connected but u and v are connected by exclusive paths in both graphs G 1

i and G 2
i ;

see Figure 8.6b. It is 1 -connected, if u and v are connected by a path in G 1
i but not

in G 2
i ; see Figure 8.6c. The term 2 -connected is de�ned analogously; see Figure 8.6d.

Note that being 1 - or 2 -connected excludes being common or exclusive connected.
Finally, if G∪i is neither of the above, it is union connected; see Figure 8.6e.

We say that µ is an impossible P-node if L 1
µ is a cycle and one of the split components

is 1 -connected, if L 2
µ is a cycle and one of the split components is 2 -connected, or if

L 1
µ ∪ L 2

µ is a cycle and one of the split components is exclusive connected.

Lemma 8.5. A Sefe instance with an impossible P-node is a no-instance.

Proof. LetG∪1 , . . . ,G∪k be the split components with respect to the polesu andv of the P-
node µ. As µ is an impossible P-node, the union-link graph L∪µ is a cycle. Thus, at most
one split component can be common connected. As u and v are the poles of a P-node
of the common graph, one of the split components must be common connected. Thus,
exactly one split component, without loss of generality G∪1 , is common connected.

First assume that µ is an impossible P-node due to the fact that L 1
µ is a cycle and

one of the split components, without loss of generality G∪2 is 1 -connected.
Assume the given Sefe instance G∪ admits a Sefe and assume G∪1 and G∪2 are

embedded according to this Sefe. As G∪2 is 1 -connected (Figure 8.6c), the graph G 1

2
includes a path π 1 from u to v . Clearly, π 1 lies in a single face of G 1

1 . Let f be
the corresponding face of the common graph G1. The boundary of f belongs to the
expansion graphs of two di�erent virtual edges ε1 and ε2 of skel(µ); see Figure 8.6f.
However, ε1 and ε2 cannot be 1 -linked (as in Figure 8.6f), as otherwise π 1 could not be

209

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

Figure 8.7: The union split component G∪1 includes the
expansion graphs of all three virtual edges ε1, ε2, and ε3.
The edge pairs ε1,ε3 and ε2,ε3 are 1 -linked; thus the exclu-
sive connected split component G∪2 cannot be embedded
into the faces between ε1 and ε3 or between ε2 and ε3. Al-
though ε1 and ε2 are neither 1 - nor 2 -linked, G∪2 cannot
be embedded into the face between ε1 and ε2 due to its
common end. The componentG∪3 has no common end and
can be embedded into the face between ε1 and ε2.

ε1 ε2 ε3

G∪1 G∪2 G∪3

embedded into the face f without having a crossing in G 1 . It follows that L 1
µ cannot

be a cycle, a contradiction.
Analogously, if L 2

µ is a cycle and one of the split components is 2 -connected, we
�nd a path π 2 that is a witness for a pair of adjacent virtual edges that are not 2 -linked.
It remains to consider the case where L 1

µ ∪ L 2
µ is a cycle andG∪2 is exclusive connected.

In this case, G 1

2 and G 2

2 include paths π 1 and π 2 , respectively, connecting u and v .
As they both belong to the same split component, they have to be embedded in the
same common face of G1. Thus, there are adjacent virtual edges that are neither 1 -
nor 2 -linked. Hence, L 1

µ ∪ L 2
µ is not a circle. �

Due to this lemma, it is su�cient to consider the case that µ is not an impossible
P-node. We want to show that the di�erent split components (in the union graph, with
respect to the poles u and v of µ) can be handled independently. However, we have to
exclude a special case to make this true. Let G∪i be one of the split components that is
exclusive connected. We say that G∪i has common ends if it contains a common edge
incident to u or to v . Figure 8.7 shows an example, where the following lemma does
not hold without excluding exclusive connected components with common ends.

Lemma 8.6. LetG∪ be a Sefe instance and let µ be a non-impossible P-node whose poles
are a separating pair with split components G∪1 , . . . ,G

∪
k . Assume G∪1 is the only common

connected split component and none of the exclusive connected components has common
ends. Then G∪ admits a Sefe if and only if G∪1 admits a Sefe and G∪i together with the
common edge uv admits a Sefe for i = 2, . . . ,k .

Proof. Assume that G∪1 and G∪i +uv (for i = 2, . . . ,k) admit simultaneous embeddings.
We show how to combine the simultaneous embeddings of G∪1 and G∪2 + uv to a
simultaneous embedding of G∪1 ∪G∪2 . The procedure can then be iteratively applied
to the other split components. We have to distinguish the cases that G∪2 is union
connected, 1 -connected, 2 -connected, and exclusive connected (without common
ends).

First assume that G∪2 is union connected. Figure 8.8 shows an example illustrating
the proof for this case. As u and v are the poles of a P-node, the common graphG1 has

210

Preprocessing Algorithms Section 8.2

G
2

1

f
2
v

f
2
u

G∪2 G
1

2

V
1
u

V
1
v

G
2

2

V
2
u

V
2
v

G∪1 G1

f

G
1

1

f
1
v

f
1
u

Figure 8.8: Two split components of the union graph illustrating the proof of Lemma 8.6.

a face f that is incident to u and to v . Let further f 1
u and f 1

v be faces ofG 1

1 incident to
u and v , respectively, that are both part of the union face f . Similarly, we choose faces
f 2
u and f 2

v in G 2

2 that are incident to u and v , respectively, and that are both part of f .
Note that u might have several incidences to the face f , i.e., when u is a cutvertex in
G1 and one of the corresponding blocks is embedded into f . In this case, we choose
f 2
u such that it has the same incidence to u as f 1

u , i.e., the common edges appearing in
the cyclic order around u before and after f 2

u are the same as those that appear before
and after f 2

u . We ensure the same for f 1
v and f 2

v . In the example in Figure 8.8, f has
two incidences to u and two incidences to v and the chosen incidence is marked by an
angle.

Due to the common edge uv , we can assume that the Sefe of G∪2 has uv and uv on
the outer face. As G∪2 is not 1 -connected, we can separate the vertices of G 1

2 into two
subsets V 1

u and V 1
v , such that V 1

u contains all vertices of the connected component of
G 1

2 containing u, whileV 1
v contains all other vertices. We can then embed the vertices

of V 1
u into f 1

u and the vertices of V 1
v into f 1

v without changing the embedding of G 1

2 .
In the same way, G 2

2 can be embedded into f 2
u and f 2

v .
As we did not change the embedding ofG∪1 orG∪2 , the edge orderings are consistent

for all vertices except maybe u and v . Moreover, the relative positions between
connected components in G∪1 is consistent and the same holds for G∪2 . As the four
faces f 1

u , f 1
v , f 2

u , and f 2
v belong to the same common face f , the relative positions of

components in G2 with respect to components in G1 are also consistent. Moreover, all
components of G1 lie in the outer face of G2 with respect to G 1

2 and G 2

2 . Finally, the
edge ordering at u is consistent, as all edges incident to u in G 1

2 and G 2

2 are embedded
between the same pair of common edges in G1. As the same holds for v , we obtain a
simultaneous embedding of G∪1 ∪G∪2 .

If G∪2 is 1 -connected, we know that L 1
µ is not a circle (otherwise, µ would be

impossible). Thus, we can choose the faces f , f 1
u , and f 1

v such that f 1
u = f 1

v . Then
we can embed G 1

2 into this face without separating it. All remaining arguments work
the same as above. The case that G∪2 is 1 -connected is symmetric.

Finally, if G∪2 is exclusive connected, there is a pair of virtual edges that are neither
1 - nor 2 -linked. Thus, we can choose the common face f and the faces f 1

u , f 1
v , f 2

u ,

211

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

and f 2
v belonging to f such that f 1

u = f 1
v = f 1 and f 2

u = f 2
v = f 2 . Unfortunately,

we cannot always ensure that f 1 and f 2 have the same incidence to u or v; see
Figure 8.7. However, the arguments form the previous cases still ensure that all relative
positions and all cyclic orders except for maybe at u and v are consistent. As G∪2 has
no common ends, all common edges incident to u and v are contained in G1 and thus
the cyclic orders around these vertices are also consistent.

Note that combining the simultaneous embeddings G∪1 and G∪2 in this way (for
all four cases) maintains the properties that there are faces in G1, G 1

1 , or G 2

2 that
are incident to both poles u and v . Thus, we can continue adding all remaining
subinstances G∪3 , . . . ,G∪k in the same way. �

Assume we exhaustively applied Lemma 8.4, Lemma 8.5, and Lemma 8.6 to a given
instance of Sefe and let (G 1 ,G 2) be the resulting instance. Let u and v be the poles
of a P-node µ of the common graph such that {u,v} are a separating pair in the union
graph. By Lemma 8.4 we can assume that {u,v} does not separate a common cycle.
Thus, exactly one split component has a common uv-path. By Lemma 8.5, we can
assume that µ is a non-impossible P-node. Thus, we could apply Lemma 8.6 if there
were split components without common ends. Hence we obtain the following theorem.

Theorem 8.3. Let (G 1 ,G 2) be an instance of Sefe. In linear time, we can �nd equivalent
instances such that every union separating pair {u,v} has one of the following properties.

• The vertices u and v are not the poles of a P-node of a common block.

• Every split component has a common edge incident to u or to v but only one has a
common uv-path.

Proof. It remains to prove the claimed running time. The linear running time for
decomposing the instances along its union separating pairs that separate a common
cycle was already shown for Theorem 8.2. In Section 8.3.3 we extend the algorithm by
Angelini et al. [Ang+12] for solving Sefe if the common graph is biconnected to the
case where we allow exclusive vertices and have so-called union bridge constrains. It
is not hard to see that testing (G 1 ,G 2) for the existence of impossible P-nodes can be
done using the linear-time algorithm from Section 8.3.3.

It remains to decompose the union graph G∪ according to separating pairs that
separated G∪ according to Lemma 8.6. As in the proof of Theorem 8.2, we consider
the SPQR-tree T of G∪. For Theorem 8.2, we had to compute for every virtual edge,
whether its expansion graph included a common path between its endpoints. Now, we
in addition have to know which expansion graphs are exclusive connected and have
common ends. This can be done analogously to the proof of Theorem 8.2. �

212

Preprocessing Algorithms Section 8.2

(b)(a) (c) (d) (e)

a1

b1

a2
b2

Figure 8.9: Situation where the connected component C of G is a cycle. (a) A simultaneous
embedding of (G 1 ,G 2) with C on the outer face. (b) Removing C yields a single connected
component in G∪. Thus, there is only one union bridge. Its attachment vertices are illustrated
as black dots. (c) The two 1 -bridges. (d) The three 2 -bridges. Note that di�erent bridges
might share attachment vertices. (e) Two alternating 1 -bridges.

8.2.3 Connected Components that are Biconnected

Let (G 1 ,G 2) be a Sefe instance and let C be a connected component of the common
graphG that is a cycle; see Figure 8.9a. A union bridge ofG 1 andG 2 with respect toC
is a connected component of G∪ − C together with all its attachment vertices on C;
see Figure 8.9b. Equivalently, the union bridges are the split components of G∪ with
respect to the vertices ofC excluding the edges ofC . Similarly, there are 1 -bridges and
2 -bridges, which are connected components ofG 1 −C andG 2 −C together with their
attachment vertices on C , respectively; see Figure 8.9c–d. We say that two bridges B1
and B2 alternate if there are attachments a1,b1 of B1 and attachments a2,b2 of B2, such
that the order along C is a1a2b1b2; see Figure 8.9e. We have the following lemma,
which basically states that we can handle di�erent union bridges independently

Lemma 8.7. Let G 1 and G 2 be two planar graphs and let C be a connected component
of the common graph that is a cycle. Then the graphsG 1 andG 2 admit a Sefe whereC is
the boundary of the outer face if and only if (i) each union bridge admits a Sefe together
with C and (ii) no two i -bridges of C alternate for i = 1,2.

Proof. Clearly the conditions are necessary; we prove su�ciency. Let B1, . . . ,Bk be the
union bridges with respect to C , and let (E 1

1 ,E 2

1), . . . , (E 1

k ,E
2

k) be the corresponding
simultaneous embeddings of Bi together with C , which exist by condition (i). Note
that each union bridge is connected, and hence all its edges and vertices are embedded
on the same side ofC . After possibly �ipping some of the embeddings, we may assume
that each of them has C with the same clockwise orientation as the outer face.

We now glue E 1

1 , . . . ,E 1

k to an embedding E 1 of G 1 , which is possible by condi-
tion (ii). In the same way, we �nd an embedding E 2 ofG 2 from E 2

1 , . . . ,E 2

k . We claim
that (E 1 ,E 2) is a Sefe of G 1 and G 2 . For the consistent edge orderings, observe that
any common vertex v with common-degree at least 3 is contained, together with all
neighbors, in some union bridge Bi . The compatibility of the edge ordering follows

213

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

since (E 1
i ,E 2

i) is a Sefe. Concerning the relative position of a vertex v and some
common cycle C ′, we note that the relative positions clearly coincide in E 1 and E 2

for C ′ = C . Otherwise C ′ is contained in some union bridge. If v is embedded in the
interior of C ′ in one of the two embeddings, then it is contained in the same union
bridge as C ′, and the compatibility follows. If this case does not apply, it is embedded
outside of C ′ in both embeddings, which is compatible as well. �

We note that this approach fails, when the cycle C is not a connected component
of G, i.e., when a union bridge contains common edges incident to an attachment
vertex. The reason is that the order of common edges incident to this attachment
vertex is chosen in the moment one reinserts the union bridges into C .

Now consider a connected component C of the common graph G of a Sefe instance
such that C is biconnected. Such a component is called 2-component. If C is a cycle,
it is a trivial 2-component. We de�ne the union bridges, and the 1 - and 2 -bridges
of G 1 and G 2 with respect to C as above. We call an embedding E of C together with
an assignment of the union bridges to its faces admissible if and only if, (i) for each
union bridge, all attachments are incident to the face to which it is assigned, and (ii)
no two 1 - and not two 2 -bridges that are assigned to the same face alternate.

In the following, we try to solve the given Sefe instance (G 1 ,G 2) by �rst �nding
an admissible embedding of the 2-component C . Then we test for every face of C
whether all union bridges can be embedded inside the corresponding facial cycle. By
Lemma 8.7 we know that this is possible if and only if each union bridge together
with the facial cycle admits a Sefe and no two i -bridges (for i = 1,2) alternate. The
latter is ensured by property (ii) of the admissible embedding of C . The former yields
simpler Sefe instances in which the 2-component C is represented by a simple cycle.
It remains to show that, if this approach fails, there exists no Sefe. First note that the
properties (i) and (ii) of an admissible embedding are clearly necessary. Thus, if there
is no admissible embedding ofC , then there is no Sefe. It remains to show that it does
not depend on the admissible embedding of C one chooses, whether a union bridge
together with the facial cycle of the face it is assigned to admits a Sefe or not. In fact,
the following lemma shows that the facial cycle one gets for a union bridge is more or
less independent from the embedding of C , i.e., the attachment vertices of the bridge
always appear in the same order along this cycle.

Lemma 8.8. Let G be a biconnected planar graph and let X be a set of vertices that are
incident to a common face in some planar embedding of G. Then the order of X in any
simple cycle of G containing X is unique up to reversal.

Proof. Consider a planar embedding E of G where all vertices in X share a face,
and let CX denote the corresponding facial cycle. Note that CX is simple since G is
biconnected. Let C be an arbitrary simple cycle in G containing all vertices in X . In E,
all parts ofC that are disjoint fromCX are embedded outside ofCX . LetC ′X denote the

214

Preprocessing Algorithms Section 8.2

cycle obtained from CX by contracting all maximal paths whose internal vertices do
not belong to C to single edges. Observe that CX and C ′X visit the vertices of X in the
same order. Consider the graph C ∪C ′X , which is clearly outerplanar and biconnected.
Hence bothC andC ′X visit the vertices ofX in the same order (up to complete reversal).
Since C was chosen arbitrarily, the claim follows. �

For a union bridge B, let CB denote the cycle consisting of the attachments of B in
the ordering of an arbitrary cycle of G containing all the attachments. By Lemma 8.8,
the cycle CB is uniquely de�ned. Let further GB denote the graph consisting of the
union bridge B and the cycle CB connecting the attachment vertices of B. We call this
graph the union bridge graph of the bridge B. The following lemma formally states
our above-mentioned strategy to decompose a Sefe instance.

Lemma 8.9. LetG 1 andG 2 be two connected planar graphs and letC be a 2-component
of the common graph G. Then the graphs G 1 and G 2 admit a Sefe if and only if (i) C
admits an admissible embedding, and (ii) each union bridge graph admits a Sefe. If a
Sefe exists, the embedding of C can be chosen as an arbitrary admissible embedding.

Proof. Clearly, a Sefe ofG 1 andG 2 de�nes an embedding ofC and a bridge assignment
that is admissible. Moreover, it induces a Sefe of each union bridge graph.

Conversely, assume that C admits an admissible embedding and each union bridge
graph admits a Sefe. We obtain a Sefe of G 1 and G 2 as follows. Embed C with
the admissible embedding and consider a face f of this embedding with facial cy-
cle Cf . Let B1, . . . ,Bk denote the union bridges that are assigned to this face, and
let (E 1

1 ,E 2

1), . . . , (E 1

k ,E
2

k) be simultaneous embeddings of the bridge graphs GB . By
subdividing the cycleCB , in each of the embeddings, we may assume that the outer face
of each Bi in the embedding (E 1

i ,E 2
i) is the facial cycle Cf with the same orientation

in each of them. By Lemma 8.7, we can hence combine them to a single Sefe of all
union bridges whose outer face is the cycle Cf . We embed this Sefe into the face f
of C . Since we can treat the di�erent faces of C independently, applying this step for
each face yields a Sefe of G 1 and G 2 with the claimed embedding of C . �

Lemma 8.9 suggests a simple strategy for reducing Sefe instances containing non-
trivial 2-components. Namely, take such a component, construct the corresponding
union bridge graphs, whereC occurs only as a cycle, and �nd an admissible embedding
of C . Finding an admissible embedding for C can be done as follows. To enforce the
non-overlapping attachment property, replace each 1 -bridge of C by a dummy 1 -
bridge that consists of a single vertex that is connected to the attachments of that bridge
via edges in E 1 . Similarly, we replace 2 -bridges, which are connected to attachments
via exclusive edges in E 2 . We seek a Sefe of the resulting instance (where the common
graph is biconnected), additionally requiring that dummy bridges belonging to the
same union bridge are embedded in the same face. We also refer to such an instance as

215

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

C1 C2 C1 C2

Figure 8.10: The instance on the left contains two 2-componentsC1 andC2. The corresponding
union subbridges are shown on the right.

Sefe with union bridge constraints. A slight modi�cation of the algorithm by Angelini
et al. [Ang+12] can decide the existence of such an embedding in polynomial time.
This gives the following lemma.

Lemma 8.10. Computing an admissible embedding of a 2-componentC is equivalent to
solving Sefe with union bridge constraints on an instance having C as common graph.
This can be done in polynomial time.

It then remains to treat the union bridge graphs. Exhaustively applying Lemma 8.9
(using Lemma 8.10 to �nd admissible embeddings) results in a set of Sefe instances
where each 2-component is trivial. Note that we could go even further and decompose
along cycles that have more than one union bridge. However, this is not necessary to
obtain the following theorem.

Theorem 8.4. Given a Sefe instance, an equivalent set of instances of total linear size
such that each 2-component of these instances is trivial can be computed in polynomial
time.

We can improve the running time in Theorem 8.4 to linear. However, it is quite
tedious work, involving a lot of data structures, and results in a lengthy proof. To
not disturb the reading �ow too much, the proof is outsourced into its own section
(Section 8.3, starting on page 218). Here, we only sketch it very roughly.

We do not apply an iterative process, removing one 2-component after another
(as suggested above), but we decompose the whole instance at once. For this, we
introduce the notion of subbridges. A subbridge of a graph G with respect to com-
ponents C1, . . . ,Ck is a maximal connected subgraph of G that does not become
disconnected by removing all vertices of one component Ci ; see Figure 8.10.

Recall that we have to deal with bridges in two ways. First, each 2-component forms
a Sefe instance with its i -bridges, while the union bridges partition these i -bridges
(yielding union bridge constraints). Second, each union bridge yields a union bridge
graph, which is a simpler instance one has to solve. In both cases, one can deal with
subbridges instead of the whole bridges for the following reason. For the �rst case, we
need the i -bridges only to create the corresponding dummy bridges. Thus, it su�ces

216

Preprocessing Algorithms Section 8.2

to know their attachment vertices. It is readily seen that each bridge B of Ci contains
a unique subbridge S incident to Ci and that the attachments of S at Ci are exactly the
attachments of B at Ci . As this also holds for the union bridges, the union subbridges
already de�ne the correct grouping of the i -subbridges. Concerning the second case,
the Sefe instances that remain after exhaustively applying Lemma 8.9 are exactly the
union subbridges together with a set of cycles, one for each incident 2-component. To
conclude, it remains to show that each of the following three steps runs in linear time.

1. Compute for each 2-component the number of incident 1 - and 2 -subbridges,
for each such subbridge its attachments, and the grouping of these subbridges
into union subbridges.

2. Solve Sefe with union bridge constraints on instances with biconnected common
graph.

3. Compute for each union subbridge a corresponding instance where each 2-
component has been replaced by a suitable cycle.

For step 1 (Section 8.3.1), we contract every 2-component of G∪ into a single vertex.
The union subbridges are then basically the split components with respect to the
resulting vertices. The same holds for the 1 - and 2 -subbridges (using G 1 and G 2

instead of G∪). For step 2 (Section 8.3.3), we modify the algorithm due to Angelini
et al. [Ang+12]. Augmenting it such that it computes admissible embeddings in
polynomial time is straightforward. Achieving linear running time is quite technical
and, like the linear version of the original algorithm, requires some intricate data
structures. For Step 3 (Section 8.3.2), computing the union subbridges is easy. To
compute a suitable cycle for each incident 2-component Ci , one can make use of the
fact that we already know an admissible embedding of Ci from step 2.

Theorem 8.5. Given a Sefe instance, an equivalent set of instances of total linear size
such that each 2-component of these instances is trivial can be computed in linear time.

8.2.4 Special Bridges and Common-Face Constraints

In Section 8.2.3, we considered the case that C is a 2-component of the common
graph G. We called the split components with respect to the vertices of C bridges
(excluding edges in C). Clearly, this de�nition extends to the case where C is an
arbitrary connected component. However, the decomposition into smaller instances
does not extend to this more general case as for example Lemma 8.8 fails for non-
biconnected graphs. Nonetheless, we are able to eliminate some special types of
bridges in exchange for so-called common-face constraints. The reduction we describe
in this section is thus in a sense weaker than the previous reductions as we reduce a
given Sefe instance to a set of equivalent instances with common-face constraints.

217

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

Let (G 1 ,G 2) be an instance of Sefe with common graph G and let F ⊆ 2V (G) be a
family of sets of common vertices. A given Sefe satis�es the common-face constraints
F if and only if G has a face incident to all vertices in V ′ for every V ′ ∈ F . The
common-face constraints F are block-local if for everyV ′ ∈ F all vertices inV ′ belong
to the same block of G.

Similarly, we say union bridge B is block-local if all attachment vertices of B belong
to the same block of C . Let B i

1 , . . . ,B
i

k be the i -bridges (for i ∈ {1,2}) belonging to B.
We say that B is exclusively one-attached if B i

j has only a single attachment vertex for
j = 1, . . . ,k .

Let B be a block-local union bridge of the common connected component C . Then
the attachment vertices of B appear in the same order in every cycle of C (Lemma 8.8).
Thus, we can de�ne the union bridge graph GB of B as in Section 8.2.3. Consider
the Sefe instance (H 1 ,H 2) obtained from (G 1 ,G 2) by removing the union bridge B
(the attachment vertices are not removed). It follows from Section 8.2.3 that (G 1 ,G 2)
admits a Sefe if and only if the union bridge graph GB admits a Sefe, and (H 1 ,H 2)
admits a Sefe with an assignment of B to one of its faces f such (i) all attachment
vertices of B are incident to f , and (ii) for i ∈ {1,2}, no i -bridge in B alternates with
another i -bridge in f .

If B is not only block-local but also exclusive one-attached, the latter requirement is
trivially satis�ed (a i -bridge that has only a single attachment vertex cannot alternate).
Thus, it remains to test whether GB admits a Sefe and (H 1 ,H 2) admits a Sefe with
block-local common-face constraints. We obtain the following theorem. The linear
running time can be shown as in Section 8.3.

Theorem 8.6. Given a Sefe instance, an equivalent set of instances with block-local
common-face constraints of total linear size can be computed in linear time such that
each instances satis�es the following property. No union bridge of a common connected
component that is not a cycle is block-local and exclusively one-attached.

8.3 Preprocessing 2-Components in Linear Time

As promised in the end of Section 8.2.3, we prove in this section that the decomposition
of a Sefe instance into equivalent instances where every 2-component is a cycle can be
done in liner time. Readers who want to skip this section can continue with Section 8.4
in page 239.

8.3.1 Computing the Sefe-Instances with Union Bridge Constraints

We �rst consider a slightly more general setting. Let G = (V ,E) be a graph and
let C1, . . . ,Ck be disjoint connected subgraphs of G. We are interested in computing
the number of bridges of each connected componentCi together with the attachments

218

Preprocessing 2-Components in Linear Time Section 8.3

to Ci . We show that this can be done in O (n +m) time (even if G is non-planar),
where n = |V | and m = |E |. Instead of computing directly the bridges and their
attachments, our goal is rather to label each edge e that is incident to a vertex of
some Ci but does not belong to any of the Ci itself, by the bridge of Ci that contains e .
Observe that, if each such incident edge has been labeled, the information about the
number of Ci -bridges and their attachments can easily be extracted by scanning all
incidences of vertices of Ci for i = 1, . . . ,k . This scanning process can clearly be
performed in total O (n +m) time. In the following, we thus focus on computing
this incidence labeling. Note that, since we are only interested in the attachments of
bridges, it su�ces to consider the corresponding subbridges as they have the same
attachment sets.

Recall that a subbridge is a maximal connected subgraph of G for which none of
the Ci is a separator. Note the high similarity of the de�nition of subbridges and
the blocks of a graph, which are maximal connected subgraphs for which no single
vertex is a separator. As with the blocks of a graph, it is readily seen that each edge
of G that is not contained in one of the Ci is contained in exactly one subbridge of G.
We exploit this similarity further and de�ne the component-subbridge tree of G with
respect to C1, . . . ,Ck as the graph that contains one vertex ci for each component Ci
and one vertex sj for each subbridge S j . Two vertices ci and sj are connected by an
edge if and only if the subbridge S j is incident to the component Ci . Note that, indeed,
the component-subbridge tree is a tree. Once the component-subbridge tree has been
computed, we can label each edge of E \ (⋃k

i=1Ci) with the subbridge containing it.

Lemma 8.11. The component-subbridge tree of a graph G with respect to disjoint con-
nected subgraphs C1, . . . ,Ck can be computed in linear time.

Proof. First, contract each componentCi to a single vertex ci ; call the resulting graphG ′.
Note that, inG ′, the subbridges are exactly the maximal connected subgraphs for which
none of the vertices ci is a separator. We compute the component-subbridge tree T in
three steps. First, compute the block-cutvertex tree of G ′. Second, for each cutvertex v
that does not correspond to one of the ci , remove v and merge its incident blocks into
the same subbridge. Finally, create for each component Ci that has only one bridge a
corresponding vertex ci and attach it as a leaf to the unique subbridge incident to Ci .
Clearly, each of the steps can be performed in O (n +m) time. �

As argued above, Lemma 8.11 can be used to label in linear time the incident edges of
the componentsC1, . . . ,Ck by their corresponding bridges. For step 1 of our reduction,
we take C1, . . . ,Ck as the 2-components of a Sefe instance (G 1 ,G 2). We then use the
above approach to label the attachment incidences of the 1 -, 2 -, and the union bridges
of C1, . . . ,Ck . From this we can create the dummy bridges for each 2-component Ci
together with the union bridge constraints in time linear in the sum of degrees of
vertices in Ci . By the arguments for Lemma 8.10, the resulting instance admits a Sefe

219

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

if and only if Ci has an admissible embedding. Since the Ci are disjoint, it follows that
the construction of all instances can be done in linear time. This �nishes step 1.

8.3.2 Constructing the Subbridge Instances

Let us assume that each 2-component has an admissible embedding, which is found
using the linear-time algorithm described in Section 8.3.3. Otherwise a Sefe of the
original graph does not exist. In the �nal step of our reduction, we substitute, in
each subbridge, the incident 2-components by a cycle. This results in a set of Sefe
instances—one for each subbridge—that all admit a solution if and only if the original
instance admits a solution. They can hence be handled completely independently.
To e�ciently extract all instances, we process the 2-components independently and
replace each one by a cycle in their incident subbridges. The time to process a single
2-component with all its incident subbridges is linear in the size of the 2-component
plus the number of attachments of these subbridges in the respective 2-component. It
then immediately follows that processing all 2-components in this way takes linear
time.

Consider a �xed 2-component C with an admissible embedding as computed in
step 2 of the reduction. Consider a �xed face f together with the subbridges that
are embedded in that face. For each bridge B embedded in f , we construct a list of
attachments AB . We traverse the facial cycle of f . At each vertex, we check the edges
embedded inside this face and append the vertex to the list of each subbridge for which
it is an attachment. Afterwards, we traverse for each subbridge its list of attachments
and replace C by a cycle that visits the attachments in the order of the attachment list.
The time is clearly proportional to the size of f and the attachments of the subbridges
embedded in f . Hence processing all faces of all components in this way takes linear
time and yields the claimed result. This implements step 3 in linear time.

8.3.3 Simultaneous Embedding with Union Bridge Constraints

In this section, we show how to solve Sefe with union bridge constraints in linear
time if the common graph is biconnected. Our algorithm is based on the algorithm
by Angelini et al. [Ang+12]. Note that our extension to this algorithm is twofold. We
allow bridges with an arbitrary number of attachment vertices. The original algorithm
allows only two attachments per i -bridge (i.e., each bridge is a single exclusive edge).
Moreover, we have to deal with union bridge constraints. To avoid some special cases
and simplify the description, we sometimes deviate from the notation used by Angelini
et al. Our focus lies on a linear-time implementation, the correctness of our approach
directly follows from the correctness of the algorithm by Angelini et al.

Let G be the biconnected common graph. We consider the (unrooted) augmented
SPQR-tree T ofG , which is de�ned as follows; see Figure 8.11. Let T ′ be the SPQR-tree

220

Preprocessing 2-Components in Linear Time Section 8.3

Figure 8.11: A graph (left) together with its SPQR-tree (middle). The Q-nodes are omitted to
improve readability. The augmented SPQR-tree (right) contains an additional S-node whose
skeleton is a cycle of length 2.

of G and let µ1 and µ2 be two adjacent nodes in T ′ such that each of them is a P- or
an R-node. We basically insert a new S-node between µ1 and µ2 whose skeleton is a
cycle of length 2 (i.e., a pair of parallel virtual edges). More precisely, let ε1 = {s,t}
and ε2 = {s,t} be the virtual edges in µ1 and µ2, respectively, that correspond to
each other. We subdivide the edge µ1,µ2 in T ′; let µ be the new subdivision vertex.
The skeleton skel(µ) contains the vertices s and t with two virtual edges ε ′1 and ε ′2
between them corresponding to ε1 in skel(µ1) and ε2 in skel(µ2), respectively. Applying
this augmentation for every pair of adjacent nodes that are P- or R-nodes gives the
augmented SPQR-tree T . Note that P- and R-nodes in T have only S- and Q-nodes as
neighbors. Moreover, no two S-nodes are adjacent.

Consider a bridge B and let µ be a node of T . A virtual edge ε in skel(µ) is an
attachment of B if its expansion graph contains an attachment vertex of B. We say
that B is important for µ if it has at least two distinct attachments among the vertices
and virtual edges of skel(µ) that are not two adjacent vertices in skel(µ). It is clearly
necessary, that skel(µ) admits an embedding such that for every union bridge B the
attachments in skel(µ) are incident to a common face. An embedding having this
property is called compatible. This leads to the following �rst step of the algorithm.

Step 1: Compatible embeddings. For every P- and R-node µ, compute the important
union bridges with their attachments. If µ is an R-node, check whether the unique (up
to �ip) embedding skel(µ) is compatible. If µ is a P-node check whether it admits a
compatible embedding and �x such an embedding (up to �ip).

If Step 1 fails, the instance does not admit a Sefe. Note that the skeleton of a P-node
might admit several compatible embeddings. However, �xing an arbitrary compatible
embedding up to �ip does not make a solvable Sefe instance unsolvable [Ang+12].
Thus, after Step 1, we can assume that the embedding of every skeleton is �xed and it
remains to decide for each skeleton whether its embedding should be �ipped or not.
We call the embedding �xed for a skeleton its reference embedding.

For every P- and R-node µ let xµ be a binary decision variable with the following
interpretation. The skeleton skel(µ) is embedded according to its reference embedding

221

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

Figure 8.12: An S-node with a
bridge B having ε as right-sided at-
tachment. The virtual edges are il-
lustrated as blue regions with their
expansion graph inside. s

t

s

t

εε ′
vv

S-nodeP-node

B B

and according to the �ipped reference embedding if xµ = 0 and xµ = 1, respectively.
By considering the S-nodes of the augmented SPQR-tree, one can derive necessary
conditions for these variables that form an instance of 2-Sat (actually, we only get
equations and inequalities, which is a special case of 2-Sat).

Let µ be an S-node. We assume the edges in skel(µ) to be oriented such that skel(µ)
is a directed cycle. Thus, we can use the terms left face and right face to distinguish
the faces of skel(µ). Let B be a bridge that is important for µ. We can either embed B
into the left or into the right face of skel(µ). We de�ne the binary variable x µB with the
interpretation that B is embedded into the right face and into the left face of skel(µ) if
x
µ
B = 0 and x

µ
B = 1, respectively.

Assume that the virtual edge ε = st (oriented from s to t) in skel(µ) is an attachment
of B, i.e., an attachment vertex v < {s,t} of B lies in the expansion graph of ε . Let µ ′
be the neighbor of µ corresponding to ε and let ε ′ be the twin of ε in skel(µ ′) (also
oriented from s to t); see Figure 8.12. Clearly, B is also important for µ ′ as ε ′ contains
an attachment vertex of B while the attachment vertex v is not contained in ε ′. In
Step 1 we ensured that skel(µ ′) is embedded such thatv (or the virtual edge containing
v) shares a face with ε ′. If this face lies to the left of ε ′ in skel(µ ′), we say that v
is an attachment on the right side of ε in skel(µ) (as in the example in Figure 8.12).
Otherwise, if this faces lies to the right of ε ′, we say that v is an attachment on the left
side of ε . For a bridge B with attachment vertex v we also say that the attachment ε is
right-sided and left-sided if v lies on the right and left side of ε , respectively.

Assume B has an attachment on the right side of the virtual edge ε in the skeleton
skel(µ) (as in Figure 8.12). Assume further that the skeleton skel(µ ′) of the corre-
sponding neighbor is not �ipped, i.e., xµ′ = 0. Then B must be embedded into the
face to the right of the cycle skel(µ), i.e., x µB = 0. Conversely, if the embedding of
skel(µ ′) is �ipped, i.e., xµ′ = 1, then B must lie in the left face of skel(µ), i.e., x µB = 1.
This necessary condition is equivalent to the equation xµ′ = x

µ
B . Similarly, if B has

an attachment on the left side of ε , we obtain the inequality xµ′ , x
µ
B . We call the

resulting set of equations and inequalities the consistency constraints of the bride B
in µ. This leads to the second step of the algorithm.

Step 2: Consistency constraints. For every S-node µ compute the important i -
bridges (for i ∈ {1,2}) and union bridges together with their attachments. For attach-

222

Preprocessing 2-Components in Linear Time Section 8.3

ments in virtual edges also compute whether they are left- or right-sided. Then add
the consistency constraints of these bridges in µ to a global 2-Sat formula.

The consistency constraints are necessary but not su�cient as they do not ensure
that no two alternating bridges of the same type are embedded into the same face.
Consider an S-node µ with two important bridges B and B′. Assume these two bridges
alternate (i.e., they have alternating attachments in the cycle skel(µ)). Embedding B
and B′ on the same side of skel(µ) yields a crossing between an edge in B and an edge
in B′. Thus, if B and B′ are both 1 - or both 2 -bridges, then they must be embedded to
di�erent side of skel(µ). In this case, we obtain the inequality x µB , x

µ
B′ . This inequality

is called planarity constraint.

Step 3: Planarity constraints. For every S-node µ compute the pairs of important
1 -bridges that alternate in skel(µ). Do the same for 2 -bridges. For each such pair
add the planarity constraint to the global 2-Sat formula.

Finally, we have to embed i -bridges belonging to the same union bridge into the
same face. Let B be an i -bridge and let B′ be the union bridge it belongs to. The
union-bridge constraint of B in µ is the equations x µB = x

µ
B′ .

Step 4: Union-bridge constraints. For every S-node µ, add the union-bridge con-
straint of each important i -bridge to the global 2-Sat formula.

After Steps 2–4, the global 2-Sat formula is solved in linear time [APT79]. The
solution determines for every P- and every R-node µ, whether the reference embedding
of skel(µ) should be �ipped or not, which completely �xes the embedding of the
common graph G. Of course, there might be di�erent solutions of the 2-Sat formula,
yielding di�erent embeddings. However, if one of these solutions yields a Sefe, then
any of the solutions does [Ang+12]. Thus, one can simply take one solution and check
whether it yields a Sefe (with union bridge constraints) or not.

Step 5: Final step. Test whether the given instance admits a Sefe with union bridge
constraints assuming that the embedding of the common graph is �xed.

It remains to implement Steps 1–5 in linear time, which is done in the following.
We �rst note that there are too many important bridges to be able to compute them
in linear time (as required in Step 1 and Step 2). However, similar to Angelini et
al. [Ang+12], we can show that many important bridges can be omitted without
loosing the correctness of the algorithm, which leads to a linear-time implementation.

Too Many Bridges are Important

We start with the observation that computing all important union bridges for every
P- and R-node of the SPQR-tree is actually a bad idea, as there may be Ω(n) bridges

223

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

Figure 8.13: A graph with many
bridges (left) each of which being im-
portant for every node of the SPQR-
tree (right).

each being important in Ω(n) nodes. Thus, explicitly computing all of them would
require Ω(n2) time. Consider the graph G in Figure 8.13 whose SPQR-tree T (without
Q-nodes) is a path. Let µ be one of the P-nodes (note that skel(µ) has two virtual edges
and one normal edge) and let B be one of the bridges shown in Figure 8.13. Clearly,
the expansion graphs of both virtual edges of skel(µ) contain at least one attachment
vertex of B. Thus, B is important for µ and B has the two virtual edges of skel(µ)
as attachments. As this may hold for a linear number of bridges, we get the above
observation.

To resolve this issue, note that from the perspective of µ (in the above example),
all bridges look the same in the sense that they have the same set of attachments.
Intuitively, they thus lead to similar constraints and it seems to su�ces to know only
one of these bridges. In the following, we �rst show that omitting some of the bridges
is indeed safe in the sense that the algorithm remains correct. Then we show how to
compute the remaining bridges e�ciently.

Omi�ing Some Important Bridges

In this section we show how to change the algorithm described above (Steps 1–5)
slightly without changing its correctness. We say it is safe to do something if doing it
does preserve the correctness of the algorithm. In particular, we show that it is safe to
omit some of the important bridges. In the subsequent sections we then show that
the remaining important bridges can be computed e�ciently leading to an e�cient
implementation of all �ve steps.

Let G be the common graph and let T be its SPQR-tree. Let µ be an inner node of
T and let B be a bridge that is important for µ with attachments a1, . . . ,a` in skel(µ)
(recall that each of the ai is either a vertex or a virtual edge of skel(µ)). We call an
attachment ai (with 1 ≤ i ≤ `) super�uous, if ai is a vertex in skel(µ) such that B has
another attachment aj that is a virtual edge incident to the vertex ai ; see Figure 8.14a.
The following lemma shows that the term “super�uous” is justi�ed.

Lemma 8.12. Omitting super�uous attachments is safe.

Proof. There are two situation in which missing super�uous attachments might play a
role. First, when we check a P- or R-node skeleton for a compatible embedding (Step 1).

224

Preprocessing 2-Components in Linear Time Section 8.3

Figure 8.14: (a) The bridge B has
�ve attachments a1, . . . ,a5; a2 and
a5 are super�uous due to a3 and a4.
(b) The bridges B and B′ alternate
only due to the super�uous attach-
ment v of B. However, the consis-
tency constraints synchronize B and
B′ as they have ε as common attach-
ment. (b)(a)

B
B′

ε
v

B B

a1 a2
a3

a4a5

a1

a3

a4

Second, when we add the planarity constraints for alternating i -bridges (Step 3). Let
v be the super�uous attachment of B and let ε be a virtual edge incident to v that is
also an attachment of B in skel(µ). Concerning compatible embeddings, we have to
make sure that skel(µ) admits an embedding where all attachments of B are incident
to a common face. Clearly, v is incident to both faces the virtual edge ε is incident to.
Thus, omitting the attachment v does not change anything.

Concerning the planarity constraints, we have to consider the case that B alternates
with another bridge B′ only due to the attachment v in B. This can only happen if
B′ has ε as attachment; see Figure 8.14b. However, then the consistency constraints
(Step 2) either forces B and B′ into di�erent faces (if their attachment in ε lies on
di�erent sides of ε) and everything is �ne, or they force B and B′ to lie in the same
face. In the latter case, the instance is clearly not solvable, which will be found out in
Step 5. �

In the following we always omit super�uous attachments even when we do not
mention it explicitly. Note that this retroactively changes the de�nition of important
bridges slightly, i.e., a bridge B is important for a node µ if B has at least two (non-
super�uous) attachments in skel(µ).

To show that we can omit su�ciently many important bridges to get a linear running
time, we have to root the SPQR-tree T . More precisely, we choose an arbitrary Q-node
as the root of T .

We categorize the important bridges in di�erent types of bridges depending on their
attachments. To this end, we �rst de�ne di�erent types of attachments. Let µ be a
node of the (rooted) SPQR-tree and let B be an important bridge of µ with attachments
a1, . . . ,a` . Recall that an attachment is either a vertex of a virtual edge of skel(µ). If
ai is a pole of skel(µ), we call it a pole attachment. If ai is the parent edge of skel(µ),
we call it parent attachment. All other attachments are called child attachments.

We say that the important bridge B is a regular bridge of µ if B has at least two child
attachments. If B has only a single child attachment, it has either a parent attachment
or one or two pole attachments (note that pole attachments are super�uous in the
presence of a parent attachment). We call B parent bridge and pole bridge in the former

225

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

and latter case, respectively. Note that B must have at least one child attachment as it
otherwise cannot be important.

As shown before, we cannot hope to compute all important bridges e�ciently as
there may be too many of them. Thus, we show in the following that omitting some
important bridges is safe.

Lemma 8.13. Let B be a parent bridge whose child attachment a is a virtual edge.
Omitting another parent bridge or a pole bridge with child attachment a (while keeping
B) is safe.

Proof. Let B′ be an other important bridge of µ and let a be the child attachment of B
and B′. Let ε be the parent edge of skel(µ). In Step 1, the bridge B forces the embedding
of skel(µ) to have a and ε on a common face. If B′ is a parent bridge, it requires the
same (and thus no additional) condition for the embedding of skel(µ). If B′ is a pole
bridge, it requires one of the poles (or both of them) to be incident to a common face
with a. However, this is clearly the case if the parent edge ε (which is incident to both
poles) shares a face with a. Hence, omitting B′ does not change anything in Step 1.

We cannot argue separately for Steps 2–4 as they all contribute to the same global
2-Sat formula. We call the 2-Sat formula we get when omitting B′ new. The formula
we get when not omitting B′ is called original. The straightforward way to prove
that omitting B′ is safe would be to show that the new and the original 2-Sat formulae
are equivalent in the sense that they have the same solutions. However, this is not true
as omitting B′ can make the 2-Sat formula solvable whereas it was unsolvable before.

Assume the original 2-Sat formula is not solvable. Then the given instance does not
admit a Sefe with union bridge constraints. In this case, Step 5 will never succeed no
matter what we do in the steps before. Thus, we only have to argue for the case that
the original 2-Sat formula is solvable. In this case, the only thing that can go wrong
is that the new 2-Sat formula admits a solution that is not a solution in the original
formula. This solution could then result in an embedding of the common graph G that
does not admit a Sefe, whereas all solutions of the original 2-Sat formula lead to a
Sefe.

To get a handle on this, we consider the con�ict graph of a 2-Sat formula. First
note that the formula we obtain is special in the sense that each constraint is either
an equation or an inequality. We de�ne the con�ict graph to have a vertex for each
variable and an edge connecting two vertices if there is an (in-)equality constraint
between the corresponding variables. Recall that the 2-Sat formula has a variable xµ
for every P- or R-node µ indicating whether the embedding of skel(µ) has to be �ipped
or not. In the following we show that two such variables xµ and xη that are in the
same connected component of the con�ict graph of the original 2-Sat formula are also
in the same connected component with respect to the new formula. This shows that
every embedding resulting from a solution of the new formula also yields a solution
of the original formula (assuming that the original formula has a solution at all).

226

Preprocessing 2-Components in Linear Time Section 8.3

First note that omitting an important bridge B′ in an S-node µ has the e�ect that the
vertex corresponding to the variable x µB′ is deleted in the con�ict graph (for convenience
we also denote the vertex by x

µ
B′). Recall that the variable x µB′ represents the decision

of whether B′ is embedded into the left or the right face of skel(µ). We show that
x
µ
B′ is dominated by x

µ
B in the sense that every neighbor of x µB′ is also connected to

x
µ
B by a path not containing x

µ
B′ . Thus, removing x

µ
B′ does not change the connected

components of the con�ict graph.
Consider the consistency constraints of B′ (Step 2). Let a be an attachment of B′. If a

is a vertex in skel(µ), we do not get a consistency constraint there. If a is a virtual edge,
it corresponds to a neighbor η of µ and we get the constraint xη = x

µ
B′ or xη , x

µ
B′ .

But then B has also a as attachment and thus we also have one of the two constraints
xη = x

µ
B or xη , x

µ
B .

For the planarity constraints (Step 3), �rst assume that B′ is a parent bridge. Then B
alternates with another bridge B′′ if and only if B′ alternates with B′′. Thus, if we have
the constraint xB′ , xB′′ we also have the constraint xB , xB′′ . If B′ is a pole bridge,
there might be a bridge B′′ alternating with B′ (yielding the constraint xB′ , xB′′),
whereas B and B′′ do not alternate. However, this can only happen if B′′ has the parent
edge ε of skel(µ) as attachment. Let η be the neighbor of µ corresponding to ε (i.e., the
parent of µ). From Step 2 we then have the consistency constraint between xη and
x
µ
B′′ and also one between xη and x

µ
B (B is a parent bridge). Thus, the con�ict graph

includes the path x
µ
Bxηx

µ
B′′ , which still exists after removing B′.

Finally, if B′′ is the union-bridge including B′, we loose the union-bridge constraint
(Step 4) x µB′ = x

µ
B′′ by omitting B′. Note that the attachments of B′ are a subset of the

attachments of B′′. Thus, B′′ has the child attachment a (which is a virtual edge). Let
η be the neighbor of µ corresponding to a. Then we have a consistency constraint
connecting x

µ
B′′ with xη . Moreover, xη is also connected to X

µ
B as a is an attachment

of B. This yields a connection from x
µ
B to x

µ
B′′ . �

This lemma gives rise to the following de�nition. Let B′ be a pole bridge of µ with
child attachment a that is a virtual edge in skel(µ). Let further B be a parent bridge of
µ with child attachment a. We say that B′ is dominated by B. If B′ is a parent bridge
of µ with child attachment a instead, we say that B and B′ are equivalent. Note that
being equivalent is clearly an equivalence relation. Lemma 8.13 shows that we can
omit dominated pole bridges and all but one parent bridge for each equivalence class.

Computing the Remaining Important Bridges

In this section we show that all bridges that are not omitted due to Lemma 8.13 can be
computed in linear time. Actually, we compute slightly more information, which we
need in some intermediate steps. We for example never omit a parent bridge B in µ if
B is regular in the parent of µ. We call such a bridge semi-regular in µ.

227

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

Moreover, consider an important bridge B of µ and let a be an attachment of B in
skel(µ) that is a virtual edge. A vertex v of G that is not incident to a in skel(µ) is a
representative of the attachment a if v is an attachment vertex of B and included in
the expansion graph of a. If the attachment a is a vertex of skel(µ), we say that a is its
own representative. Note that every attachment of B has at least one representative
vertex. When we compute the important bridges of a node µ, we also compute their
attachments in µ together with at least one representative for each attachment. Before
we actually compute bridges, we provide some general tools.

Lemma 8.14. After linear preprocessing time, the pole and parent attachments of a
bridge in a given node together with a representative of each attachment can be computed
in constant time.

Proof. We �rst do some preprocessing. We de�ne the SPQR-vertex-tree T to be the
tree obtained from the SPQR-tree by removing its Q-nodes and attaching every vertex
v of G as a leaf to the highest node that contains v in its skeleton. Note that this is the
unique node that contains v in its skeleton but not as pole. For a non-pole vertex v in
a skeleton skel(µ), we say that the leaf v (which is a child of µ) corresponds to v . Note
that this makes sure that every child attachment in skel(µ) corresponds to a child of µ
in T .

Assume the vertices of G (i.e., the leaves of T ′) to be numbered according to a
DFS-ordering (which we get inO (n) time). We start by sorting the attachment vertices
of each bridge according to this DFS-ordering. For all bridges B1, . . . ,Bk together,
this can be done in time O

(
n +

∑k
i=1 |Bi |

)
as follows. To simplify the notation, we

identify every bridge Bi with its set of attachment vertices. First, sort all pairs (v,Bi)
with v ∈ Bi (i.e., basically the disjoint union of the Bi) using bucket sort with buckets
1, . . . ,n (for each vertex v , one bucket containing all pairs (v,Bi)). It then su�ces to
iterate over all these sorted pairs to extract the sets B1, . . . ,Bk sorted according to this
DFS-ordering.

For a node of T , the leaves that are descendents of this node appear consecutively
in the DFS-ordering. By going bottom-up in T , we can compute for every node µ the
leaf with the smallest and the leaf with the largest number among the descendents of µ.
Thus, given a vertex v of G , we can decide in constant time whether v is a descendent
of µ.

Now we answer the queries. Let B be a bridge that is important in a node µ. If the
vertex with the smallest and the vertex with the largest number in B (which we can
�nd in constant time as B is sorted) are both descendents of µ, all attachment vertices
of B are descendents of µ. In this case B has neither a pole nor a parent attachment in µ.
Otherwise, by looking at the �rst two and the last two elements in B we can distinguish
the following two cases. (i) There is an attachment vertex v that is not a descendent
of µ and not a pole of skel(µ). Then the parent edge of skel(µ) is an attachment of B
in skel(µ) and v is a representative for this attachment. If B also has pole attachments

228

Preprocessing 2-Components in Linear Time Section 8.3

in skel(µ), they are super�uous and we can ignore them by Lemma 8.12. (ii) There is
no such vertex v . Then all attachment vertices in B are descendents of µ except for
maybe the two poles. In this case, the poles of skel(µ) that are attachments of B are
among the �rst or last two vertices in B and thus we �nd all pole attachments of B in
skel(µ). This concludes the proof. �

Lemma 8.15. The regular bridges and their attachments together with a representative
for each attachment can be computed in linear time.

Proof. Let T be the SPQR-vertex-tree ofG and assume again that the vertices in every
bridge are sorted according to a DFS-order of the leaves in T . We �rst show how to
compute all nodes in which a given bridge Bi is regular in O (|Bi |) time. Note that this
implicitly shows that Bi has only O (|Bi |) regular vertices.

The lowest common ancestor (LCA) of two vertices u and v is the highest node on
the path between u and v . We denote it by LCA(u,v). Clearly, the vertices u and v are
descendents of di�erent children of LCA(u,v). Thus, if Bi has the attachment vertices
u and v , then Bi has two di�erent child attachments in LCA(u,v) with representatives
u and v . Thus, LCA(u,v) is active. Conversely, if Bi is regular in a node µ, it has two
di�erent child attachments. Let u and v be representatives of these two attachments.
Clearly,u andv are descendents of di�erent children of µ and thus µ = LCA(u,v) holds.
Hence, the nodes in which Bi is regular are exactly the LCAs of pairs of attachment
vertices in Bi .

To see that it is not necessary to consider all pairs of vertices in Bi , let u, v , and
w with u < v < w (according to the DFS-ordering) be contained in Bi . Then
LCA(u,w) = LCA(u,v) or LCA(u,w) = LCA(v,w) holds for the following reason.
If µ = LCA(u,v) = LCA(v,w), then u, v , and w are descendants of three di�erent
children of µ. Thus, LCA(u,w) = µ also holds. Otherwise, assume µ = LCA(u,v) is
a descendant of η = LCA(v,w). Thus, from the perspective of η, the vertices u and
v and the node µ are descendants of the same child whereas w is the descendant of
a di�erent child. Thus LCA(u,w) = LCA(v,w) = η. Hence, to compute all nodes in
which Bi is regular, it su�ces to compute the LCA for pairs of attachment vertices in
Bi that are consecutive (with respect to the ordering we computed before). As the LCA
can be computed in constant time after O (n) preprocessing time [HT84], this gives us
all regular bridges of all nodes of the SPQR-tree in overall O (n +

∑k
i=1 |Bi |) time.

Given a node µ and a regular bridge B of µ, we are still lacking the attachments
of B in skel(µ). We can get the parent and pole attachments using Lemma 8.14.
Consider a child attachment a of B in skel(µ). Note that the attachment vertices of
B that are descendants of a are consecutive with respect to the DFS-order. When
choosing the �rst or last of these vertices, we get an attachment vertex v in B with
the following properties: v is a descendent of the child of µ that corresponds to a
and either µ = LCA(u,v) for the predecessor u of v in B (ordered according to the

229

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

DFS-order) or µ = LCA(v,w) for the successorw ofv . Thus, we actually already know
a representative for every child attachment of B in skel(µ). To �nd for an attachment
vertex v (the representative) the corresponding attachment in skel(µ), we need to
�nd the child of µ that has the leaf v as a descendant. This can be done for all active
bridges simultaneously by processing T bottom-up while maintaining a union-�nd
data structure. As the sequence of union operations is known in advance, each union
and �nd operation takes amortized O (1) time [GT85]. Thus, it takes O

(
n +

∑k
i=1 |Bi |

)
time in total. �

Lemma 8.16. The semi-regular bridges and their attachments together with a represen-
tative for each attachment can be computed in linear time.

Proof. By Lemma 8.15, we know for every node µ all the bridges that are regular in µ.
We can assume that the regular bridges of a µ are stored as a list that is sorted according
to an arbitrarily chosen order of the bridges (we just have to process the bridges in
this order in the proof of Lemma 8.15). Moreover, we know all the attachments of B in
skel(µ) together with a representative for each attachment.

Let a be a child attachment of B in skel(µ) with representative v . Let η be the child
of µ corresponding to a. If η is a leaf, it actually must be the vertex v and there is
nothing to do. Otherwise, v is a descendent of η and thus B has a child attachment in η.
Moreover, it also has a parent attachment in η as it otherwise would not be regular in
the parent µ of η. Thus, B is either regular or a parent bridge (and hence semi-regular)
in η.

By processing all regular bridges of µ like that, we can build for η (and all other
children of µ) a list of bridges that contains all semi-regular bridges and additionally
some regular bridges. Note that building up this list takes constant time for each
attachment of regular bridges. As we computed those attachments in linear time, there
cannot be more than that many attachments.

To get rid of the bridges that are actually regular and not semi-regular, note that
we can assume the list of semi-regular and regular bridges to be sorted (according
to the arbitrary order of bridges we chose before). Thus, we can simply process
this list and the list of regular bridges of η (which we computed using Lemma 8.15)
simultaneously and throw out all those that appear in both lists. This leaves us with a
list of semi-regular bridges for every node. In addition to that, we know an attachment
vertex for every semi-regular bridge that is a representative of the child-attachment of
that bridge. Thus, we also get the actual attachments in skel(η) in linear time using
one bottom-up traversal as in the proof of Lemma 8.15. Moreover, we get the parent
attachments using Lemma 8.14. �

Lemma 8.17. The parent and pole bridges and their attachments together with a repre-
sentative for each attachment can be computed in linear time when omitting dominated
pole bridges and all but one parent bridge of each equivalent classes.

230

Preprocessing 2-Components in Linear Time Section 8.3

Proof. Let T be the SPQR-vertex-tree of the common graph G.
We now process T bottom-up computing a list of bridges for each node µ. This list

will contain all bridges that potentially are parent or pole bridges in µ and we denote it
by pot(µ). More precisely, if a bridge B has an attachment vertex that is a descendent
of µ and other attachment vertices that are not descendents of µ, then B is contained
in pot(µ). As we do not have the time to tidy up properly, pot(µ) can also contain
bridges whose attachment vertices are all descendents of µ.

We start with the leaves of T , which are vertices of G. Let v be such a leaf. Then
pot(v) is the list of all bridges having v as attachment. By initializing pot(v) with
the empty list and then processing all bridges once, we can compute pot(v) for all
vertices in O

(
n +

∑k
i=1 |Bi |

)
time. Now consider an inner node µ. We basically obtain

the list pot(µ) by concatenating the lists of all children. But before concatenation we
(partially) process these lists separately.

While processing µ (and the lists computed for the children of η) we want to answer
for a given bridge B the following queries in constant time. First, is B regular in µ?
Second, have we seen B already while processing µ? This can be done using timestamps.
Assume we have one global array with an entry for each bridge. Before processing µ
we increment a global timestamp and write this timestamp into the �elds of the array
corresponding to bridges that are regular in µ. While processing µ, we can then check
in constant time whether the current timestamp is set for a given bridge B and thus
whether B is regular. Setting up this array takes time linear in the number of regular
bridges of µ and thus we have an overall linear overhead. We can handle the second
query in constant time, analogously.

Now let µ be the node we currently process, let η be a child of µ and assume that
pot(η) is already computed. We process the list pot(η); let B be the current bridge. By
Lemma 8.14 we can check in constant time whether B has pole or parent attachments
in µ. If not, all attachment vertices of B are descendents of µ and we remove µ form
the list pot(η) as B cannot be a parent or pole in µ or in any ancestor of µ.

Otherwise, B has a parent or a pole attachment in µ. We �rst check (in constant
time) whether B is regular in µ. Assume it is regular and we see B the �rst time since
processing µ (which we can also check in constant time as mentioned above). Then we
simply skip B and continue processing pot(η). If B is regular in µ and B occurred before
while processing µ, it would be contained twice in the list pot(µ) when concatenating
the lists of all children of µ. Thus we can remove this occurrence of B from pot(η).
Afterwards, we continue processing the remaining bridges in pot(η).

Now assume that B is not regular. Then B is either a parent or a pole bridge. If B
is a parent bridge, we store it as a parent bridge of µ. Note that we also know the
attachments of B in skel(µ) (the parent edge and the attachment corresponding to
the child η) and a representative for each of these attachments. Afterwards, we stop
processing pot(η) and continue with another child of µ. By stopping after processing B,

231

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

we might miss a bridge B′ in pot(η) that is also a pole or parent bridge of µ. However,
the child attachment of B′ would be the attachment corresponding to η and thus B′ is
in the same equivalence class as B (if B′ is a parent bridge) or B′ is dominated by B (if
B′ is a pole bridge). In both cases we can omit B′.

Finally, consider the case that B is a pole bridge in µ. We save B together with its
attachments in skel(µ) (and their representatives) as pole bridge of µ. Then we remove
B from pot(η) and continue processing pot(η). Removing B from pot(η) has the e�ect
that B does not occur when processing an ancestors of µ. Thus, we have to show that
B is not a pole or parent bridge in one of these ancestors. Consider an ancestor τ
of µ. Then either all attachment vertices of B are descendents of τ and B is neither
pole nor parent bridge for τ . Otherwise, the only attachment vertex of B that is not a
descendent of τ is s (without loss of generality). However, the virtual edge in skel(τ)
containing all attachment vertices of B is then incident to s and thus the attachment s
is super�uous. Hence, we can omit the bridge B in skel(τ) by Lemma 8.12.

It remains to show that the above procedure runs in linear time. First note that we
add elements to lists pot(·) only in the leaves of T . As we add each bridge B to exactly
|B | such bridges, the total size of these lists is linear. Assume we are processing a list
pot(η) and let B be a bridge we delete after processing it. Then we can ignore the
(constant) running time for processing B, as we have only linearly many such deletion
operations. Otherwise, B is a regular bridge that we see the �rst time or it is a parent
bridge. The former case happens only as many times as there are regular bridges of µ
(which is overall linear). The latter case happens at most once for each child of µ as
we stop processing pot(η) afterwards. Hence, the overall running time is linear. �

Linear Time Implementation of Steps 1–5

Lemma 8.18. Step 1 can be performed in linear time.

Proof. Recall that Step 1 consist of computing the important union bridges for P- and
R-nodes. For every P- and R-node µ we then have to test whether skel(µ) admits a com-
patible embedding, i.e., whether skel(µ) can be embedded such that the attachments
of each important bridge of µ share a face.

For each node µ, we compute the regular and semi-regular bridges using Lemma 8.15
and Lemma 8.16, respectively. We moreover compute some of the pole and parent
bridges using Lemma 8.14. In this way we of course miss some important bridges but
we know by Lemma 8.13 that it is safe to do so. Thus, we can focus on computing
compatible embeddings.

Let µ be a node of the SPQR-tree and assume that µ is a P-node. Each of the two
vertices s and t in skel(µ) is incident to every face. If an important bridge B has s or t
as attachment, this attachment does not constrain the embedding of skel(µ) (it shares
a face with all other attachments of B if and only if all other attachments share a face).

232

Preprocessing 2-Components in Linear Time Section 8.3

Thus, we can assume that only the virtual edges of skel(µ) are attachments. If B has
three (or more) attachments in skel(µ), it is impossible to �nd a compatible embedding
as every face of skel(µ) is incident to only two virtual edges. It remains to deal with
the case where every bridge has two virtual edges as attachment. We build the con�ict
graph with one vertex v (ε) for every virtual edge ε and an edge between two such
vertices v (ε1) and v (ε2) if and only if there is a bridge with attachments ε1 and ε2. It is
not hard to see that skel(µ) admits a compatible embedding if and only if this con�ict
graph has maximum degree 2 and either contains no cycle or is a Hamiltonian cycle.

If µ is an R-node, its skeleton is triconnected and therefore has a �xed planar
embedding. To test whether the embedding of skel(µ) is compatible, we need to check
for every bridge B, whether there is a face incident to all its attachments. We consider
the graph skel′(µ) obtained from skel(µ) by subdividing every edge and inserting a
vertex into every face that is connected to all incident vertices. We denote the new
vertex created by subdividing the virtual edge ε by v (ε) and the new vertex inserted
into the face f byv (f). For a vertexv that already existed in skel(µ) we also writev (v).
For a bridge B with attachments a1, . . . ,ak , we need to test whether there is a face
f such that for every pair v (ai) and v (aj) the path v (ai)v (f)v (aj) is contained in
skel′(µ). To make sure that all paths of length 2 between v (ai) and v (aj) include a
vertex v (f) corresponding to a face f , we subdivide every edge twice except for those
edges incident to a vertex v (f) corresponding to a face.

As skel′(µ) is planar, we can use the data structure by Kowalik and Kurowski [KK03]
that can be computed in linear time and supports shortest path queries for constant
distance in constant time. More precisely, for any constant d , there exists a data
structure that can test in O (1) whether a pair of vertices is connected by a path of
length d . If so, a shortest path is returned. We �rst rule out some easy cases.

If there is an attachment ai that is a virtual edge in skel(µ), the vertex v (ai) has
only four neighbors in skel′(µ). Thus, we get the two faces incident to ai in constant
time and can check in O (k) time whether one of them is incident to every attachment
of B. We thus assume that all attachments are vertices. If one of these vertices is
adjacent to three or more others, there cannot be a compatible embedding. Thus, we
either �nd (in O (k) time) a pair of non-adjacent attachments ai and aj or there are
only two or three pairwise adjacent attachments. As the latter case is easy, we can
assume that we have non-adjacent attachments ai and aj . As skel(µ) is triconnected,
ai and aj are incident to at most one common face f . Thus, there is only one path
v (ai)v (f)v (aj) of length 2 from ai to aj in skel′(µ), which gives us f in constant time.
Then it remains to check whether all other attachments are incident to f , which takes
O (k) time. Doing this for every bridge yields a linear-time algorithm testing whether
an R-node skeleton admits a compatible embedding. �

Lemma 8.19. Step 2 can be performed in linear time.

Proof. Recall that Step 2 consist of three parts. First we have to compute the important

233

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

i -bridges of S-nodes together with their attachments. For each attachment we then
have to test whether it is left- or right-sided. Finally, we have to add the consistency
constraints.

As for Step 1, we use Lemma 8.15, Lemma 8.16, and Lemma 8.17 to compute all
important i -bridges together with their attachments. We actually compute these
important bridges not only for the S-nodes but also for P- and R-nodes. We use
this additional information to compute which attachments are left- and which are
right-sided.

Note that the �nal step of adding the consistency constraints to a global 2-Sat
formula is trivial. Thus, it remains to show that we can compute for every attachment
whether it is left- or right-sided.

Let µ be a node of the SPQR-tree T . We iterate over all important bridges of µ
(except those we omitted). For every bridge B we iterate over all attachments in µ and
for every virtual edge ε among those attachments, we append B to the list bridges(ε).
Afterwards, bridges(ε) contains all important (but not omitted) bridges of µ that have
ε as attachment. Note that we can assume that the bridges in bridges(ε) are sorted
according to an arbitrary but �xed order of the bridges.

Let µ be an S-node with virtual edge ε in skel(µ). Let further µ ′ be the neighboring
P- or R-node corresponding to ε and let ε ′ be the virtual edge in skel(µ ′) corresponding
to the S-node µ. For every bridge B in bridges(ε) we want to know whether the
attachment ε is left- or right-sided. To this end we iterate over the lists bridges(ε) and
bridges(ε ′) simultaneously. For every bridge B in bridges(ε) there are two di�erent
cases. Either B also occurs in bridges(ε ′) or it does not. It is not hard to see that the
latter can only happen if B is in µ ′ a pole or parent bridge that was omitted.

If B also occurs in bridges(ε ′), we know from Step 1 that skel(µ ′) has a (unique)
face incident to all attachments of B in skel(µ ′). In particular, this face is either the
right or the left face of ε ′ and thus we immediately know whether the attachment ε of
B in skel(µ) is left- or right-sided.

It remains to consider the case where B occurs in bridges(ε) but not in bridges(ε ′).
If µ ′ is the parent of µ, the bridge B must be a pole- or parent bridge in µ ′ with child
attachment ε ′. As in the proof of Lemma 8.18, we can �nd the (unique) face incident
to ε ′ and one of the poles. As B has to lie in this face we know whether it lies to the
right or to the left face of ε ′ in skel(µ ′) and thus we know whether the attachment ε
in skel(µ) is left- or right-sided.

If µ ′ is a child of µ, then B cannot be regular in µ as otherwise B would be semi-
regular in µ ′ and thus contained in bridges(ε ′) (which is not the case we consider).
Hence B is either a pole or a parent bridge (recall that semi-regular bridges are also
parent bridges). Thus, B is a pole or parent bridge in µ with child attachment ε . By
Lemma 8.13, we can omit all but a constant number of such bridges with ε as child
attachment. Thus, we can assume that bridges(ε) contains only a constant number

234

Preprocessing 2-Components in Linear Time Section 8.3

of bridges that do not occur in bridges(ε ′). For these bridges we allow a running
time linear in the size of skel(µ ′). As µ is the unique parent of µ ′ this happens only a
constant number of times for µ ′ and thus takes overall linear time.

Let B be such a bridge and let v be the attachment vertex of the common graph
G representing the child attachment ε of B in skel(µ). We show how to �nd a child
attachment of B in skel(µ ′) in O (| skel(µ ′) |) time. Then we can (as in the cases before)
�nd in constant time which face incident to ε ′ contains B in skel(µ ′) and we are done.
As before we assume to have a DFS-ordering on the leaves of the SPQR-vertex-tree.
Then the leaves that a descendents of an inner node form an interval with respect to
this order. These intervals can be easily computed in linear time by processing the
SPQR-vertex-tree bottom up once. Afterwards, we can check in constant time whether
a vertex v is the descendent of an inner node. Hence we can check in O (| skel(µ ′) |)
time which child of µ ′ is an ancestor of v and thus which virtual edge or vertex in
skel(µ ′) represents v . This yields the child attachment of B in skel(µ ′) and we are
done. �

Lemma 8.20. Step 3 can be performed in linear time.

Proof. Let µ be an S-node. Note that every important bridge in µ may alternate
with a linear number of important bridges. Thus, there are instances where the
planarity constraints have quadratic size. In the following we describe how to compute
constraints that are equivalent to the planarity constraints but have linear size. We
only consider 1 -bridges; for 2 -bridges, the same procedure can be applied.

We de�ne the graph H as follows. We start with H = skel(µ) and subdivide every
edge once. Thus, H has a vertex v (a) for each attachment a in skel(µ). For every
bridge B with attachments a1, . . . ,ak , we add a bridge vertex v (B) and connect it to the
vertices v (a1), . . . ,v (ak). When using the term cycle of H , we refer to the subgraph of
H one obtains by removing the bridge vertices.

Assume we have a planar embedding of H . Then, every bridge vertex lies on one of
the two sides of the cycle and no two bridges on the same side of the cycle alternate.
Conversely, an assignment of the bridges to the two sides of the cycles such that no
two bridges alternate yields a planar embedding. The choices the planarity constraints
leave are thus equivalent to the embedding choices of H .

As H is biconnected, the embedding choices consist of reordering parallel edges in
P-nodes and mirroring R-nodes of the SPQR-tree TH of H . Let η be a P-node in TH .
If the embedding of skel(η) determines on which side of the cycle a bridge B lies,
then B is clearly not alternating with any other bridge. For an R-node η of TH , �xing
the embedding of skel(η) to one of the two �ips determines the side for some of the
bridges. We create a new binary variable xη with the interpretation that xη = 0 if
skel(η) is embedded according to a reference embedding and xη = 1 if the embedding
is �ipped. For a bridge B whose side is determined by the embedding of skel(η) we

235

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

can then add the constraint xη = x
µ
B or xη , x

µ
B (depending on whether the reference

embedding of skel(η) �xes B to the left or right side of the cycle).
It is not hard to see that one can compute for each R-node η the brides whose side is

determined by the embedding of skel(η) in overall linear time in the size of H . Thus,
we get the above constraints (which are equivalent to the planarity constraints) in
O (|H |) time. Clearly, the size of H is linear in the size of skel(µ) plus the total number
of attachments of important bridges in µ. Thus, we get an overall linear running
time. �

Lemma 8.21. Step 4 can be performed in linear time.

Proof. To add the union-bridge constraints, we have to group the i -bridges that are
important in an S-node µ according to their union bridges. To this end, we once
create a global array A with one entry A[B′] for each union bridge B′ (which we can
access in constant time). Consider an i -bridge B that is important in µ (and was not
omitted). Let B′ be the union bridge containing B (we can get B′ in constant time as
every i -bridge is contained in only one union bridge). If the entry A[B′] was not
modi�ed while processing µ so far, we clear A[B′] (which might contain something
from previous nodes) and set A[B′] to be a list containing only B. If A[B′] was already
modi�ed, we append B to the list A[B′]. We can keep track of which entries of A were
already modi�ed by using timestamps.

For every union bridge B′ that contains an important i -bridge, the entryA[B′] holds
a list of all important i -bridges of µ that belong to B′. For each of these lists we add
the union-bridge constraint for every pair of consecutive i -bridges. The transitivity
enforces all pairwise union-bridge constraints (although not explicitly stated). Clearly,
this procedure takes linear time in the number of important i -bridges. �

For Step 5, assume the embedding of the biconnected common graph G is �xed. We
have to test whether this embedding of G can be extended to a Sefe that satis�es the
union-bridge constraints. Thus, we basically have to assign each union bridge to a
face of G such that no two 1 -bridges and no two 2 -bridges alternate.

We �rst distinguish three di�erent types of union bridges. Let B be a union bridge.
A face f of G is feasible for B if all attachment vertices of B are incident to f . We say
that B is �exible if it has at least three feasible faces. We say that B is binary if B has
two feasible faces and �xed if it has only one feasible face. If there is a bridge that has
no feasible face then the instance is obviously not solvable.

The overall strategy for Step 5 is the following. We �rst determine which union
bridges are �exible, binary, and �xed, respectively. We �rst assign the �xed union
bridges to their faces. For the binary union bridges, we can encode the decision for
one of the two possible faces with a binary variable. For two union bridges with a
common feasible face that include alternating i -bridges (for the same i ∈ {1,2}), we
have to make sure that they are not embedded into the same face. Note that these kind

236

Preprocessing 2-Components in Linear Time Section 8.3

of conditions are very similar to the planarity constraints we had in Step 3, which
again leads to a 2-Sat formula. Any solution of this formula induces an assignment of
the binary union bridges to faces. Finally, we check whether the �exible union bridges
can be added. For this to work we have to show that this �nal step of assigning the
�exible bridges is independent from the solution we chose for the 2-Sat formula. We
obtain the following lemma.

Lemma 8.22. Step 5 can be performed in linear time.

Proof. Let B be a �exible union bridge and assume all binary and �xed union bridges
are already assigned to faces. We �rst show the following. If B cannot be embedded
into one of its feasible faces (due to alternating i -bridges), then B cannot be embedded
into this face even when omitting all binary union bridges. This shows that the above
strategy of �rst assigning the �xed, then the binary, and �nally the �exible union
bridges to faces is correct. Afterwards we show how to do it in linear time.

As the union bridge B is �exible, it has at least three feasible faces. As the common
graph G is biconnected, B can have only two attachment vertices; let u and v be
these attachment vertices. Moreover, u and v must be the poles of a P-node µ of the
SPQR-tree of G. Let ε1, . . . ,εk be the virtual edges of skel(µ) appearing in this order
and let fi be the face between εi and εi+1 (subscripts are considered modulo k). The
feasible faces of B are exactly the faces f1, . . . , fk .

Assume B cannot be assigned to the feasible face fi , i.e., an i -bridge contained in B
alternates with a i -bridge belonging to another union bridge B′ that was assigned
to fi . As u and v are the only attachment vertices of B, B′ must have attachment
vertices u ′ and v ′ with u ′,v ′ < {u,v} that belong to the expansion graphs of εi and
εi+1, respectively. Then u ′ and v ′ can share only a single face, namely fi , and thus B′
is a �xed union bridge. This shows the above claim and thus it remains to show how
to implement the procedure in linear time.

Let B be an arbitrary union bridge. We show how to detect whether B is �exible,
binary, or �xed in O (|B |) time. For B to be �exible, it must have only two di�erent
attachment vertices. This can be easily tested in O (|B |) time. If B has only two
attachment vertices u and v , we need to test whether u and v are the poles of a P-node
in the SPQR-tree of G. We show how this can be done in constant time. To this end,
let T be the SPQR-vertex-tree of G . Assume µ is a P-node with poles u and v . Let η be
the parent of µ. Then skel(η) contains both vertices u and v but at most one of them
as pole. Assume without loss of generality that u is not a pole of skel(η). Then the leaf
u of T is a child of η and thus we �nd η in constant time (together with the vertex u in
skel(η)). If v is not a pole of skel(η), we �nd v in skel(η) in the same way, otherwise v
is a pole and we also get v in skel(η) in constant time (by checking both poles). As
skel(η) is a planar graph we can get the virtual edge between the two vertices u and
v in constant time via a shortest-path data structure [KK03]. Thus, we also �nd the
corresponding child µ having u and v as poles. Hence, we can either �nd the P-node µ

237

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

with poles u and v in constant time (implying that B is �exible) or we can conclude
that such a P-node does not exists (implying that B is not �exible).

Next we determine whether B is binary or �xed. First note that the bridge B (that is
not �exible) is binary if and only if there exists an S-node µ such that every attachment
vertex of B is a vertex in skel(µ). This can be tested in O (|B |) time using the SPQR-
vertex-tree. Assume µ is the S-node such that every attachment vertex of B is a vertex
in skel(µ). We can handle the case where B has only the two poles of skel(µ) as
attachment vertex analogously to the case above (about �exible bridges) except that µ
is an S-node instead of a P-node. Thus, assume that v is an attachment vertex of B
that is not a pole of skel(µ). Then we can �nd µ in constant time as it is the parent of
the leaf v in T . Every other attachment vertex in B is either also a child of µ or a pole
of skel(µ), which we can check in constant time per attachment vertex. Thus, we can
detect in O (|B |) time whether B is binary or �xed.

At this point we know which bridges are binary and which are �exible. All remaining
bridges are either �xed or do not have a feasible face at all, which implies that there
is no Sefe. We show for such a bridge B how we can assign it to its unique feasible
face or decide that such a face does not exist. Recall from Lemma 8.18 that we can
compute in constant time a face that is shared by a given pair of vertices (or conclude
that such a face does not exist). If B has only two attachment vertices u and v , then
we can either �nd the unique feasible face of B or decide that B has no feasible face in
constant time.

We can thus assume that B has at least three attachment vertices. Let u, v , and w be
three attachment vertices of B. In constant time, we �nd a face fu,v that is incident to
u and v . Analogously we �nd faces fu,w and fv,w . There are two di�erent cases. If
there is a pair of vertices among u, v , and w that shares only a single face, then one of
the faces fu,v , fu,w , or fu,w is the only possible feasible face of B. We can check that
in O (|B |) time. Otherwise, assume there is a face f < {fu,v , fu,w , fu,w} that is feasible
for B. Then u and v are commonly incident to at least two di�erent faces (namely f
and fu,v) and thus {u,v} is a separating pair of an edge. The same holds for u and w
and for v and w . In this case there must exist a node µ in the SPQR-tree of G such that
skel(µ) contains the triangle u,v,w . Note that we can �nd this node as we did before
for the �exible and binary bridges.

If µ is an S-node, B must contain another attachment vertex x (otherwise B is binary).
Then x is contained in the expansion graph of one of the three virtual edges in skel(µ).
Assume without loss of generality that x belongs to the expansion graph of uv . Then
w and x share only a single face (otherwise w and x would be a separating pair which
contradicts the fact that skel(µ) is a triangle). Thus, we can �nd the desired face f by
�nding a common face of x andw in constant time. Of course one then needs to check
if this face is actually incident to each attachment vertex in B (B has no feasibly face if
not).

238

Edge Orderings and Relative Positions Section 8.4

It remains to consider the case that µ is an R-node. First test whether the triangle
u,v,w forms a face in skel(µ). If so, this face is unique and thus we know the only
potentially feasible face of B. Note that this gives us only the face in skel(µ). However,
one can easily compute a mapping from the faces of skeletons to the faces in the actual
graph in linear time in the size of G (this has to be done only once for all bridges).

To conclude, we now ensured that every union bridge that is neither �exible nor
binary is �xed and we assigned the �xed union bridges to their unique feasible faces.
Let us continue with the binary bridges. For every binary bridgeB we already computed
the S-node µ containing all the attachment vertices of B. Note that this already gives
us the two possible faces in which B can be embedded (of course we again have to
translate from faces in a skeleton to faces in G).

When assigning the binary bridges to faces, we have to make sure that no two
i -bridges alternate. This can be ensured using a 2-Sat formula as for Step 3. As before

we can compute and solve this 2-Sat formula in linear time. Thus, it remains to add
the �exible bridges.

Let µ be a P-node of the SPQR-tree of G and let s and t be the poles of skel(µ). Let
further ε1, . . . ,εk be the virtual edges of skel(µ) and let the faces f1, . . . , fk be de�ned
as before. Assume we still know the important bridges for µ from the previous steps.
Assume the union �exible bridge B contains only 1 -bridges. Clearly, we can embed B
into fi if and only if there is no 1 -bridge with attachments εi and εi+1. The analogous
statement holds if B contains only 2 -bridges. If B contains both, 1 - and 2 -bridges, we
can embed it into fi if and only if there is neither a 1 nor a 2 bridge with attachments
εi and εi+1. Thus, we can check inO (| skel(µ) |) time for an appropriate face for B. Note
that we cannot a�ord this amount of time for every �exible bridge with attachments s
and t . However, consider two such bridges B and B′ as equivalent in the sense that B
contains 1 - and 2 -bridges if and only if B′ contains 1 - and 2 -bridges, respectively.
Then B and B′ can be assigned to the same face. Thus, we have to spend O (| skel(µ) |)
time only a constant number of times for each P-node. This concludes the proof. �

Theorem 8.7. Sefe with union bridge constraints can be solved in linear time if the
common graph is biconnected.

8.4 Edge Orderings and Relative Positions

In this section, we consider a Sefe instance (G 1 ,G 2) that has common P-node degree 3
and simultaneous cutvertices of common degree at most 3. Recall that (G 1 ,G 2) admits
a simultaneous embedding if and only if G 1 and G 2 admit planar embeddings that
have consistent edge orderings and consistent relative positions on the common
graph. We show how to address both requirements (more or less) separately, by
formulating necessary and su�cient constraints using equations and inequalities on

239

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

Boolean variables. Moreover, we show how to incorporate equations and inequalities
equivalent to block-local common-face constraints. Together with the preprocessing
algorithms from the previous sections, this leads to a polynomial time algorithm for
instances with P-node degree 3 and simultaneous cutvertices of common degree at
most 3.

Before we can follow this strategy, we need to address one problem. The relative
position of a component H ′ of G with respect to another connected component H ,
denoted by posH (H ′), is the face of H containing H ′. However, the set of faces of H
depends on the embedding of H . To be able to handle relative positions independently
from edge orderings, we need to express the relative positions independently from
faces.

This is done in the following section. Afterwards, we show how to enforce consistent
edge orderings (Section 8.4.2), block-local common-face constraints (Section 8.4.3),
and consistent relative positions (Section 8.4.4). Finally, we conclude in Section 8.4.5.

Before we start, we need one more de�nition. Assume we have a set X of binary
variables such that every variable x ∈ X corresponds to a binary embedding choice in a
given graph G . Let α : X → {0,1} be a variable assignment. We say that an embedding
of G realizes the assignment α , if the embedding decision in G corresponding to a
variable x ∈ X �ts to the value α (x). Note that not every variable assignment can be
realized as the embedding choices can depend on each other.

8.4.1 Relative Positions with Respect to a Cycle Basis

A generalized cycle C in a graph H is a subset of its edges such that every vertex of H
has an even number of incident edges in C . The sum C ⊕ C ′ of two generalized cycles
is the symmetric di�erence between the edge sets, i.e., an edge e is contained inC ⊕C ′
if and only if it is contained inC or inC ′ but not in both. The resulting edge setC ⊕C ′
is again a generalized cycle. The set of all generalized cycles in H is a vector space
over F2. A basis of this vector space is called cycle basis of H .

Instead of considering the relative position posH (H ′) of a connected component H ′
with respect to another component H , we choose a cycle basis C of H and show that
the relative positions of H ′ with respect to the cycles in C su�ce to uniquely de�ne
posH (H ′), independent from the embedding of H . We assume H to be biconnected.
All results can be extended to connected graphs by using a cycle basis for each block.

Let C0, . . . ,Ck be the set of facial cycles with respect to an arbitrary planar embed-
ding of H . The set C = {C1, . . . ,Ck} obtained by removing one of the facial cycles is a
cycle basis of G. A cycle basis that can be obtained in this way is called planar cycle
basis. In the following we assume all cycle bases to be planar cycle bases. Moreover,
we consider all cycles to have an arbitrary but �xed orientation. The binary variable
posC (p) represents the relative position of a point p with respect to a cycle C , where

240

Edge Orderings and Relative Positions Section 8.4

posC (p) = 0 and posC (p) = 1 have the interpretation that p lies to the right and left
of C , respectively.

Theorem 8.8. Let H be a planar graph embedded on the sphere, let p be a point on the
sphere, and let C = {C1, . . . ,Ck} be an arbitrary planar cycle basis of H . Then the face
containing p is determined by the relative positions posCi (p) for 1 ≤ i ≤ k .

Proof. Let f be a face and let C be the corresponding facial cycle. We assume without
loss of generality that C = C1 ⊕ · · · ⊕ C` holds. We show that the point p belongs
to the face f if and only if posCi (p) = posCi (f) holds for 1 ≤ i ≤ `. Obviously, if
posCi (p) , posCi (f) holds for one of the basis cycles Ci , then Ci separates p from f
and thus p cannot belong to f .

Conversely, we have to show that there is no point lying on the same sides of the
cycles Ci for 1 ≤ i ≤ ` not belonging to f . To this end we de�ne the position vector
pos(p) = (posC1 (p), . . . ,posC`

(p)) of a point p. We show that there is not point outside
f having the same position vector as the points inside f . Consider how the position
vector of a point p changes when moving it around. First, all points inside f have the
same position vector. Second, when p does not lie in f and crosses an edge e while
moving it, then e is either contained in zero or in two of the basis cycles C1, . . . ,C` .
This comes from the facts thatC = C1 ⊕ · · · ⊕C` holds, that e is not contained inC and
that our cycle basis is planar. In the former case the position vector does not change,
in the latter case exactly two values toggle. No matter which case applies, the parity of
the number of entries with the value left does not change, that is this number either
remains odd or even. Thus, this parity is the same for all points outside of f . Finally,
when p moves from inside f to the outside of f (or the other way round), it has to
cross an edge e contained in the cycle C . Since e has to be contained in exactly one
of the cycles C1, . . . ,C` , exactly one entry in the position vector pos(p) changes from
left to right or vice versa. Thus the parity of the number of entries with the value
left changes. It follows, that for every point not contained in f this parity di�ers
from the parity of the points in f . Thus also the position vector must di�er, which
concludes the proof. �

To represent the relative position of one connected component H with respect to
another connected component H ′, it thus su�ces to consider the relative positions of
H with respect to cycles in a cycle basis of H ′. However, there is one case for which
we have a slightly stronger requirement. To motivate this, consider the following
example; see also Figure 8.15.

Consider the graphG 1 containing the common graphG with connected components
H and H ′. Let C be a cycle basis of H ′. Let further v be a vertex of H ′ that is cutvertex
of G 1 separating H from H ′ and let C ∈ C. If v lies to the right of C in a given
embedding of G 1 , then H also lies to the right of C . Conversely, if v lies to the left
of C , then H lies to the left of C . However, requiring for every cycle C ∈ C (that does

241

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

Figure 8.15: The exclusive edge connecting H to the ver-
tex v of H ′ requires H to lie to the left of exactly one of
the cycles C1, . . . ,C4. This cannot be expressed using only
equations or inequalities. If, however, the cycle basis con-
tained the facial cycle of the outer face of H ′, it would be
su�cient to require that H and v lie on the same side of
this cycle, which can be expressed using an equation.

H ′ H

C1 C2

C3C4

v

not contain v) that v and H lie on the same side of C does not ensure that H lies in a
face of H ′ that is incident to v . Figure 8.15 shows a somewhat degenerate example,
were v is contained in every cycle of C.

Thus, the relative positions ofv with respect to all cycles in C (that do not containv)
do not uniquely determine a face of H ′−v . To resolve this issue, we add further cycles
of H ′ to C. More precisely, an extended cycle basis of H ′ is a set of cycles C in H ′ such
that C includes a cycle basis of H ′ and a cycle basis of H ′ −v for every vertex v of H ′.

Note that one can for example obtain an extended cycle basis of H ′ as follows. First
choose an embedding of H ′ and start with the corresponding planar cycle basis for C.
For every vertex v , consider the induced embedding of H ′ −v and add to C all cycles
in the corresponding planar cycle basis of H ′ −v that are not already contained in C.
It directly follows that an extended cycle basis has O (n2) size and can be computed in
O (n2) time. Moreover, we get the following lemma.

Lemma 8.23. Let H be an embedded planar graph and let C be an extended cycle basis
ofH . If a vertexv ofH is not incident to f ofH , then C contains a cycleC (not containing
v) such that posC (v) , posC (f).

Proof. Consider the graph H −v together with the embedding induced by the embed-
ding of H . Let fv be the face of H − v that contains v in the embedding of H . As v
is not incident to f , we have fv , f . By Theorem 8.8, the cycle basis of H − v (and
thus C) must contain a cycle C such that posC (fv) , posC (f). �

If we refer to a cycle basis in one of the following sections, we always assume to
actually have an extended cycle basis.

8.4.2 Consistent Edge Orderings

We �rst assume that the graphs G 1 and G 2 are biconnected and then show how to
extend our approach to exclusive cutvertices and simultaneous cutvertices of common
degree 3.

242

Edge Orderings and Relative Positions Section 8.4

Biconnected Graphs

Let G 1 and G 2 be biconnected planar graphs. There exists an instance of Simultane-
ous PQ-Ordering that has a solution if and only ifG 1 andG 2 admit embeddings with
consistent edge ordering; see Chapter 5. This solution is based on the PQ-embedding
representation, an instance of Simultaneous PQ-Ordering representing all embed-
dings of a biconnected planar graph. We describe this embedding representation and
show how to simplify it for instances that have common P-node degree 3.

For each vertex v 1 of G 1 , the PQ-embedding representation, denoted by D (G 1),
contains the embedding tree T (v 1) having a leaf for each edge incident to v 1 , repre-
senting all possible orders of edges around v 1 . For every P-node µ 1 in the SPQR-tree
T (G 1) that containsv 1 in skel(µ 1) there is a P-node inT (v 1) representing the choice
to order the virtual edges in skel(µ 1). Similarly, for every R-node µ 1 ofG 1 containing
v 1 in its skeleton, there is a Q-node in T (v 1) whose �ip corresponds to the �ip of
skel(µ 1). As the orders of edges around di�erent vertices of G 1 cannot be chosen in-
dependently from each other, so called consistency trees are added as common children
to enforce Q-nodes stemming from the same R-node in T (G 1) to have the same �ip
and P-nodes stemming from the same P-node to have consistent (i.e., opposite) orders.
Every solution of the resulting instance corresponds to a planar embedding of G 1 and
vice versa; see Chapter 5.

As we are only interested in the order of common edges, we modify D (G 1) by
projecting each PQ-tree to the leaves representing common edges. AsG 1 andG 2 have
common P-node degree 3, all P-nodes of the resulting PQ-trees have degree 3 and
can be assumed to be Q-nodes representing a binary decision. We call the resulting
instance Q-embedding representation and denote it by D (G 1).

Let µ 1 be an R-node of the SPQR-tree T (G 1) whose embedding in�uences the
ordering of common edges around a vertex. Then the Q-embedding representation
contains a consistency tree consisting of a single Q-node representing the �ip of
skel(µ 1). We associate the binary variable ord(µ 1) with this decision.

For a P-node µ 1 we get a similar result. Let u 1 and v 1 be the poles of µ 1 . If the
consistency tree enforcing a consistent decision in the embedding trees T (u 1) and
T (v 1) has degree 3, its �ip represents the embedding decision for skel(µ 1) and we
again get a binary variable ord(µ 1). Otherwise, this consistency tree contains two or
less leaves and can be ignored. Then the choices for the Q-nodes corresponding to µ 1

in T (u 1) and T (v 1) are independent and we get one binary variable for each of these
Q-nodes. We denote these variables by ord(µ 1

u) and ord(µ 1
v).

We call these variables we get for G 1 the 1 -PR-ordering variables. The 2 -PR-
ordering variables are de�ned analogously. The PR-ordering variables are the union of
these two variable sets. Let X i be the i -PR-ordering variables and assume we have
a �xed variable assignment α i . Then this variable assignment already determines
all edge orderings of the common graph, i.e., every embedding of G i realizing the

243

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

T (v 1)embedding trees

consistency trees

. . .

. . .

. . .

. . .

common embedding tree T (v)

T (v 2)

Figure 8.16: The Q-embedding representations of G 1 and G 2 together with the common
embedding tree T (v) of v .

assignment α i induces the same edge orderings on G. In the following we describe a
set of necessary equations and inequalities on the PR-ordering variables that ensure
that G 1 and G 2 induce the same edge orderings on G.

For a common vertex v occurring as v 1 and v 2 in G 1 and G 2 , respectively, we add
a so-called common embedding tree T (v) (consisting of a single P-node) as child of the
embedding trees T (v 1) and T (v 2) in the Q-embedding representations of G 1 and G 2 ;
see Figure 8.16. Obviously, this common child ensures that the common edges around
v are ordered the same with respect to G 1 and G 2 . Adding the common embedding
tree for every common vertex yields the instance D (G 1 ,G 2).

As the embedding trees (which contain only Q-nodes) are the sources of D (G 1 ,G 2),
normalizing D (G 1 ,G 2) yields an equivalent instances containing no P-nodes [BR13];
also see Chapter 5. Instances with this property are equivalent to a set of Boolean
equations and inequalities, containing one variable for each Q-node in each PQ-
tree (and thus includes the PR-ordering variables). We call this set of equations and
inequalities the biconnected PR-ordering constraints. To obtain the following lemma, it
remains to prove the running time.

Lemma 8.24. Let G 1 and G 2 be two biconnected graphs with common P-node degree 3
and let α be a variable assignment for the PR-ordering variables. The graphs G 1 and
G 2 admit embeddings that realize α and have consistent edge orderings if and only if α
satis�es the biconnected PR-ordering constraints.

The biconnected PR-ordering constraints have size O (n) and can be computed in O (n)
time.

Proof. Let D (G 1 ,G 2) be the instances of Simultaneous PQ-Ordering as described
above. Clearly, D (G 1 ,G 2) can be constructed in linear time and its size is linear in the
size of the input graphs. In general, the equations and inequalities for a given instance
of Simultaneous PQ-Ordering can be computed in quadratic time [BR13]. In this
speci�c case, it can be done in linear time for the following reasons.

For every arc in D (G 1 ,G 2) one needs to compute the normalization of the child
(which takes linear time in the size of the parent [BR13]) and a mapping from each
inner node of the parent to its representative in the child (which takes again linear time

244

Edge Orderings and Relative Positions Section 8.4

in the size of the parent [BR13]). When computing the Q-embedding representations
forG 1 andG 2 from their SPQR-trees (which can be done in linear time), we can make
sure that the resulting instances are already normalized and that we already know
the mapping from the nodes of the embedding trees to the consistency trees. The
remaining arcs in D (G 1 ,G 2) are arcs from embedding trees to common embedding
trees. Thus, for every PQ-treeT in D (G 1 ,G 2), it su�ces to normalize a single outgoing
edge, which can be done in time linear in the size of T . �

Allowing Cutvertices

In the following, we extend this result to the case where we allow exclusive cutvertices
and simultaneous cutvertices of common degree 3. Let B 1

1 , . . . ,B
1

k be the blocks of
G 1 and let B 2

1 , . . . ,B
2

`
be the blocks of G 2 . We say that embeddings of these blocks

have blockwise consistent edge orderings if for every pair of blocks B 1
i and B 2

j sharing a
vertexv the edges incident tov they share are ordered consistently. To have consistent
edge orderings, it is obviously necessary to have blockwise consistent edge orderings.

When composing the embeddings of two blocks that share a cutvertex, the edges
of each of the two blocks have to appear consecutively (note that this is no longer
true for three or more blocks), which leads to another necessary condition. Let v
be an exclusive cutvertex of G 1 . Then v is contained in a single block of G 2 whose
embedding induces an order O 2 on all common edges incident to v . Let B 1

i and B 1
j

(for i, j ∈ {1, . . . ,k} with i , j) be a pair of blocks containingv and letO 2
i,j be the order

obtained by restricting O 2 to the common edges in B 1
i and B 1

j . Then the common
edges of B 1

i must be consecutive in the orderO 2
i,j . If this is true for every pair of blocks

at every exclusive cutvertex, we say that the embeddings have pairwise consecutive
blocks.
Lemma 8.25. Two graphs without simultaneous cutvertices admit embeddings with
consistent edge orderings if and only if their blocks admit embeddings that have blockwise
consistent edge orderings and pairwise consecutive blocks.

Proof. Let v be a cutvertex in G 1 and let B 1

1 , . . . ,B
1

k be the blocks containing v . More-
over, let O 2 be the order of common edges around v given by the unique block of G 2

containing v . We only have to show that the embeddings of the blocks B 1

1 , . . . ,B
1

k
can be composed such that they induce the order O 2 on the common edges. For k = 2
this is clear, as we can choose arbitrary outer faces for B 1

1 and B 1

2 and combine their
embeddings by gluing them together at v . For k > 2 it is easy to see that there must
be one block, without loss of generality B 1

1 , whose edges appear consecutively in O 2 .
The embeddings of all remaining blocks B 1

2 , . . . ,B
1

k can be composed by induction
such that the edges they contain are ordered the same as in O 2 . Moreover, composing
the embedding of B 1

1 with the resulting embedding of B 1

2 , . . . ,B
1

k works the same as
the composition of two blocks. �

245

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

To extend Lemma 8.24 to the case where we allow exclusive cutvertices, we consider
the Q-embedding representations of each block. Ensuring blockwise consistent edge
orderings works more or less the same as ensuring consistent edge orderings in the
biconnected case. Moreover, we will see how to add additional PQ-trees to ensure
pairwise consecutive blocks.

Note that the Q-embedding representations again yield PR-ordering variables. Fixing
these variables determines the edge orderings of common edges in each block of G 1

and in each block of G 2 . If we have no simultaneous cutvertices, every vertex is
either not a cutvertex in G 1 or not a cutvertex in G 2 . Thus, the PR-ordering variables
actually determine all edge orderings of the common graph. Thus, although there are
new types of embedding choices at the cutvertices in G 1 and at the cutvertices in G 2 ,
these choices are already covered by the PR-ordering variables (at least in terms of
edge orderings).

Let us formally describe the instance of Simultaneous PQ-Ordering announced
above. Let B 1

1 , . . . B
1

k be the blocks of G 1 and let B 2

1 , . . . ,B
2

`
be the blocks of G 2 . We

start with an instance of Simultaneous PQ-Ordering containing the Q-embedding
representation of each of these blocks. Let v be a vertex of G that is not a cutvertex.
Thenv is contained in a single block ofG 1 and in a single block ofG 2 , letv 1 andv 2 be
the occurrences of v in these blocks. As before, there are two embedding trees T (v 1)
and T (v 2) describing the order of edges around v in G 1 and G 2 , respectively. As
before we can enforce consistent ordering aroundv by inserting a common embedding
tree as a common child of T (v 1) and T (v 2).

Let v be a cutvertex of G 1 (the case that v is a cutvertex of G 2 is symmetric). Then
v occurs in several blocks of G 1 , without loss of generality B 1

1 , . . . ,B
1
r . We denote the

occurrences of v in these blocks by v 1

1 , . . . ,v
1
r . As v is not a simultaneous cutvertex,

it occurs in a single block B 2 ofG 2 . We denote this occurrence by v 2 . The embedding
treeT (v 2) contains a leaf for each of common edge incident to v , thus �xing the order
ofT (v 2) already �xes the order of all common edges around v . To ensure consistency,
we have to enforce that conditions of Lemma 8.25, i.e., blockwise consistent edge
orderings and pairwise consecutive blocks.

Ensuring blockwise consistent edge orderings is equivalent to enforcing that the
common edges incident to v in B 1

i (for i = 1, . . . ,k) are ordered the same with respect
to the Q-embedding representations of B 1

i and B 2 . This can be done by inserting a
new child consisting of a single P-node as common child of T (v 2) and T (v 1

i). We call
this tree the blockwise common embedding tree.

To ensure pairwise consecutive blocks, consider the two blocks B 1
i and B 1

j . We
create a PQ-tree Ti,j (v 1) that has a leaf for each common edge incident to v 1 that
belongs to one of the two blocks B 1

i or B 1
j . The structure of Ti,j (v 1) is chosen such

that all common edges in B 1
i are consecutive; see Figure 8.17. We callTi,j (v 1) pairwise

246

Edge Orderings and Relative Positions Section 8.4

Figure 8.17: A pairwise consecutivity tree Ti,j (v 1).

edges of B 1

i

edges of B 1

j

Ti,j (v
1)

consecutivity trees and add it as a child of the embedding tree T (v 2), which has a leaf
for every common edge incident to v .

We denote the resulting instance of Simultaneous PQ-Ordering by D (G 1 ,G 2). As
before, all sources in D (G 1 ,G 2) contain only Q-nodes. Thus, normalizing D (G 1 ,G 2)
leads to an instance containing only Q-nodes, which is again equivalent to a set of
equations and inequalities. We call this set the PR-ordering constraints.

So far, the PR-ordering constraints only ensure blockwise consistent edge orderings
and pairwise consecutive blocks if every cutvertex is an exclusive cutvertex. Recall
that there is no need for handling union cutvertices; see Theorem 8.1. Assume we
allow simultaneous cutvertices of common degree 3 and letv be such a cutvertex. Then
there are two possibilities. If v does not separate the three common edges incident to
v in one of the graphs G i (for i ∈ {1,2}), then the PR-ordering variables of G i also
determine the common edge ordering around v and thus this simultaneous cutvertex
actually behaves like an exclusive cutvertex. Otherwise, the common edges incident to
v are separated byv inG 1 and inG 2 . Thus, changing the edge ordering of the common
edges at v in an embedding of G 1 has no e�ect on any other edge ordering. As the
same holds for G 2 , we actually choose an arbitrary edge ordering for the common
edges incident to v , independent from all other edge orderings.

Thus, we do not need to add additional constraints for the case that we allow
simultaneous cutvertices of common degree 3. To obtain the following lemma, it
remains to prove the running time.

Lemma8.26. LetG 1 andG 2 have common P-node degree 3 and simultaneous cutvertices
of common degree at most 3. Let α be a variable assignment for the PR-ordering variables.
The graphs G 1 and G 2 admit embeddings that realize α and have consistent edge
orderings if and only if α satis�es the PR-ordering constraints.

The PR-ordering constraints have size O (n2) and can be computed in O (n2) time.

Proof. The size of the PR-ordering constraints is linear in the size of the instance
D (G 1 ,G 2). Clearly, the Q-embedding representations of the blocks have overall linear
size. The common embedding tree for a vertex v has size O (deg(v)). Similarly, the
blockwise common embedding trees of a vertex v have total size O (deg(v)). However,
if G 1 has a linear number of blocks incident to a vertex v , then we get a quadratic
number of pairwise consecutivity trees.

To get the PR-ordering constraints from the instance D (G 1 ,G 2) we have to compute

247

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

for each arc in D (G 1 ,G 2) the normalization and the mapping from the Q-nodes of
the source to their representatives in the target. As in the proof of Lemma 8.24, the
arcs of D (G 1 ,G 2) belonging to the Q-embedding representation can be computed in
linear time. All remaining arcs have an embedding tree as source. An embedding
tree of a vertex v has only O (deg(v)) common embedding trees or blockwise common
embedding trees as children. Processing all arcs to these children takes O (deg(v)2)
time and thus overall O (n2) time.

It remains to deal with arcs of the following type. The source is the embedding tree
T (v 2) and the target is the pairwise consecutivity tree Ti,j (v 1) for a pair of blocks
B 1
i , B 1

j . Normalizing such an arc would usually take O (deg(v)) time, which has to
be done for O (deg(v)2) pairwise consecutivity trees, resulting in the running time
O (deg(v)3). To improve this, we can make use of the fact that the subtree of Ti,j (v 1)
(after the normalization) that represents only the edges in B 1

i has always the same
structure, independent of the other block B 2

i .
We �rst compute for each block B 1

i the reduction ofT (v 2) with the leaves belonging
to B 1

i , which takes O (deg(v)) time for each of the O (deg(v)) blocks. The resulting
tree contains a single node ηi separating the leaves belonging to B 1

i from all other
leaves. We project this tree to the leaves belonging to B 1

i to obtain the tree Ti (v 1)
with root ηi . Computing these treesTi (v 1) together with the mapping from the nodes
in T (v 2) to their representatives in Ti (v

1) takes O (deg(v)) time for each block and
thus overall O (deg(v)2) time.

The desired (normalized) pairwise consecutivity tree Ti,j (v 1) can be obtained by
identifying the rootsηi andηj of the treesTi (v 1) andTj (v 1) with each other. Extending
the mapping to the resulting tree Ti,j (v 1) can be easily done in linear time in the size
of Ti,j (v 1). Hence, for the whole instance, we get the running time O (n2). �

Cutvertex-Ordering Variables

Letv be an exclusive cutvertex ofG 1 and let B 1

1 , . . . ,B
1

k be the blocks incident tov that
include common edges incident to v . As mentioned before, the choice of how these
blocks are ordered around v and how they are nested into each other is determined by
the PR-ordering variables of G 2 . Consider a pair of blocks B 1

i and B 1
j . As the choice

of how B 1
i and B 1

j are embedded into each other at v may also have an e�ect on some
relative positions, we would like to have more direct access to this information (not
only via the PR-ordering variables of G 2).

Let B 1 ∈ {B 1

1 , . . . ,B
1

k } be a block of G 1 that contains the common edge e incident
to v and let e1 and e2 be two common edges incident to v that are contained in one
block distinct from B 1 . We create a variable ord(e1,e2,B

1) to represent the binary
decision of ordering the edges e1, e2, and e in this order or in its reversed order. Note
that this is independent from the choice of the edge e of B 1 (the blocks are pairwise

248

Edge Orderings and Relative Positions Section 8.4

consecutive in every embedding). We create such a variable for every such triple e1, e2,
and B i and call them the exclusive cutvertex-ordering variables.

To make sure that the exclusive cutvertex-ordering variables are consistent with the
PR-ordering variables, it su�ces to slightly change the above instance D (G 1 ,G 2) of
Simultaneous PQ-Ordering. Let ord(e1,e2,B

1) be an exclusive cutvertex-ordering
variable for the cutvertex v . Let e be a common edge in B 1 incident to v and let v 2

be the occurrence of v in G 2 . Then D (G 1 ,G 2) contains the embedding tree T (v 2)
that has a leaf for every common edge incident to v . This includes e1, e2, and e . We
create a new PQ-tree T (e1,e2,e) with three leaves corresponding to e1, e2, and e and
add it as child of T (v 2). In every solution of the resulting instance of Simultaneous
PQ-Ordering, the value of ord(e1,e2,B

1) then simply corresponds to the orientation
chosen for PQ-tree T (e1,e2,e).

Adding this tree for every exclusive cutvertex-ordering variable establishes the
desired connection between these variables and the PR-ordering variables. We call
the constraints we get from the resulting instance of Simultaneous PQ-Ordering in
addition to the PR-ordering constraints the cutvertex-ordering constraints.

Let v be a simultaneous cutvertex of common degree 3 such that the common edges
incident to v are separated by v in G 1 and in G 2 . Recall that this is the unique case,
where PR-ordering variables do not determine the order of the common edges aroundv .
Let e1, e2, and e3 be the common edges incident to v . To make sure that assigning
values to all variables actually determines all edge-orderings, we add the variable
ord(e1,e2,e3) associated with the order of these three edges. Recall that changing
this order in G 1 or G 2 has no e�ect on any other edge ordering. Hence, there is
no need to add further constraints. If two of the edges, without loss of generality
e1 and e2, belong to the same block of G 1 and e3 belongs to another block B 1 , we
denote ord(e1,e2,e3) also by ord(e1,e2,B

1) to obtain consistency with the naming of
the exclusive cutvertex-ordering variables.

We call these variables together with the exclusive cutvertex-ordering variables the
cutvertex-ordering variables. The PR-ordering variables together with the cutvertex-
ordering variables are simply called ordering variables. Moreover, the PR-ordering
constraints together with the cutvertex-ordering constraints are called ordering con-
straints. To extend Lemma 8.26 to incorporate the cutvertex-ordering variables, it
remains to show that the cutvertex-ordering constraints have O (n3) size and can be
computed in O (n3) time.

Lemma8.27. LetG 1 andG 2 have common P-node degree 3 and simultaneous cutvertices
of common degree at most 3. Let α be a variable assignment for the ordering variables. The
graphs G 1 andG 2 admit embeddings that realize α and have consistent edge orderings
if and only if α satis�es the ordering constraints.

The ordering constraints have size O (n3) and can be computed in O (n3) time.

Proof. The size of the cutvertex-ordering constraints is clearly linear in the number of

249

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

cutvertex-ordering variables. For each cutvertex v , the number of cutvertex-ordering
variables is clearly in O (deg(v)3). Thus, it remains to show how to get the cutvertex-
ordering constraints from the resulting instance D (G 1 ,G 2) of Simultaneous PQ-
Ordering.

Let v be a cutvertex in G 1 and let v 2 be the occurrence of v in G 2 . For every
cutvertex-ordering variable ofv we have three common edges e1, e2, and e and we need
to �nd the node η of the embedding treeT (v 2) that separates the leaves corresponding
to e1, e2, and e from each other. When rooting T (v 2) at e , this node η is the lowest
common ancestor of e1 and e2. Thus, after O (deg(v)) preprocessing time, we can get
the cutvertex-ordering constraint for every cutvertex-ordering variable that includes e
in constant time per variable [HT84]. We have to spend this O (deg(v)) preprocessing
time at most once for each common edge incident to v , yielding a total preprocessing
time of O (deg(v)2). As we have O (deg(v)3) cutvertex-ordering variables for v , the
running time is dominated by the constant time LCA-queries, which yield the running
timeO (deg(v)3). For the whole instance, this gives the claimedO (n3) running time. �

8.4.3 Common-Face Constraints

Recall from Section 8.2.4 that we can assume that there are no bridges that are block-
local and exclusive one-attached if we in return solve Sefe with block-local common-
face constraints. In this section, we show how to handle these additional constraints.
To this end, we show that satisfying block-local common-face constraints in a given
instance of Sefe is equivalent to satisfying a set of equations and inequalities. The
union of these constraints with the constraints from the previous section thus enforce
that the embeddings of each common connected component are consistent and satisfy
given block-local common-face constraints.

LetB be a block of the common graph. Let µ be an R-node ofB. Then we introduce the
binary variable ord(µ) where ord(µ) = 0 indicates that skel(µ) is embedded according
to its reference embedding and ord(µ) = 1 indicates that skel(µ) is �ipped. In case
µ is a P-node of B, we can assume by Theorem 8.2 that the union-link graph of µ is
connected. Recall that this implies that the embedding of skel(µ) is �xed up to a �ip
(Lemma 8.2). Thus, we also get a reference embedding for skel(µ) and can describe the
embedding choice for skel(µ) with a binary variable ord(µ). We call these variables
the common PR-node variables.

It follows directly from Section 8.3.3 that common-face constraints for B are equiva-
lent to a set of equations and inequalities on the variables ord(µ) (we basically get the
consistency and union-bridge constraints from Step 2 and Step 4).

Note that the constraints from Section 8.4.2 enforcing consistent edge orderings
do not contain common PR-node variables. They only contain PR-ordering variables
determining the embeddings of G 1 and G 2 (Lemma 8.26). As �xing the PR-node
variables for G 1 �xes the embedding of G, it also �xes the values for all common

250

Edge Orderings and Relative Positions Section 8.4

PR-node variables. It remains to show that this dependency of the common PR-node
variables from the PR-ordering variables inG 1 can be expressed using a set of equations
and inequalities.

To this end, consider a common vertex v in the common block B and let B 1 be the
block of G 1 containing B. Let T (v) be the embedding tree of v in B, i.e., the PQ-tree
describing the possible edge orderings of common edges incident to v . Note that each
inner node of T (v) is actually a Q-node and that T (v) has one inner node for each
P- or R-node whose embedding a�ects the edge ordering around v . Let v 1 be the
occurrence of v in B 1 and let T (v 1) be the embedding tree of v 1 in B 1 projected to
the common edges incident to v . Then T (v 1) describes all orders of common edges
incident to v that can be induced by an embedding of B 1 .

Clearly,T (v 1) is more restrictive thanT (v) in the sense that every order represented
byT (v 1) is also represented byT (v). Thus,T (v 1) is a reduction ofT (v). It is not hard
to see that every Q-node inT (v) has a unique Q-node inT (v 1) (called its representative;
see Chapter 5) that determines its �ip. Thus, for every P- or R-node µ of G, we �nd at
least one vertex v such that ord(µ) corresponds to the �ip of a Q-node in T (v), which
corresponds to a �ip of a Q-node inT (v 1), which corresponds to a PR-ordering variable
ord(µ 1) (or ord(µ 1

v)) of G 1 . Thus, ord(µ) = ord(µ 1) or ord(µ) , ord(µ 1) gives us
the desired connection between the common PR-node variables and the PR-ordering
variables.

We call the set of all equations and inequalities described in this section the common-
face constraints. With the results form Section 8.3.3 (and with standard PQ-tree opera-
tions), we can compute the common-face constraints in linear time. This yields the
following lemma where n is the total input size, i.e., the size of the two graphs plus
the size of the common-face constraints.

Lemma 8.28. Let (G 1 ,G 2) be an instance of Sefe with common-face constraints and
let α be a variable assignment for the PR-ordering and the common PR-node variables.
Every embedding ofG 1 realizing α satis�es the common-face constraints if and only if α
satis�es the common-face constraints.

The common-face constraints have O (n) size and can be computed in O (n) time.

8.4.4 Consistent Relative Positions

Let H and H ′ be two connected components of the common graph G. To represent
the relative position posH ′ (H) of H with respect to H ′, we use the relative positions
posC (H) of H with respect to the cycles C in an extended cycle basis of H ′. With
posC (H) = 0 and posC (H) = 1, we associate the cases that H lies to the right of
C and to the left of C , respectively. We call these variables the component position
variables. Note that �xing all position variables determines all relative positions of
common connected components with respect to each other (Theorem 8.8). Thus, �xing

251

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

the PR-ordering variables (which also �xes the cutvertex-ordering variables) and the
position variables completely determines the embedding of the common graph G.

In this section, we give a set of necessary equations and inequalities on the position
variables of two graphs G 1 and G 2 that enforce consistent relative positions on their
common graph G. As �xing the PR-ordering variables may also determine some
position variables, we also have to make sure that these two types of variables are
consistent with each other.

LetG 1 be a connected planar graph containingG , letC be a cycle inG (a cycle from
the extended cycle basis), and let H be a connected component of G not containing
C . Depending on how C and H are located in G 1 , di�erent embedding choices of
G 1 determine the relative position posC (H); see Chapter 7. We quickly list these
embedding choices here and describe the constraints arising from them in the following
sections.

Let µ 1 be an R-node ofG 1 such thatC induces a cycle κ in skel(µ 1). If skel(µ 1) has
a virtual edge ε that is not part of κ such that the expansion graph expan(ε) includes a
vertex of H , then the embedding of skel(µ 1) determines the relative position posC (H).
We say that posC (H) is determined by the R-node µ 1 .

Let µ 1 be a P-node of G 1 such thatC induces a cycle κ in skel(µ 1). Then κ consists
of two virtual edges ε1 and ε2. The relative position posC (H) is determined by the
embedding of skel(µ 1) if H is contained in the expansion graph of a virtual edge ε
with ε , εi for i ∈ {1,2}. We say that posC (H) is determined by the P-node µ 1 .

If C and H belong to the same block B 1 of G 1 , then posC (H) is either determined
by an R-node or by a P-node of B 1 ; see Chapter 7. Otherwise, let v be the cutvertex in
G 1 that separates C from H and belongs to the block of C . If v is not contained in C ,
then we introduce the variable posC (v) corresponding to the decision of embedding v
to the right or to the left of C . We call such a variable the cutvertex position variables.
Clearly, H and v lie on the same side in each embedding of G 1 . Moreover, the relative
position of v with respect to C is determined by an R-node or by a P-node µ 1 (the
belong to the same block of G 1). In this case, we also say that both variables, posC (v)
and posC (H), are determined by the R-node or P-node µ 1 . Moreover, we also say that
posC (H) is determined by posC (v).

If the cutvertexv is contained inC , then the relative position posC (H) is determined
by the embedding choices made at the cutvertex. We distinguish two cases. Let S 1 be
the split component with respect to the cutvertex v that contains H . If S 1 includes
a common edge incident to v , we say that posC (H) is determined by the common
cutvertex v . Otherwise, we say that posC (H) is determined by the exclusive cutvertex
v (note that v might still be a cutvertex of the common graph in this case). These
two cases are in so far di�erent as changing posC (H) a�ects the edge ordering of the
common graph in the former case, whereas it does not in the latter case.

The component position variables together with the cutvertex position variables are

252

Edge Orderings and Relative Positions Section 8.4

simply called position variables In the following sections, we describe for each of the
four cases di�erent constraints in the form of equations and inequalities on position
variables, PR-ordering variables, and cutvertex-ordering variables.

Relative Positions Determined by R-Nodes

We start with the simplest case, where posC (H) is determined by an R-node µ 1 of G 1 .
If posC (H) is also determined by a cutvertex position variable posC (v), we simply set
posC (H) = posC (v) to make sure that the cutvertex v and the component H are on
the same side of C .

Otherwise, C induces a cycle κ in skel(µ 1) and H shares a vertex with the ex-
pansion graph of a virtual edge ε not belonging to κ. The PR-ordering variable
ord(µ 1) determines whether skel(µ 1) is embedded according to its reference embed-
ding (ord(µ 1) = 0) or whether it is �ipped (ord(µ 1) = 1).

Assume ε lies to the right of κ in the reference embedding of skel(µ 1). Then
ord(µ 1) = 0 implies that ε lies to the right of κ, which implies that H lies to the
right of C , i.e., posC (H) = 0. Moreover, �ipping skel(µ 1) brings ε to the left of
κ. Thus, ord(µ 1) = 1 implies posC (H) = 1, which yields ord(µ 1) = posC (H) as
necessary condition. If ε lies to the left of κ in the reference embedding, we obtain
ord(µ 1) , posC (H) instead.

Analogously, we set ord(µ 1) = posC (v) or ord(µ 1) , posC (v) for every cutvertex
position variable posC (v) determined by µ 1 .

Su�iciency. We call the constraints de�ned in this section the R-node constraints.
The following lemma states the more or less obvious necessity and su�ciency of the
R-node constraints.

Lemma 8.29. Let µ 1 be an R-node of G 1 and let X be the set of position variables
determined by µ 1 together with the PR-ordering variable ord(µ 1). A variable assignment
α of X can be realized by an embedding of G 1 if and only if α satis�es the R-node
constraints.

Relative Positions Determined by P-Nodes

Let µ 1 be a P-node of G 1 with poles u and v and let ε1, . . . ,εk be the virtual edges
of skel(µ 1). Let C be a cycle in G, that induces a cycle κ in skel(µ 1). Without loss of
generality, κ consists of the virtual edges ε1 and ε2. Let H be a common connected
component whose relative position with respect to C is determined by µ 1 .

As for R-nodes, we �rst consider the case that a relative position posC (H) is
determined by a cutvertex position variable posC (v). In this case we simply set
posC (H) = posC (v). In the following we assume that posC (H) is determined by the

253

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

P-node µ 1 but not by a cutvertex position variable. All cutvertex position variables
posC (v) are handled analogously.

As posC (H) is determined by µ 1 , the common connected component H is contained
in a virtual edge ε ∈ {ε3, . . . ,εk} not belonging to κ. Note that embedding ε to the
right or to the left of κ determines not only the relative position of H but the position
of every connected component that is contained in the expansion graph of ε . We
make sure that these relative positions �t to each other by introducing a new variable
posκ (ε) with the interpretation that posκ (ε) = 0 if and only if ε is embedded to the
right of κ. Clearly, posκ (ε) = posC (H) is a necessary condition for every connected
component H contained in the expansion graph of ε .

If there is another common cycleC ′ inducing the same cycle κ in skel(µ), we use the
same variable posκ (ε) to determine on which side of κ the virtual edge ε is embedded.
If C ′ induces the same cycle oriented in the opposite direction, we use the negation of
posκ (ε) instead.

The above constraints are not su�cient for two reasons. First, changing the embed-
ding of skel(µ 1) may change edge orderings in the common graph. In this case, there
are PR-ordering variables partially determining the embedding of skel(µ 1) and we
have to make sure that their values and the values of the position variables determined
by µ 1 �t to each other. Second, if di�erent common cycles induce di�erent cycles in
skel(µ 1), then not every combination of relative positions with respect to these cycles
can actually be achieved by embedding the skeleton.

Connection to Ordering Variables. As mentioned before, we have to add ad-
ditional constraints to ensure consistency between the position variables and the
ordering variables. Let κ be the cycle induced by C in skel(µ 1) and assume without
loss of generality that κ consists of the virtual edges ε1 and ε2. Embedding another
virtual edge ε to the right or to the left of κ changes the edge ordering at the poles u
or v if and only if the expansion graph of ε includes common edges incident to u or v ,
respectively. In this case, we have a PR-ordering variable determining this embedding
choice and we can make sure that the edge ordering and the relative positions �t to
each other using an equation or an inequality.

To make this more precise, we de�ne the following �ve types of virtual edges. Each
virtual edge ε ∈ {ε1, . . . ,εk} is of exactly one of the following �ve types.

Type 1. expan(ε) includes a common path from u to v .

Type 2. expan(ε) has common edges incident to u and to v but is not of Type 1.

Type 3. expan(ε) has a common edge incident to u but none incident to v .

Type 4. expan(ε) has a common edge incident to u but none incident to v .

Type 5. expan(ε) has no common edges incident to u or to v .

254

Edge Orderings and Relative Positions Section 8.4

Figure 8.18: Three virtual edges of Type 1 in a P-node
with the three di�erent virtual cycles κ1,2, κ1,3, and κ2,3.
For each face, the variable assignment corresponding to
this face is given.

010001100

κ1,3
κ1,2 κ2,3

As the cycle κ consists of ε1 and ε2, they must both be of Type 1. Choosing the
relative position of ε with respect to κ a�ects the edge ordering at u or at v if and only
if ε is not of Type 5. If ε is of Type 1 or Type 2, then there is a PR-ordering variable
ord(µ 1) determining the order of the edges ε1,ε2,ε . If the ordering corresponding
to ord(µ 1) = 0 has ε to the right of κ, we set ord(µ 1) = posκ (ε). Otherwise, we set
ord(µ 1) , posκ (ε).

If ε is of Type 3, the edge ordering of ε1,ε2,ε is determined by the PR-ordering
variable ord(µ 1

s). As before, we get either the equation ord(µ 1
s) = posκ (ε) or the

inequality ord(µ 1
s) , posκ (ε). The case that ε is of Type 4 is analogous, except that

we have the PR-ordering variable ord(µ 1
t) instead of ord(µ 1

s).

Multiple Cycles. If there are common cycles inducing di�erent cycles in the P-node
µ 1 , then at least three virtual edges must be of Type 1 (i.e., their expansion graph
includes a common path between the poles u and v). As we assume that µ 1 has
common P-node degree 3, three virtual edges are of Type 1 and all remaining virtual
edges are of Type 5. Let ε1, ε2, and ε3 be the virtual edges of Type 1 and let ε be another
virtual edge of skel(µ 1). Denote the cycle consisting of εi and εj by κi,j (i, j ∈ {1,2,3}
and i < j). To simplify the notation, we use posi,j (ε) as short form for the relative
position posκi,j (ε).

Let ε ∈ {ε4, . . . ,εk} be another virtual edge of skel(µ 1). Then we are interested in the
three position variables pos1,2 (ε), pos1,3 (ε), and pos2,3 (ε), which are not independent
from each other. Moreover, which combinations of relative positions can actually
be realized depends on the ordering of ε1, ε2, and ε3. This ordering is determined by
the PR-ordering variable ord(µ 1). In the remainder of this section, we �rst �gure
out which combinations of values for ord(µ 1), pos1,2 (ε), pos1,3 (ε), and pos2,3 (ε) are
actually possible and then show that restricting the variables to these combinations is
equivalent to a set of equations and inequalities.

When �xing the order variable ord(µ 1) (without loss of generality to 0), we get
the situation shown in Figure 8.18. From the set of eight combinations for the three
position variables, only the three combinations 100, 010 and 001 are possible. When
changing the order of the edges (setting ord(µ 1) to 1), every bit is reversed. Thus,
for the tuple (ord(µ 1),pos1,2 (ε),pos1,3 (ε),pos2,3 (ε)) we get the possibilities 0100, 0010,
0001 and their complements 1011, 1101, 1110. A restriction equivalent to this is called

255

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

P-node 4-constraint (where equivalent means that an arbitrary subset of variables may
be negated).

We note that, in the short version of this paper [BKR13a], we missed the fact that
the combinations 1000 and 0111 are not possible. This lead to the wrong assumption
that a combination is feasible if and only if there is an odd number of 1s, which can be
expressed as a linear equation over F2. As a matter of fact, the P-node 4-constraint
allows six di�erent combinations, which is not a power of two and can thus not be the
solution space of a linear equation over F2. Thus, a P-node 4-constraint is in particular
not equivalent to a set of equations or inequalities. We resolve this issue with the
following lemma in conjunction with the new results from Section 8.2.2.

Lemma 8.30. If two variables of a P-node 4-constraint are known to be equal or unequal,
the P-node 4-constraint is equivalent to a set of equations and inequalities.

Proof. We basically have the three possibilities 0100, 0010, and 0001 and their com-
plements for the variables abcd . No pair of variables is equal in all three possibilities
and no pair of variables in unequal in all three possibilities. Thus requiring equality or
inequality for one of the pairs eliminates exactly one or two of these three possibilities.
If exactly one possibility and its complement remains, this is obviously equivalent to a
set of equations and inequalities.

If 0100 and 0010 (and their complements) remain, this is equivalent to a = d and
b , c . If 0100 and 0001 remain, this is equivalent to a = c and b , d . Finally, if 0010
and 0001 remain, this is equivalent to a = b and c , d . �

In the following, we show that for every P-node 4-constraint, we always �nd an
equation or inequality between a pair of variables, turning all P-node 4-constraints
into a set of equations and inequalities.

Consider the union graph G∪. If the poles {u,v} are a separating pair in G∪, then
each split component is the union of the expansion graphs of several virtual edges
of skel(µ 1). As the expansion graphs of ε1, ε2, and ε3 have common uv-paths, we can
assume that they are not separated (Theorem 8.3). Moreover, having common P-node
degree 3 implies that none of the other expansion graphs has a common edge incident
to u or to v (they are all of Type 5). Thus, again by Theorem 8.3, we can assume that
{u,v} is not a separating pair in G∪.

It follows that there must be a path π in G∪ that connects a vertex of expan(ε) with
a vertex of (without loss of generality) expan(ε1) that does not pass through u or v or
vertices of the expansion graphs of ε2 and ε3. It follows that the relative position of ε
with respect to κ2,3 must be the same as the relative position of any internal vertex of
expan(ε1) with respect to κ2,3. As this relative position is determined by the order of
ε1, ε2, and ε3, we obtain either ord(µ 1) = pos2,3 (ε) or ord(µ 1) , pos2,3 (ε).

256

Edge Orderings and Relative Positions Section 8.4

Su�iciency. We call the constraints de�ned in this section the P-node constraints.
The following lemma follows directly from the previous considerations.

Lemma 8.31. Let µ 1 be a P-node of G 1 and let X be the set of position variables
determined by µ 1 together with the PR-ordering variables of µ 1 . A variable assignment
α of X can be realized by an embedding of G 1 if and only if α satis�es the P-node
constraints.

Relative Positions Determined by Common Cutvertices

Recall that the relative position posC (H) is determined by a common cutvertex v of
G 1 if C contains v and H lies in a split component S 1 (with respect to v) di�erent
from the split component containing C such that S 1 has a common edge incident to v .

First note that the whole split component S 1 has to be embedded on one side of C .
Thus, for every common connected component in S 1 , we would get the same set of
constraints. To reduce the number of constraints, we introduce the variable posC (S 1)
representing the decision of embedding S 1 either to the right or to the left ofC . Clearly,
posC (H) = posC (S 1) for every common connected component H in S 1 is a necessary
condition.

Note that this condition is very similar to the �rst type of constraints we required
for P-nodes (connected components in the expansion graph of the same virtual edge
have the same relative positions). As for the P-nodes, we have to address two potential
issues. First, embedding the split component S 1 to one side or another of C changes
the edge ordering around the cutvertex v . Second, if there are multiple cycles through
v , then the relative positions of S 1 with respect to all these cycles must be consistent.

Connection to Ordering Variables. Let B 1 be the block of S 1 containing v and
let e1 and e2 be the two edges of C incident to v . Moreover, let e be a common edge
of B 1 incident to v . Recall that the cyclic order of e1, e2, and e is described by the
cutvertex-ordering variable ord(e1,e2,B

1).
Assume without loss of generality that e1 is oriented towards v and e2 is oriented

away from v (in the cycleC). Then the (clockwise) cyclic order e1,e,e2 forces the block
B 1 , and thus the whole split component S 1 , to lie left of C . The opposite cyclic order
forces S 1 to the right of C . Thus, depending on the orientation of C , we either get
ord(e1,e2,B

1) = posC (S 1) or ord(e1,e2,B
1) , posC (S 1) as necessary conditions.

Multiple Cycles. Assume multiple common cyclesC1, . . . ,Ck contain the cutvertex
v and assume that these cycles are already embedded. We have to make sure that
every assignment to the variables posCi (S

1) for i = 1, . . . ,k actually corresponds to a
face of C1 ∪ · · · ∪Ck that is incident to v .

257

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

We cannot directly express this requirement as a set of equations and inequalities
on the position variables. However, if we assume that a given variable assignment for
the cutvertex-ordering variables of v can be realized by an embedding of G 1 (which is
ensured by the constraints from Section 8.4.2), then the above constraints establishing
the connection between the cutvertex-ordering variables and the position variables
make sure that the corresponding values for the position variables are also realized.

Su�iciency. We call the constraints from this section the common cutvertex con-
straints. Let α be a variable assignment for the cutvertex-ordering variables of a
cutvertex v . We say that α is order realizable, if G 1 admits an embedding realizing α .
We obtain the following lemma.

Lemma 8.32. Let X be the set of position variables that are determined by the common
cutvertexv inG 1 and letY be the cutvertex-ordering variables ofv . A variable assignment
α of X ∪ Y can be realized by an embedding of G 1 if and only if α satis�es the common
cutvertex constraints and α |Y is order realizable.

Relative Positions Determined by Exclusive Cutvertices

As in the previous section, let S 1 be the split component with respect to the cutvertex
v that contains the connected component H . As before, every common connected
component of S 1 has to be embedded on the same side ofC . However, in this case, we
need slightly stronger constraints.

Let Hv be the connected component of the common graph that includes the cutver-
tex v . Let further B∪1 , . . . ,B∪k be the union bridges of Hv (note that this is the �rst time,
where the second graph G 2 comes into play). As the union bridge B∪i (for i = 1, . . . ,k)
has to be completely embedded into a single face of Hv , every common connected
component in B∪i lies on the same side of C . As before for the split components, we
represent the decision of putting B∪i to the right or to the left of C using the variable
posC (B∪i). Then the constraint posC (B∪i) = posC (H) for every common connected
component H in B∪i is clearly necessary. Note that the resulting constraints are strictly
stronger than setting posC (S 1) = posC (H) for every common connected component
H in S 1 , as S 1 is contained in a single union bridge.

Recall that (in contrast to the previous section) S 1 does not contain a common edge
incident to v . It follows that the decision of putting H to the right or to the left of C
in an embedding of G 1 has no in�uence on the edge ordering at v . Thus, there is no
need for further constraints to ensure consistency between edge orderings and relative
positions. Moreover, we will see that there is no need for additional constraints to
make sure that the relative positions actually describe a face (in case v is contained in
multiple cycles).

258

Edge Orderings and Relative Positions Section 8.4

(a)

(d)

H

Hv

v

H ′

(b)

H

C ′

Hv

v

(e)

v

Hv

H
H1

H2

u1
u2

(e)

v

Hv

H
H1

H2

u1
u2

(c)

H

C ′

Hv

u v

Figure 8.19: (a) The extended blocks of the graph G 1 . (b) The cutvertex v and the cycle C ′
are contained in the same block of Hv . (c) v and C ′ are in di�erent blocks. (d) The exclusive
bridge containing H ′ has two attachments in Hv . Note that H ′ and H belong to the same union
bridge. (e) The union bridge containing H (and H1 and H2) has attachments in di�erent blocks
of Hv , i.e., it is not block-local.

Su�iciency. We call the constraints de�ned in this section the exclusive cutvertex
constraints. Assume that Hv is already embedded. Then we can choose to embed S 1

into an arbitrary face of Hv incident to v , which determines the relative positions of
the components in S 1 with respect to cycles through v without a�ecting any other
embedding choice. It only remains to make sure that the relative positions of H with
respect to all cycles through v actually describe a face incident to v . Unfortunately,
the exclusive cutvertex constraints do not guarantee this property and we are not able
to give additional constraints enforcing it.

However, we can prove the following lemma by exploiting the fact that posC (H) is
in G 2 determined by an R-node, by a P-node, or by a common cutvertex. The R-node,
P-node, and common cutvertex constraints of G 2 then help to prove the existence of
the desired face.

We call the union of all R-node, all P-node, all common cutvertex, and all exclusive
cutvertex constraints the position constraints.

Lemma8.33. LetG 1 andG 2 have common P-node degree 3 and simultaneous cutvertices
of common degree at most 3. Let α be a variable assignment for the ordering and position
variables satisfying the ordering and position constraints with respect to G 1 and G 2 .
Then G 1 admits an embedding that realizes α .

Proof. Let the blocks of G 1 be partitioned into a maximum number of partitions such
that two blocks that each have a common edge incident to a cutvertex belong to the
same partition; see Figure 8.19a. Let B 1

1 , . . . ,B
1

k be the blocks of one such partition

259

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

and let P 1 = B 1

1 ∪ · · · ∪B 1

k . Note that P 1 is a maximal subgraph ofG 1 such that every
split component with respect to a cutvertex v includes a common edge incident to v .
We call P 1 an extended block of G 1 . By Lemmas 8.27, 8.29, 8.31, and 8.32, P 1 (and
every other extended block) admits an embedding that realizes α .

Analogously, we de�ne the extended blocks of G 2 and choose an embedding for
each extended block in G 2 that realizes α .

To get an embedding of G 1 realizing α , it remains to combine the embeddings of
the extended blocks at the cutvertices separating them. Let P 1

v be the extended block
of G 1 that includes a common edge incident to the cutvertex v and let P 1 be another
extended block containing v . Let Hv be the connected component of the common
graph containingv . Note thatHv is completely contained in P 1

v and thus its embedding
is already �xed. Note further that P 1 is part of a split component with respect to v
and thus part of a single union bridge of Hv . Thus, the exclusive cutvertex constraints
make sure that the relative positions with respect to common cycles through v are the
same for all common connected components in P 1 . Hence, the embeddings of P 1

v and
P 1 can be combined such that the resulting embedding of P 1

v ∪ P 1 realizes α if and
only if the relative positions of one common connected component H in the union
bridge containing P 1 with respect to the common cycles through v describes a face of
Hv that is incident to v .

We �rst assume that the relative positions of H with respect to cycles through v
describe a face of Hv and show that this face must be incident to v . Afterwards we
show that this assumption is true, making use of the fact that the common connected
components are grouped di�erently in the extended blocks of G 2 .

Claim 1. If the relative positions of H with respect to common cycles through v describe
a face of Hv , then this face is incident to v .

Let f be a face of Hv such that the relative positions of H with respect to cycles
through v (as given by α) are the same as the relative positions of f with respect to
these cycles. Then f is incident to the cutvertex v for the following reason. If f is not
incident to v , then there exists a common cycleC ′ (not containing v) in the connected
component Hv of v that separates v from a connected component H . By Lemma 8.23
we can assume that C ′ is part of the extended cycle basis.

There are two possibilities. If v belongs in G 1 to the same block as C ′ (see Fig-
ure 8.19b), the relative position posC ′ (H) is determined by the relative position of v
with respect to C ′, as v separates H from C ′ in G 1 and C ′ does not contain v . Thus,
we have the equation posC ′ (v) = posC ′ (H) in this case. Otherwise, G 1 has another
cutvertex u separating v and H from C ′; see Figure 8.19c. Then v and H are in the
same split component with respect to this cutvertex. In this case we also have the
requirement that v and H are on the same side of C ′. Hence, the cycle C ′ cannot
separate v from H , which proves Claim 1. It remains to prove Claim 2.

260

Edge Orderings and Relative Positions Section 8.4

Claim 2. The relative positions ofH with respect to all common cycles throughv describe
a face of Hv .

Let B∪ be the union bridge of Hv that contains H . Recall that the exclusive cutvertex
constraints require posC (H ′) = posC (B∪) for every cycle C of Hv and every common
connected component H ′ of B∪. Thus, showing that the relative positions of H ′
describe a face of Hv for one common connected component of B∪ shows this fact for
all common connected components of B∪ (and thus in particular for H).

By Theorem 8.6, we can assume one of the following is true. The common connected
component Hv is a cycle; the union bridge B∪ is not block-local; or B∪ is not exclusive
one-attached.

If Hv is a cycle, then there is only a single cycle through v and both sides of this
cycle form a face of Hv . Thus, there is nothing to show in this case.

Assume the union bridge B∪ is not exclusive one-attached. Then there exists without
loss of generality a 2 -bridge B 2 that belongs to the union bridge B∪ such that B 2

has two attachments in Hv ; see Figure 8.19d. Let further H ′ be a common connected
component contained in B 2 . Then H ′ belongs in G 2 to a block that contains at least
one block of Hv . Thus, the extended block containing H ′ completely contains Hv . It
follows that the relative positions of H ′ with respect to cycles in Hv describe a face
of Hv .

Finally, assumeB∪ is not block-local. Then there are two i -bridges (for i ∈ {1,2})B i
1

and B i
2 belonging to the union bridge B∪ with attachments in di�erent blocks of Hv .

If one of these bridges has an attachment vertex in a block of Hv not containing the
cutvertex v , then the relative positions of this bridge with respect to any common
cycle containingv is determined by an R-node, by a P-node, or by a common cutvertex.
Thus, the relative positions correspond to a face of Hv in this case. It remains to
consider the case that the attachment vertices of B i

1 and B i
2 belong to blocks of Hv

incident to v ; see Figure 8.19e.
Let S1, . . . ,Sk be the split components of the common component Hv with respect

to the cutvertex v . Assume without loss of generality that B i
1 and B i

2 have their
attachment vertices u1 and u2 in S1 and S2, respectively. Let H1 and H2 be common
connected components in B i

1 and B i
2 , respectively. The relative position of H1 with

respect to a cycle through v that is not contained in S1 is determined (in G i) by the
common cutvertex v . Thus, the relative positions of H1 with respect to S2 ∪ · · · ∪ Sk
describe a face of S2∪· · ·∪Sk . Moreover, this face contains the whole split component S1.
Thus, if the relative positions of H1 with respect to cycles in S1 describe a face of S1,
then the relative positions with respect to cycles in Hv = S1 ∪ · · · ∪ Sk describe a face
of Hv . Clearly, this is true as H1 and H2 have the same relative positions (they are in
the same union bridge B∪) and the relative positions of H2 with respect to cycles in
S1 describe a face of S1 (one can use a symmetric argument to the one above). This
concludes the proof. �

261

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

Computing the Constraints

Recall from Section 8.4.2 (Lemma 8.27) that we have potentially O (n3) cutvertex-
ordering variables. Moreover, there are O (n2) cycles in the extended cycle basis C and
thus O (n3) component position variables. Thus, our aim is to compute the position
constraints described in the previous sections in O (n3) time.

LetC ∈ C be a cycle. For the relative positions with respect toC that are determined
by R-nodes or P-nodes, we need to know for every R- and P-node µ of G 1 and of G 2 ,
whether it induces a cycle κ in skel(µ). If so, we also need to know the cycle κ. This
can clearly be done in linear time for each cycle, yielding a total running time ofO (n3)
(note that techniques from Chapter 7 can be used to compute this information for
multiple cycles in linear time).

Similarly, in O (n2) time, we can compute for every virtual edge ε in skel(µ), which
common connected components are contained in the expansion graph of ε . Assume µ
is an R-node and letX be the set of ordering variables determined by µ. With the above
information, one can easily compute the R-node constraints for µ inO (|X | + | skel(µ) |)
time. As each relative position is determined by at most one R-node, the sets X are
disjoint for di�erent R-nodes. Thus, we get a total running time ofO (n3) for computing
the R-node constraints.

Computing the P-node constraints of a P-node µ can be done analogously (yielding
O (n3) running time in total), except for the case where we have to handle a P-node
4-constraint. Recall that we get P-node 4-constraints if three virtual edges ε1, ε2, and ε3
of skel(µ) include common paths between the poles. For every other virtual edge ε , we
then get a P-node 4-constraint, which makes O (| skel(µ) |) P-node 4-constraints for µ.
For the P-node 4-constraint corresponding to the virtual edge ε , we have to check
whether the union graph G∪ has a path π from expan(ε) to expan(εi) (for i ∈ {1,2,3})
that is disjoint from the expansion graphs expan(εj) for j ∈ {1,2,3} with i , j. This
can clearly be done in O (n) time for each edge ε of skel(µ). It follows that we can
compute the P-node constraints in O (n3) time.

For a cutvertexv ofG 1 , consider the relative positionsX determined by the common
cutvertex v . For every split component S 1 and every common connected component
H in S 1 , we have the constraint posC (H) = posC (S 1). These constraints can be easily
computed in O (n + |X |) time. As the sets X are disjoint for every cutvertex, this yields
a total running time of O (n3). Moreover, we have to compute constraints of the type
ord(e1,e2,B

1) = posC (S 1) connecting the relative positions to the cutvertex ordering
variables. Clearly, for each variables posC (S 1) this constraint can be added in constant
time, which yields a running time inO (|X |). Hence, the common cutvertex constraints
can be computed in O (n3) time.

Finally, consider the relative positions X determined by the exclusive cutvertex
v and let Hv be the common connected component containing v . For every union
bridge B∪, every common connected component H in B∪, and every common cycle

262

Edge Orderings and Relative Positions Section 8.5

through v , we have to add the constraint posC (B∪) = posC (H). We can �rst (in O (n)
time) partition the common connected components according to their union bridges.
Then, adding these constraints for one cycle C can be done in O (|XC |) time, where
XC is the set of relative positions with respect to C in X . Thus, we get the exclusive
cutvertex constraints for v in O (|X |) time, which yields a total running time of O (n3).

Lemma 8.34. The position constraints can be computed in O (n3) time.

8.4.5 Pu�ing Things Together

Assume (G 1 ,G 2) is a Sefe instances such that G 1 and G 2 are connected graphs, G 1

andG 2 have common P-node degree 3, and every simultaneous cutvertex has common
degree 3.

We �rst used Theorem 8.1 to get rid of all union cutvertices. This helped to ensure
consistent edge orderings in Section 8.4.2. Actually, without union cutvertices, we
know for each vertex v that it is either not a cutvertex in one of the graphs G 1 or G 2 ,
which makes representing the possible edge orderings much simpler, or that it has
common degree 3, which also makes the ordering simple.

To ensure consistent relative positions of two common connected components
with respect to each other, we �rst showed in Section 8.4.1 that it su�ces to ensure
consistent relative positions of each common connected component with respect to
the cycles of a cycle basis in the other component. Unfortunately, setting relative
positions with respect to cycles does not necessarily lead to an embedding (e.g., if a
cycle C1 lies “inside” C2, and C2 lies “inside” C3, then C3 cannot lie “inside” C1).

This leads to di�culties, when one component H1 can be potentially embedded into
several faces of another component H2, which is the case when H1 is attached to H2
via only two vertices that are a separating pair of H2, or when H1 and H2 are separated
by a cutvertex. For the former case, it helped to assume that split components of union
separating pairs have a very special structure (Theorem 8.3). For the latter case, it
helped to assume that there are no union bridges that are block-local and exclusively
one-attached (Theorem 8.6).

Using Theorem 8.6 comes at the cost that we have to satisfy some common-face con-
straints. However, in Section 8.4.3 we showed that this can be done easily (Lemma 8.28).

The set of equations and inequalities we obtain has totalO (n3) size, can be computed
inO (n3) time, and can be solved in linear time in its size [APT79]. This lets us conclude
with the following theorem.

Theorem 8.9. Sefe can be solved inO (n3) time for two connected graphs with common
P-node degree 3 and simultaneous cutvertices of common degree at most 3.

263

Chapter 8 Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity

8.5 Conclusion

In this chapter, we presented ways of combining techniques for ensuring consistent
relative positions (Chapter 7) with known [Ang+12; BR13] and newly developed tools
ensuring consistent edge orderings. This lead to an e�cient algorithm solving Sefe for
two connected graphs with common P-node degree 3 and simultaneous cutvertices of
common degree at most 3. Together with the linear time algorithm for decomposing
a given instance into equivalent instances in which each 2-component is a cycle,
this gives an e�cient algorithm if each connected component of the common graph
is biconnected, has maximum degree 3, or is outerplanar with maximum degree 3
cutvertices.

We note that all techniques developed in Section 8.4 extend to the sun�ower case,
where we have multiple graphs pairwise intersecting in the same common graph.
Actually, the two graphs G 1 and G 2 are only considered together if G 2 restricts the
embedding choices of the common graph in G 1 in a way that makes it possible to
formulate certain constraints. Thus, more graphs intersecting in the same common
graph can only help. Moreover, the preprocessing algorithms from Section 8.2 also
directly extend to the sun�ower when adapting the de�nition of impossible P-nodes
(Lemma 8.5) in a straightforward manner.

Besides solving this fairly general set of Sefe instances, our results, and in particular
the preprocessing algorithms, give some new structural insights that may help in
further research. E.g., Theorem 8.2 stating that one can assume all union-link graphs
to be connected not only helps in later sections but also shows that the decision of
ordering virtual edges in P-nodes of the common graph is fairly easy.

What remains poorly understood are the edge orderings at cutvertices. We were
basically able to handle cutvertices if the choices boil down to binary decisions. This
is for example the case if the cutvertex has only common degree 3. Although less
obvious, this is also the case if the instance has common P-node degree 3. For a
cutvertex in G 1 , this basically means that the other graph G 2 hierarchically groups
the common edges incident to the cutvertex such that there are at most three groups
on each level, yielding a binary decision.

To get a better understanding of cutvertices, we believe that it can help to consider
constrained planarity problems such as planarity with partitioned PQ-constrains (or
variants like partitioned full-constraints); see Chapter 6.

264

9 Conclusion

9.1 Summary

In this thesis, I developed new approaches to long-standing open questions concerning
the computational complexity of classic graph drawing problems.

Most prominently, I showed in Chapter 4 that bend minimization in the Kandinsky
model is NP-hard, thereby answering a question that was open almost twenty years
despite the fact that it received much attention. As an NP-hardness result is not very
satisfying, I additionally gave a parameterized algorithm for the bend-minimization
problem that in particular has polynomial and sub-exponential running time for series-
parallel and general planar graphs, respectively. Concerning classical orthogonal
drawings of graphs with maximum degree 4, I closed the complexity gap between our
e�cient algorithm testing whether a 4-planar graph admits an orthogonal drawing with
one bend per edge [Blä+14], and the NP-hardness result by Garg and Tamassia [GT01]
for the problem of �nding a drawing without bends; see Chapter 2. To overcome
the issue that only testing whether a graph admits a drawing with at most one bend
per edge is not very useful in practice, I gave an e�cient algorithm solving the
corresponding optimization problem in Chapter 3. This is the �rst e�cient algorithm
capable of minimizing the number of bends in an orthogonal drawing over all planar
embeddings of arbitrary 4-planar graphs. Note that this algorithm is actually of direct
practical use; besides my own implementation it was also implemented in the Open
Graph Drawing Framework (OGDF) [Chi+13].

In Part II, I considered the constrained planarity problems Clustered Planarity
and Sefe. In Chapter 6, I provide a new perspective on the problem Clustered Pla-
narity that simpli�es and uni�es many previous results, extends the set of instances
that are known to be e�ciently solvable, and opens up new directions for future re-
search. Concerning simultaneous planarity, I gave the �rst e�cient algorithm solving
Sefe in a case where the relative positions of connected components with respect to
each other make a di�erence; see Chapter 7. In Chapter 8, I combine the resulting
tools for ensuring consistent relative positions with existing and newly developed
techniques for ensuring consistent edge orderings. In this way, I signi�cantly extend
the set of instances that can be solved e�ciently.

265

Chapter 9 Conclusion

9.2 Outlook

The topology-shape-metrics approach in orthogonal graph drawing describes the
general strategy of �rst �xing a planar embedding of the graph, second computing
a bend-minimal orthogonal representation that respects this embedding, and third
computing an area-minimal orthogonal drawing realizing this orthogonal represen-
tation. In case of non-planar graphs, the �rst step (topology) includes computing a
planarization with few crossings. This general topology-shape-metrics strategy sepa-
rates the di�erent optimization problems from each other, making them easier to solve.
In Chapter 2 and Chapter 3, I softened the strict separation between the topology and
the shape step by minimizing the number of bends over all planar embeddings. This
can lead to orthogonal drawings with signi�cantly fewer bends. Concerning further
research, it would be interesting to know how further softening the strict separation
between the three phases can help to generate better orthogonal drawings. E.g., can we
identify certain con�gurations in orthogonal representations that imply a large area
of the resulting drawing? Can we maybe trade bends for area in the sense that adding
few bends signi�cantly shrinks the required area? Similarly, can we trade crossings in
non-planar graphs for bends or even area? Transforming these questions into formal
problem statements most probably results in NP-hard problems as minimizing the
number of crossings and minimizing the area of a given orthogonal representation
is both NP-hard. However, I showed that the moderate restriction to instances with
positive �exibility allows to minimize the number of bends over all planar embeddings,
which is NP-hard without this restriction. Thus, similar restrictions may also help to
answer the above questions.

When considering the Kandinsky model from a practical point of view, one can
generate bend-minimal drawings using an ILP-formulation. For practical instances,
this usually performs very well despite the fact that it has exponential running time
in the worst case. One way of explaining good practical running times is to consider
parameterized algorithms whose running time is only exponential in a certain param-
eter, which can be assumed to be small in practical instances. I made a �rst step in
this direction with the parameterized algorithm in Chapter 4. However, neither is
the theoretical running time of this algorithm low enough to promise good practical
running times, nor can it be argued that the chosen parameters are actually small in
practical instances. Thus, it is an interesting open question whether there are better
parameterized algorithms, maybe using completely di�erent parameters.

When trying to solve constrained planarity problems such as Clustered Planarity
or Sefe, an obstacle reoccurring in many situations is our incapability of handling
the possible edge orderings at cutvertices. The problem of embedding a planar graph
respecting given partitioned PQ-constraints (see Chapter 6) in a sense isolates this
issue. Thus, solving this problem or one of its variants would not only solve inter-
esting cases of Clustered Planarity but is likely to also provides insights on the

266

Outlook Section 9.2

behaviour of cutvertices in other constrained planarity problems such as Sefe. As
planarity with partitioned PQ-constraints is so far only solved for multi-graphs on
two vertices [BKM98; HN14], results on this problem are highly interesting even if
they consider only very restricted graph classes.

Another completely di�erent way for getting a handle on the computational com-
plexity of Sefe is the following (the same holds for Clustered Planarity). If Sefe
can be solved e�ciently, i.e., if Sefe is in P, then Sefe is in particular also in co-NP, i.e.,
for every no-instance, there exists a proof of polynomial size for being a no-instance
that can be veri�ed in polynomial time. Moreover, if one can show that Sefe is in
co-NP, it is not NP-complete assuming that co-NP , NP, which is generally believed
to be true. Thus, showing that Sefe is in co-NP is weaker (and thus potentially easier)
than showing that Sefe is in P. Moreover, such a result would imply that one can
basically stop searching for NP-hardness proofs.

From a practical point of view, algorithms for the constrained planarity problems
Clustered Planarity and Sefe are not directly applicable as they are decision
problem, i.e., if there is no drawing without crossings, the algorithms return no
drawings at all. Unfortunately, the corresponding optimization problems are obviously
NP-hard as they include the NP-hard problem of minimizing the number of edge
crossings in a graph’s drawing [GJ83]. However, in my opinion, the NP-hardness of a
problem should not stop researchers from studying this problem, e.g., in terms of its
parameterized complexity or its approximability.

267

9Bibliography

[AGR70] Sheldon B. Akers, James M. Geyer, and Donald L. Roberts. ICMask Layoutwith
a Single Conductor Layer. In: Proceedings of the 7th Annual Design Automation
Conference (DAC’70). ACM Press, 1970, 7–16.

[AL14] Patrizio Angelini and Giordano Da Lozzo. Deepening the Relationship be-
tween SEFE and C-Planarity. Computing Research Repository abs/1404.6175
(2014), 1–8.

[Ang+10] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek, Jan Kratochvíl,
Maurizio Patrignani, and Ignaz Rutter. Testing Planarity of Partially Em-
bedded Graphs. In: Proceedings of the 21st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’10). Society for Industrial and Applied Mathematics,
2010, 202–221.

[Ang+12] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani,
and Ignaz Rutter. Testing the Simultaneous Embeddability of Two Graphs
whose Intersection is a Biconnected or a Connected Graph. Journal of
Discrete Algorithms 14 (2012), 150–172.

[APT79] Bengt Aspvall, Michael F. Plass, and Robert E. Tarjan. A Linear-Time Algo-
rithm for Testing the Truth of Certain Quanti�ed Boolean Formulas.
Information Processing Letters 8:3 (1979), 121–123.

[BBR14] Thomas Bläsius, Guido Brückner, and Ignaz Rutter. Complexity of Higher-
Degree Orthogonal Graph Embedding in the Kandinsky Model. In: Pro-
ceedings of the 22th Annual European Symposium on Algorithms (ESA’14). Ed. by
Andreas S. Schulz and Dorothea Wagner. Vol. 8737. Lecture Notes in Computer
Science. Springer Berlin/Heidelberg, 2014, 161–172.

[BDD00] Paola Bertolazzi, Giuseppe Di Battista, and Walter Didimo. Computing Orthog-
onal Drawings with the Minimum Number of Bends. IEEE Transactions on
Computers 49:8 (2000), 826–840.

[BF00] Michael A. Bender and Martin Farach-Colton. The LCA Problem Revisited.
In: Proceedings of the 4th Latin American Symposium (LATIN’00). Ed. by Alfredo
Viola Gaston H. Gonnet. Lecture Notes in Computer Science. Springer Berlin/
Heidelberg, 2000, 88–94.

[Bie98] Therese Biedl. Drawing Planar Partitions I: LL-drawings and LH-draw-
ings. In: Proceedings of the 14th Annual Symposium on Computational Geometry
(SoCG’98). ACM Press, 1998, 287–296.

[Bin+05] Carla Binucci, Walter Didimo, Giuseppe Liotta, and Maddalena Nonato. Or-
thogonal Drawings ofGraphswithVertex and Edge Labels.Computational
Geometry: Theory and Applications 32:2 (2005), 71–114.

269

[BK12] Mark de Berg and Amirali Khosravi. Optimal Binary Space Partitions for
Segments in the Plane. International Journal of Computational Geometry &
Applications 22:3 (2012), 187–206.

[BK98] Therese Biedl and Goos Kant. A Better Heuristic for Orthogonal Graph
Drawings. Computational Geometry: Theory and Applications 9:3 (1998), 159–
180.

[BKM98] Therese Biedl, Michael Kaufmann, and Petra Mutzel. Drawing Planar Parti-
tions II: HH-Drawings. In: Proceedings of the 24thWorkshop on Graph-Theoretic
Concepts in Computer Science (WG’98). Ed. by Juraj Hromkovič and Ondrej Sýkora.
Vol. 1517. Lecture Notes in Computer Science. Springer Berlin/Heidelberg, 1998,
124–136.

[BKR13a] Thomas Bläsius, Annette Karrer, and Ignaz Rutter. Simultaneous Embedding:
Edge Orderings, Relative Positions, Cutvertices. In: Proceedings of the 21nd
International Symposium on Graph Drawing (GD’13). Ed. by Stephen Wismath
and Alexander Wol�. Vol. 8242. Lecture Notes in Computer Science. Springer
Berlin/Heidelberg, 2013, 220–231.

[BKR13b] Thomas Bläsius, Stephen G. Kobourov, and Ignaz Rutter. Simultaneous Em-
bedding of Planar Graphs, 349–381. In: Handbook of Graph Drawing and
Visualization. Ed. by Roberto Tamassia. Chapman and Hall/CRC, 2013.

[BL76] Kellogg S. Booth and George S. Lueker. Testing for the Consecutive Ones
Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algo-
rithms. Journal of Computer and System Sciences 13:3 (1976), 335–379.

[Blä+14] Thomas Bläsius, Marcus Krug, Ignaz Rutter, and Dorothea Wagner. Orthogonal
Graph Drawing with Flexibility Constraints. Algorithmica 68:4 (2014), 859–
885.

[BLR15] Thomas Bläsius, Sebastian Lehmann, and Ignaz Rutter. Orthogonal Graph
Drawing with In�exible Edges. In: Proceedings of the 9th Conference on Algo-
rithms and Complexity (CIAC’15). Ed. by Vangelis Th. Paschos and Peter Wid-
mayer. Vol. 9079. Lecture Notes in Computer Science. Springer Berlin/Heidelberg,
2015, 61–73.

[BMY07] Wilhelm Barth, Petra Mutzel, and Canan Yıldız. A New Approximation Al-
gorithm for Bend Minimization in the Kandinsky Model. In: Proceedings
of the 14th International Symposium on Graph Drawing (GD’06). Ed. by Michael
Kaufmann and Dorothea Wagner. Vol. 4372. Lecture Notes in Computer Science.
Springer Berlin/Heidelberg, 2007, 343–354.

[BNT86] Carlo Batini, Enrico Nardelli, and Roberto Tamassia. A Layout Algorithm for
Data Flow Diagrams. IEEE Transactions on Software Engineering 12:4 (1986),
538–546.

[Bor+11] Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum, and Christian
Wul�-Nilsen. Multiple-Source Multiple-Sink Maximum Flow in Directed
Planar Graphs in Near-Linear Time. In: Proceedings of the 52nd Annual Sym-
posium on Foundations of Computer Science (FOCS’11). IEEE Computer Society,
2011, 170–179.

270

[BR11] Thomas Bläsius and Ignaz Rutter. Simultaneous PQ-Ordering with Applica-
tions to Constrained Embedding Problems. Computing Research Repository
abs/1112.0245 (2011), 1–46.

[BR13] Thomas Bläsius and Ignaz Rutter. Simultaneous PQ-Ordering with Appli-
cations to Constrained Embedding Problems. In: Proceedings of the 24th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’13). Society for
Industrial and Applied Mathematics, 2013.

[BR14] Thomas Bläsius and Ignaz Rutter. ANewPerspective on Clustered Planarity
as a Combinatorial Embedding Problem. In: Proceedings of the 22nd Inter-
national Symposium on Graph Drawing (GD’14). Ed. by Christian Duncan and
Antonios Symvonis. Vol. 8871. Lecture Notes in Computer Science. Springer
Berlin/Heidelberg, 2014, 440–451.

[BR15] Thomas Bläsius and Ignaz Rutter. Disconnectivity and Relative Positions in
Simultaneous Embeddings. Computational Geometry: Theory and Applications
48:6 (2015), 459–478.

[Bra+02] Ulrik Brandes, Markus Eiglsperger, Michael Kaufmann, and Dorothea Wagner.
Sketch-Driven Orthogonal Graph Drawing. In: Proceedings of the 10th Inter-
national Symposium on Graph Drawing (GD’02). Ed. by Michael T. Goodrich and
Stephen G. Kobourov. Vol. 2528. Lecture Notes in Computer Science. Springer
Berlin/Heidelberg, 2002, 1–11.

[BRW13] Thomas Bläsius, Ignaz Rutter, and Dorothea Wagner. Optimal Orthogonal
Graph Drawing with Convex Bend Costs. In: Proceedings of the 40th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP’13). Ed. by
Fedor V. Fomin, Rūsiņš Freivalds, Marta Kwiatkowska, and David Peleg. Vol. 7965.
Lecture Notes in Computer Science. Springer Berlin/Heidelberg, 2013, 184–195.

[BTT84] Carlo Batini, Maurizio Talamo, and Roberto Tamassia. Computer Aided Lay-
out of Entity Relationship Diagrams. Journal of Systems and Software 4:2–3
(1984), 163–173.

[Chi+13] Markus Chimani, Carsten Gutwenger, Michael Jünger, Gunnar W. Klau, Karsten
Klein, and Petra Mutzel. The Open Graph Drawing Framework (OGDF),
543–569. In: Handbook of Graph Drawing and Visualization. Ed. by Roberto
Tamassia. Chapman and Hall/CRC, 2013.

[Chi+14] Markus Chimani, Giuseppe Di Battista, Fabrizio Frati, and Karsten Klein. Ad-
vances on Testing C-Planarity of Embedded Flat Clustered Graphs. In:
Proceedings of the 22nd International Symposium on Graph Drawing (GD’14).
Ed. by Christian Duncan and Antonios Symvonis. Vol. 8871. Lecture Notes in
Computer Science. Springer Berlin/Heidelberg, 2014, 416–427.

[CK12] Sabine Cornelsen and Andreas Karrenbauer. Accelerated BendMinimization.
Journal of Graph Algorithms and Applications 16:3 (2012), 635–650.

[CK13] Markus Chimani and Karsten Klein. Shrinking the Search Space for Clus-
tered Planarity. In: Proceedings of the 20th International Symposium on Graph
Drawing (GD’12). Ed. by Walter Didimo and Maurizio Patrignani. Vol. 7704.
Lecture Notes in Computer Science. Springer Berlin/Heidelberg, 2013, 90–101.

271

[Cor+05] Pier Francesco Cortese, Giuseppe Di Battista, Maurizio Patrignani, and Maur-
izio Pizzonia. Clustering Cycles into Cycles of Clusters. Journal of Graph
Algorithms and Applications 9:3 (2005), 391–413.

[Cor+08] Pier Francesco Cortese, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrig-
nani, and Maurizio Pizzonia.C-Planarity of C-Connected ClusteredGraphs.
Journal of Graph Algorithms and Applications 12:2 (2008), 225–262.

[Cor+09a] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein.
Introduction to Algorithms. 3rd. MIT Press, 2009.

[Cor+09b] Pier Francesco Cortese, Giuseppe Di Battista, Maurizio Patrignani, and Maurizio
Pizzonia. On Embedding a Cycle in a Plane Graph. Discrete Mathematics
309:7 (2009), 1856–1869.

[CW06] Sabine Cornelsen and Dorothea Wagner. Completely Connected Clustered
Graphs. Journal of Discrete Algorithms 4:2 (2006), 313–323.

[Dah98] Elias Dahlhaus. A Linear Time Algorithm to Recognize Clustered Planar
Graphs and its Parallelization. In: Proceedings of the 3rd Latin American Sym-
posium (LATIN’98). Ed. by Cláudio L. Lucchesi and Arnaldo V. Moura. Vol. 1380.
Lecture Notes in Computer Science. Springer Berlin/Heidelberg, 1998, 239–248.

[DF08] Giuseppe Di Battista and Fabrizio Frati. E�cient C-Planarity Testing for
Embedded Flat Clustered Graphs with Small Faces. In: Proceedings of the
15th International Symposium on Graph Drawing (GD’07). Ed. by Seok-Hee Hong,
Takao Nishizeki, and Wu Quan. Vol. 4875. Lecture Notes in Computer Science.
Springer Berlin/Heidelberg, 2008, 291–302.

[DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Springer London, 2013.

[Di +99] Giuseppe Di Battista, Walter Didimo, Maurizio Patrignani, and Maurizio Pizzo-
nia.Orthogonal andQuasi-UpwardDrawingswithVertices of Prescribed
Size. In: Proceedings of the 7th International Symposium on Graph Drawing
(GD’99). Ed. by Jan Kratochvíl. Vol. 1731. Lecture Notes in Computer Science.
Springer Berlin/Heidelberg, 1999, 297–310.

[Die10] Reinhard Diestel. Graph Theory. 4th Edition. Vol. 173. Graduate Texts in Math-
ematics. Springer Berlin/Heidelberg, 2010.

[DLV98] Giuseppe Di Battista, Giuseppe Liotta, and Francesco Vargiu. Spirality and
Optimal Orthogonal Drawings. SIAM Journal on Computing 27:6 (1998), 1764–
1811.

[Dor+10] Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Ef-
�cient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut De-
compositions. Algorithmica 58:3 (2010), 790–810.

[DT96a] Giuseppe Di Battista and Roberto Tamassia. On-Line Maintenance of Tricon-
nected Components with SPQR-Trees. Algorithmica 15:4 (1996), 302–318.

[DT96b] Giuseppe Di Battista and Roberto Tamassia. On-Line Planarity Testing. SIAM
Journal on Computing 25:5 (1996), 956–997.

272

[EFK00] Markus Eiglsperger, Ulrich Fößmeier, and Michael Kaufmann. Orthogonal
Graph Drawing with Constraints. In: Proceedings of the 11th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’00). Society for Industrial and
Applied Mathematics, 2000, 3–11.

[Eig+04] Markus Eiglsperger, Carsten Gutwenger, Michael Kaufmann, Joachim Kupke,
Michael Jünger, Sebastian Leipert, Karsten Klein, Petra Mutzel, and Martin
Siebenhaller. Automatic Layout of UML Class Diagrams in Orthogonal
Style. Information Visualization 3:3 (2004), 189–208.

[Eig03] Markus Eiglsperger. Automatic Layout of UML Class Diagrams: A Topolo-
gy-Shape-Metrics Approach. PhD thesis. Universität Tübingen, 2003.

[EIS76] Shimon Even, Alon Itai, and Adi Shamir. On the Complexity of Timetable
andMulticommodity Flow Problems. SIAM Journal on Computing 5:4 (1976),
691–703.

[EK05] Cesim Erten and Stephen G. Kobourov. Simultaneous Embedding of Planar
Graphs with FewBends. In: Proceedings of the 12th International Symposium on
Graph Drawing (GD’04). Ed. by János Pach. Vol. 3383. Lecture Notes in Computer
Science. Springer Berlin/Heidelberg, 2005, 195–205.

[EK72] Jack Edmonds and Richard M. Karp. Theoretical Improvements in Algorith-
mic E�ciency for Network Flow Problems. Journal of the ACM 19:2 (1972),
248–264.

[Fár48] István Fáry. On Straight-Line Representation of Planar Graphs. Acta Sci-
entiarum Mathematicarum 11 (1948), 229–233.

[FCE95a] Qing-Wen Feng, Robert F. Cohen, and Peter Eades. How to Draw a Planar
Clustered Graph. In: Proceedings of the 1st Annual International Conference on
Computing and Combinatorics (COCOON’95). Ed. by Ding-Zhu Du and Ming Li.
Vol. 959. Lecture Notes in Computer Science. Springer Berlin/Heidelberg, 1995,
21–30.

[FCE95b] Qing-Wen Feng, Robert F. Cohen, and Peter Eades. Planarity for Clustered
Graphs. In: Proceedings of the 3rd Annual European Symposium on Algorithms
(ESA’95). Ed. by Paul Spirakis. Vol. 979. Lecture Notes in Computer Science.
Springer Berlin/Heidelberg, 1995, 213–226.

[FK95] Ulrich Fößmeier and Michael Kaufmann. Drawing High Degree Graphs with
Low Bend Numbers. In: Proceedings of the 3th International Symposium on
Graph Drawing (GD’95). Ed. by Franz J. Brandenburg. Vol. 1027. Lecture Notes
in Computer Science. Springer Berlin/Heidelberg, 1995, 254–266.

[FK97] Ulrich Fößmeier and Michael Kaufmann. Algorithms and Area Bounds for
Nonplanar Orthogonal Drawings. In: Proceedings of the 5th International
Symposium on Graph Drawing (GD’97). Ed. by Giuseppe Di Battista. Vol. 1353.
Lecture Notes in Computer Science. Springer Berlin/Heidelberg, 1997, 134–145.

[FKK97] Ulrich Fößmeier, Goos Kant, and Michael Kaufmann. 2-Visibility Drawings
of Planar Graphs. In: Proceedings of the 4th International Symposium on Graph
Drawing (GD’96). Ed. by Stephen North. Vol. 1190. Lecture Notes in Computer
Science. Springer Berlin/Heidelberg, 1997, 155–168.

273

[Fow+09] J. Joseph Fowler, Carsten Gutwenger, Michael Jünger, Petra Mutzel, and Michael
Schulz.AnSPQR-TreeApproach toDecide Special Cases of Simultaneous
Embedding with Fixed Edges. In: Proceedings of the 16th International Sympo-
sium on Graph Drawing (GD’08). Ed. by Ioannis G. Tollis and Maurizio Patrignani.
Vol. 5417. Lecture Notes in Computer Science. Springer Berlin/Heidelberg, 2009,
157–168.

[Fow+11] J. Joseph Fowler, Michael Jünger, Stephen G. Kobourov, and Michael Schulz.
Characterizations of Restricted Pairs of Planar Graphs Allowing Simul-
taneous Embedding with Fixed Edges. Computational Geometry: Theory and
Applications 44:8 (2011), 385–398.

[FT06] Fedor V. Fomin and Dimitrios M. Thilikos. New Upper Bounds on the De-
composability of Planar Graphs. Journal of Graph Theory 51:1 (2006), 53–
81.

[Gas+06] Elisabeth Gassner, Michael Jünger, Merijam Percan, Marcus Schaefer, and Michael
Schulz. Simultaneous Graph Embeddings with Fixed Edges. In: Proceedings
of the 32nd Workshop on Graph-Theoretic Concepts in Computer Science (WG’06).
Ed. by Fedor V. Fomin. Vol. 4271. Lecture Notes in Computer Science. Springer
Berlin/Heidelberg, 2006, 325–335.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman and Company,
1979.

[GJ83] Michael R. Garey and David S. Johnson. Crossing Number is NP-Complete.
SIAM Journal on Algebraic and Discrete Methods 4:3 (1983), 312–316.

[GLS06] Michael T. Goodrich, George S. Lueker, and Jonathan Z. Sun. C-Planarity of
Extrovert Clustered Graphs. In: Proceedings of the 13th International Sympo-
sium on Graph Drawing (GD’05). Ed. by Patrick Healy and Nikola S. Nikolov.
Vol. 3843. Lecture Notes in Computer Science. Springer Berlin/Heidelberg, 2006,
211–222.

[GM01] Carsten Gutwenger and Petra Mutzel. A Linear Time Implementation of
SPQR-Trees. In: Proceedings of the 8th International Symposium on Graph Draw-
ing (GD’00). Ed. by Joe Marks. Vol. 1984. Lecture Notes in Computer Science.
Springer Berlin/Heidelberg, 2001, 77–90.

[GM77] Zvi Galil and Nimrod Megiddo. Cyclic Ordering is NP-Complete. Theoretical
Computer Science 5:2 (1977), 179–182.

[GT01] Ashim Garg and Roberto Tamassia. On the Computational Complexity of
Upward and Rectilinear Planarity Testing. SIAM Journal on Computing 31:2
(2001), 601–625.

[GT08] Qian-Ping Gu and Hisao Tamaki. Optimal Branch-Decomposition of Planar
Graphs inO (n3) Time. ACM Transactions on Algorithms 4:3 (2008), 30:1–30:13.

[GT85] Harold N. Gabow and Robert E. Tarjan. A Linear-Time Algorithm for a Spe-
cial Case of Disjoint Set Union. Journal of Computer and System Sciences 30:2
(1985), 209–221.

274

[Gut+02] Carsten Gutwenger, Michael Jünger, Sebastian Leipert, Petra Mutzel, Merijam
Percan, and René Weiskircher. Advances in C-Planarity Testing of Clus-
tered Graphs. In: Proceedings of the 10th International Symposium on Graph
Drawing (GD’02). Vol. 2528. Lecture Notes in Computer Science. Springer Berlin/
Heidelberg, 2002, 220–235.

[Hen+97] Monika Rauch Henzinger, Philip N. Klein, Satish Rao, and Sairam Subramanian.
Faster Shortest-Path Algorithms for Planar Graphs. Journal of Computer
and System Sciences 55:1 (1997), 3–23.

[HJL10] Bernhard Haeupler, Krishnam Jampani, and Anna Lubiw. Testing Simultane-
ous Planarity When the Common Graph Is 2-Connected. In: Proceedings
of the 21st International Symposium on Algorithms and Computation (ISAAC’10).
Vol. 6507. Lecture Notes in Computer Science. Springer Berlin/Heidelberg, 2010,
410–421.

[HJL13] Bernhard Haeupler, Krishnam Jampani, and Anna Lubiw. Testing Simultane-
ous PlanarityWhen the CommonGraph Is 2-Connected. Journal of Graph
Algorithms and Applications 17:3 (2013), 147–171.

[HN14] Seok-Hee Hong and Hiroshi Nagamochi. Simpler Algorithms for Testing
Two-Page Book Embedding of Partitioned Graphs. In: Proceedings of the
20th Annual International Conference on Computing and Combinatorics (CO-
COON’14). Ed. by Zhipeng Cai, Alex Zelikovsky, and Anu Bourgeois. Vol. 8591.
Lecture Notes in Computer Science. Springer International Publishing, 2014,
477–488.

[HT73] John Hopcroft and Robert E. Tarjan. Dividing a Graph into Triconnected
Components. SIAM Journal on Computing 2:3 (1973), 135–158.

[HT84] Dov Harel and Robert E. Tarjan. Fast Algorithms for Finding Nearest Com-
mon Ancestors. SIAM Journal on Computing 13:2 (1984), 338–355.

[Jel+09a] Vít Jelínek, Eva Jelínková, Jan Kratochvíl, and Bernard Lidický. Clustered
Planarity: Embedded Clustered Graphs with Two-Component Clusters.
Manuscript. 2009. url: http://orion.math.iastate.edu/lidicky/pub/
flat.pdf.

[Jel+09b] Vít Jelínek, Eva Jelínková, Jan Kratochvíl, and Bernard Lidický. Clustered Pla-
narity: Embedded Clustered Graphs with Two-Component Clusters (Ex-
tended Abstract). In: Proceedings of the 16th International Symposium on Graph
Drawing (GD’08). Ed. by Ioannis G. Tollis and Maurizio Patrignani. Vol. 5417.
Lecture Notes in Computer Science. Springer Berlin/Heidelberg, 2009, 121–132.

[Jel+09c] Vít Jelínek, Ondřej Suchý, Marek Tesař, and Tomáš Vyskočil. Clustered Pla-
narity: Clusters with Few Outgoing Edges. In: Proceedings of the 16th Inter-
national Symposium on Graph Drawing (GD’08). Ed. by Ioannis G. Tollis and
Maurizio Patrignani. Vol. 5417. Lecture Notes in Computer Science. Springer
Berlin/Heidelberg, 2009, 102–113.

275

http://orion.math.iastate.edu/lidicky/pub/flat.pdf
http://orion.math.iastate.edu/lidicky/pub/flat.pdf

[Jel+09d] Eva Jelínková, Jan Kára, Jan Kratochvíl, Martin Pergel, Ondřej Suchý, and
Tomáš Vyskočil. Clustered Planarity: Small Clusters in Cycles and Eule-
rian Graphs. Journal of Graph Algorithms and Applications 13:3 (2009), 379–
422.

[JS09] Michael Jünger and Michael Schulz. Intersection Graphs in Simultaneous
Embedding with Fixed Edges. Journal of Graph Algorithms and Applications
13:2 (2009), 205–218.

[KK03] Łukasz Kowalik and Maciej Kurowski. Short Path Queries in Planar Graphs
in Constant Time. In: Proceedings of the 34th Annual ACM Symposium on
Theory of Computing (STOC’03). ACM Press, 2003, 143–148.

[KM98] Gunnar W. Klau and Petra Mutzel. Quasi-Orthogonal Drawing of Planar
Graphs. Tech. rep. Max-Planck-Institut für Informatik, Saarbrücken, Germany,
1998.

[Kur30] Casimir Kuratowski. Sur le Probleme des Courbes Gauches en Topologie.
Fundamenta Mathematicae 15 (1930), 271–283.

[Len89] Thomas Lengauer. Hierarchical Planarity Testing Algorithms. Journal of
the ACM 36:3 (1989), 474–509.

[Lim14] Manuel Lima. The Book of Trees: Visualizing Branches of Knowledge.
Princeton Architectural Press, 2014.

[Orl93] James B. Orlin. A Faster Strongly Polynomial Minimum Cost Flow Algo-
rithm. Operations Research 41:2 (1993), 338–350.

[PCJ96] Helen C. Purchase, Robert F. Cohen, and Murray James. Validating Graph
Drawing Aesthetics. In: Proceedings of the 3th International Symposium on
Graph Drawing (GD’95). Ed. by Franz J. Brandenburg. Vol. 1027. Lecture Notes
in Computer Science. Springer Berlin/Heidelberg, 1996, 435–446.

[Rut11] Ignaz Rutter. TheMany Faces of Planarity: Matching, Augmentation, and
Embedding Algorithms for Planar Graphs. PhD thesis. Fakultät für Infor-
matik, Karlsruher Institut für Technologie (KIT), 2011.

[Sch13] Marcus Schaefer. Toward a Theory of Planarity: Hanani-Tutte and Pla-
narity Variants. Journal of Graph Algorithms and Applications 17:4 (2013), 367–
440.

[ST94] Paul D. Seymour and Robin Thomas. Call Routing and the Ratcatcher. Com-
binatorica 14:2 (1994), 217–241.

[Sto80] James A. Storer. The Node Cost Measure for Embedding Graphs on the
Planar Grid (Extended Abstract). In: Proceedings of the 12th Annual ACM
Symposium on Theory of Computing (STOC’80). ACM Press, 1980, 201–210.

[Tam87] Roberto Tamassia. On Embedding a Graph in the Grid with the Minimum
Number of Bends. SIAM Journal on Computing 16:3 (1987), 421–444.

[TDB88] Roberto Tamassia, Giuseppe Di Battista, and Carlo Batini. Automatic Graph
Drawing and Readability of Diagrams. IEEE Transactions on Systems, Man
and Cybernetics 18:1 (1988), 61–79.

276

[Wag36] Klaus Wagner. Bemerkungen zum Vierfarbenproblem. Jahresbericht der
Deutschen Mathematiker-Vereinigung 46 (1936), 26–32.

[Wan+09] Yanju Wang, Wei-Yu Lin, Kan Liu, Rachel J. Lin, Matthias Selke, Hartmuth C.
Kolb, Nangang Zhang, Xing-Zhong Zhao, Michael E. Phelps, Clifton K. F. Shen,
Kym F. Faull, and Hsian-Rong Tseng. An Integrated Micro�uidic Device for
Large-Scale in Situ Click Chemistry Screening. Lab on a Chip 9:16 (2009),
2281–2285.

[Whi32] Hassler Whitney.CongruentGraphs and theConnectivity ofGraphs.Amer-
ican Journal of Mathematics 54:1 (1932), 150–168.

277

9List of Publications

Journal Articles

[1] Testing Mutual Duality of Planar Graphs. International Journal of Compu-
tational Geometry & Applications 24:4 (2015), 325–346. Joint work with Patrizio
Angelini and Ignaz Rutter.

[2] Orthogonal Graph Drawing with Flexibility Constraints. Algorithmica
68:4 (2014), 859–885. Joint work with Marcus Krug, Ignaz Rutter, and Dorothea
Wagner.

[3] Disconnectivity and Relative Positions in Simultaneous Embeddings.
Computational Geometry: Theory and Applications 48:6 (2015), 459–478. Joint
work with Ignaz Rutter.

[4] Simultaneous PQ-Ordering with Applications to Constrained Embed-
ding Problems. ACM Transactions on Algorithms (2015). Accepted for Publica-
tion. Joint work with Ignaz Rutter.

Articles in Refereed Conference Proceedings

[5] Pixel and Voxel Representations of Graphs. In: Proceedings of the 23rd
International Symposium on Graph Drawing (GD’15). Lecture Notes in Computer
Science. Accepted for Publication. Springer Berlin/Heidelberg, 2015. Joint work
with M. Jawaherul Alam, Ignaz Rutter, Torsten Ueckerdt, and Alexander Wol�.

[6] Testing Mutual Duality of Planar Graphs. In: Proceedings of the 24th Inter-
national Symposium on Algorithms and Computation (ISAAC’13). Ed. by Leizhen
Cai, Siu-Wing Cheng, and Tak-Wah Lam. Vol. 8283. Lecture Notes in Computer
Science. Springer Berlin/Heidelberg, 2013, 350–360. Joint work with Patrizio
Angelini and Ignaz Rutter.

[7] Using ILP/SAT toDeterminePathwidth, VisibilityRepresentations, and
other Grid-Based Graph Drawings. In: Proceedings of the 21st International
Symposium on Graph Drawing (GD’13). Ed. by Stephen Wismath and Alexander
Wol�. Vol. 8242. Lecture Notes in Computer Science. Springer Berlin/Heidelberg,
2013, 460–471. Joint work with Therese Biedl, Benjamin Niedermann, Martin
Nöllenburg, Roman Prutkin, and Ignaz Rutter.

279

[8] Complexity ofHigher-DegreeOrthogonalGraphEmbedding in theKan-
dinsky Model. In: Proceedings of the 22th Annual European Symposium on
Algorithms (ESA’14). Ed. by Andreas S. Schulz and Dorothea Wagner. Vol. 8737.
Lecture Notes in Computer Science. Springer Berlin/Heidelberg, 2014, 161–
172. Joint work with Guido Brückner and Ignaz Rutter.

[9] Simultaneous Embedding: Edge Orderings, Relative Positions, Cutver-
tices. In: Proceedings of the 21nd International Symposium on Graph Drawing
(GD’13). Ed. by Stephen Wismath and Alexander Wol�. Vol. 8242. Lecture Notes
in Computer Science. Springer Berlin/Heidelberg, 2013, 220–231. Joint work
with Annette Karrer and Ignaz Rutter.

[10] Orthogonal Graph Drawing with Flexibility Constraints. In: Proceedings
of the 18th International Symposium on Graph Drawing (GD’10). Ed. by Ulrik
Brandes and Sabine Cornelsen. Vol. 6502. Lecture Notes in Computer Science.
Springer Berlin/Heidelberg, 2011, 92–104. Joint work with Marcus Krug, Ignaz
Rutter, and Dorothea Wagner.

[11] Orthogonal Graph Drawing with In�exible Edges. In: Proceedings of the
9th Conference on Algorithms and Complexity (CIAC’15). Ed. by Vangelis Th.
Paschos and Peter Widmayer. Vol. 9079. Lecture Notes in Computer Science.
Springer Berlin/Heidelberg, 2015, 61–73. Joint work with Sebastian Lehmann
and Ignaz Rutter.

[12] Disconnectivity and Relative Positions in Simultaneous Embeddings.
In: Proceedings of the 20th International Symposium on Graph Drawing (GD’12).
Ed. by Walter Didimo and Maurizio Patrignani. Vol. 7704. Lecture Notes in
Computer Science. Springer Berlin/Heidelberg, 2013, 31–42. Joint work with
Ignaz Rutter.

[13] Simultaneous PQ-Ordering with Applications to Constrained Embed-
ding Problems. In: Proceedings of the 24th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’13). Society for Industrial and Applied Mathematics,
2013. Joint work with Ignaz Rutter.

[14] A New Perspective on Clustered Planarity as a Combinatorial Embed-
ding Problem. In: Proceedings of the 22nd International Symposium on Graph
Drawing (GD’14). Ed. by Christian Duncan and Antonios Symvonis. Vol. 8871.
Lecture Notes in Computer Science. Springer Berlin/Heidelberg, 2014, 440–
451. Joint work with Ignaz Rutter.

[15] Optimal Orthogonal Graph Drawing with Convex Bend Costs. In: Pro-
ceedings of the 40th International Colloquium on Automata, Languages and
Programming (ICALP’13). Ed. by Fedor V. Fomin, Rūsiņš Freivalds, Marta
Kwiatkowska, and David Peleg. Vol. 7965. Lecture Notes in Computer Sci-

280

ence. Springer Berlin/Heidelberg, 2013, 184–195. Joint work with Ignaz Rutter
and Dorothea Wagner.

Book Chapters

[16] Simultaneous Embedding of Planar Graphs, 349–381. In: Handbook of
Graph Drawing and Visualization. Ed. by Roberto Tamassia. Chapman and
Hall/CRC, 2013. Joint work with Stephen G. Kobourov and Ignaz Rutter.

Theses

[17] Orthogonal Graph Drawing with Flexibility Constraints. Study Thesis.
Faculty of Informatics, Karlsruhe Institute of Technology (KIT), Aug. 2010.

[18] Simultaneous PQ-Ordering with Applications to Constrained Embed-
ding Problems. Diploma Thesis. Faculty of Informatics, Karlsruhe Institute of
Technology (KIT), Sept. 2011.

Poster

[19] PIGRA – A Tool for Pixelated Graph Representations. In: Proceedings of
the 22nd International Symposium on Graph Drawing (GD’14). Ed. by Christian
A. Duncan and Antonios Symvonis. Vol. 8871. Lecture Notes in Computer
Science. Springer Berlin/Heidelberg, 2014, 513–514. Joint work with Fabian
Klute, Benjamin Niedermann, and Martin Nöllenburg.

281

	Deutsche Zusammenfassung
	Introduction
	Motivation
	Scope of the Thesis
	Contribution and Outline
	Bend Minimization in Orthogonal Drawings
	Constrained Planarity

	Preliminaries
	Graph-Theoretic Notation
	Drawings and Planar Embeddings
	The SPQR-Tree
	Orthogonal Drawings
	Kandinsky Drawings
	Clustered Planarity
	Simultaneous Planarity

	I Orthogonal Drawings
	Inflexible Edges in Orthogonal Drawings
	Introduction
	A Matching of Inflexible Edges
	The General Algorithm
	Series-Parallel Graphs
	An FPT-Algorithm for General Graphs
	The Cost Functions of k-Critical Instances
	Computing the Cost Functions of Compositions

	Conclusion

	Bend Minimization with Convex Bend Costs
	Introduction
	Valid Drawings with Fixed Planar Embedding
	Flexibility of Split Components and Nice Drawings
	Optimal Drawings with Fixed Planar Embedding
	Optimal Drawings with Variable Planar Embedding
	Biconnected Graphs
	Connected Graphs
	Computing the Flow

	Conclusion

	Higher-Degree Nodes in the Kandinsky Model
	Introduction
	Complexity
	Orthogonal 01-Embeddability
	Kandinsky Bend Minimization

	A Subexponential Algorithm
	Interfaces of Kandinsky Representations
	Merging two Kandinsky Representations
	The Algorithm

	Conclusion

	II Constrained Planarity
	An Introduction to Simultaneous PQ-Ordering
	PQ-Trees Representing Cyclic Orders
	PQ-Tree Reduction
	PQ-Tree Projection
	Simultaneously Ordering Two PQ-Trees
	Simultaneously Ordering Multiple PQ-Trees
	Solvable Instances
	Representing Planar Embeddings

	A New Perspective on Clustered Planarity
	Introduction
	The CD-Tree
	Clustered and Constrained Planarity
	Flat-Clustered Graph
	General Clustered Graphs

	Cutvertices with Two Non-Trivial Blocks
	Conclusion

	Disconnectivity in Simultaneous Planarity
	Introduction
	Connecting Disconnected Graphs
	Disjoint Cycles
	A Polynomial-Time Algorithm
	A Compact Representation of all Simultaneous Embeddings
	Linear-Time Algorithm

	Connected Components with Fixed Embedding
	Conclusion

	Edge Orderings, Relative Positions, and Cutvertices in Simultaneous Planarity
	Introduction
	Preprocessing Algorithms
	Union Cutvertices
	Union Separating Pairs
	Connected Components that are Biconnected
	Special Bridges and Common-Face Constraints

	Preprocessing 2-Components in Linear Time
	Computing the Sefe-Instances with Union Bridge Constraints
	Constructing the Subbridge Instances
	Simultaneous Embedding with Union Bridge Constraints

	Edge Orderings and Relative Positions
	Relative Positions with Respect to a Cycle Basis
	Consistent Edge Orderings
	Common-Face Constraints
	Consistent Relative Positions
	Putting Things Together

	Conclusion

	Conclusion
	Summary
	Outlook

	Bibliography
	List of Publications

