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—— Abstract

The cluster editing problem is to transform an input graph into a cluster graph by performing a

minimum number of edge editing operations. A cluster graph is a graph where each connected
component is a clique. An edit operation can be either adding a new edge or removing an existing
edge. In this write-up we outline the core techniques used in the heuristic cluster editing algorithm
of the Karlsruhe and Potsdam Cluster Editing (KaPoCE) framework [2] (contains also an exact
solver), submitted to the heuristic track of the 2021 PACE challenge.
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1 Preliminaries

Let G = (V, E) be a simple and undirected graph. I(u) := {v | (u,v) € E} denotes the set
of all adjacent vertices of a vertex u € V. A clustering C := {C,...,C;} is a partition of
the vertex set V into [ non-empty and disjoint sets. A set C € C is also called a cluster.
We call a cluster C' € C a singleton cluster, if |C| = 1. Isolating a vertex u or moving
it into its own cluster means to assign it to a new singleton cluster C' = {u}. A vertex
u is adjacent to a cluster C' € C, if there exists a vertex v € I(u) with v € C. We can
transform G into a cluster graph where each cluster of a clustering C forms a clique by
adding all edges of E* := {(u,v) ¢ E | 3C € C : u,v € C} to E and removing all edges of
E-={(u,v)eE|3CeC:uecC A v¢C} from E.

2 Refinement Techniques

Label Propagation. The label propagation algorithm is a local search heuristic that was
initially proposed by Raghavan et al. [5] for community detection, as well as Karypis et al. [4]
for hypergraph partitioning, and it was already successfully applied to the cluster editing
problem [1]. The algorithm works in rounds. In each round, we visit the vertices in some
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order (random, increasing degree, or input) and move a vertex to an adjacent cluster that
minimizes the number of required edit operations (ties are broken randomly). In addition
to all adjacent clusters, we also consider isolating the vertex from its current cluster. The
algorithm proceeds until we reach a predefined number of rounds or none of the vertices
changed their cluster during a round. It can be initialized with an already existing solution
or can be used to create an initial solution by initially assigning each vertex to its own cluster.
For many problems, the algorithm converges within a few rounds. However, this was not the
case here. We observed that for larger instances roughly 10% of vertices are moved during a
round and most of them did not change the number of edits (these moves are called zero-gain
moves). This naturally perturbs the solution and enables frequent improvements in later
iterations of the algorithm (plateau search).

Clique Removal and Splitting. The next two refinement techniques were initially proposed
by Bastos et al. [1] for the cluster editing problem. Both algorithms also work in rounds
and in each round, we visit the clusters of the current solution in some order. The clique
removal heuristic tries to remove a cluster from the solution by moving the vertices to an
adjacent cluster that minimizes the number of edits (vertex isolation is also considered). The
clique splitting technique chooses two non-adjacent vertices of the considered cluster as seed
vertices and isolates them. Afterwards, we assign the remaining vertices to the cluster of one
of the two seed vertices based on which induces less edit operations. If the applied moves
increased our objective function, we revert them.

Vertex Swapping. The vertex swapping algorithm proceeds in a similar fashion as our
other refinement algorithms (several rounds and we visit the vertices in some order). The
algorithm moves a vertex speculatively into an adjacent cluster (could potentially increase
the number of required edits) and then tries to move vertices out of the target cluster. We
move a vertex out of the target cluster, if it decreases the number of required edits. If the
overall operation improves the solution quality, we apply the moves. Otherwise, we revert
them.

3 Variable Neighborhood Search

We have implemented two different algorithms that are based on the variable neighborhood
search (VNS) heuristic [3]. The general idea of such algorithms is to start from an initial
solution and then perturb the current solution (also called shaking in the literature) followed
by local search phase to find a new local optimum. This process can be repeated until a
predefined number of rounds or a time limit is reached.

Our first algorithm applies a perturbation operator to a large number of vertices (between
1% and 25% of the vertices) and then runs the refinement techniques described in Section 2.
The second algorithm only perturbs a few vertices (between 1 and 5) and then executes the
label propagation algorithm only initialized with the mutated vertices and their neighbors.
We call the first one global and the second highly-localized VINS. The rationale behind this
is that there are instances that converge very quickly and only specific mutations lead to
additional improvements. For such instances, the global algorithm is a good choice, since
bad decisions are reverted very quickly and the likelihood of mutating the right vertices
is very high. On the other hand, there are instances that converge very slowly, and the
perturbation of a large number of vertices can drastically degrade the solution quality such
that our refinement techniques are not able to restore the initial solution quality. Thus,
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performing highly-localized mutations and refinement becomes an important techniques to
escape from local optima.

We run the VNS algorithms in an alternating fashion, in short bursts of 20 seconds each.

However, we track the improvement made in the last burst, and prefer running the more
promising algorithm next.

Initial Solution. Initially, each vertex is assigned to its own cluster. To compute an initial
solution, we first run 100 rounds of our label propagation algorithm, then 20 rounds of our

vertex swapping algorithm and last, 10 rounds of the clique removal and splitting technique.

We repeat this several times (at most 100 times, but we abort after 10 seconds) and use the
best solution found as input for our VNS algorithms.

Global Variable Neighborhood Search. Our global VNS algorithm performs one of the
following two operations in each step: It either intensifies the current solution by applying
the refinement techniques described in Section 2 or applies one of our three perturbation
operators followed by an intensify operation. The decision which operation we choose next is
based on the improvement history of the last 5 runs of the corresponding operation. The
more an operator improves the solution quality compared to the other, the more likely it is
that we execute it next.

We have implemented three different perturbation operators, which are also described in
the work of Bastos et al. [1]. Each operator mutates between 1% and 25% of the vertices,
which we choose uniformly and at random. The first operator, which we call vertex isolator,

isolates a vertex. Our vertex mover operator, moves a vertex to a random adjacent cluster.

The third operator, which we call clique splitter, isolates a vertex from its current cluster and
then chooses one additional adjacent vertex from its previous cluster to form a new clique of
size two.

In an intensify step, we perform 25 rounds of label propagation, 5 rounds of vertex
swapping and 10 rounds of clique removal and splitting each. The vertex swapping and
clique removal and splitting techniques are only executed with a probability of 50%. After a
perturbation operation, we perform 50 rounds of label propagation, but abort early if the
estimated improvement (based on the improvement history of label propagation) is greater
than our initial edits before the perturbation operation plus 100. Further, we perform another

50 rounds of label propagation, if we are only 25 edits away from the initial number of edits.

We perform the other refinement techniques similar to before.

Highly-Localized Variable Neighborhood Search. 1In each step, our highly-localized VNS
algorithm selects between 1 and 5 vertices uniformly at random that are perturbed and,
subsequently performs a highly-localized run of label propagation. For each of the selected
vertices, we additionally choose an adjacent neighbor that we also perturb with a probability
of 75%. As perturbation operator, we either isolate a vertex from its current cluster or
move it to a random adjacent cluster. Afterwards, we perform 5 rounds of label propagation
restricted to the perturbed vertices and their neighbors. If the overall operation improved
the current solution, we apply all moves and otherwise, we revert them.
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