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Abstract. A simultaneous embedding of two graphs G 1 and G 2 with common
graph G = G 1 ∩ G 2 is a pair of planar drawings of G 1 and G 2 that coincide
on G. It is an open question whether there is a polynomial-time algorithm that
decides whether two graphs admit a simultaneous embedding (problem SEFE).

In this paper, we present two results. First, a set of three linear-time prepro-
cessing algorithms that remove certain substructures from a given SEFE instance,
producing a set of equivalent SEFE instances without such substructures. The
structures we can remove are (1) cutvertices of the union graph G 1 ∪ G 2 , (2)
cutvertices that are simultaneously a cutvertex in G 1 and G 2 and that have de-
gree at most 3 in G, and (3) connected components of G that are biconnected but
not a cycle.

Second, we give an O(n2)-time algorithm for SEFE where, for each pole u
of a P-node μ (of a block) of the input graphs, at most three virtual edges of μ
contain common edges incident to u. All algorithms extend to the sunflower case.

1 Introduction

A simultaneous embedding of two graphs G 1 and G 2 with common graph G = G 1 ∩
G 2 is a pair of planar drawings of G 1 and G 2 , that coincide on G. The problem to de-
cide whether a simultaneous embedding exists is called SEFE (simultaneous embedding
with fixed edges). This definition extends to more than two graphs. For three graphs
SEFE is NP-complete [7]. In the sunflower case it is required that every pair of input
graphs has the same intersection. See [2] for a survey on SEFE and related problems.

There are two fundamental approaches to solving SEFE in the literature. The first
approach is based on the characterization of Jünger and Schulz [10] stating that finding a
simultaneous embedding of two graphsG 1 and G 2 with common graph G is equivalent
to finding planar embeddings of G 1 and G 2 that induce the same embedding on G. The
second very recent approach by Schaefer [11] is based on Hanani-Tutte-style redrawing
results. One tries to characterize the existence of a SEFE via the existence of drawings
where no two independent edges of the same graph cross an odd number of times. The
existence of such drawings can be expressed using a linear system of boolean equations.

When following the first approach, we need two things to describe the planar embed-
ding of the common graph G. First, for each vertex v, a cyclic order of incident edges
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around v. Second, for every pair of connected components H and H ′ of G, the face f
of H containing H ′. We call this relationship the relative position of H ′ with respect
to H . To find a simultaneous embedding, one needs to find a pair of planar embeddings
that induce the same cyclic edge orderings (consistent edge orderings) and the same
relative positions (consistent relative positions) on the common graph G.

Most previous results use the first approach but none of them considers both con-
sistent edge orderings and relative positions. Most of them assume the common graph
to be connected or to contain no cycles. The strongest results of this type are the two
linear-time algorithms for the case that G is biconnected by Haeupler et al. [9] and by
Angelini et al. [1] and a quadratic-time algorithm for the case where G 1 and G 2 are bi-
connected and G is connected [4]. In the latter result, SEFE is modeled as an instance of
the problem SIMULTANEOUS PQ-ORDERING. On the other hand, there is a linear-time
algorithm for SEFE if the common graph consists of disjoint cycles [3], which requires
to ensure consistent relative positions but makes edge orderings trivially consistent.

The advantage of the second approach is that it implicitly handles both, consistent
edge orderings and consistent relative positions, at the same time. Thus, the results by
Schaefer [11] are the first that handle SEFE instances where the common graph consists
of several, non-trivial connected components. He gives a polynomial-time algorithm
for the cases where each connected component of the common graph is biconnected
or has maximum degree 3. Although this approach is conceptionally simple, very ele-
gant, and combines several notions of planarity within a common framework, it has two
disadvantages. The running time of the algorithms are quite high and the high level of
abstraction makes it difficult to generalize the results, e.g., to the sunflower case.

Contribution & Outline. In this paper, we follow the first approach and show how to
enforce consistent edge orderings and consistent relative positions at the same time,
by combining different recent approaches, namely the algorithm by Angelini et al. [1]
and result on SIMULTANEOUS PQ-ORDERING [4] for consistent edge orderings and the
result on disjoint cycles [3] for consistent relative positions. To handle relative positions
of connected components to each other without knowing their embedding, we show that
these relative positions can be expressed in terms of relative positions with respect to a
cycle basis. In addition to that, we are able to handle certain cutvertices of G 1 and G 2 .

More precisely, we classify a vertex v to be a union cutvertex, a simultaneous cutver-
tex, and an exclusive cutvertex if v is a cutvertex of G 1 ∪ G 2 , of G 1 and G 2 but not
of G 1 ∪ G 2 , and of G 1 but not G 2 or the other way around, respectively. We say that
v has common-degree k if it is a common vertex with degree k in G. We present three
preprocessing algorithms that simplify given instances of SEFE; see Section 3. They re-
move union cutvertices and simultaneous cutvertices with common-degree 3 (note that
simultaneous cutvertices with common degree less than 3 cannot exist), and replace
connected components of G that are biconnected by cycles. They run in linear time and
can be applied independently. The latter algorithm together with the linear-time algo-
rithm for disjoint cycles [3] improves the result by Schaefer [11] for instances where
every connected component of G is biconnected to linear time and the sunflower case.

In Section 4 we show how to solve instances that have common P-node degree 3 and
contain neither union nor simultaneous cutvertices in quadratic time. An instance has
common P-node degree k if, for each pole u of a P-node μ (of a block) of the input
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graphs, at most k virtual edges of μ contain common edges incident to u. Together
with the preprocessing steps, this includes the case where every connected component
of G is biconnected, has maximum degree 3, or is outerplanar with maximum degree 3
cutvertices. As before, this approach also applies to the sunflower case.

2 Preliminaries

Connectivity & SPQR-trees. A graph is connected if there exists a path between any
pair of vertices. A separating k-set is a set of k vertices whose removal disconnects the
graph. Separating 1-sets and 2-sets are cutvertices and separation pairs, respectively.
A connected graph is biconnected if it has no cut vertex and triconnected if it has no
separation pair. The maximal biconnected components of a graph are called blocks. The
split components with respect to a separating k-set are the maximal subgraphs that are
not disconnected by removing the separating k-set.

The SPQR-tree T of a biconnected graph G represents the decomposition of G along
its split pairs, where a split pair is either a separating pair or a pair of adjacent ver-
tices [6]. We consider the SPQR-tree to be unrooted, representing embeddings on the
sphere, i.e., planar embeddings without a designated outer face.

Let {s, t} be a split pair and let H1 and H2 be two subgraphs of G such that H1 ∪
H2 = G and H1 ∩ H2 = {s, t}. Consider the tree consisting of two nodes μ1 and
μ2 associated with the graphs H1 + {s, t} and H2 + {s, t}, respectively. These graphs
are called skeletons of the nodes μi, denoted by skel(μi), and the special edge {s, t} is
a virtual edge. The edge connecting the nodes μ1 and μ2 associates the virtual edges
in skel(μ1) and skel(μ2) with each other. The expansion graph of a virtual edge {s, t}
is the subgraph of G it represents, that is in skel(μ1) the expansion graph of {s, t} is H2

and the expansion graph of {s, t} in skel(μ2) is H1. A combinatorial embedding of G
uniquely induces a combinatorial embedding of skel(μ1) and skel(μ2) and vice versa.

Applying this kind of decomposition systematically yields the SPQR-tree T . The
skeletons of the internal nodes of T are either a cycle (S-node), a bunch of parallel
edges (P-node) or a triconnected planar graph (R-node). The leaves are Q-nodes, and
their skeleton consists of two vertices connected by a virtual and a normal edge. Thus,
the only possible embedding choices are flipping skeletons of R-nodes and ordering the
edges in skeletons of P-nodes. The SPQR-tree can be computed in linear time [8].

Let T 1 by the SPQR-tree of a block of G 1 in an instance of SEFE and let G be the
common graph. Let further μ be a P-node of T 1 . We say that μ has common P-node
degree k if both vertices in skel(μ) are incident to common edges in the expansion
graphs of at most k virtual edges (note that these can be different edges for the two
vertices). We say that G 1 has common P-node degree k if each P-node in the SPQR-
tree of each block of G 1 has common P-node degree k. If this is the case for G 1 and
G 2 , we say that the instance of SEFE has common P-node degree k.

PQ-trees. A PQ-tree, originally introduced by Booth and Lueker [5], is a tree, whose
inner nodes are either P-nodes or Q-nodes (note that these P-nodes have nothing to do
with the P-nodes of the SPQR-tree). The order of edges around a P-node can be ordered
arbitrarily, the edges around a Q-node are fixed up to a flip. In this way, a PQ-tree repre-
sents a set of orders on its leaves. A rooted PQ-tree represents linear orders, an unrooted
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PQ-tree represents cyclic orders (in most cases we consider unrooted PQ-trees). Given
a PQ-tree T and a subset S of its leaves, there exists another PQ-tree T ′ representing
exactly the orders represented by T where the elements in S are consecutive. The tree
T ′ is the reduction of T with respect to S. The projection of T to S is a PQ-tree with
leaves S representing exactly the orders on S that are represented by T .

The problem SIMULTANEOUS PQ-ORDERING has several PQ-trees sharing some
leaves as input, that are related by identifying some of their leaves [4]. More precisely,
every instance is a directed acyclic graph, where each node is a PQ-tree, and each arc
(T, T ′) has the property that there is an injective map from the leaves of the child T ′

to the leaves of the parent T . For each PQ-tree in such an instance, one wants to find
an order of its leaves such that for every arc (T, T ′) the order chosen for the parent T
is an extension of the order chosen for the child T ′ (with respect to the injective map).
We will later use instances of SIMULTANEOUS PQ-ORDERING to express relations
between orderings of edges around vertices.

3 Preprocessing Algorithms

In this section, we present several algorithms that can be used as a preprocessing of a
given SEFE instance. The result is usually a set of SEFE instances that admit a solution
if and only if the original instance admits one. The running time of the preprocessing
algorithms is linear, and so is the total size of the equivalent set of SEFE instances. Each
of the preprocessing algorithms removes certain types of structures form the instance,
in particular from the common graph. Namely, we show that we can eliminate union
cutvertices, simultaneous cutvertices with common-degree 3, and connected compo-
nents ofG that are biconnected but not a cycle. None of these algorithms introduces new
cutvertices in G or increases the degree of a vertex. Thus, the preprocessing algorithms
can be successively applied to a given instance, removing all the claimed structures.

Let (G 1 , G 2 ) be a SEFE instance with common graph G = G 1 ∩ G 2 . We can
equivalently encode such an instance in terms of its union graph G∪ = G 1 ∪ G 2 ,
whose edges are labeled {1}, {2}, or {1, 2}, depending on whether they are contained
exclusively in G 1 , exclusively in G 2 , or in G, respectively. Any graph with such an edge
coloring can be considered as a SEFE instance. Since sometimes the coloring version is
more convenient, we use these notions interchangeably throughout this section.

3.1 Union Cutvertices and Simultaneous Cutvertices

Fig. 1. A simultaneous cutvertex with
common-degree 3. The gray regions
are the split components of G 1 , the
new dashed edge belongs to G 2 .

It is not hard to see that union cutvertices of a SEFE

instance can be used to split it into independent in-
stances. A simultaneous cutvertex with common-
degree 3 can be modified as in Fig. 1, yielding an
equivalent instance. Exhaustively applying these
ideas, yields the following results; proofs are omit-
ted due to space constraints.

Theorem 1. There is a linear-time algorithm that
decomposes a SEFE instance into an equivalent set
of SEFE instances that do not contain union cutvertices.



224 T. Bläsius, A. Karrer, and I. Rutter

Theorem 2. Let (G 1 , G 2 ) be an instance of SEFE such that every simultaneous cutver-
tex has common-degree 3. An equivalent instance without simultaneous cutvertices can
be computed in linear time.

3.2 Connected Components that are Biconnected

Let (G 1 , G 2 ) be a SEFE instance. Throughout this section, we assume without loss of
generality that G 1 andG 2 are connected [3] and that the common graphG is an induced
subgraph of G 1 and G 2 . The latter can be achieved by subdividing each exclusive edge
once, which clearly does not alter the existence of a SEFE.

Let C be a connected component of G that is a cycle. A union bridge of G 1 and G 2

with respect to C is a connected component of G∪ − C together with all its attach-
ment vertices on C. Similarly, there are 1 -bridges and 2 -bridges, which are connected
components of G 1 − C and G 2 − C together with their attachment vertices on C, re-
spectively. We say that two bridges B1 and B2 alternate if there are attachments a1, b1
of B1 and attachments a2, b2 of B2, such that the order along C is a1a2b1b2. We have
the following lemma.

Lemma 1. Let G 1 and G 2 be two planar graphs and let C be a connected component
of the common graph that is a cycle. Then the graphsG 1 andG 2 admit a SEFE where C
is the boundary of the outer face if and only if (i) each union bridge admits a SEFE

together with C and (ii) no two i -bridges of C alternate for i = 1, 2.

Proof. Clearly the conditions are necessary; we prove sufficiency. Let B1, . . . , Bk be
the union bridges with respect to C, and let (E 1

1 , E 2
1 ), . . . , (E 1

k , E
2

k ) be the correspond-
ing simultaneous embeddings of Bi together with C, which exist by condition (i). Note
that each union bridge is connected, and hence all its edges and vertices are embedded
on the same side of C. After possibly flipping some of the embeddings, we may assume
that each of them has C with the same clockwise orientation as the outer face.

We now glue E 1
1 , . . . , E 1

k to an embedding E 1 of G 1 , which is possible by con-
dition (ii). In the same way, we find an embedding E 2 of G 2 from E 2

1 , . . . , E 2

k . We
claim that (E1, E2) is a SEFE of G 1 and G 2 . For the consistent edge orderings, observe
that any common vertex v with common-degree at least 3 is contained, together with
all neighbors, in some union bridge Bi. The compatibility of the edge ordering fol-
lows since (E 1

i , E 2

i ) is a SEFE. Concerning the relative position of a vertex v and some
common cycle C′, we note that the relative positions clearly coincide in E 1 and E 2

for C = C′. Otherwise C′ is contained in some union bridge. If v is embedded in the
interior of C′ in one of the two embeddings, then it is contained in the same union
bridge as C′, and the compatibility follows. If this case does not apply, it is embedded
outside of C′ in both embeddings, which is compatible as well. ��

Now consider a connected component C of the common graph G of a SEFE instance
such that C is biconnected. Such a component is called 2-component. If C is a cycle,
it is a trivial 2-component. We define the union bridges, and the 1 - and 2 - bridges
of G 1 and G 2 with respect to C as above. We call an embedding E of C together with
an assignment of the union bridges to its faces admissible if and only if, (i) for each
union bridge, all attachments are incident to the face to which it is assigned, and (ii) no
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two 1 - or 2 -bridges that are assigned to the same face alternate. For a union bridge B,
let CB denote the cycle consisting of the attachments of B in the ordering of an arbitrary
cycle of G containing all the attachments. It can be shown that this cycle is uniquely
determined. Let GB denote the graph consisting of B and CB . We call these graphs the
union bridge graphs.

Lemma 2. Let G 1 and G 2 be two connected planar graphs and let C be 2-component
of the common graph G. Then the graphs G 1 and G 2 admit a SEFE if and only if (i) C
admits an admissible embedding, and (ii) each union bridge graph admits a SEFE. If a
SEFE exists, the embedding of C can be chosen as an arbitrary admissible embedding.

Proof. Clearly, a SEFE of G 1 and G 2 defines an embedding of C and a bridge assign-
ment that is admissible. Moreover, it induces a SEFE of each union bridge graph.

Conversely, assume that C admits an admissible embedding and each union bridge
graph admits a SEFE. We obtain a SEFE of G 1 and G 2 as follows. Embed C with
the admissible embedding and consider a face f of this embedding with facial cy-
cle Cf . Let B1, . . . , Bk denote the union bridges that are assigned to this face, and
let (E 1

1 , E 2
1 ), . . . , (E 1

k , E
2

k ) be simultaneous embeddings of the bridge graphs GB . By
subdividing the cycle CB , in each of the embeddings, we may assume that the outer
face of each Bi in the embedding (E 1

i , E 2

i ) is the facial cycle Cf with the same orien-
tation in each of them. By Lemma 1, we can hence combine them to a single SEFE of
all union bridges whose outer face is the cycle Cf . We embed this SEFE into the face f
of C. Since we can treat the different faces of C independently, applying this step for
each face yields a SEFE of G 1 and G 2 with the claimed embedding of C. ��

Lemma 2 suggests a simple strategy for reducing SEFE instances containing non-
trivial 2-components. Namely, take such a component, construct the corresponding
union bridge graphs, where C occurs only as a cycle, and find an admissible embed-
ding of C. Finding an admissible embedding for C can be done as follows. To enforce
the non-overlapping attachment property, replace each 1 -bridge of C by a dummy 1 -
bridge that consists of a single vertex that is connected to the attachments of that bridge
via edges in E 1 . Similarly, we replace 2 -bridges, which are connected to attachments
via exclusive edges in E 2 . We seek a SEFE of the resulting instance (where the com-
mon graph is biconnected), additionally requiring that dummy bridges belonging to the
same union bridge are embedded in the same face. We also refer to such an instance as
SEFE with union bridge constraints. A slight modification of the algorithm by Angelini
et al. [1] can decide the existence of such an embedding in polynomial time. It then
remains to treat the bridge graphs. Exhaustively applying Lemma 2 results in a set of
SEFE instances where each 2-component is trivial.

Linear-Time Decomposition. We now show that the set of instances resulting from
exhaustively applying Lemma 2 can be computed in linear time.

Theorem 3. Given a SEFE instance, an equivalent set of instances of total linear size
such that each 2-component of these instances is trivial can be computed in linear time.

Let G be a planar graph and let C1, . . . , Ck be connected components of G. We are
interested in simultaneously determining for each component Ci the number of inci-
dent bridges, and for each such bridge its attachment vertices. For this, we introduce
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the notion of subbridges. A subbridge of G with respect to C1, . . . , Ck is a maximal
connected subgraph of G that does not become disconnected by removing all vertices
of one component Ci. It is readily seen that each Ci-bridge B contains a unique sub-
bridge S incident to Ci and that the attachments of S at Ci are exactly the attachments
of B at Ci. We will thus rather work with the subbridges than the actual bridges as they
represent the same information but in a more compact way. Our reduction now works
in three phases.

1. Compute for each 2-component of G the number of 1 -, 2 -bridges, for each such
bridge its attachments, and the grouping of these bridges into union bridges.

2. Find for each 2-component an admissible embedding with respect to its bridges.
3. Compute for each subbridge of G with respect to its 2-components a corresponding

instance where each 2-component has been replaced by a suitable cycle.

The correctness of this approach descends from Lemma 2, since the set of instances
computed by the procedure is exactly the one that can be obtained by exhaustively ap-
plying this lemma. The details of the implementation of this procedure are deferred to
the full version of this paper. Here we only sketch the main ideas. For step 1, we exploit
the fact that, after contracting each connected component of G that is biconnected to a
single vertex, (almost) every such component is a cutvertex, and the union subbridges
are essentially the blocks of the resulting graph. We can then traverse for each cutver-
tex its incident edges and label them by the block (subbridge) containing them. This
allows us to construct the dummy-bridges and union bridges that are solved in step 2.
For step 2, we modify the algorithm due to Angelini et al.[1]. Augmenting it such that
it computes admissible embedding in polynomial time is straightforward. Achieving
linear running time is quite technical and, like the linear version of the original algo-
rithm, requires some intricate data structures. Step 3 is finally implemented by taking
the admissible embeddings from step 2. We then traverse each such face exactly one,
and construct, during this traversal, the corresponding cycles in all incident subbridges
that are embedded in this face.

4 Instances with Common P-Node Degree 3

We consider instances of SEFE that have common P-node degree 3. Recall that a si-
multaneous embedding must induce consistent edge orderings and consistent relative
positions on the common graph. We show how to address both requirements separately,
by formulating necessary and sufficient constraints using linear equations over F2. Both
resulting systems of equations share all variables representing embedding choices. Sat-
isfying both sets of linear equations at the same time then solves SEFE.

Before we can follow this strategy, we need to address one problem. The relative
position of a component H ′ of G with respect to another connected component H ,
denoted by posH(H ′), is the face of H containing H ′. However, the set of faces of H
depends on the embedding of H . To be able to handle relative positions independently
from edge orderings, we need to express the relative positions independently from faces.



Simultaneous Embedding: Edge Orderings, Relative Positions, Cutvertices 227

4.1 Relative Positions with Respect to a Cycle Basis

A generalized cycle C in a graph H is a subset of its edges such that every vertex of H
has an even number of incident edges in C. The sum C + C′ of two generalized cycles
is the symmetric difference between the edge sets, i.e., an edge e is contained in C+C′

if and only if it is contained in C or in C′ but not in both. The resulting edge set C+C′

is again a generalized cycle. The set of all generalized cycles in H is a vector space
over F2. A basis of this vector space is called cycle basis of H .

Instead of considering the relative position posH(H ′) of a connected component H ′

with respect to another component H , we choose a cycle basis C of H and show that
the relative positions of H ′ with respect to the cycles in C suffice to uniquely define
posH(H ′), independent from the embedding of H . We assume H to be biconnected.
All results can be extended to connected graphs by using a cycle basis for each block.

Let C0, . . . , Ck be the set of facial cycles with respect to an arbitrary planar embed-
ding of H . The set C = {C1, . . . , Ck} obtained by removing one of the facial cycles is
a cycle basis of G. A cycle basis that can be obtained in this way is called planar cycle
basis. In the following we assume all cycle bases to be planar cycle bases. Moreover,
we consider all cycles to have an arbitrary but fixed orientation, which has the effect,
that posC(p) for any cycle C and any point p can have either the value LEFT or RIGHT.

Theorem 4. Let H be a planar graph embedded on the sphere, let p be a point on the
sphere, and let C = {C1, . . . , Ck} be an arbitrary planar cycle basis of H . Then the
face containing p is determined by the relative positions posCi

(p) for 1 ≤ i ≤ k.

Proof (sketch). Clearly, the point p and the face f containing p have to lie on the same
side of each of the cycles in C. It remains to show that the face with this property
is unique. Let C be the facial cycle of f and let C = C1 + · · · + C� be the linear
combination of basis cycles of C. The position vector of a point p with respect to the
facial cycle C is pos(p) = (posC1

(p), . . . , posC�
(p)). It can be seen that inside f , the

vector pos(p) has a different parity of values LEFT than outside, which shows, that no
other face can have the same relative positions with respect to all cycles in C. ��

4.2 Consistent Edge Orderings

We first assume that the graphs G 1 and G 2 are biconnected. There exists an instance of
SIMULTANEOUS PQ-ORDERING that has a solution if and only ifG 1 andG 2 admit em-
beddings with consistent edge ordering [4]. This solution is based on the PQ-embedding
representation, an instance of SIMULTANEOUS PQ-ORDERING representing all embed-
dings of a biconnected planar graph. We describe this embedding representation and
show how to simplify it for instances that have common P-node degree 3.

For each vertex v 1 of G 1 , the PQ-embedding representation, denoted by D(G 1 ),
contains the embedding tree T (v 1 ) having a leaf for each edge incident to v 1 , repre-
senting all possible orders of edges around v 1 . For every P-node μ 1 in the SPQR-tree
T 1 of G 1 that contains v 1 in skel(μ 1 ) there is a P-node in T (v 1 ) representing the
choice to reorder the virtual edges in skel(μ 1 ). Similarly, for every R-node μ 1 in T 1

containing v 1 there is a Q-node in T (v 1 ) whose flip corresponds to the flip of skel(μ 1 ).
As the orders of edges around different vertices of G 1 cannot be chosen independently



228 T. Bläsius, A. Karrer, and I. Rutter

T (v 1 )embedding trees

consistency trees

. . .

. . .

. . .

. . .

common embedding tree T (v)

T (v 2 )

Fig. 2. The Q-embedding representations of G 1 and G 2 and one common embedding tree

from each other, so called consistency trees are added as common children to enforce
Q-nodes stemming from the same R-node in T 1 to have the same flip and P-nodes stem-
ming from the same P-node to have consistent (i.e., opposite) orders. Every solution of
the resulting instance corresponds to a planar embedding of G 1 and vice versa [4].

As we are only interested in the order of common edges, we modify D(G 1 ) by pro-
jecting each PQ-tree to the leaves representing common edges. As G 1 and G 2 have
common P-node degree 3, all P-nodes of the resulting PQ-trees have degree 3 and can
be assumed to be Q-nodes representing a binary decision. We call the resulting in-
stance Q-embedding representation and denote it by D(G 1 ). Let μ 1 be an R-node of
the SPQR-tree T 1 whose embedding has influence on the ordering of common edges
around a vertex. It is not hard to see that the Q-embedding representation contains a
consistency tree consisting of a single Q-node representing the flip of skel(μ 1 ). We
associate the binary variable ord(μ 1 ) with this decision. For a P-node μ 1 we get a sim-
ilar result. Let u 1 and v 1 be the nodes in skel(μ 1 ). If the consistency tree enforcing a
consistent decision in the embedding trees T (u 1 ) and T (v 1 ) has degree 3, its flip repre-
sents the embedding decision for skel(μ 1 ) and we again get a binary variable ord(μ 1 ).
Otherwise, this consistency tree contains two or less leaves and can be ignored. Then
the choices for the Q-nodes corresponding to μ 1 in T (u 1 ) and T (v 1 ) are independent
and we get one binary variable for each of these Q-nodes. We denote these variables by
ord(μ 1

u) and ord(μ 1
v ). We call these variables PR-ordering variables.

For a common vertex v occurring as v 1 and v 2 in G 1 and G 2 , respectively, we can
ensure a consistent edge ordering by adding a so called common embedding tree T (v)
as child of the embedding trees T (v 1 ) and T (v 2 ) in the Q-embedding representations
of G 1 and G 2 ; see Fig. 2. We get the following lemma.

Lemma 3. Let G 1 and G 2 be two biconnected graphs with common P-node degree 3.
Requiring the common edges to be ordered consistently is equivalent to satisfying a
system of linear equations Mord over F2 with the following properties.

(i) All equations in Mord are of the type x+ y = c for c ∈ F2.
(ii) Mord contains all PR-ordering variables.

(iii) Mord has linear size and can be computed in linear time.

In the following, we extend this result to the case where we allow exclusive cutver-
tices. Let B 1

1 , . . . , B
1

k be the blocks of G 1 and let B 2
1 , . . . , B

2

� be the blocks of G 2 .
We say that embeddings of these blocks have blockwise consistent edge orderings if for
every pair of blocks B 1

i and B 2

j sharing a vertex v the edges incident to v they share
are ordered consistently. To have consistent edge orderings, it is obviously necessary to
have blockwise consistent edge orderings.
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When composing the embeddings of two blocks that share a cutvertex, the edges of
each of the two blocks have to appear consecutively (note that this is no longer true for
three or more blocks), which leads to another necessary condition. Let v be an exclusive
cutvertex of G 1 . Then v is contained in a single block of G 2 whose embedding induces
an order O 2 on all common edges incident to v. For every pair of blocks B 1

i and B 2

j

containing v, the edges in B 1

i must appear consecutively in the order of the edges
incident to v in B 1

i and B 2

j that is induced by O 2 . If this is true for every exclusive
cutvertex, we say that the embeddings have pairwise consecutive blocks.

Lemma 4. Two graphs without simultaneous cutvertices admit embeddings with con-
sistent edge orderings if and only if their blocks admit embeddings that have blockwise
consistent edge orderings and pairwise consecutive blocks.

To extend Lemma 3 to the case where we allow exclusive cutvertices, we enforce
blockwise consistent edge orderings and pairwise consecutive blocks by adding addi-
tional PQ-trees to the above instance of SIMULTANEOUS PQ-ORDERING. As before,
we get direct access to the embedding chosen for each block, via the PR-ordering vari-
ables. We want to get access to the ordering of common edges around a cutvertex v of
G 1 in a similar way. Let B 1 be a block that contains the common edge e incident to v
and let e1 and e2 be two common edges incident to v that are contained in a different
block. We use the cutvertex-ordering variable ord(e1, e2, B

1 ) to denote the order of
e1, e2, and e. Note that this is independent from the choice of the edge e of B 1 . To
decrease the number of variables, we only consider those variables that are required by
a cycle basis C, where ord(e1, e2, B 1 ) is required by C if e1 and e2 share a cycle in C.

Lemma 5. Given two graphs without union or simultaneous cutvertices with common
P-node degree 3, requiring the common edges to be ordered consistently is equivalent
to satisfying a system of linear equations Mord with the following properties.

(i) All equations in Mord are of the type x+ y = 0 or x+ y = 1.
(ii) Mord contains all PR-ordering variables and all cutvertex-ordering variables re-

quired by a cycle basis of the common graph.
(iii) Mord has size O(min{n2, nΔ2}) (where Δ is the maximum degree in the common

graph) and can be computed in linear time in its size.

4.3 Consistent Relative Positions

In this section, we present a system of linear equationsMpos containing the PR-ordering
and cutvertex-ordering variables such that satisfying Mpos is equivalent to requiring
consistent relative positions for an instance of SEFE. Let H and H ′ be two connected
components of the common graph G. To represent the relative position posH′ (H) of H
with respect to H ′, we use the relative positions posC(H) of H with respect to cycles
C in the cycle basis of H ′ (Theorem 4). To get binary variables, we use posC(H) = 0 if
H lies to the right of C and posC(H) = 1 if H lies to the left of C. When we consider
the graph G 1 containing G, it is known that the value of posC(H) is determined by a
single, very local embedding decision of G 1 [3]. In the following we consider the three
possible cases that posC(H) is determined by an R-node, by a P-node or by a cutvertex.
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R-Node. If posC(H) is determined by an R-node μ, then C induces a cycle κ in skel(μ)
and parts of H are contained in a virtual edge ε not contained in κ. The relative position
of H with respect to C is the same as the position of ε with respect to κ [3]. As the
value of posκ(ε) changes, when the embedding of skel(μ) changes, we can simply set
posC(H) + ord(μ) = c (where c ∈ F2 depends on the reference embedding of skel(μ)
and the orientation of C). Note that this implicitly ensures the consistency of all relative
positions that are determined by thee embedding of skel(μ).

P-Node. If posC(H) is determined by the embedding of skel(μ) of a P-node μ, then
C induces a cycle κ (of length 2) in skel(μ) and H is completely contained in a single
edge ε of skel(μ) not belonging to κ. Again posC(H) in G is the same as posκ(ε) in
skel(μ). However, this time the embedding choices of skel(μ) are more complicated
than to flip or not to flip. Thus, we have to consider all relative positions decided by the
embedding of skel(μ) at once, to get the dependencies between them.

We only consider the case where the common graph induces paths between the ver-
tices of skel(μ) in the expansion graphs of three edges ε1, ε2, and ε3 (all other cases are
simpler as μ has common P-node degree 3). Cycles in the cycle basis C can induce three

ε1 ε2 ε3

000101 011

κ1,2 κ2,3 κ1,3

Fig. 3. A P-node with the
three cycles κ1,2, κ1,2,
and κ1,2 (dashed)

different cycles, namely κ1,2, κ2,3, and κ1,3 consisting of
the virtual edges (ε1, ε2), (ε2, ε3), and (ε1, ε3), respectively.
For every virtual edge ε �= εi, we get the three variables
posκ1,2

(ε), posκ2,3
(ε), and posκ1,3

(ε) determining the posi-
tion of ε with respect to these three cycles. Recall that the
variable ord(μ) determines the ordering of the three edges ε1,
ε2, and ε3. Consider the case that ord(μ) = 0 and assume that
the reference order of ε1, ε2, and ε3 as well as the orientation
of the cycles κ1,2, κ2,3, and κ1,3 is as shown in Fig. 3. Then
either all three relative positions have the value 0 (which corre-
sponds to RIGHT), or exactly two relative position has the value 1. Thus, a combination
of values for the positions posκ1,2

(ε), posκ2,3
(ε), and posκ1,3

(ε) is possible if and only
if there is an even number of 1s. When setting ord(μ) = 1, there need to be an odd num-
ber of 1s. This yields the constraint ord(μ)+posκ1,2

(ε)+posκ2,3
(ε)+posκ1,3

(ε) = 0 (a
different reference embedding or different orientations of the cycles may lead to a 1 on
the right-hand side of the equation). As for R-nodes we set posC(H) + posκi,j

(ε) = c
(c ∈ F2), if C induces κi,j in skel(μ) and H is contained in the expansion graph of ε.

Cutvertex. The relative position posC(H) is determined by a cutvertex v of G 1 if C
contains v and H lies in a split component S (with respect to v) different from the
split component containing C. We can either embed the whole split component S to the
left or to the right of C. For this decision, we introduce the variable posC(S). Clearly,
we get posC(H) = posC(S) for every connected component H of G in S. Moreover,
there are no further constraints on the relative positions determined by the embedding
at the cutvertex v [4]. In case the split component S contains a common edge incident
to v, fixing posC(S) is equivalent fixing the cutvertex-ordering variable ord(e1, e2, B),
where e1 and e2 are the edges in C incident to v and B is the block in S containing v.
Thus, we get ord(e1, e2, B) + posC(S) = c (c ∈ F2). Together with the constraints for
the relative positions determined by the P- and R-nodes, we get the following lemma.
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Lemma 6. Let G 1 and G 2 be two graphs without union or simultaneous cutvertices
with common P-node degree 3. Requiring the relative positions to be consistent is equiv-
alent to satisfying a system of linear equations Mpos with the following properties.

(i) All equations in Mpos are of the type x + y = c (with c ∈ F2) except for a linear
number of equations of size 4.

(ii) Mpos contains all PR-ordering variables and all cutvertex-ordering variables re-
quired by a cycle basis of G.

(iii) Mpos has quadratic size and can be computed in quadratic time.

Lemma 5 and Lemma 6 yield the following theorem. We obtain the quadratic running
time by first eliminating all equations of size 1, and then solving the remaining system
of O(n) linear equations of size 4 with the algorithm by Wiedemann [12].

Theorem 5. SEFE can be solved in quadratic time for two graphs without union or
simultaneous cutvertex with common P-node degree 3.
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