
Testing Mutual Duality of Planar Graphs∗

Patrizio Angelini1) Thomas Bläsius2) Ignaz Rutter2)

1) Roma Tre University
angelini@dia.uniroma3.it

2) Karlsruhe Institute of Technology (KIT)
{blaesius,rutter}@kit.edu

Abstract

We introduce and study the problem Mutual Duality, asking for two planar
graphs G1 and G2 whether G1 can be embedded such that its dual is isomorphic to G2.
We show NP-completeness for general planar graphs and give a linear-time algorithm
for biconnected planar graphs. This algorithm implies an efficient solution to two
well-known problems. In fact, it can be used to test whether two biconnected planar
graphs are 2-isomorphic, namely whether their graphic matroids are isomorphic,
and to test self-duality of any biconnected planar graph, which is a special case of
Mutual Duality with G1 = G2. Further, we show that our NP-hardness proof
extends to testing self-duality and map self-duality (which additionally requires to
preserve the embedding).
In order to obtain our results, we consider the common dual relation ∼, where

G1 ∼ G2 if and only if they admit embeddings that result in the same dual graph.
We show that ∼ is an equivalence relation on the set of biconnected graphs and devise
a compact SPQR-tree-like representation of its equivalence classes. Our algorithm
for biconnected graphs is based on testing isomorphism for two such representations
in linear time.

1 Introduction

Given a planar graph G with a planar embedding G, the dual of G with respect to G is
the graph G? whose vertices are in one-to-one correspondence with the faces of G and for
each edge e in G there is an edge e? in G? connecting the two faces incident to e in G.
Thus, G? models the adjacencies of faces of G with respect to the embedding G. Note

∗Part of the research was conducted in the framework of ESF project 10-EuroGIGA-OP-003 GraDR
"Graph Drawings and Representations" and of ’EU FP7 STREP Project "Leone: From Global
Measurements to Local Management", grant no. 317647’. This work was supported by a fellowship
within the Postdoc-Program of the German Academic Exchange Service (DAAD). This work began
during a visit of Angelini at Karlsruhe Institute of Technology.

1

G1 G2 G?
1 G?

1

(a) (b) (c)

G1 G1

Figure 1. (a) An instance of Mutual Duality consisting of the graphs G1 and G2.
(b) The dual G?1 of G1 with respect to this embedding is not isomorphic to G2. (c) Em-
bedding of G1 such that G?1 is isomorphic to G2 (thus G1 and G2 form a yes-instance).

that this naturally induces a planar embedding G? on G? and that the dual of G? with
respect to G? coincides with G.

We consider the following problem, that we call Mutual Duality. Given two planar
graphs G1 and G2, is there an embedding G1 of G1 such that the dual G?1 of G1 with
respect to G1 is isomorphic to G2? See Figure 1 for an example.

We observe that the Mutual Duality problem is a generalization of the well-known
problem Graph Self-Duality [12], namely the problem of testing whether a graph
G is graph self-dual, that is, whether it admits an embedding such that its dual G? is
isomorphic to G itself. Self-duality has been defined also in the stronger form of Map
Self-Duality [13], in which one is required to find an embedding G of the input graph
G such that there exists an isomorphism from G to its dual graph G? that preserves
the embedding G. Note that, since triconnected planar graphs have a unique planar
embedding, the two problems are equivalent for this class of graphs.

While the computational complexity of both problems is still open, several results have
been obtained from the point of view of devising techniques to construct graphs with
the required properties. Servatius and Servatius [13] show the existence of biconnected
planar graphs that are graph self-dual but not map self-dual. Further, Servatius and
Christopher [12] show how to construct self-dual graphs from given planar graphs. Finally,
Archdeacon and Richter [2] give a set of constructions for triconnected self-dual graphs
and show that every such graph can be constructed in this way.

All graphs we consider are implicitly allowed to have loops and multiple edges. Graphs
without loops and multiple edges are called simple. If G1 is triconnected, it has a fixed
planar embedding [15] and thus Mutual Duality reduces to testing graph isomorphism
for planar graphs, which can be solved in linear time due to Hopcroft and Wong [9].
Note that biconnectivity and triconnectivity of a planar graph are invariant under
dualization [14] (assuming that biconnected graphs have no loops and triconnected graphs
are simple).

For non-triconnected planar graphs, however, Mutual Duality is more complicated,
since modifying the embedding of G1 influences the structure of its dual graph. In fact,
we show in Theorem 1 that Mutual Duality is NP-complete in general. We extend
this result in Theorem 2 to prove NP-completeness even for Graph Self-Duality and
Map Self-Duality. We remark that all our proofs work even for simple graphs.

On the other hand, in Theorem 7 we provide a linear-time algorithm solving Mutual
Duality for biconnected planar graphs. This implies a linear-time algorithm for Graph

2

Self-Duality of biconnected planar graphs (Corollary 2), as it is a special case of our
problem. The algorithm is based on the definition of a new data structure, which we
call dual SPQR-tree in analogy with the SPQR-tree data structure [5, 6]. Indeed, as
SPQR-trees allow to compactly represent and efficiently handle all planar embeddings
of a biconnected planar graph, the dual SPQR-trees, together with a newly-defined set
of operations, allow to compactly represent and efficiently handle all dual graphs of a
biconnected planar graph.
Apart from the main goal of solving the Mutual Duality problem efficiently, this

new data structure gave us the possibility of deriving more general properties for the
set of dual graphs of a biconnected planar graph. Namely, consider the common dual
relation ∼, where G1 ∼ G2 if and only if they have a common dual graph. We show
that ∼ is not transitive on the set of connected planar graphs. However we show that,
due to the properties of the dual SPQR-trees, ∼ is an equivalence relation on the set of
biconnected planar graphs. In particular, the graphs represented by a dual SPQR-tree
form an equivalence class. Thus, testing Mutual Duality reduces to testing whether
two dual SPQR-trees represent the same equivalence class.
The study of the common dual relation allows us to obtain new results on another

widely-studied concept in Graph Theory. The graphic matroid of a graph G = (V,E) is
the matroid (E, I) where I consists of the edge sets E′ ⊆ E that do not contain a cycle;
see e.g. [16]. It is not hard to see that two biconnected planar graphs are related via the
common dual relation if and only if they have the same graphic matroid (which does not
hold for general planar graphs). With this insight, one can use the one-to-many reduction
from graphic matroid isomorphism testing to graph isomorphism testing by Rao and
Sarma [11] to solve Mutual Duality for biconnected planar graphs in polynomial time.
In this paper, however, we give a one-to-one reduction leading to a linear-time algorithm.
In 1933, Whitney [17] defined two graphs to be 2-isomorphic if and only if their graphic
matroids are isomorphic. Since on biconnected graphs the notions coincide, our algorithm
implies a linear-time testing algorithm for 2-isomorphism of biconnected planar graphs
(Corollary 3).

We believe that the new dual SPQR-tree data structure can be used to efficiently solve
other related problems, especially those in which the final goal is to find an embedding of
the input graph that optimizes certain criteria, such as for example minimizing the face
sizes of the embedding [4,10]. Indeed, such criteria may often be described in terms of
features of the corresponding dual graph (in the example it would be the vertex degrees),
and the dual SPQR-tree might be used to optimize such features. Another motivating
example is given by the problem of finding an embedding that minimizes the depth of a
planar graph, that is the maximum distance between two faces. Here, such a distance is
computed by considering two faces to be adjacent if they share an edge. On the other
hand, in the dual version of the problem the goal becomes to construct a dual in which the
maximum distance between two vertices (namely the diameter of the graph) is minimized.
Both the algorithms to find minimum-depth embeddings by Bienstock and Monma [3], and
by Angelini et al. [1] tackle the problem in its primal version making use of SPQR-trees
(or analogous data structures). However, at each step of their algorithms, they compute
the dual graph of the subgraph that is currently considered, and perform most of the

3

computations on it. This is due to the fact that dealing with the graph-theoretic distance
between vertices is easier and more natural than dealing with the edge-sharing distance
between faces. Hence, tackling the problem in its dual version using dual SPQR-trees
would have yielded a more direct solution.

Contribution and Outline. We start with some preliminary definitions in Section 2.
Then, in Section 3 we show that Mutual Duality is NP-complete, even if both
input graphs are required to be simple. The proof can be extended to show that Map
Self-Duality and Graph Self-Duality are NP-complete in general.

To solve Mutual Duality efficiently for biconnected graphs, we first describe decom-
position trees as a generalization of SPQR-trees in Section 4. In Section 5 we describe the
dual SPQR-tree and show that it compactly represents all dual graphs of a biconnected
planar graph. We consider the common dual relation in Section 6 and give a counterex-
ample showing that ∼ is not transitive on the set of connected planar graphs. On the
other hand, we show that the properties of the dual SPQR-tree data structure imply
that ∼ is an equivalence relation on the set of biconnected planar graphs. Hence, solving
Mutual Duality is equivalent to testing whether two dual SPQR-trees represent the
same equivalence class. In Section 7 we show that this can be further reduced to testing
graph isomorphism of two planar graphs, which leads to a linear-time algorithm for
Mutual Duality of biconnected planar graphs; from this result, we derive an efficient
solution to Graph Self-Duality and 2-isomorphism for the same class of graphs.

2 Preliminaries

A drawing of a graph is a mapping of each vertex to a distinct point of the plane and of
each edge to a curve between its endpoints. A planar drawing is such that no two edges
intersect except, possibly, at common endpoints. A planar drawing of a graph determines
a circular ordering of the edges incident to each vertex. Two drawings of the same graph
are equivalent if they determine the same circular ordering around each vertex. A planar
embedding is an equivalence class of planar drawings. A planar drawing partitions the
plane into topologically connected regions, called faces. The unbounded face is the outer
face.
A graph is connected if there exists a path between any pair of vertices. A separating

k-set is a set of k vertices whose removal disconnects the graph. Separating 1-sets and
2-sets are cutvertices and separation pairs, respectively. A connected graph is biconnected
if it does not have a cutvertex or a loop. A biconnected graph is triconnected if it does
not have a separation pair or multiple edges. The maximal biconnected components of a
graph are called blocks.
Let G be a planar graph with planar embedding G and let F be the set of faces of G.

The dual of G with respect to G is the graph G? = (F,E?) with E? = {e? | e ∈ E}, where
the dual edge e? of e connects the two faces incident to e in G.

4

u
T1 T3m

. . .
T2

. . .v1 vm

u

vi vi+1(a) (b) (c) (d)

→

Figure 2. The graphs G1 (a) and G2 (b) of the reduction from 3-Partition. (c) Embed-
ding a tree Ti inside a face f creates ai loops at the corresponding dual vertex. (d) Bridges
and corresponding loops can be replaced by small graphs.

3 Complexity

In this section we first show that Mutual Duality is NP-complete, by means of a
reduction from 3-Partition. Then we show that the resulting instances of Mutual
Duality can be further reduced to equivalent instances of Map and Graph Self-
Duality.
An instance (A,B) of 3-Partition consists of a positive integer B and a set A =
{a1, . . . , a3m} of 3m integers, with B/4 < ai < B/2 for i = 1, . . . , 3m. The question is
whether A admits a partition into a set A of triples such that for each triple X ∈ A we
have

∑
x∈X x = B. The problem 3-Partition is strongly NP-hard [7], i.e., it remains

NP-hard even if B is bounded by a polynomial in m.

Theorem 1. Mutual Duality is NP-complete, even for simple graphs.

Proof. Clearly, Mutual Duality is in NP, as we can guess an embedding for G1 and
then check in polynomial time whether the corresponding dual is isomorphic to G2.
To show NP-hardness we give a reduction from 3-Partition. We first give a con-

struction containing loops, afterwards we show how to get rid of them. Let (A,B) be an
instance of 3-Partition with |A| = 3m. The graph G1 contains an m-wheel, i.e., a cycle
v1, . . . , vm of m vertices together with a center u connected to each vi. Additionally, for
each element ai ∈ A we create a star Ti with ai − 1 leaves and connect its center to u; see
Figure 2a. The graph G2 is an m-wheel along with B loops at every vertex, except for
the center; see Figure 2b. We claim that G1 and G2 form a Yes-instance of Mutual
Duality if and only if (A,B) is a Yes-instance of 3-Partition.
Suppose that there exists a partition A of A. The embedding of the m-wheel in G1

is fixed and it has exactly m faces incident to its center u. Hence, the only degree of
freedom is that of deciding the embedding of the trees Ti into these m faces. We perform
this operation as follows. For each triple X = {ai, aj , ak} ∈ A we pick a distinct face and
embed Ti, Tj and Tk into it. Call the resulting embedding G1 and consider the dual G?1
with respect to G1. The m-wheel of G1 determines an m-wheel in G?1. Consider a tree Ti
that is embedded in a face f . Since Ti contains ai bridges, which are all embedded in f ,
the corresponding vertex of G?1 has ai loops; see Figure 2c. Due to the construction, each
face contains exactly three trees with a total of B bridges. Thus, G?1 is isomorphic to G2.
Conversely, assume that we have an embedding G1 such that the dual G?1 of G1 with

respect to G1 is isomorphic to G2. Again, the m-wheel in G1 forms m faces incident

5

v f

(a) (b) (c)

G G?

Figure 3. (a) A graph G and its dual G? (gray) with vertex v and incident face f . (b) The
adhesion of G and G? with respect to v and f . (c) Illustration of the self-duality of the
adhesion.

to u, and since G?1 is isomorphic to G2, the trees must be embedded such that each face
contains exactly B bridges. Since embedding Ti inside a face f places ai bridges into f
and since B/4 < ai < B/2, each face contains exactly three trees. Thus, the set of triples
determined by trees that are embedded in the same face form a solution to 3-Partition.
Clearly, the transformation can be computed in polynomial time if B is bounded by

a polynomial in m, and thus Mutual Duality is NP-hard. Moreover, graph G2 can
be made simple (G1 is already simple) by replacing each bridge in G1 and each loop in
G2 with a 4-wheel as shown in Figure 2d. The resulting graphs G′

1 and G′
2 are obviously

dual to each other if G1 and G2 are dual to each other. Conversely, assuming that m ≥ 5,
we can undo the transformation by replacing every 4-wheel in G′

1 with a bridge and every
4-wheel in G′

2 with a loop to obtain mutually dual embeddings of G1 and G2. Moreover,
G′

1 and G′
2 are simple, which concludes the proof.

In the following we show how the above construction can be used to show NP-
completeness for Map and Graph Self-Duality. To this end, we use the adhesion
operation introduced by Servatius and Christopher [12]. Let v be a vertex of G incident
to a face f . Then the adhesion of G and its dual G? (with respect to v and f) is obtained
by identifying v in G and f? in G? with each other; see Figure 3a and 3b. Servatius and
Christopher [12] show that the adhesion of an embedded planar graph and its dual is
graph self-dual; see Figure 3c. Moreover, although not explicitly mentioned, they show
that this adhesion is even map self-dual.
To show the following theorem we essentially transform the instance of Mutual

Duality consisting of the two graphs G1 and G2 described in the proof of Theorem 1
into an equivalent instance of Map and Graph Self-Duality by performing the
adhesion of G1 and G2.

Theorem 2. Graph Self-Duality and Map Self-Duality are NP-complete, even
for simple graphs.

Proof. Clearly, Graph Self-Duality (Map Self-Duality) is in NP as we can guess
an embedding for G together with a bijection between the vertices of G and the vertices
of G? and then check in polynomial time whether this bijection is an isomorphism (that
preserves the embedding).

6

Let G1 and G2 be two simple graphs that form an instance of Mutual Duality
obtained from an instance of 3-Partition as described in the proof of Theorem 1. Let
G be the graph obtained from G1 (Figure 2a) and G2 (Figure 2b) by identifying a vertex
that is not the center of the m-wheel in G2 with the vertex u in G1. By construction G
is simple. In the following we consider G as an instance of Graph Self-Duality and
Map Self-Duality. We claim the following.
Claim 1 If G1 and G2 form a Yes-instance of Mutual Duality, then G is a Yes-

instance of Map Self-Duality.
Claim 2 If G is a Yes-instance of Map Self-Duality, then it is a Yes-instance of

Graph Self-Duality.
Claim 3 If G is a Yes-instance of Graph Self-Duality, then G1 and G2 form a

Yes-instance of Mutual Duality.
The three claims together show that the instance G1 and G2 of Mutual Duality,

the instance G of Graph Self-Duality and the instance G of Map Self-Duality
are equivalent.

To prove Claim 1, assume that G1 and G2 form a Yes-instance of Mutual Duality,
that is G1 and G2 admit embeddings such that they are dual to each other. As the vertex
u is incident to all faces in G1 except for the face forming the center of the m-wheel in G?1,
it is in particular incident to the face dual to the vertex in G2 chosen for the adhesion.
Thus, it follows from the results by Servatius and Christopher [12] that the adhesion G of
G1 and G2 is map self-dual.

Claim 2 is trivial, since being map self-dual is a stricter requirement than being graph
self-dual.
It remains to show Claim 3. Let G? be the dual graph of G with respect to a fixed

embedding and let ϕ : V (G)→ V (G?) be a graph isomorphism between G and G?. As G
is the adhesion of G1 and G2, there is a unique vertex v in G belonging to G1 and G2,
and a unique face f incident to both graphs G1 and G2. Since v was chosen to be u in
G1, it is the only vertex in G that is a cutvertex and the center of an m-wheel. Moreover,
f is the only cutvertex in G? that can be the center of an m-wheel. Thus, ϕ has to map v
to f . The blocks incident to v are a block with degree 3 at v stemming from G2, B loops
also stemming from G2, a block consisting of an m-wheel with center v stemming from
G1, and 3m attached trees stemming from G1. Similarly, the vertex f in G? is incident to
a block having degree 3 at f contained in G?1, a set of loops stemming from the trees in G1

(the number of loops depends on the embedding), an m-wheel with center f contained in
G?2, and a set of bridges stemming from the loops at G2. Thus, ϕ has to map all vertices
in G1 to vertices in G?2 and all vertices in G2 to vertices in G?1. This directly shows that
G1 and G2 form a Yes-instance of Mutual Duality, which concludes the proof.

4 Decomposition Trees and the SPQR-Tree Data Structure

In the following we consider decomposition trees of biconnected planar graphs, containing
the SPQR-trees introduced by Di Battista and Tamassia [5,6] as a special case. Let G be
a planar biconnected graph and let {s, t} be a split pair, that is either a separation pair

7

s

t

s

t

s

t

H1 H2 H1 H2

(a) (b)

Figure 4. (a) Illustration of a decomposition step. (b) The SPQR-tree of the graph in a
(to improve readability, the Q-nodes are omitted).

or a pair of adjacent vertices. Let further H1 and H2 be two subgraphs of G such that
H1 ∪H2 = G and H1 ∩H2 = {s, t}; see Figure 4a. Consider the tree T consisting of two
nodes µ1 and µ2 associated with the graphs H1 + (s, t) and H2 + (s, t), respectively. For
each node µi, the graph Hi + (s, t) associated with it is the skeleton of µi, denoted by
skel(µi), and the special directed edge (s, t) is called virtual edge. The edge connecting the
nodes µ1 and µ2 in T associates the virtual edge ε1 = (s, t) in skel(µ1) with the virtual
edge ε2 = (s, t) in skel(µ2); we say that ε1 is the twin of ε2 and vice versa. Moreover, we
say that ε1 in skel(µ1) corresponds to the neighbor µ2 of µ1. This can be expressed as a
bijection corrµ mapping the virtual edges of skel(µ) to the neighboring vertices of µ in T .
In the example above we have corr(ε1) = µ2 and corr(ε2) = µ1 (the subscript of corr is
omitted as it is clear from the context).
The above-described procedure is called decomposition and can be applied further to

the skeletons of the nodes of T , leading to a larger tree with smaller skeletons. The
decomposition can be undone by contracting an edge in T . Let {µ, µ′} be an edge in T
and let ε be the virtual edge in skel(µ) with corr(ε) = µ′ having ε′ in skel(µ′) as twin. The
contraction of {µ, µ′} collapses µ and µ′ into a single node whose skeleton is as follows.
The skeletons of µ and µ′ are glued together at the twins ε and ε′ according to their
orientation, that is the source and target of ε is identified with the source and target of ε′,
respectively. The resulting virtual edge is removed. Iteratively applying the contraction
in T leads to a tree consisting of a single node µ, whose skeleton is independent of the
contraction order. The graph represented by T is skel(µ).

A reversed decomposition tree is defined as a decomposition tree with the only difference
that in the decomposition step one of the two twin edges is reversed and in the contraction
step they are glued together such that they point in opposite directions. Note that a
reversed decomposition tree can be transformed into an equivalent normal decomposition
tree representing the same graph by reversing one virtual edge in each pair of twin edges.

A decomposition tree is an SPQR-tree (Figure 4b) if each inner node is either an S-, a
P-, or an R-node whose skeletons contain only virtual edges forming a cycle, a bunch of
at least three parallel edges, or a triconnected planar graph, respectively, such that no
two S-nodes and no two P-nodes are adjacent. Moreover, each leaf is a Q-node whose
skeleton consists of two vertices connected by one virtual and one normal edge. The
reversed SPQR-tree is defined analogously as a special case of the reversed decomposition

8

tree. The SPQR-tree of a biconnected planar graph is unique up to reversals of pairs of
virtual edges that are twins. We assume without loss of generality that all virtual edges
in the skeleton of each P-node are oriented in the same direction and those in the skeleton
of each S-node form a directed cycle.
The SPQR-tree T of a biconnected planar graph G represents all planar embeddings

of G, as there is a bijection between these embeddings and the set of all combinations
of embeddings of the skeletons in T . The embedding choices for the skeletons consist of
reordering the parallel edges in a P-node and choosing one of the two possible planar
embeddings of the skeleton in an R-node. Since for an R-node skeleton one planar
embedding can be obtained from the other by reversing all edge orders around vertices,
changing the embedding of an R-node skeleton is also referred to as flipping. The
SPQR-tree of a biconnected planar graph can be computed in linear time [8]. Fixing
the embeddings of the skeletons in an arbitrary decomposition tree T also determines a
planar embedding of the represented graph G. However, there may be planar embeddings
that are not represented by T .
We assume the skeletons of the SPQR-tree of a graph to be embedded graphs if and

only if the graph itself is embedded.

5 Compact Representation of all Duals of a Biconnected
Graph

Let G be a biconnected graph with SPQR-tree T and planar embedding G. In the
following we study how a change in the embedding of G reflects in a change of the dual
graph G?. To this end, we do not consider the graphs themselves but their SPQR-trees.
We first show how the SPQR-tree of the dual graph G? can be directly obtained from the
SPQR-tree of the primal graph G. This can then be used to understand the effects on G?

caused by changing the embedding of a skeleton in T .
We first define the dual decomposition tree T ? of a decomposition tree T representing

G (with respect to a fixed embedding G of G that can be represented by T). We will later
show that the dual decomposition tree represents the dual graph G? of G. Essentially,
T ? is obtained from T by replacing each skeleton with its directed dual and interpreting
the resulting tree as a reversed decomposition tree. More precisely, for each node µ in T ,
the dual decomposition tree T ? contains a dual node µ? having the dual of skel(µ) as
skeleton. An edge ε? in skel(µ?) dual to a virtual edge ε in skel(µ) is again virtual and
oriented from right to left with respect to the orientation of ε. Similarly, an edge dual to a
normal edge is also a normal edge in the dual skeleton. Two virtual edges in T ? are twins
if and only if their primal edges are twins. This has the effect that corr(ε)? = corr(ε?)
holds. Obviously, the tree structures of T ? and T are isomorphic with respect to the
map assigning each node in T to its dual node in T ?. In case T is the SPQR-tree of G,
we obtain the following. The dual of a triconnected skeleton is triconnected, the dual of
a (directed) cycle is a bunch of parallel edges (all directed in the same direction), and
the dual of a normal edge with a parallel virtual edge is a normal edge with a parallel
virtual edge. Thus, if a node µ in T is an S-, P-, Q-, or R-node, its dual node µ? in T ? is

9

dualization

dualization

contraction contraction≡

Figure 5. An example illustrating that contracting edges in a decomposition tree and
taking the dual decomposition tree commute.

a P-, S-, Q-, or R-node, respectively. This in particular shows that the dual SPQR-tree is
again an SPQR-tree and not just an arbitrary decomposition tree.

Lemma 1. Let G be a biconnected planar graph with SPQR-tree T and planar embedding
G. The dual SPQR-tree T ? with respect to G is the reversed SPQR-tree of the dual G?.

Proof. We show a slightly more general result by dealing with arbitrary decomposition trees
instead of SPQR-trees. We show that first contracting an edge {µ, µ′} in a decomposition
tree T into a node µµ′ and then taking the dual decomposition tree is equivalent to
first taking the dual decomposition tree T ? and then contracting the edge {µ?, µ′?}
into µ?µ′? (recall that T ? is interpreted as reversed decomposition tree, thus the gluing
operation contained in the contraction of {µ?, µ′?} is reversed); see Figure 5 for an example.
Applying this operation iteratively until the trees T and T ? consist of single nodes directly
shows that the reversed decomposition tree T ? represents the graph G? dual to the graph
G represented by T .
Let ε and ε′ be the virtual edges in skel(µ) and skel(µ′) corresponding to the edge
{µ, µ′} in T . Let further f` and fr, and f ′` and f ′r be the faces left and right of ε and of ε′

with respect to the orientation of ε and ε′, respectively; see Figure 6a and b. We denote
the graph skel(µ)− ε by H and the graph skel(µ?)− ε? by H? (note that H? is not really
the dual graph of H). The graphs H ′ and H ′? are defined analogously. When contracting
{µ, µ′}, the virtual edges ε and ε′ are glued together, that is u and v are identified with
u′ and v′, respectively; see Figure 6c. Consider now the dual of the resulting graph. This
dual graph contains the graphs H? and H ′?. Since H and H ′ share a pair of faces, say fr
and f ′` (the outer face in Figure 6c), these two faces are identified into a single vertex
of the dual. The other two faces incident to ε and ε′ are connected by the edge dual to
(u, v). Finally, removing the edge (u, v) contracts f` and f ′r into a single vertex of the
dual; see Figure 6d. Thus the dual graph skel(µµ′)? of the resulting skeleton skel(µµ′)
can be obtained from skel(µ)? and skel(µ′)? by removing the virtual edges ε? and ε′?

and identifying their endpoints with each other, reversing their orientation. As this is

10

H

H?

ε

ε?

u

v

f`

fr

H ′

H ′?ε ′

ε ′?

u ′

v ′

f ′r

f ′
`

H

H?

u/u ′

v/v ′

f`

fr /f
′
`

H ′

H ′?

f ′r

H

H?

f`/f
′
r

fr /f
′
`

H ′

H ′?

u/u ′

v/v ′
(a) (b) (c) (d)

Figure 6. (a)–(c) Gluing together the virtual edges ε and ε′. (d) Removing the resulting
edge.

equal to contracting {µ?, µ′?} in T ?, we have skel(µµ′)? = skel(µ?µ′?), which concludes
the proof.

In the following we consider how the dual SPQR-tree changes when the embedding of
the skeletons in the SPQR-tree change. Flipping the skeleton of an R-node and reordering
the virtual edges in a P-node give rise to the following two operations: reversal of R-nodes
and restacking of S-nodes.

A reversal applied to an R-node µ reverses the direction of all virtual edges in skel(µ).
As no other skeleton is changed by this operation, this only affects how skel(µ) is glued
to the skeletons of its adjacent nodes.

Let µ be an S-node with virtual edges ε1, . . . , εk. A restacking of µ picks an arbitrary
ordering of ε1, . . . , εk and glues their end-points such that they create a directed cycle C
in that order. Then, skel(µ) is replaced by C.

Lemma 2. Let T and T ? be the SPQR-trees of an embedded biconnected planar graph and
of its dual, respectively. Flipping an R-node and reordering a P-node in T corresponds to
reversing its dual R-node and restacking its dual S-node, respectively, in T ?.

Proof. Due to Lemma 1 we can work with the dual SPQR-tree instead of the SPQR-tree
of the dual. Obviously, flipping an R-node µ in T exchanges left and right in skel(µ) and
thus reverses the orientation of each virtual edge in skel(µ?), where µ? is the node in
T ? dual to µ. Thus, flipping µ corresponds to a reversal of µ?. Similarly, reordering the
virtual edges in the skeleton of a P-node µ has the effect that the virtual edges in its dual
S-node µ? are restacked, yielding a different cycle. Note that this cycle is again directed,
since the virtual edges in µ are still all oriented in the same direction.

This lemma shows that the SPQR-tree of the dual graph with respect to a fixed
embedding can be used to represent the dual graphs with respect to all possible planar
embeddings by allowing reversal and restacking operations. We say that an SPQR-tree
represents a dual graph if it can be obtained by applying reversal and restacking operations.
The following theorem directly follows.

Theorem 3. The dual SPQR-tree of a biconnected planar graph G represents all and only
the dual graphs of G.

When we are not interested in the embedding of the dual graph but only in its structure
(as a graph), we may also allow the usual SPQR-tree operations, that is flipping R-nodes

11

and reordering the virtual edges in P-nodes. Note that the reversal operation applied
to P-nodes only changes the embedding of the graph and not its structure. Moreover,
reversing a Q-node does not change anything, while the reversal of an S-node can be seen
as a special way of restacking it. This observation can be used to show the following
lemma.

Lemma 3. Let G be a biconnected planar graph with embedding G and let G? be its dual
graph with SPQR-tree T ?. Let T ?ε be the SPQR-tree obtained from T ? by reversing the
orientation of the virtual edge ε in T ?, and let G?ε be the graph it represents. Then there
exists an embedding Gε of G such that G?ε is the dual graph of G with respect to Gε.

Proof. Let µ be the node in T ? containing the virtual edge ε and let corr(ε) = µ′ be the
neighbor of µ corresponding to ε. Removing the edge {µ, µ′} splits T ? into two subtrees
T ?µ and T ?µ′ . We claim that the reversal of all nodes in one of these subtrees (no matter
which one) yields an SPQR-tree T ?µµ′ representing G?ε. Then, it follows from Lemma 2
and from the observation above, that G?ε is a dual graph of G.

It remains to show the claim. As it does not matter whether the orientation of ε or of
its twin in µ′ is changed, we can assume without loss of generality that all nodes in T ?µ
are reversed in T ?µµ′ . The graph represented by T ?µµ′ can be obtained by contracting the
edges in an arbitrary order. Contracting edges in the subtree T ?µ′ has the same effect as
in the original graph, since T ?µ′ was not changed. Similarly, contracting an edge in T ?µ
also has the same effect as the orientation of both corresponding virtual edges is reversed.
Finally, when contracting the edge {µ, µ′} the skeletons are glued together oppositely,
as ε is reversed whereas its twin remains the same. Thus, reversing all nodes in T ?µ is
equivalent to reversing the orientation of ε, which concludes the proof.

Lemma 2 and Lemma 3 together yield the following theorem.

Theorem 4. For two SPQR-trees T1 and T2, the following three statements are equivalent.
1. T1 and T2 represent the same set of dual graphs.
2. T1 and T2 can be transformed into each other by reversal and restacking operations.
3. T1 and T2 can be transformed into each other by choosing orientations for the virtual

edges and by restacking S-node skeletons.

6 Equivalence Relation

In this section we study the relation ∼ on the set of planar graphs, defined as follows. Two
graphs G1 and G2 are related, i.e., G1 ∼ G2, if and only if G1 and G2 can be embedded
such that they have the same dual graph G?1 = G?2. We call ∼ the common dual relation.

Theorem 5. The common dual relation ∼ is an equivalence relation on the set of bicon-
nected planar graphs. For a biconnected planar graph G, the set of dual graphs of G is an
equivalence class with respect to ∼.

Proof. Clearly, ∼ is symmetric and reflexive. For the transitivity, let G1, G2, and G3 be
three biconnected planar graphs such that G1 ∼ G2 and G2 ∼ G3. Let further T ?1 , T ?2 ,

12

and T ?3 be the dual SPQR-trees representing all duals of G1, G2, and G3, respectively.
Due to G1 ∼ G2, there exists a graph G that is represented by T ?1 and T ?2 . Thus, T ?1
and T ?2 can both be transformed into the SPQR-tree representing G using reversal and
restacking operations, which shows that they represent the same set of duals (Theorem 4).
The same argument shows that G2 and G3 have the same set of dual graphs, due to
G2 ∼ G3. Thus, also G1 and G3 have exactly the same set of dual graphs, which yields
G1 ∼ G3.

For the second statement, let C? be the set of dual graphs of G. Clearly, for G?1, G?2 ∈ C?
the graph G is a common dual, thus G?1 ∼ G?2. On the other hand, let G?1 ∈ C? and
G?1 ∼ G?2. By the above argument, G?1 and G?2 have the same set of dual graphs. Thus G
is a dual graph of G?2, yielding G?2 ∈ C?.

Theorem 5 shows that the equivalence class C of a biconnected planar graph G with
respect to the common dual relation is exactly the set of dual graphs that is represented
by the SPQR-tree T of G. The dual SPQR-tree T ? of G also represents a set of dual
graphs forming the equivalence class C?. We say that C? is the dual equivalence class of
C. Given an arbitrary graph G ∈ C and an arbitrary graph G? ∈ C?, graphs G and G?

can be embedded such that they are dual to each other, since C? contains exactly the
graphs that are dual to G. The problems Mutual Duality and Graph Self-Duality
can be reformulated in terms of the equivalence classes of the common dual relation. Two
biconnected planar graphs are a Yes-instance of Mutual Duality if and only if their
equivalence classes are dual to each other. A biconnected planar graph is graph self-dual
if and only if its equivalence class is dual to itself. This in particular means that either
every or no graph in an equivalence class is graph self-dual.

Although it might seem quite natural that the common dual relation is an equivalence
relation, this is not true for general planar graphs. This fact is stated in the following
theorem.

Theorem 6. The common dual relation ∼ is not transitive on the set of planar graphs.

Proof. Consider the graph G1 depicted in Figure 7a, consisting of a triconnected planar
graph with an additional loop attached to a vertex. Hence, its dual graph is a triconnected
component with a bridge attached to it. Then, consider the graph G2 in Figure 7b,
consisting of the same triconnected planar graph with an additional loop attached to a
different vertex. Note that, in both graphs G1 and G2 the loop can be embedded into the
same face of the triconnected component, yielding the same dual graph (with a different
embedding). Thus, G1 and G2 have a common dual, i.e., G1 ∼ G2. Using the same
argument it is possible to observe that G2 (with respect to the embedding in Figure 7c)
and G3 (Figure 7d) have a common dual graph, i.e., G2 ∼ G3. However, G1 and G3 do
not have a common dual, for the following reason. Let v1 and v3 be the vertices in G1

and G3 incident to the loop, respectively. The only embedding choice in G1 and G3 is to
embed the loop into one of the faces incident to v1 and v3, respectively. In the dual graphs
this has the effect that the bridge is attached to the corresponding vertex. Since all faces
incident to v1 have degree 3 and all faces incident to v3 have degree 4, the resulting dual
graphs cannot be isomorphic. Thus, G1 6∼ G3, even though G1 ∼ G2 and G2 ∼ G3.

13

G1 G2 G2 G3

(a) (b) (c) (d)

Figure 7. Illustration of Theorem 6

isomorphic?GT ?
1

G1

T1G?1

T ?1

SPQRdual

dualSPQR
same duals?

dual isomorphic?

G2

T2

SPQR

dual?

⇐
⇒

⇔

skeleton graph

GT2

skeleton graph

⇔

≡
Lem

. 1 Cor. 1

Lem. 4

Lem. 6

(a) (b)

ε

twin(ε)
twin(ϕµ(ε))

ϕµ(ε)

corr(ε)

corr corr

µ ϕ(µ)

ϕ(corr(ε)) =
corr(ϕµ(ε))

ϕµ

ϕ

≡
Prop

. IV

Figure 8. (a) Overview of our strategy. (b) Commutative diagram illustrating Prop-
erty IV.

The reversal and restacking operations we defined for biconnected graphs in the previous
section are equivalent to the operations that do not change the graphic matroid of a
biconnected graph [17]. Thus, the equivalence classes of the common dual relation on
biconnected planar graphs are in one-to-one correspondence with the matroids of these
graphs. General planar graphs that are related with respect to the common dual relation
also have the same graphic matroid. However, there are graphs with the same graphic
matroid that are not related with respect to the common dual relation, like for example
the graph G1 and G3 from Figure 7.

7 Algorithm for Biconnected Planar Graphs

Due to Theorem 3, problem Mutual Duality can be rephrased as follows.

Corollary 1. Let G1 and G2 be two biconnected planar graphs with SPQR-trees T1 and
T2, respectively. There is an embedding G1 of G1 such that G2 is dual to G1 with respect
to G1 if and only if T2 and the dual SPQR-tree T ?1 represent the same set of dual graphs.

In the following we show that two SPQR-trees represent the same set of dual graphs if
and only if they are dual isomorphic (we define this in a moment). Then we show that
testing the existence of such an isomorphism reduces to testing graph isomorphism for
planar graphs, and hence can be done in linear time. Figure 8a sketches this strategy.
For two simple graphs G and G′ with vertices V (G) and V (G′), and edges E(G) and

E(G′), respectively, a map ϕ : V (G) → V (G′) is a graph isomorphism if it is bijective
and {u, v} ∈ E(G) if and only if {ϕ(u), ϕ(v)} ∈ E(G′) (for directed graphs, the direction

14

of the edges is disregarded). For non-simple graphs, we also require that for all pairs
of vertices u, v ∈ V the number of edges between u and v is the same as the number of
edges between ϕ(u) and ϕ(v).

For simple graphs a graph isomorphism ϕ induces a bijection between E(G) and E(G′),
and we use ϕ(e) for e ∈ E(G) to express this bijection. As we consider the edges to
be undirected, fixing ϕ(·) only for the edges does not determine a map for the vertices.
As the SPQR-tree has more structure than a normal tree, we require some additional
properties. A dual SPQR-tree isomorphism between two SPQR-trees T and T ′ consists
of several maps. First, a map ϕ : V (T)→ V (T ′) such that:

(I) ϕ is a graph isomorphism between T and T ′; and
(II) for each node µ ∈ V (T), the node ϕ(µ) ∈ V (T ′) is of the same type.

Second, a map ϕµ : V (skel(µ))→ V (skel(ϕ(µ))) for every R-node µ in T such that:
(III) ϕµ is a graph isomorphism between skel(µ) and skel(ϕ(µ)); and
(IV) corr(ϕµ(ε)) = ϕ(corr(ε)) holds for every virtual edge ε in skel(µ).
If there is a dual SPQR-tree isomorphism between T and T ′, then we say that T and
T ′ are dual isomorphic. Note that by Property IV the map ϕµ is uniquely determined by
ϕ. Observe further that Property IV (illustrated in Figure 8b) is a natural requirement
and one would usually require it also for S-nodes and P-nodes. However, for P-nodes the
mapping ϕµ (uniquely determined by Property IV) is always an isomorphism (Property III)
as it simply permutes edges. Moreover, not requiring the existence of ϕµ for S-nodes
implicitly allows restacking their skeletons. As the graph isomorphisms ϕµ(·) do not care
about the orientation of virtual edges, it is also implicitly allows to reverse them. These
observations lead to the following lemma showing that this definition of dual SPQR-tree
isomorphism is well suited for our purposes.

Lemma 4. Two SPQR-trees represent the same set of dual graphs if and only if they are
dual isomorphic.

Proof. Let T and T ′ be two SPQR-trees representing the same set of dual graphs. By
Theorem 4 this implies that they can be transformed into each other using reversal and
restacking operations. Clearly, the identity map, mapping T and each of its skeletons
to itself, is a dual SPQR-tree isomorphism. It remains a dual SPQR-tree isomorphism
when restacking an S-node, since Properties I and II are independent of the skeletons,
and Properties III and IV are only required for R-nodes. Moreover, the reversal of an
R-node preserves Properties I–IV since our definition of graph isomorphism considers
edges to be undirected. It follows that T and T ′ are dual isomorphic.

For the opposite direction assume that ϕ together with ϕµ1 , . . . , ϕµk is a dual SPQR-tree
isomorphism from T to T ′. In particular ϕ maps every node of T to a node of T ′ that
has the same type and the same degree. For every virtual edge ε in an R-node µ, the map
ϕµ determines whether the orientation of ε has to be reversed to match the orientation
of ϕµ(ε). Moreover, how ϕ maps the neighbors of an S-node µ to the neighbors of ϕ(µ)
determines a restacking operation transforming skel(µ) into skel(ϕ(µ)). It follows that T
can be transformed into T ′ by applying restacking and reversal operations. Hence, T and
T ′ represent the same set of dual graphs, which concludes the proof.

15

(s) (p) (q) (r)

Figure 9. The subgraphs Hµ of the skeleton graph depending on the type of node µ. The
small black vertices are the attachment vertices.

In the following we reduce dual SPQR-tree isomorphism testing to graph isomorphism
testing for planar graphs, which can be solved in linear time [9]. We define the skeleton
graph GT of an SPQR-tree T as follows; see the lower right part of Figure 10 for an
example. For each node µ in T there is a subgraph Hµ in GT , and for each edge {µ, µ′}
in T , the skeleton graph contains an edge connecting Hµ and Hµ′ . In the following we
describe the subgraph Hµ for the cases in which µ is an S-, P-, Q-, or R-node, and define
the attachment vertices that are incident to the edges connecting Hµ to other subgraphs.

If µ is an S- or P-node, then subgraph Hµ contains only one attachment vertex vµ, and
all subgraphs representing neighbors of µ are attached to vµ. To distinguish between S-
and P-nodes, small non-isomorphic subgraphs called tags are attached to vµ, see Figure 9s
and p, respectively. If µ is a Q-node, then Hµ is a single attachment vertex, see Figure 9q.
Note that µ is a leaf in T and thus Hµ is also a leaf in GT . If µ is an R-node, then
Hµ is the skeleton skel(µ), where additionally every virtual edge ε is subdivided by an
attachment vertex vε; see Figure 9r for an illustration of the case skel(µ) = K4. The
subgraph Hcorr(ε) stemming from the neighbor corr(ε) of µ is attached to Hµ via the
attachment vertex vε.

Lemma 5. The skeleton graph of an SPQR-tree is planar and can be computed in linear
time.

Proof. Clearly, the skeleton graph GT of an SPQR-tree T can be computed in linear time
by processing each node µ separately to compute the subgraph Hµ consuming time linear
in the number of vertices of skel(µ). Note that this implicitly shows that the number of
vertices of GT is linear.

Let T be an SPQR-tree rooted at an arbitrary node. The skeleton graph GT can be
embedded in a planar way by embedding the subgraphs corresponding to the nodes in T
top-down with respect to the chosen root. Obviously, every subgraph in GT corresponding
to a node in T is planar, thus we can start by embedding the subgraph corresponding to
the root arbitrarily. Let µ be a non-root node in T and let µ′ be its parent. If µ is not
an R-node, Hµ can be embedded with its only attachment vertex on the outer face. If
µ is an R-node, Hµ can be embedded with the attachment vertex corresponding to the
parent µ′ of µ in T on the outer face. Thus, in any case, Hµ can be placed inside a face
incident to the attachment vertex stemming from µ′ corresponding to µ, yielding a planar
drawing.

Lemma 6. Two SPQR-trees are dual isomorphic if and only if their skeleton graphs are
isomorphic.

16

Proof. Let ϕ together with ϕµ1 , . . . , ϕµk be a dual SPQR-tree isomorphism between the
SPQR-trees T and T ′. We show how this induces a graph isomorphism ϕG between the
skeleton graphs GT and GT ′ . If µ is an S-, P-, or Q-node, then its corresponding subgraph
in Hµ only contains a single attachment vertex vµ. Since ϕ(µ) is of the same type (due to
Property II of dual SPQR-tree isomorphisms), the subgraph Hϕ(µ) also contains a single
attachment vertex vϕ(µ) and we set ϕG(vµ) = vϕ(µ). For S- and P-nodes we additionally
map their tags isomorphically to each other. If µ is an R-node, the map ϕµ is a graph
isomorphism between skel(µ) and skel(ϕ(µ)) (Property III). Thus, it induces a graph
isomorphism between Hµ and Hϕ(µ), since these subgraphs are obtained from skel(µ) and
skel(ϕ(µ)), respectively, by subdividing each virtual edge. It remains to show that ϕG
respects the edges between attachment vertices of different subgraphs. Since ϕ is a graph
isomorphism (Property I), attachment vertices of two subgraphs of GT are connected if
and only if the corresponding subgraphs in GT ′ are connected. Moreover, Property IV
ensures that for a subgraph stemming from an R-node the right attachment vertices
are chosen (for other nodes this is clear since their subgraphs have unique attachment
vertices).

For the opposite direction, assume ϕG is a graph isomorphism between GT and GT ′ .
Let Hµ be the subgraph stemming from a node µ in T . As Hµ is a block (maximal
biconnected component) in GT (or a leaf, if µ is a Q-node), it has to be mapped to a block
in GT ′ . As all edges in GT ′ connecting attachment vertices of subgraphs stemming from
different nodes are bridges, all vertices in Hµ have to be mapped to vertices in Hµ′ for
some node µ′ in T ′. This defines the map ϕ by setting ϕ(µ) = µ′. Clearly, ϕ is a graph
isomorphism between T and T ′, since two subgraphs in a skeleton graph are connected
by an edge if and only if the corresponding nodes in its SPQR-tree are adjacent; thus, ϕ
satisfies Property I. Since the only leaves in a skeleton graph stem from Q-nodes, ϕ(µ) is
a Q-node if and only if µ is a Q-node. Let v be an attachment vertex stemming from an
inner node µ in T . Then v is a cutvertex and, since every cutvertex in a skeleton graph
is an attachment vertex, ϕG(v) is also an attachment vertex in GT ′ . The vertex v has
degree 3 if and only if µ is an R-node, thus ϕ maps R-nodes to R-nodes. Moreover, if µ is
an S-node, v cannot be mapped to an attachment vertex stemming from a P-node, since
the tags attached to S- and P-nodes are not isomorphic. Hence, ϕ maps S- and P-nodes
to S- and P-nodes, respectively, and thus satisfies Property II.
To obtain a dual SPQR-tree isomorphism, it remains to define a map ϕµ for each

R-node µ in T that satisfies Properties III and IV. As observed before, ϕG defines a
bijection between the vertices in the subgraph Hµ stemming from µ and the vertices in
Hϕ(µ) stemming from ϕ(µ). As Hµ and Hϕ(µ) are the skeletons skel(µ) and skel(ϕ(µ))
(with a subdivision vertex on each virtual edge), ϕG defines a graph isomorphism ϕµ
between skel(µ) and skel(ϕ(µ)) (satisfying Property III). To show that Property IV holds,
consider a virtual edge ε in skel(µ) and the attachment vertex vε in Hµ stemming from it.
Further, denote by vcorr(ε) the attachment vertex in Hcorr(ε) such that GT contains the
edge {vε, vcorr(ε)}. Then, ϕG maps {vε, vcorr(ε)} to an edge {ϕG(vε), ϕG(vcorr(ε))} in GT ′ .
Since ϕG(vε) = vϕµ(ε) holds by the definition of ϕµ, and ϕG(vcorr(ε)) stems from the node
ϕ(corr(ε)) by the definition of ϕ, we have that corr(ϕµ(ε)) = ϕ(corr(ε)) by the definition
of the skeleton graph GT ′ . As this establishes Property IV, it concludes the proof.

17

SPQR

SPQR

dual dual

skeleton graph

skeleton graph

T1

G?
1

T ?
1

T2 GT ?
1
= GT2

G1

SPQR

G2

Figure 10. First building the dual graph G?1 of G1 (with respect to a fixed embedding)
and then building its SPQR-tree, or first building its SPQR-tree T1 and then its dual
SPQR-tree yields the same tree T ?1 (Lemma 1). The graphs G1 and G2 are dual to each
other (with respect to at least one pair of embeddings) if and only if T ?1 and T2 represent
the same set of duals (Corollary 1), which is the case if and only if their skeleton graphs
GT ?1 and GT2 are isomorphic (Lemma 4 and Lemma 6).

Following the outline given in Figure 8a, problem Mutual Duality for biconnected
planar graphs can be reduced to isomorphism testing for planar graphs, which is linear-
time solvable [9]. We formalize this result in the following theorem and give an example
in Figure 10 to illustrate the steps of the algorithm.

Theorem 7. Mutual Duality can be solved in linear time for biconnected planar graphs.

Proof. Corollary 1 states that Mutual Duality can be solved by testing whether two
SPQR-trees (that can be computed in time linear in the number of vertices of the input
graphs [8]) represent the same set of dual graphs. By Lemma 4, this is equivalent to
testing whether these two SPQR-trees are dual isomorphic, which can be done by testing
whether their skeleton graphs are isomorphic, due to Lemma 6. The skeleton graph of an
SPQR-tree is planar and has a linear number of vertices, see Lemma 5. Hence, we can

18

use the linear-time algorithm for testing whether two planar graphs are isomorphic by
Hopcroft and Wong [9] yielding a linear-time algorithm solving Mutual Duality.

As Graph Self-Duality is a special case of Mutual Duality, we have the following
corollary.

Corollary 2. Graph Self-Duality can be solved in linear time for biconnected planar
graphs.

As observed above, two biconnected planar graphs are related with respect to the
common dual relation if and only if their graphic matroids are isomorphic. As testing
whether two biconnected graphs lie in the same equivalence class of the common dual
relation is exactly what we did in this section, we get the following.

Corollary 3. Testing whether two biconnected planar graphs are 2-isomorphic (i.e., whether
their graphic matroids are isomorphic) can be done in linear time.

8 Conclusions

In this paper we defined and studied the problem Mutual Duality of testing for two
graphs G1 and G2 whether there exists an embedding of G1 such that the corresponding
dual graph is isomorphic to G2. We proved that Mutual Duality is NP-complete in
general, while it is solvable in polynomial (actually linear) time for biconnected planar
graphs.
The interest on this problem is twofold. On one hand, it represents a new step in

the fundamental theory of planar graph isomorphism; this is also testified by the fact
that, as a side effect, it provides the same results for the well-known problem of testing
Graph Self-Duality [2, 12]. On the other hand, it could be seen as a single example
among a plethora of problems whose goal is to find a dual graph of G1 satisfying certain
properties. In this direction, we believe that the definition of the new data-structure dual
SPQR-tree, which allows to efficiently handle all the duals of a biconnected planar graph,
could be considered as a main result of this paper, independently of its application to
solve Mutual Duality; indeed, we strongly believe that it may successfully be used to
tackle many other problems of the same type.
As remarked above, the results we obtained on Mutual Duality can be used for

testing Graph Self-Duality, asking whether a given graph G can be embedded in
such a way that the corresponding dual is isomorphic to G. The constrained version
Map Self-Duality [13] of Graph Self-Duality requires the embedding of G to
be preserved in the isomorphism with the corresponding dual. We proved that the
NP-completeness result for Mutual Duality extends to Map Self-Duality, but we
could not prove the same for the polynomial-time testing algorithm. Hence, we leave as
an open problem the question whether Map Self-Duality can be solved efficiently for
biconnected planar graphs.

19

References

[1] P. Angelini, G. Di Battista, and M. Patrignani. Finding a minimum-depth embedding
of a planar graph in O(n4) time. Algorithmica, 60:890–937, 2011.

[2] D. Archdeacon and R. B. Richter. The construction and classification of self-dual
spherical polyhedra. Journal of Combinatorial Theory, Series B, 54(1):37–63, 1992.

[3] D. Bienstock and C. Monma. On the complexity of embedding planar graphs to
minimize certain distance measures. Algorithmica, 5:93–109, 1990.

[4] G. Da Lozzo, V. Jelínek, J. Kratochvíl, and I. Rutter. Planar embeddings with
small and uniform faces. In Proceedings of the 25th International Symposium on
Algorithms and Computation, LNCS, 2014. Full version available at http://arxiv.
org/abs/1409.4299.

[5] G. Di Battista and R. Tamassia. On-line maintenance of triconnected components
with SPQR-trees. Algorithmica, 15(4):302–318, 1996.

[6] G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal on
Computing, 25:956–997, 1996.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[8] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees. In
J. Marks, editor, Proceedings of the 8th International Symposium on Graph Drawing
(GD’00), volume 1984 of LNCS, pages 77–90. Springer, 2001.

[9] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar
graphs (preliminary report). In Proceedings of the 6th Annual ACM Symposium on
Theory of Computing (STOC’74), pages 172–184. ACM, 1974.

[10] P. Mutzel and R. Weiskircher. Optimizing over all combinatorial embeddings of
a planar graph (extended abstract). In G. Cornuéjols, R. E. Burkard, and G. J.
Woeginger, editors, Integer Programming and Combinatorial Optimization (IPCO’99),
volume 1610 of LNCS, pages 361–376. Springer, 1999.

[11] B.V. Raghavendra Rao and M.N. Jayalal Sarma. On the complexity of matroid
isomorphism problem. Theory of Computing Systems, 49(2):246–272, 2011.

[12] B. Servatius and P. R. Christopher. Construction of self-dual graphs. The American
Mathematical Monthly, 99(2):153–158, 1992.

[13] B. Servatius and H. Servatius. Self-dual graphs. Discrete Mathematics, 149(1-3):223–
232, 1996.

[14] W. T. Tutte. Connectivity in matroids. Canadian Journal of Mathematics, 18:1301–
1324, 1966.

20

http://arxiv.org/abs/1409.4299
http://arxiv.org/abs/1409.4299

[15] H. Whitney. Congruent graphs and the connectivity of graphs. American Journal of
Mathematics, 54(1):150–168, 1932.

[16] H. Whitney. Non-separable and planar graphs. Transactions of the American
Mathematical Society, 34(2):339–362, 1932.

[17] H. Whitney. 2-isomorphic graphs. American Journal of Mathematics, 55:245–254,
1933.

21

	Introduction
	Preliminaries
	Complexity
	Decomposition Trees and the SPQR-Tree Data Structure
	Compact Representation of all Duals of a Biconnected Graph
	Equivalence Relation
	Algorithm for Biconnected Planar Graphs
	Conclusions

