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1. INTRODUCTION
It is known that the performance of multi-objective evo-

lutionary algorithms (MOEAs) in general deteriorates with
increasing number of objectives. For few objectives, MOEAs
relying on the contributing hypervolume as (second-level)
sorting criterion are the methods of choice. These include
the multi-objective covariance matrix adaptation evolution
strategy (MO-CMA-ES, [10, 11, 14, 16]) the SMS-EMOA [5],
and variants of the indicator-based evolutionary algorithm
(IBEA, [18]). However, the computational complexity of
calculating the contributing hypervolume prevents the broad
application of these powerful MOEAs to objective functions
with many (say, more than 4) objectives.
Recently, a Monte-Carlo algorithm for approximately de-

termining the least hypervolume contributor of a given
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Pareto-front approximation has been presented in [8]. We
hypothesize that using this approximation instead of the ex-
act contributing hypervolume will make the aforementioned
EMOAs applicable to problems with many objectives and
that the resulting algorithms will push the boundaries of
today’s EMOAs for many-objective optimization.

In theory, the approximation allows for the application of
hypervolume-based MOEAs to optimization problems with
an arbitrary number of objectives. However, the effects of
replacing the exact hypervolume calculation with an ap-
proximation algorithm on the overall performance of recent
MOEAs are unknown. In this study, we employ the ap-
proximation within the steady-state MO-CMA-ES (termed
(µ + 1)-MO-CMA-ES and using the recent improvements
presented in [16]) and the SMS-EMOA to empirically in-
vestigate whether the Monte-Carlo approximation is indeed
useful in practice.

The remainder of the document is structured as follows.
We first introduce the problem of determining the least hy-
pervolume contributor. Then, we summarize the (µ + 1)-
MO-CMA-ES. We conclude with the results of a preliminary
experiment and an outlook on future work.

2. IDENTIFYING THE LEAST HYPER-

VOLUME CONTRIBUTOR
Measures based on the hypervolume indicator are the

only known Pareto-compliant unary performance indicators
for comparing different Pareto-front approximations [20].
For this reason, they serve as second-level sorting crite-
rion in many recent multi-objective evolutionary algorithms
(MOEAs).

The hypervolume measure or S-metric (see [19]) of a pop-
ulation A is defined as

HYPfref(A) = Λ

(

⋃

a∈A

[

f1(a), f
ref
1

]

× · · · ×
[

fm(a), f ref
m

]

)

,

with f ref ∈ R
m referring to an appropriately chosen ref-

erence point, Λ(·) being the Lebesgue measure and the
multi-objective optimization problem f : A → R

m,f(x) =
(f1(x), . . . , fm(x)). The contributing hypervolume of a
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point a ∈ A is given by

CON(a,A) = HYPfref(A)−HYPfref(A \ {a}) .

Note that the contributing hypervolume of a dominated in-
dividual is zero.
Most hypervolume based algorithms like the steady-state

MO-CMA-ES [10, 11, 14] or the SMS-EMOA [5] remove the
individual

a
∗ := argmin

a∈A

CON(a,A),

contributing the least hypervolume to the population A.
The definition of the least-contributing individual can be

used to rank the individuals in a population. Such a ranking
is required if more than one individual has to be selected or
discarded from a Pareto set A of non-dominated solutions.
The contribution rank cont(a,A) of a ∈ A can then be de-
fined as follows.
The element a∗ ∈ A with the smallest contributing hy-

pervolume is assigned lowest contribution rank 1. The next
rank is assigned by considering A\{a∗} etc. More precisely,
let c0(A) = argmina∈A CON(a∗, A) and

ci(A) = c0

(

A \
i−1
⋃

j=0

{cj(A)}

)

for i > 0 and we assume that argmin breaks ties at random.
For a ∈ A we define the contribution rank cont(a,A) to be
1 + i iff a = ci(A).
Several algorithms for calculating the hypervolume have

been developed. The first ones was the Hypervolume by Slic-
ing Objectives (HSO) algorithm which was suggested inde-
pendently by Zitzler [17] and Knowles [12]. Another popular
algorithm to calculate HYP is by Beume and Rudolph [3, 4]
which is based on Overmars and Yap’s algorithm for Klee’s
Measure Problem [13]. It is known that exact calculation
of HYP is #P-hard in the number of objectives m [6].
Therefore, unless P = NP there is no hypervolume algo-
rithms with a runtime polynomial in m. Also CON(a,A) is
#P-hard to solve exactly [8] and even NP-hard to approx-

imate by a factor of 2m
1−ε

for all ε > 0.
In the context of our algorithm we are only interested in

determining c0(A). The classical way to do this would be µ+
1 calculations of CON. We use Bringmann and Friedrich’s
adaption [7] of [3, 4, 13] which calculates all CON(a,A), a ∈
A, in a single run. This achieves a speed-up of µ compared
to the algorithm of Beume and Rudolph [3, 4] and is the
fastest known exact algorithm.
Recently, Monte-Carlo approximation algorithms for de-

termining c0(A) appeared in the literature [1, 2, 8]. We
decided to implement the algorithm of Bringmann and
Friedrich [8], which returns for a population A and arbi-
trarily given ε, δ > 0, a solution a ∈ A with contribution
CON(a) at most (1 + ε)CON(a∗, A) with probability at
least (1−δ). As this problem is NP-hard [8], this algorithm
cannot run in polynomial time for all instances, but it has
been shown to perform very fast on artificial data-sets [8].
To the best of our knowledge this is the first paper which ex-
amines the use of an approximate hypervolume contribution
for MOEAs.

3. THE (µ+ 1)-MO-CMA-ES
In the following, we briefly outline the MO-CMA-ES ac-

cording to [10, 11, 14], see Algorithm 1. For a detailed de-
scription and an in-depth performance evaluation, we refer
to [10, 15, 16].

In the MO-CMA-ES, a candidate solution a
(g)
i in gen-

eration g is a tuple
[

x
(g)
i , p̄

(g)
succ,i, σ

(g)
i ,p

(g)
i,c ,C

(g)
i

]

, where

x
(g)
i ∈ R

n is the current search point, p̄
(g)
succ,i ∈ [0, 1] is

the smoothed success probability, σ
(g)
i ∈ R

+
0 is the global

step size, p
(g)
i,c ∈ R

n is the cumulative evolution path, and

C
(g)
i ∈ R

n×n is the covariance matrix of the search distri-
bution.

The success indicator succQ(g)

(

a
(g)
i , a′(g)

)

evaluates to

one if the mutation that has created a′(g) is considered to
be successful and to zero otherwise.

Algorithm 1: (µ +1)-MO-CMA-ES

1 g ← 0, initialize parent population Q(0)

2 repeat

3 i ∼ U
(

1, . . . ,
∣

∣

∣
ndom

(

Q(g)
)
∣

∣

∣

)

4 a′(g+1)
← a

(g)
i

5 x′(g+1) ∼ x
(g)
i + σ

(g)
i N

(

0,C
(g)
i

)

6 Q(g) ← Q(g) ∪
{

a′(g+1)
}

7 σ-update
(

a′(g+1)
, succQ(g)

(

a
(g)
i , a′(g)

))

8 C-update
(

a′(g+1)
, succQ(g)

(

a
(g)
i , a′(g)

))

9 σ-update
(

a
(g)
i , succQ(g)

(

a
(g)
i , a′(g)

))

10 Q(g+1) ← Q(g) \
{

argmina∈Q(g) CON(a,Q(g))
}

11 g ← g + 1
until stopping criterion is met

In each generation, the algorithm samples an offspring

individual a′(g+1)
. The parent individual a

(g)
i is chosen uni-

formly at random from the set of non-dominated individ-

uals ndom
(

Q(g)
)

(lines 3–5). Next, the strategy parame-

ters of both the parent and offspring individual are adapted
(lines 7–9). The decision whether a new candidate solution
is better than its parent is made in the context of the pop-
ulation Q(g) of parent and offspring individuals subject to
the indicator-based selection strategy implemented in the
algorithm. The step sizes and the covariance matrix of the
offspring individual are updated (lines 7–8). Subsequently,

the step size σ
(g)
i of the parent individual a

(g)
i is adapted

(line 9). Finally, the new parent population is selected from
the set of parent and offspring individuals according to the
indicator-based selection scheme (line 10).

4. PRELIMINARY EMPIRICAL EVALUA-

TION
This section presents the intended setup of the empirical

performance evaluation of the (µ+1)-MO-CMA-ES relying
on the approximation of the least hypervolume contributor.
We compare the (µ + 1)-MO-CMA-ES using the approxi-
mation of the least hypervolume contributor (referred to as
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Figure 1: Evolution of the absolute hypervolume for the fitness function DTLZ2 with five objectives. Vertical lines mark the
actual time that the algorithms required to carry out 25,000 and 50,000 fitness function evaluations, respectively.

(µ+1)-MO-CMA-ESA) to the results of the original (µ+1)-
MO-CMA-ES. The results of both algorithms are compared
to both the results of the original SMS-EMOA (see [5]) and
the results of the SMS-EMOA relying on the approxima-
tion of the least hypervolume contributor (SMS-EMOAA).
Additionally, we compare the running time of the different
algorithms. We adhere to the suggestions given in [16] for
statistical testing purposes.

4.1 Experimental Setup
We compare the algorithms on the well-known benchmark

function DTLZ2 (see [9]). The number of objectives was
set to 5, search space dimension was 30, and the number
of parent individuals was µ = 50. For the approximation
algorithm, we used the parameters ε = 10−6 and δ = 10−4.
We conducted 10 independent trials with 50,000 fitness

function evaluations each. We sampled the performance of
the algorithms after every 1,000th fitness function evalua-
tions.
The experiments were carried out on a workstation with

an 2.93 GHz Intel Quad-Core Xeon processor running Linux.
We used the GNU compiler chain and enabled compiler op-
timizations according to the following command line argu-
ments: -O3 -ffast-math -msse4 -mtune=core2.

4.2 Results
The results are shown in Fig. 1. For both the (µ+1)-MO-

CMA-ES as well as the SMS-EMOA, the variants relying
on the approximation of the least hypervolume contributor
did not perform worse than the variants employing the exact
hypervolume indicator. In general, both variants of the (µ+
1)-MO-CMA-ES outperformed the respective variants of the
SMS-EMOA.

For both the (µ + 1)-MO-CMA-ESA and the SMS-
EMOAA, the running time of the experiments was signif-
icantly reduced (see markers in Fig. 1) when compared to
the variants of the algorithms relying on the exact hypervol-
ume indicator.

5. OUTLOOK
We presented an overview of our current work regarding

the hypervolume indicator. We are empirically investigat-
ing how replacing the exact hypervolume indicator with a
Monte-Carlo approximation of the least hypervolume con-
tributor affects the performance of the multi-objective evo-
lutionary algorithms relying on the well-known indicator-
based selection strategy. The preliminary results shown here
are promising and suggest that the performance of the algo-
rithms does not suffer from the additional noise introduced
by the Monte-Carlo approximation of the least hypervolume
contributor. Additionally, we observe a reduction of the run-
ning time that is significant for more than four objectives.

Nevertheless, the performance analysis needs to be carried
out across a broad range of fitness functions to ensure that
the algorithms’ performance remains robust despite possible
failures in the selection procedure. Moreover, we will exam-
ine different settings of the error bound ε and the error prob-
ability δ as well as the scaling with respect to the number
of objectives. Future work should also include a comparison
with other approximation schemes such as HypE [1, 2].
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