
An Efficient Algorithm for Computing
Hypervolume Contributions∗

Karl Bringmann s9kabrin@stud.uni-saarland.de
Universität des Saarlandes, Saarbrücken, Germany

Tobias Friedrich tobias.friedrich@mpi-inf.mpg.de
Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract
The hypervolume indicator serves as a sorting criterion in many recent multi-objective
evolutionary algorithms (MOEAs). Typical algorithms remove the solution with the
smallest loss with respect to the dominated hypervolume from the population. We
present a new algorithm which determines for a population of size n with d objectives,
a solution with minimal hypervolume contribution in time O(nd/2 log n) for d > 2. This
improves all previously published algorithms by a factor of n for all d > 3 and by a
factor of

√
n for d = 3.

We also analyze hypervolume indicator based optimization algorithms which re-
move λ > 1 solutions from a population of size n = μ + λ. We show that there are
populations such that the hypervolume contribution of iteratively chosen λ solutions
is much larger than the hypervolume contribution of an optimal set of λ solutions. Se-
lecting the optimal set of λ solutions implies calculating (n

μ
) conventional hypervolume

contributions, which is considered to be computationally too expensive. We present the
first hypervolume algorithm which directly calculates the contribution of every set of λ
solutions. This gives an additive term of (n

μ
) in the runtime of the calculation instead of

a multiplicative factor of (n

μ
). More precisely, for a population of size n with d objectives,

our algorithm can calculate a set of λ solutions with minimal hypervolume contribution
in time O(nd/2 log n + nλ) for d > 2. This improves all previously published algorithms
by a factor of nmin{λ,d/2} for d > 3 and by a factor of n for d = 3.

1 Introduction

How to compare Pareto sets lies at the heart of research in multi-objective optimization.
One measure that has been the subject of much recent study in evolutionary multi-
objective optimization is the hypervolume indicator (HYP). It measures the volume of
the dominated portion of the objective space. The hypervolume metric is of exceptional
interest as it possesses the highly desirable feature of strict Pareto compliance (Zitzler
et al., 2003). That is, considering two Pareto sets A and B, the hypervolume indicator
values A higher than B if the Pareto set A dominates the Pareto set B. This property
makes it well suited for many-objective problems.

∗A conference version of this article appeared under the title “Don’t be greedy when calculating
hypervolume contributions” (Bringmann and Friedrich, 2009a) in the Proceedings of the 10th ACM
Foundations of Genetic Algorithms.

C© 2010 by the Massachusetts Institute of Technology Evolutionary Computation 18(3): 383–402

K. Bringmann and T. Friedrich

The hypervolume was first introduced for performance assessment in multi-objective
optimization by Zitzler and Thiele (1999). Later on it was used to guide the search in var-
ious hypervolume-based evolutionary optimizers (Beume et al., 2007; Emmerich et al.,
2005; Igel et al., 2007; Knowles et al., 2003; Zitzler and Künzli, 2004; Zitzler et al., 2007).
Since then, several algorithms for calculating the hypervolume have been developed.
The first one was the hypervolume by slicing objectives (HSO) algorithm which was
suggested independently by Zitzler (2001) and Knowles (2002). To improve its runtime
on practical instances, various speed up heuristics of HSO have been suggested (While
et al., 2005; Zhou et al., 2007). The current best asymptotic runtime of O(nd/2 log n) for
d � 3 by Beume and Rudolph (Beume, 2009; Beume and Rudolph, 2006) is based on
Overmars and Yap’s algorithm for Klee’s Measure Problem (Overmars and Yap, 1991).
There are also various algorithms for small dimensions (Emmerich et al., 2005; Naujoks
et al., 2005).

So far, the only known lower bound for any d is �(n log n) (Beume et al., 2009).
Note that the worst-case combinatorial complexity (i.e., the number of faces of all
dimensions on the boundary of the union of the boxes) of �(nd) does not imply any lower
bounds on the computational complexity. It has recently been shown by the authors
(Bringmann and Friedrich, 2008) that the calculation of HYP is #P-hard, which implies
that all hypervolume algorithms must have a superpolynomial runtime in the number
of objectives or boxes unless P = NP. The paper (Bringmann and Friedrich, 2008) also
presents an FPRAS (fully polynomial-time randomized approximation scheme) which
gives an ε-approximation of the hypervolume indicator with probability 1 − δ in time
O(log(1/δ) nd/ε2). Though this algorithm gives a very fast approximation in time (linear
in n and d) for the hypervolume, it is important to note that this is not an approximation
of the contributing hypervolume. Even the approximation of the latter is NP-hard as
has recently been shown (Bringmann and Friedrich, 2009b).

Let us now look at the optimization problem. Given an arbitrary decision space
X , we want to maximize a function f :X → R

d
�0. A solution x is an element of the

decision space X , but we will typically identify it with the corresponding f (x) in
the objective space. A hypervolume-based algorithm maintains a population (set of
solutions) M ⊆ R

d
�0 of size μ. Then the hypervolume is defined as

HYP(M) := VOL

(⋃
(x1,...,xd)∈M

[0, x1] × · · · × [0, xd]

)

with VOL(·) being the usual Lebesgue measure. Without loss of generality we assume the
reference point to be 0d . To avoid an unbounded population, the number of solutions
in the population is usually fixed to a certain threshold and with every new Pareto
optimal solution another one has to be removed. Most hypervolume based algorithms
like SIBEA (Zitzler et al., 2007) or the generational MO-CMA-ES (Igel et al., 2007)1

remove the solution x ∈ M with the smallest contribution (Beume et al., 2007; Brockhoff
and Zitzler, 2007; Zitzler et al., 2007)

CONM (x) := HYP(M) − HYP(M \ {x}).
Throughout the paper, we will use CON(x) := CONM (x), if there is no ambiguity in
the choice of M . The contribution can be seen as the measure of the space that is

1There are also steady-state variants of MO-CMA-ES (Igel et al., 2007; Suttorp et al., 2009).

384 Evolutionary Computation Volume 18, Number 3

An Efficient Algorithm for Computing Hypervolume Contributions

dominated by x, but no other point in M . A point (x1, . . . , xd) ∈ R
d dominates a point

(y1, . . . , yd) ∈ R
d , iff xi ≥ yi for all i = 1, . . . , d and there is a j ∈ {1, . . . , d} with xj > yj .

The solution with minimal contribution can be calculated easily by μ hypervolume
calculations.

The problem is that often λ solutions should be removed at once. In this case one
aims for a set S ⊆ M of size λ, that is, S is a λ-set or λ-subset of M , such that

CONM (S) := HYP(M) − HYP(M \ S)

is minimized. To calculate the optimal λ-set Sλ
opt(M) which has the smallest joint contri-

bution with

Sλ
opt(M) := argmin

S⊆M

|S|=λ

CONM (S) (1)

requires (μ+λ

μ
) calculations of HYP(·) for d > 2.2 In most settings, λ is much smaller than

n = μ + λ, that is, λ 	 n, and hence order nλ calculations of HYP(·) are usually needed
to obtain Sλ

opt(M). This is generally considered to be computationally too expensive
(Bader and Zitzler, 2010; Beume et al., 2007; Igel et al., 2007; Zitzler et al., 2007). This
is why all current hypervolume based optimization algorithms just calculate a greedy
λ-set Sλ

greedy(M) by starting with S0
greedy(M) := ∅ and then iteratively setting

Sλ+1
greedy(M) := Sλ

greedy(M) ∪
{

argmin
x∈M\Sλ

greedy(M)
CONM\Sλ

greedy(M)(x)

}
. (2)

This is computationally much cheaper as the number of calculations of HYP(·) is
bounded by a small polynomial in n and λ and not exponential in λ, as for Sλ

opt(M).
Throughout the paper, we will use Sλ

opt := Sλ
opt(M) and Sλ

greedy := Sλ
greedy(M) if there is no

ambiguity in the choice of M .
In Section 2 we will show that CON(Sλ

greedy)/CON(Sλ
opt) can theoretically be arbi-

trarily large. We also report on Pareto fronts with significant differences between both
λ-sets in the DTLZ library (Deb et al., 2002).

This observation motivates the algorithm introduced in Section 3. It is an adaptation
of Overmars and Yap’s algorithm which allows the direct computation of the contribu-
tion of every set of λ solutions. This avoids calculating (μ+λ

μ
) conventional hypervolume

calculations. The basic idea of the new algorithm is to maintain the volume of the con-
tribution of every set of λ solutions during the calculation and to find the smallest of
them afterward. This second step causes overall an additive term of (μ+λ

μ
) in the runtime

of the calculation instead of a multiplicative factor of (μ+λ

μ
) when using Equation (1)

directly. For a population of size n = μ + λ and d > 2, the algorithm calculates Sλ
opt in

time O(nd/2 log n + nλ), which improves all previously published algorithms by a factor
of nmin{λ,d/2}.

This has two consequences. First, even if we remove only λ = 1 solutions in every
step, this is a speed up by a factor of order n. This means we can determine the box

2For d = 2 this can be solved in time O(n2) by dynamic programming (Auger et al., 2009, Alg. 1).

Evolutionary Computation Volume 18, Number 3 385

K. Bringmann and T. Friedrich

with least contribution, that is, the greedy solution, in time of order nd/2 log n instead
of the usual O(nd/2+1 log n) of Beume and Rudolph (Beume, 2009; Beume and Rudolph,
2006). Second, for λ � d/2 the asymptotic runtime is independent of λ. Therefore, using
λ = d/2 instead of the commonly used λ = 1 (greedy) gives the same asymptotic runtime
and yields the same or potentially even smaller contributions of the calculated λ-sets.

Note that we will assume throughout the paper that d and λ are constant, that is,
n is the only growing parameter for the asymptotic analysis. This is no real restriction
as both of them appear in the exponent of the resulting runtime and hence nonconstant
values for them would immediately make the algorithm inefficient.

2 The Contributing Hypervolume of Greedy Selection Can Be
Arbitrarily Larger than the Optimal One

For λ = 1, the greedy λ-set is optimal, that is, Sλ
greedy = Sλ

opt. However, it is known that for
λ � 2 the greedy algorithm is not able to construct the optimal solution set in general.
For example, Bradstreet et al. (2006) present a three-dimensional example of n = 6
points where for λ = 2 the contribution of the greedy λ-set Sλ

greedy is 12.5% larger than
the optimal λ-set Sλ

opt. In this section we show that the λ-set Sλ
greedy found by the greedy

algorithm can have an arbitrarily larger contribution than the optimal λ-set Sλ
opt for all

λ � 2. Let κ denote the ratio between the contribution of Sλ
greedy and Sλ

opt. For many sets
M , κ is either one or very close to one. Next, we prove that for given κ , dimension d � 3
and number of boxes n > d there is a set of solutions M of size n such that the ratio
between CONM (Sλ

greedy) and CONM (Sλ
opt) is larger than κ for all 2 ≤ λ ≤ d. Additionally,

we show that κ > 1 also holds for some fronts from the DTLZ library (Deb et al., 2002).

LEMMA 1: For all κ � 1, d � 3 and n > d there is a set M ⊆ R
d
�0 with |M| = n such that

CONM (Sλ
greedy)/CONM (Sλ

opt) > κ for all 2 � λ � d.

PROOF: We first assume n = d + 1. Let ε := 1/(2κd2) and σ := d2ε2. We choose M =
{q, p1, p2, . . . , pd} with

q = (1 + ε, 1 + ε, . . . , 1 + ε),

p1 = (1 + ε + σ, 1, 1, . . . , 1),

p2 = (1, 1 + ε + σ, 1, . . . , 1),

· · ·
pd = (1, 1, . . . , 1, 1 + ε + σ).

A three-dimensional example is shown in Figure 1. As the space dominated by pi but
no other point in M is exactly

[0, 1]i-1 × [1 + ε, 1 + ε + σ] × [0, 1]d-i ,

we have CONM (pi) = σ . The point q dominates [0, 1 + ε]d , but [0, 1]d and the d rectangu-
lar regions of the form [0, 1] × · · · × [0, 1] × [1, 1 + ε] × [0, 1] × · · · × [0, 1] are dominated

386 Evolutionary Computation Volume 18, Number 3

An Efficient Algorithm for Computing Hypervolume Contributions

p1p2

p3

q

xy

z

Figure 1: A three-dimensional example of a set M ⊆ R
3
�0 such that the greedy

λ-set Sλ
greedy(M) gives a much higher contribution than the optimal λ-set Sλ

opt(M).

by the other points in M , too, so that we have

CONM (q) = (1 + ε)d − 1d − d · ε =
d∑

i=2

(
d

i

)
εi .

Similarly, we get

CONM

⎛
⎜⎝
⎧⎪⎨
⎪⎩pi1 , pi2 , . . . , piλ︸ ︷︷ ︸

λ different pi ’s

⎫⎪⎬
⎪⎭
⎞
⎟⎠ = λσ,

CONM

⎛
⎜⎝
⎧⎪⎨
⎪⎩q, pi1 , . . . , pi(λ−1)︸ ︷︷ ︸

λ − 1 different pi ’s

⎫⎪⎬
⎪⎭
⎞
⎟⎠ = CONM (q) + (λ − 1)(ε + σ),

where we made use of the fact that after picking q every pi dominates a portion of space
with volume ε + σ . Since

CONM (q) <

∞∑
i=0

(
d

i + 2

)
εi+2 <

∞∑
i=0

di+2εi+2

(i + 2)!
= ε2d2

∞∑
i=0

diεi

(i + 2)!
< ε2d2

∞∑
i=0

1
(i + 2)!

= ε2d2(e − 2) < ε2d2 = CONM (pi),

the greedy algorithm chooses the λ-set

Sλ
greedy =

⎧⎪⎨
⎪⎩q, pi1 , pi2 , . . . , pi(λ-1)︸ ︷︷ ︸

(λ − 1) different pi ’s

⎫⎪⎬
⎪⎭

Evolutionary Computation Volume 18, Number 3 387

K. Bringmann and T. Friedrich

though the optimal λ-set is

Sλ
opt =

⎧⎪⎨
⎪⎩pi1 , pi2 , . . . , piλ︸ ︷︷ ︸

λ different pi ’s

⎫⎪⎬
⎪⎭.

Therefore, for all λ � d,

CONM

(
Sλ

greedy

)
CONM

(
Sλ

opt

) = CONM (q) + (λ − 1) (ε + σ)
λσ

>
(λ − 1)ε

λσ
� 1

2 d2ε
= κ.

This shows the claim for n = d + 1. In order to prove the remaining case n > d + 1,
we take the set M from above, shift all points in M by 1 along the first dimension, and
add some extra boxes, each one contributing too much to be chosen by the greedy or
the optimal algorithm. For this we define

M ′ = {(x1 + 1, x2, . . . , xd) | (x1, . . . , xd) ∈ M},
B = ⋃1≤i<n-d{(1, C · i, C · (n − d − i), C, . . . , C)},
N = M ′ ∪ B,

where C > 2 (1 + ε + σ)2 is a sufficiently large number. As |M| = d + 1, N contains
exactly n boxes. Furthermore, each point in B uniquely dominates the rectangular
region

[0, 1] × [C(i − 1), Ci] × [C(n − d − i − 1), C(n − d − i)] × [0, C]d-3,

when considering only points from B. Hence, we have CONB(x) ≥ Cd-1 for all x ∈ B.
The contribution of x in N can be smaller than the contribution of x in B. However,
the contribution cannot decrease by more than the overall hypervolume of M ′ as every
point lying in the one contributing space but not in the other one has to be dominated
by a point in M ′. Therefore CONN (x) ≥ CONB(x) − HYP(M ′). We further know that the
hypervolume of M ′ is bounded from above by 2 (1 + ε + σ)d as each ith coordinate of a
point in M ′ is less than 1 + ε + σ for 2 ≤ i ≤ d and at most 2 + ε + σ < 2 + 2ε + 2σ for
i = 1. Hence,

CONN (x) ≥ Cd-1 − 2 (1 + ε + σ)d

> 2d-1(1 + ε + σ)2d-2 − 2 (1 + ε + σ)d

≥ 4 (1 + ε + σ)d − 2 (1 + ε + σ)d

= 2 (1 + ε + σ)d

≥ HYP(M ′).

This implies that it is better to remove from N all elements in M ′ than to remove one
element in B. Therefore none of Sλ

opt or Sλ
greedy can contain a point in B for 2 ≤ λ ≤ d.

Moreover, the contribution of an element x ∈ M to M is the same as the contribution

388 Evolutionary Computation Volume 18, Number 3

An Efficient Algorithm for Computing Hypervolume Contributions

Table 1: Some examples of populations on fronts from the DTLZ library (Deb et al.,
2002) where the contributions of the greedy λ-set Sλ

greedy and the optimal λ-set Sλ
opt

deviate.

Test case d n λ
CON(Sλ

greedy)−CON(Sλ
opt)

CON(Sλ
opt)

DTLZLinearShape.3d.front.50pts 3 50 5 4.23%
DTLZLinearShape.3d.front.10pts 3 10 9 5.76%
DTLZSphereShape.3d.front.50pts 3 50 6 4.19%
DTLZSphereShape.3d.front.50pts 3 50 7 8.57%
DTLZDiscontinuousShape.5d.front.20pts 5 20 8 2.60%
DTLZDegenerateShape.8d.front.10pts 8 10 3 11.31%
DTLZDegenerateShape.6d.front.10pts 6 10 3 32.64%

of the corresponding element x ′ ∈ M ′ to N , as the boxes in B cut away all additional
dominated space (every box in B dominates [0, 1] × [0, 1 + ε + σ]d-1). Hence

CONN

(
Sλ

opt(N)
) = CONM

(
Sλ

opt(M)
)
,

CONN

(
Sλ

greedy(N)
) = CONM

(
Sλ

greedy(M)
)

for 2 ≤ λ ≤ d, which implies that their ratio is at least κ as shown for the case n =
d + 1. �

In order to validate that such differences indeed occur in real datasets, we have
calculated the greedy and the optimal λ-set contribution for some populations on
fronts from the DTLZ library (Deb et al., 2002). In order to allow an easy verifica-
tion of our results, we used the populations generated by (While et al., 2006) available
from http://www.wfg.csse.uwa.edu.au/hypervolume/. Given these populations of
different sizes n, we calculated the optimal λ-set Sλ

opt by Equation (1) and the greedy
λ-set Sλ

greedy by Equation (2) for various λ. We observed relative differences of up to
one third between calculating the contribution greedily or optimally. Some represen-
tative numbers of larger deviations between both contributions are shown in Table 1.
These examples show that for the examined populations the resulting hypervolume is
larger (i.e., better as we consider maximization problems) if the λ-set is chosen optimally
instead of greedily. This does not imply that the overall search process is slower with
greedy selection, but still motivates the use of the optimal selection if possible.

3 Algorithm

Consider a set S of boxes in R
d , n := |S|. Throughout this chapter, we use the term λ-set

for a subset T ⊆ S with |T | = λ. We also say that T is a λ-subset of S. Similarly, we use
λ≤-set for denoting any set T ⊆ S with |T | ≤ λ, or say that T is a λ≤-subset of S.

The optimal λ-set T ∗ of S is a λ-set with CONS(T ∗) minimal among all λ-sets T .
This set T ∗ is the set we would like to discard from our solution set S. The task of
finding T ∗ can be accomplished by computing HYP(S \ T) for all λ-sets T (and T = ∅),
as CONS(T) = HYP(S) − HYP(S \ T). The main idea of our algorithm is that for doing
this we do not have to compute these hypervolume measures independently, but can
“parallelize” the execution of the algorithm the currently fastest hypervolume algorithm

Evolutionary Computation Volume 18, Number 3 389

K. Bringmann and T. Friedrich

0d

A B C

C B A

root

Figure 2: A two-dimensional partition of four boxes and the corresponding partition
tree.

is based on: the algorithm of Overmars and Yap (1991). Therefore, we present their ideas
in short and give a sketch of our changes afterward.

The general framework of the algorithm is the same as the one of Bentley (1977):
do a space sweep along dimension d stopping at each endpoint of a box in decreas-
ing order and, inserting the new box, solve the dynamic (d − 1)-dimensional measure
problem. The latter is the same as the problem of computing the hypervolume, but
the boxes are given one by one and we have to output the current hypervolume after
each box. Bentley’s original approach to this dynamic problem took O(nd-2 log n). Those
(d − 1)-dimensional measures then have to be multiplied by the length of the interval in
dimension d we overleaped and summed up to get the overall hypervolume of S. Refer
to Bentley (1977) for details and correctness of this formula. Note that Bentley solved a
more general problem than just computing the hypervolume. In our context we, unlike
Bentley, never have to delete boxes, as all boxes have the same lower dth coordinate 0
(as they all share the origin as a joint corner).

For the tree approach of Overmars and Yap (1991) to the dynamic problem, we need
some more terminology. For a point x ∈ R

d , we denote its ith coordinate by xi . In general,
we will denote a d-dimensional object as d-object if we want to emphasize that it is an
object lying in R

d . We consider a d-box B to be a set [0, b1] × · · · × [0, bd], so that we can
think of B also as the point (b1, . . . , bd) ∈ R

d . We will use this dualism often, speaking of
boxes and points being the same. Moreover, we consider a (d − 1)-region R, or just region
for short, to be a set [a1, b1] × · · · × [ad-1, bd-1], that is, a rectangular region in R

d-1. For
such a region we define R∗ to be the d-region R × [0, U], where U := max{xd | x ∈ S}
is a fixed upper bound for the dth coordinates of the points in S. Furthermore, we
speak of the projected box Bπ by dropping the dth coordinate of the box B, that is,
Bπ = [0, b1] × · · · × [0, bd-1]. Also, for a set S of points (or boxes) in R

d we denote by Sπ

the set of all projected boxes {(x1, . . . , xd-1) | (x1, . . . , xd) ∈ S}.

DEFINITION 1: A d-box B is said to partially cover a (d − 1)-region R if the boundary of Bπ

intersects the interior of R. B is said to (fully) cover R if R ⊆ Bπ .

390 Evolutionary Computation Volume 18, Number 3

An Efficient Algorithm for Computing Hypervolume Contributions

Figure 3: A 2-dimensional trellis for arbitrary boxes as in Overmars and Yap (1991).
There, a trellis consists of long vertical (pairwise disjoint) rectangles superposed on long
horizontal (pairwise disjoint) rectangles. The dotted rectangle around the trellis shows
the corresponding region R. Note that such a configuration can only occur for the more
general Klee’s Measure Problem, but not for the hypervolume.

We speak of the two i-boundaries of a box B being the two sets {x ∈ B | xi = 0} and
{x ∈ B | xi = bi}. Additionally, we let the i-interval of a box or region to be its projection
on the xi-axis. Then we speak of a box B being an i-pile of the region R, if for each 1 ≤
j ≤ d − 1, j �= i the j -interval of R is fully contained in the j -interval of B. Less formally,
that means that within a region R, all j -intervals of i-piles of R only differ for j = i. We
consider a set S of d-boxes to form a trellis in the region R if each box in S is an i-pile for
some 1 ≤ i ≤ d − 1 in R. See Figure 3 for an illustration of a general trellis as defined by
Overmars and Yap. Finally, we will need a restricted hypervolume: For any region R

and finite point set T ⊂ R
d , we define HYPR∗ (T) := VOL(R∗ ∩⋃x∈T [0, x1] × · · · × [0, xd]),

which is the hypervolume dominated by T restricted to R∗.
In order to calculate the volume efficiently, Overmars and Yap (1991) cleverly use

a partitioning of the (d − 1)-dimensional space by an orthogonal partition tree. There,
each node u is associated with a (leaf-)region Ru. The root is associated with a region Rroot
with R∗

root being a bounding box for all the boxes in S. We will in this paper always
assume R∗

root to be the box BB = [0, BB1] × · · · × [0, BBd] with BBi = max{xi | x ∈ S}.
Additionally, the associated region to each node splits up to the two children covering
and intersection free, that is, if
(u) and r(u) are the two children of u, then R
(u) ∪ Rr(u) =
Ru and R
(u) ∩ Rr(u) has zero Lebesgue measure. In every leaf
 it is required that any
box in S (the problem instance) that partially covers R
 is a pile for R
, so that the boxes
in any leaf form a trellis. Figure 2 gives an example of a partition and the corresponding
partition tree.

Overmars and Yap (1991) show how to build such a tree with several nice properties.
Among others, they prove (in their Lemma 4.2) the following three properties which
will be useful in the remainder.

LEMMA 2: The partition tree built by the algorithm of Overmars and Yap has the following
properties:

• The depth of the tree is O(log n).

• Each projection of a box in S partially covers O(n(d-2)/2) leaf regions.

• Each projection of a box in S partially covers O(n(d-2)/2 log n) regions of inner nodes.

Evolutionary Computation Volume 18, Number 3 391

K. Bringmann and T. Friedrich

Note that we build this tree only for the first d − 1 dimensions, while Overmars and
Yap solve the problem in d dimensions, which explains the difference in the statements.

For inserting or deleting a box in this tree, one only has to update the measure in
each of the influenced regions. This can be done in constant time for internal nodes and
in logarithmic time for the leafs, as we will see in Section 3.2. Hence, this tree helps to
efficiently determine the dynamic measure.

3.1 Streaming Variant

Overmars and Yap (1991) also present a streaming variant of their algorithm. It uses less
space but otherwise performs the same operations as the tree variant, just in a different
order. The tree variant can be seen as a sweep in “time” (being the dth coordinate),
where we insert a box into the tree when it is reached in time. We can rearrange this the
following way: We traverse the tree, and for each leaf we sweep the time, inserting all
boxes that influence the current leaf. In other words, we do not perform every insertion
one by one on the whole tree structure, but look at the leaf regions and perform all
the insertions that will influence the region at hand. This rearrangement is possible as
we know all insertion times beforehand. The benefit of the latter variant is that we do
not have to explicitly store the whole tree structure. As Overmars and Yap managed
to simulate the splitting of an inner node just by looking at the boxes that influence
the associated region, we just need the tree structure implicitly, reducing the amount of
storage to O(n). This variant better fits our purpose of a practical algorithm.

3.2 Trellises

What is left is how to deal with the leaf regions of the tree. Overmars and Yap (1991) saw
that maintaining the measure of a projected trellis dynamically can be done in O(log n).
Consider a region R, that is, a rectangle with side lengths L1, . . . , Ld-1. Furthermore, con-
sider the i-piles of this region: by projecting them onto dimension i, we can determine
their measure by solving a 1-dimensional measure problem with overlapping intervals,
which can be maintained in O(log n) per update by an interval tree. This way, we get
Mi , the measure of the 1-dimensional problem of the i-piles. Then we can compute the
measure of the projected trellis easily as

d−1∏
i=1

Li −
d−1∏
i=1

(Li − Mi)

as explained in Overmars and Yap (1991).
Beume and Rudolph (Beume, 2009; Beume and Rudolph, 2006) noted that in the

case of the hypervolume indicator, the measures Mi can be maintained even in constant
time, since we do not delete boxes and the interval overlapped by the i-piles is always
of the form [0, r] for some r ∈ R, so that we just have to save the largest right end of
such an interval, which can be updated in O(1).

3.3 Sketch of Our Algorithm

Roughly speaking, the algorithm of Overmars and Yap can be summarized as follows:

• By building the partition tree, compute for all leaf regions R the hypervolume
HYPR∗ (S) of the space dominated by S restricted to R∗.

• Sum up these volumes.

392 Evolutionary Computation Volume 18, Number 3

An Efficient Algorithm for Computing Hypervolume Contributions

The crucial observation is that the space dominated by S restricted to R∗ as considered
in the first step forms a trellis whose hypervolume can be determined efficiently.

As sketched at the beginning of Section 3, we want to compute all the hypervolumes
HYP(S \ T) for λ-sets T in parallel. Observing that we can use the same partitioning
tree for S \ T as for S, we can come up with a simple adaptation of the above method:

• By building the partition tree, compute for all leaf regions R the hypervolume
HYPR∗ (S \ T) for all λ-subsets T of S.

• Sum up these volumes independently to get HYP(S \ T) for each T .

One way to carry out the first step is described in the following. For this, we compute
for every leaf region R and all λ≤-sets U the following volumes MR

U .

DEFINITION 2: The volume MR
U denotes the volume of the space in R∗ that is not dominated

by S \ U , but is dominated by every S \ W for W U .

This way every point in R∗ not dominated by S \ T is counted in exactly one of the
measures MR

U with U ⊆ T . We get

HYPR∗ (S \ T) = VOL(R∗) −
∑
U⊆T

MR
U . (3)

Using this and postponing the summation for each T , we can restate the method as
follows:

• Compute the measures MR
U for all leaf regions R and λ≤-sets U

• Sum up these measures to get MU :=∑R MR
U (the sum goes over all leaf regions R)

• For each λ-set T compute HYP(S \ T) = VOL(R∗
root) −∑U⊆T MU

The subtle point making this method superior to the naı̈ve approach is that most of the
MR

U values are actually zero. In order to see this, let us take a closer look on how one
would compute the values MR

U . Inside R∗ we can do a space sweep along dimension d,
just as in the algorithm of Bentley (1977), stopping at each of the dth coordinates of the
points in S in decreasing order. At the stop for x ∈ S, we have to insert the box x and
compute a (d − 1)-dimensional measure, namely the volume M

R,x
U .

DEFINITION 3: The volume M
R,x
U denotes the volume of the (d − 1)-dimensional space in R

that is not dominated by Sx
π \ Uπ , but is dominated by every Sx

π \ Wπ for W U , where
Sx = {y ∈ S | yd ≥ xd} denotes the set of already inserted boxes.

We multiply this measure by the covered distance xd − xN
d in the dth dimension,

where xN
d is the dth coordinate of the next stop. This is summed up over all stops to get

the measure MR
U .

This way, we reduced the computation of MR
U to M

R,x
U , which is a measure inside

the first d − 1 dimensions of a trellis, which have a fairly simple geometric structure,
as depicted in Figure 4. In the picture we can see for each part, to which measure M

R,x
U

it corresponds. The set {A,D} for example marks the space corresponding to M
R,x
{A,D}.

There we can also verify Equation (3) (reduced to d − 1 dimensions): The hypervolume
of the space dominated by all but the points A and D equals the total volume of R minus
the volumes of the parts marked with {A,D}, {A}, {D} and ∅, i.e., the subsets of {A,D}.

Evolutionary Computation Volume 18, Number 3 393

K. Bringmann and T. Friedrich

ABC

D

E

F

{A}

{A,D} {D}{A,B,D}

{A,D,E} {D,E}

{A,B} Ø

{D,E,F}

{A,B,C}

Figure 4: The first two dimensions of a three-dimensional trellis consisting of the
hypervolume-boxes defined by S = {A,B,C,D,E, F }. Here, a trellis consists of boxes
that cover the region completely in each of the (d − 1) dimensions except one. The
dotted rectangle indicates the corresponding region R.

Moreover, observe that M
R,x
U is nonzero only if U contains the largest
i i-piles in R

for some
i , but no other i-pile, i = 1, . . . , d − 1. For example, we may choose ∅, {A},
{A,B} or {A,B,C} to be the 1-piles contained in U to get a nonzero M

R,x
U , but not, for

example, only {B}. As we need to compute MU only for λ≤-sets U , we place an additional
condition on |U | =∑d-1

i=1
i ≤ λ. Then there are at most as many nonzero M
R,x
U , values as

there are (d − 1)-tuples (
1, . . . ,
d−1) ∈ N
d-1
0 with

∑d-1
i=1 ≤ λ which is a constant number

for d and λ being constant. This is why there is only a constant number of nonzero M
R,x
U

values for fixed R and x which implies that there are only a small number of nonzero
MR

U values for fixed R. As we will see in the next section in detail, we can even determine
those nonzero values quickly, even in the same asymptotic runtime as we need for the
standard algorithm of Overmars and Yap. Computing the hypervolumes HYP(S \ T)
for all λ-sets T can then be accomplished by summing up all MU with U ⊆ T , as pointed
out above, from which we can compute CONS(T) = HYP(S) − HYP(S \ T), as we get
HYP(S) = VOL(R∗

root) − M∅ for free, and thus quickly determine the optimal λ-set.

3.4 Details of the Algorithm

3.4.1 ComputeMeasures
One obvious problem concerns boxes that fully cover a region of some inner node of
the tree. In such a case Overmars and Yap collapse the interval in dimension d, where
the region is fully covered, into a single moment, memorizing the deleted volume, and
recur. We may not do this, as the fully covering box may be in the set T we disregard, so
that in HYP(S \ T) the region is not fully covered. This is why we do not collapse any
intervals, but have to pass the fully covering boxes to the recursive calls, so that we can
deal with them in the leaf nodes. Note that the runtime analysis of the Overmars and
Yap algorithm does not rely at any point on collapsing intervals, which is why we get
the same asymptotic runtime. It does, however, rely on the fact that inside a leaf node
we spend time O(|S ′| log n) and in an inner node O(|S ′|), where S ′ is the set of boxes
in S that partially cover the region at hand. Hence, we may not pass all fully covering
boxes to the recursive calls to be inside this time bound. Luckily, any measure MR

U is

394 Evolutionary Computation Volume 18, Number 3

An Efficient Algorithm for Computing Hypervolume Contributions

zero, if the fully covering boxes of R contained in U are not the
 largest ones for some

, that is, they have the largest dth coordinate among all fully covering boxes. This
stems from the fact that for fully covering boxes x ∈ U , y �∈ U with dth coordinates
xd ≤ yd we have HYPR∗ (S \ U) = HYPR∗ (S \ (U \ {x})), so that MR

U = 0. This is why we
need to pass only up to the λ + 1 largest covering boxes to the recursive calls. Since
this is a constant number, we do not increase the runtime in an inner node or leaf node
asymptotically.

The streaming variant of Overmars and Yap (1991) is essentially the same as the
algorithm COMPUTEMEASURES (cf. Algorithm 1 below), only that we added the set COV

containing the up to λ + 1 largest covering boxes, that is, out of the set C of boxes that
fully cover the region R at hand (including covering boxes of any parent region) we save
the min{λ + 1, |C|} many of which have the greatest dth coordinate. This set is updated
determining the set U ⊆ S of boxes fully covering the region R, where S is the current
set of boxes. Everything after determining the set COV′ is copied from Overmars and
Yap. We proceed by computing the measures in a trellis, if the remaining boxes S ′ form
one, and by splitting the region R into two regions R1, R2 and recursing, otherwise. For
splitting, we need the sets S ′

1 and S ′
2, where S ′

1 is the set of all boxes in S ′ that have a
1- or 2- or . . . (i − 1)-boundary in R and S ′

2 is the set of boxes in S ′ that do not have such
a boundary in R. For details of this splitting method see Overmars and Yap (1991). Note
that we never split a region along dimension d as is implied by the use of the Overmars
and Yap splitting method and our definition of trellis (which considers only the first
d − 1 dimensions).

Algorithm 1 COMPUTEMEASURES(R, S, i, COV, λ) computes the measures MU of the
λ≤-subsets U of the set of boxes S in the region R∗ ⊆ R

d , where i is the current splitting
dimension and COV is a set containing the up to λ + 1 largest covering boxes.

discard boxes in S not influencing R

determine the set U ⊆ S of boxes fully covering R

S ′ := S \ U

determine the new set COV′ ⊆ COV ∪ U

if the boxes in S ′ form a trellis in R then
COMPUTEMEASURESTRELLIS(R, S ′, COV′

, λ)
else

determine the sets S ′
1 and S ′

2 (as defined above on this page)
if S ′

1 �= ∅ then
split R into R1, R2 along the median i-boundary in S ′

1
COMPUTEMEASURES(R1, S

′, i, COV′
, λ)

COMPUTEMEASURES(R2, S
′, i, COV′

, λ)
else if S ′

2 contains more than
√

n i-boundaries then
split R into R1, R2 along the median i-boundary in S ′

2
COMPUTEMEASURES(R1, S

′, i, COV′
, λ)

COMPUTEMEASURES(R2, S
′, i, COV′

, λ)
else

COMPUTEMEASURES(R, S ′, i + 1, COV′
, λ)

od
od

Evolutionary Computation Volume 18, Number 3 395

K. Bringmann and T. Friedrich

The procedure COMPUTEMEASURESTRELLIS will need the boxes S ′ to be sorted by
dth coordinate. This can be achieved easily by sorting the boxes before the
first call of COMPUTEMEASURES and maintaining this ordering during all steps of
COMPUTEMEASURES, without increasing the overall asymptotic runtime. Hence, we may
assume in the following that S ′ in the input of COMPUTEMEASURESTRELLIS is sorted.

Computing the set COV′ can be done in O(|S|), assuming λ to be constant. Hence, as
long as we provide a COMPUTEMEASURESTRELLIS-function which runs in O(|S ′| log n) for
the set of boxes S ′, which is exactly the same runtime as the Overmars and Yap method,
we do not increase the overall runtime of O(nd/2 log n) of their algorithm.

For determining the needed storage, consider the following trick of Overmars and
Yap (1991). If we save the boxes in U , we can reconstruct the old S by joining U and S ′.
Hence, we can send S ′ down the recursion, not copying it; we just have to reconstruct
it at the end of the recursion call. This way, no box is saved at two places at any time, so
that the overall space for the sets S and U is just O(n). Since the size of COV is λ and thus
constant, we can save it normally, getting an additional space needed ofO(λ log n), as the
recursion depth equals the depth of the partition tree which is O(log n) by Lemma 2, so
that overall we need a storage ofO(n). Note that if we did not follow this trick, we would
have a storage of O(n log n), that is, O(n) in each of the O(log n) levels of the recursion.

3.4.2 ComputeMeasuresTrellis
In order to complete the description of COMPUTEMEASURES, we have to provide the pro-
cedure COMPUTEMEASURESTRELLIS, which will report the measures MR

U . These measure
will then be summed up to get MU , from which we can directly compute the hypervol-
ume dominated by any S \ T , for T a λ-subset of S, as sketched in Section 3.4.1. One
way to compute these measures is given in Algorithm 2.

Algorithm 2 COMPUTEMEASURESTRELLIS(R, S, COV, λ) computes the measures MR
U for

each λ≤-subset U of S, where the boxes in S restricted to R∗ ⊆ R
d form a trellis and COV

is a set containing the up to λ + 1 largest covering boxes.

discard boxes in S not influencing R

set Ai
j := undef (1 ≤ i ≤ d − 1, 1 ≤ j ≤ λ + 1)

set Ai
0 := R (1 ≤ i ≤ d − 1)

S := S ∪ COV ∪ {(0, . . . , 0)}
xL

d := BBd

initialize all MR
U values to 0

for all x ∈ S ordered by decreasing xd do
for all (k1, . . . , kd−1) ∈ N

d−1
0 with

∑d−1
i=1 ki ≤ λ and Ai

ki
defined for all i do

U := {Ai
j | 1 ≤ i < d and 1 ≤ j ≤ ki}

M
R,x
U :=∏d-1

i=1((Ai
ki

)i − (Ai
ki+1)i)

MR
U := MR

U + (xL
d − xd) · M

R,x
U

od
if x is a k-pile: update Ak

j (1 ≤ j ≤ λ + 1)
xL

d := xd

od
for all U with nonzero MR

U do
MU := MU + MR

U

od

396 Evolutionary Computation Volume 18, Number 3

An Efficient Algorithm for Computing Hypervolume Contributions

There, at first, we remove all boxes from the set of boxes S that do not influence
the current region R at all. The variable xL

d is going to be the dth coordinate of the last
box inserted and initialized to BBd . We will maintain an ordered list of the up to λ + 1
largest i-piles of the (d − 1)-region R for each i, that is, the i-piles with greatest ith
coordinate. Those will be the boxes Ai

j , 1 ≤ i < d, 1 ≤ j ≤ λ + 1, which are undefined
initially and get updated every time we insert a box, so that Ai

1 is the greatest i-pile, Ai
2

is the second greatest, and so on. We use (A)i to denote the maximal ith coordinate of a
point in a box A, that is, Ai (viewed as a point). For simplicity, we define (A)i to be 0 if
A is undefined and Ai

0 = R to be the region itself for each i.
Going further, we add COV to S, which we need, since each fully covering box is a

pile of R, and those boxes are not already in S. Since we need the set S sorted according
to the dth coordinate and S was sorted in the beginning, we have to insert the points in
COV into S properly, which can be done in O(|S|) as |COV| = O(1). Additionally, we need
to add the dummy point (0, . . . , 0) to S, as we want to sweep along the entire d-interval
of R∗, that is, we want to end at 0.

Now, we go through all the boxes in S ordered by dth coordinate in decreasing order.
For each point x ∈ S, we go through all the tuples (k1, . . . , kd-1) ∈ N

d-1
0 with

∑d−1
i=1 ki ≤ λ,

but only those for which Ai
ki

is not undefined. Each such tuple corresponds to a set
U = {Ai

j | 1 ≤ i < d and 1 ≤ j ≤ ki}, where all occurring Ai
j are defined for the condition

mentioned before. We then compute the (d − 1)-dimensional measure not covered by
Sx \ U , but by Sx \ W for any W U , where Sx = {y ∈ S | yd > xd} denotes the set of
the already inserted boxes. This measure is M

R,x
U =∏d-1

i=1((Ai
ki

)i − (Ai
ki+1)i). It has to be

multiplied by the length of the interval of the dth coordinate we are currently regarding,
which is xL

d − xd (as xL
d was the last dth coordinate of an insertion). The resulting product

has to be added to MR
U . We implicitly initialize the measures MR

U to 0. Also, we do not
want to explicitly save each value MR

U , as most of them are zero, but save only the
nonzero ones. Both points can be achieved by using a dynamic hash table that contains
U and MR

U iff MR
U is nonzero.

Afterward, we determine the number k, 1 ≤ k < d, for which x is a k-pile in R. If
this number is not unique, which can only happen if the box fully covers R, assign an
arbitrary 1 ≤ k < d. Then we update the largest k-piles Ak

j , 1 ≤ j ≤ λ + 1, that is, we
insert x at the correct position, shifting all smaller ones by one position.

In the end we report the computed measures MR
U , that is, we add them to MU . Here

again, we will implicitly initialize each MU with 0 (before the start of COMPUTEMEASURES)
and save U and MU in a dynamic hash table for every nonzero MU .

Concerning the runtime, we see that everything inside the main loop can be done in
constant time. Since d and λ are considered to be constant, we have to update a constant
number of boxes Ai

j . Furthermore, there are at most (λ + 1)d-1 many tuples (k1, . . . , kd-1),
since every entry lies between 0 and λ. Since we can view this as assigning at most λ

many ones to d − 1 many buckets, the number of tuples is also bounded from above
by
∑λ

i=0(d − 1)i < (d − 1)λ+1. All we do with such a tuple can be done in constant time
for the same reason, which establishes that COMPUTEMEASURESTRELLIS runs in O(|S|).
Observe that this is even better than the Overmars and Yap runtime of O(|S| log n), so
that we definitely fall within their overall asymptotic runtime of O(nd/2 log n).

3.4.3 Correctness
We now show that the above methods are indeed correct.

Evolutionary Computation Volume 18, Number 3 397

K. Bringmann and T. Friedrich

LEMMA 3: The measures MU computed by COMPUTEMEASURES satisfy the following equation
for any λ≤-set T of S:

HYP(S \ T) = VOL(BB) −
∑
U⊆T

MU

PROOF: The described algorithm partitions the bounding box BB into a number of leaf
regions that contain trellises. Since we sum up over all of those regions, all we have to
show is that for each region R for which we call COMPUTEMEASURESTRELLIS it holds that

HYPR∗ (S \ T) = VOL(R∗) −
∑
U⊆T

MR
U .

Now, inside R∗ we sweep along the dth dimension considering intervals [xd, x
L
d], where

the boxes influencing the (d − 1)-dimensional measures stay the same, and sum up
weighted by xL

d − xd . Since we start with xL
d = BBd and end at the dummy point

(0, . . . , 0) with xd = 0, our sweep indeed covers the interval [0, BBd]. Hence, the sum-
mation along dimension d is correct as long as the conditition is satisfed that at the stop
for x ∈ S, with Sx = {y ∈ S | yd > xd and y partially covers R} the set of already inserted
boxes:

HYPR

(
Sx

π \ Tπ

) = VOL(R) −
∑
U⊆T

M
R,x
U . (4)

Note that we are dealing with (d − 1)-dimensional volumes, which is why we used the
projected set of boxes Sx

π and Tπ .
Let T be of the form as in the pseudocode, that is, T = {Ai

j | 1 ≤ i < d and 1 ≤
j ≤ ki} for some (k1, . . . , kd-1) ∈ N

d-1
0 with

∑d-1
i=1 ki ≤ λ and all Ai

ki
defined. We compute

(nonzero) measures M
R,x
U only for subsets U ⊆ T of the form {Ai

j | 1 ≤ i < d and 1 ≤
j ≤
i} for some (
1, . . . ,
d-1) ∈ N

d-1
0 with
i ≤ ki for all i. Thus, we have:

∑
U⊆T

M
R,x
U =

∑
(
1 ,...,
d-1)∈N

d-1
0

i≤ki for all i

M
R,x

{Ai
j |1≤i<d and 1≤j≤
i }

=
∑

(
1 ,...,
d-1)∈N
d-1
0

i≤ki for all i

d-1∏
i=1

((
Ai

i

)
i
− (Ai

i+1

)
i

)

=
d-1∏
i=1

ki∑

i=0

((
Ai

i

)
i
− (Ai

i+1

)
i

)

=
d-1∏
i=1

((
Ai

0

)
i
− (Ai

ki+1

)
i

)

=
d−1∏
i=1

(
Ri − (Ai

ki+1

)
i

)
.

398 Evolutionary Computation Volume 18, Number 3

An Efficient Algorithm for Computing Hypervolume Contributions

There, we denote by Ri the maximal ith coordinate of a point in R. Observe that
Sx

π \ Tπ is of a very simple form (restricted to R). It forms a trellis where the maximal
i-pile is Ai

ki+1. This means that the space inside R not overlapped by this trellis is a
rectangle with side lengths Ri − (Ai

ki+1)i for i = 1, . . . , d − 1, so that we established the
equality

∑
U⊆T

M
R,x
U = VOL(R) − HYPR

(
Sx

π \ Tπ

)
.

Note that the above argument also makes sense if Ai
ki+1 is not defined, since then

we have (Ai
ki+1)i = 0. This gives us correctness for sets T of the aforementioned form.

If, on the other hand, T is not of the indicated form, then it has some maximal
subset T ′ ⊆ T , which is of this form, that is, T ′ = {Ai

j | 1 ≤ i < d and 1 ≤ j ≤ ki} for
some (k1, . . . , kd-1) ∈ N

d-1
0 . Since T ′ is maximal, either Ai

ki+1 is not contained in T or it
is not defined. In both cases every box in Tπ \ T ′

π is included in some box in Sx
π \ T ′

π ,
so that those boxes do not influence the measure in R, that is, we have HYPR(Sx

π \
Tπ) = HYPR(Sx

π \ T ′
π). Also, we will report a measure for a set U ⊆ T only if U ⊆ T ′ by

construction, so that we have, using the former case:

HYPR

(
Sx

π \ Tπ

) = HYPR

(
Sx

π \ T ′
π

) = VOL(R) −
∑
U⊆T ′

M
R,x
U = VOL(R) −

∑
U⊆T

M
R,x
U

This shows the desired equality. It also implies that any box which is not among the
largest λ in one dimension does not contribute to our measures at all, which also makes
clear why we only need the λ + 1 largest covering boxes in COV. �

3.4.4 Putting Everything Together
After we computed the MU measures, we can compute the actual contribution of a
λ-set T easily, using Lemma 3. We have:

CONS(T) = HYP(S) − HYP(S \ T)

= (VOL(BB) − M∅) −
(

VOL(BB) −
∑
U⊆T

MU

)

=
∑

∅�=U⊆T

MU

This confirms the combined procedure shown in Algorithm 3.

Algorithm 3 COMPUTEOPTIMALSUBSET(S, λ) computes the optimal λ-subset T of the set
of boxes S in R

d .
initialize MU ’s to 0
COMPUTEMEASURES(BB, S, 1,∅, λ)
return argmin{∑∅�=U⊆T MU | T ⊆ S, |T | = λ}

Since T has size at most λ, it has at most 2λ subsets, which is a constant. Hence, given
the measures MU we can compute the contribution of all λ-sets inO(nλ) (as their number

Evolutionary Computation Volume 18, Number 3 399

K. Bringmann and T. Friedrich

is bounded by this), so that we get an overall runtime of O(nd/2 log n + nλ) for COM-
PUTEOPTIMALSUBSET. The correctness of this conclusion follows directly from Lemma 3.

As mentioned in Section 3.4.3, we need a big hash table to store the nonzero mea-
sures MU . Since there are O(nλ) λ≤-subsets of a size-n set, there are O(nλ) entries in the
hash. On the other hand, by Lemma 2, each d-box partially covers O(n(d-2)/2) many leaf
regions. As COMPUTEMEASURESTRELLIS runs in O(|S ′|), where S ′ is the set of boxes in S

that partially cover the region R at hand, we reportO(|S ′|) nonzero measures MR
U in each

region. This way, we get an upper bound of O(nd/2) reported nonzero measures. Since
there are at most this many entries in the hash table, COMPUTEOPTIMALSUBSET needs a
space of O(min(nd/2, nλ)), using a dynamically growing hash table.

4 Discussion

We have presented an algorithm which calculates the optimal λ-set Sλ
opt(M) of a pop-

ulation of size n = |M| in time O(nd/2 log n + nλ) for d > 2. For d > 3 this improves all
previously published algorithms by a factor of nmin{λ,d/2}.

For small λ (λ � d/2), the algorithm gives an improvement in the runtime of the
calculation of the hypervolume by a factor of order nλ. Hence even for the greedy
calculation of S1

opt = S1
greedy, we have a speed up by a factor of n.

For very large λ, the algorithm might still be intractable. It is an open question
whether this can be avoided. Our algorithm allows the calculation of Sλ

opt in the same
time as S1

opt if λ � d/2. We therefore suggest the following compromise between Sλ
opt

and Sλ
greedy for large λ:

Sλ
comp(M) := Sλ

opt(M) for all λ � d/2,

Sλ+d/2
comp (M) := Sλ

comp(M) ∪ S
d/2
opt (M \ Sλ

comp(M))

for all λ > d/2.

As CON(Sλ
greedy) � CON(Sλ

comp) � CON(Sλ
opt) for all λ, the above improved greedy

algorithm returns λ-sets with the same or perhaps smaller contributions than the clas-
sical greedy algorithm within the same asymptotic runtime.

References

Auger, A., Bader, J., Brockhoff, D., and Zitzler, E. (2009). Investigating and exploiting the bias of
the weighted hypervolume to articulate user preferences. In Proceedings of the 11th Annual
Conference on Genetic and Evolutionary Computation (GECCO ’09), pp. 563–570.

Bader, J., and Zitzler, E. (2010). HypE: An algorithm for fast hypervolume-based many-objective
optimization. Evolutionary Computation. To appear.

Bentley, J. L. (1977). Algorithms for Klee’s rectangle problems. Department of Computer Science,
Carnegie Mellon University, Unpublished notes.

Beume, N. (2009). S-Metric calculation by considering dominated hypervolume as Klee’s measure
problem. Evolutionary Computation, 17(4):477–492.

Beume, N., Fonseca, C. M., López-Ibáñez, M., Paquete, L., and Vahrenhold, J. (2009). On the
complexity of computing the hypervolume indicator. IEEE Transactions on Evolutionary Com-
putation, 13(5):1075–1082.

400 Evolutionary Computation Volume 18, Number 3

An Efficient Algorithm for Computing Hypervolume Contributions

Beume, N., Naujoks, B., and Emmerich, M. T. M. (2007). SMS-EMOA: Multiobjective selec-
tion based on dominated hypervolume. European Journal of Operational Research, 181(3):
1653–1669.

Beume, N., and Rudolph, G. (2006). Faster S-metric calculation by considering dominated hyper-
volume as Klee’s measure problem. In Proceedings of the Second International Conference on
Computational Intelligence (IASTED ’06), pp. 233–238.

Bradstreet, L., Barone, L., and While, L. (2006). Maximising hypervolume for selection in multi-
objective evolutionary algorithms. In Proceedings of the IEEE Congress on Evolutionary Com-
putation (CEC ’06), pp. 6208–6215.

Bringmann, K., and Friedrich, T. (2008). Approximating the volume of unions and intersections
of high-dimensional geometric objects. In Proceedings of the 19th International Symposium
on Algorithms and Computation (ISAAC ’08), Vol. 5369 of Lecture Notes of Computer Science,
pp. 436–447.

Bringmann, K., and Friedrich, T. (2009a). Don’t be greedy when calculating hypervolume contri-
butions. In Proceedings of the 10th International Workshop on Foundations of Genetic Algorithms
(FOGA ’09), pp. 103–112.

Bringmann, K., and Friedrich, T. (2009b). Approximating the least hypervolume contributor:
NP-hard in general, but fast in practice. In Proceedings of the 5th International Conference on
Evolutionary Multi-Criterion Optimization (EMO ’09), pp. 6–20.

Brockhoff, D., and Zitzler, E. (2007). Improving hypervolume-based multiobjective evolutionary
algorithms by using objective reduction methods. In Proceedings of the IEEE Congress on
Evolutionary Computation (CEC ’07), pp. 2086–2093.

Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. (2002). Scalable multi-objective optimization
test problems. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC ’02),
pp. 825–830.

Emmerich, M. T. M., Beume, N., and Naujoks, B. (2005). An EMO algorithm using the hyper-
volume measure as selection criterion. In Proceedings of the Third International Conference on
Evolutionary Multi-Criterion Optimization (EMO ’05), pp. 62–76.

Igel, C., Hansen, N., and Roth, S. (2007). Covariance matrix adaptation for multi-objective opti-
mization. Evolutionary Computation, 15(1):1–28.

Knowles, J. D. (2002). Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization. PhD
thesis, Department of Computer Science, University of Reading, UK.

Knowles, J. D., Corne, D. W., and Fleischer, M. (2003). Bounded archiving using the Lebesgue
measure. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC ’03), Vol. 4,
pp. 2490–2497.

Naujoks, B., Beume, N., and Emmerich, M. T. M. (2005). Multi-objective optimisation using S-
metric selection: Application to three-dimensional solution spaces. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC ’05), pp. 1282–1289.

Overmars, M. H., and Yap, C.-K. (1991). New upper bounds in Klee’s measure problem. SIAM
Journal of Computation, 20(6):1034–1045.

Suttorp, T., Hansen, N., and Igel, C. (2009). Efficient covariance matrix update for variable metric
evolution strategies. Machine Learning, 75(2):167–197.

While, R. L., Bradstreet, L., Barone, L., and Hingston, P. (2005). Heuristics for optimizing the
calculation of hypervolume for multi-objective optimization problems. In Proceedings of the
IEEE Congress on Evolutionary Computation (CEC ’05), pp. 2225–2232.

Evolutionary Computation Volume 18, Number 3 401

K. Bringmann and T. Friedrich

While, R. L., Hingston, P., Barone, L., and Huband, S. (2006). A faster algorithm for calculating
hypervolume. IEEE Transactions on Evolutionary Computation, 10(1):29–38.

Zhou, X., Mao, N., Li, W., and Sun, C. (2007). A fast algorithm for computing the contribution
of a point to the hypervolume. In Proceedings of the Third International Conference on Natural
Computation (ICNC ’07), Vol. 4, pp. 415–420.

Zitzler, E. (2001). Hypervolume metric calculation. Computer Engineering
and Networks Laboratory (TIK), ETH Zurich, Switzerland. (Available at
ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/hypervol.c)

Zitzler, E., Brockhoff, D., and Thiele, L. (2007). The hypervolume indicator revisited: On the
design of Pareto-compliant indicators via weighted integration. In Proceedings of the Fourth
International Conference on Evolutionary Multi-Criterion Optimization (EMO ’07), Vol. 4403 of
Lecture Notes on Computer Science, pp. 862–876.

Zitzler, E., and Künzli, S. (2004). Indicator-based selection in multiobjective search. In Proceedings
of the 8th International Conference Parallel Problem Solving from Nature (PPSN VIII), Vol. 3242
of Lecture Notes of Computer Science, pp. 832–842.

Zitzler, E., and Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case
study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation,
3(4):257–271.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and Grunert da Fonseca, V. (2003). Perfor-
mance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions
on Evolutionary Computation, 7(2):117–132.

402 Evolutionary Computation Volume 18, Number 3

