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Abstract

Local search algorithms for MAX-k-SAT must often explore
large regions of mutually connected equal moves, or plateaus,
typically by taking random walks through the region. In this
paper, we develop a surrogate plateau “gradient” function us-
ing a Walsh transform of the objective function. This function
gives the mean value of the objective function over localized
volumes of the search space. This information can be used
to direct search through plateaus more quickly. The focus of
this paper is on demonstrating that formal analysis of search
space structure can direct existing algorithms in a more prin-
cipled manner than random walks. We show that embedding
the gradient computation into a hill-climbing local search for
MAX-k-SAT improves its convergence profile.

Introduction
Local search algorithms have classically been characterized
by iteratively accepting only neighbors with a strictly im-
proving objective function evaluation. However, in the case
of many combinatorial problems, it can be beneficial to also
accept neighbors with equal evaluation in the interest of
eventually discovering improving states. For example, for
maximum k-satisfiability problems (MAX-k-SAT), Selman,
Levesque, and Mitchell (1992) first discovered that accept-
ing equal moves empirically improved the convergence time
of local search. This was later studied in detail by Gent and
Walsh (1993). From a theoretical perspective, Mastrolilli
and Gambardella (2005) show that on unweighted MAX-k-
SAT allowing local search to take equal moves results in an
approximation ratio of 2/3 which is superior to basic local
search’s approximation ratio of 1/2.

The success of local search largely depends on how
quickly it can follow a discrete “gradient” to move to better
states. When equal moves are allowed, search must contend
with plateaus: connected regions of the search space that
are equivalent under the objective function. Plateaus pose
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a challenge to local search since they provide no gradient
information to guide search.

Plateaus are a prominent search space feature in MAX-
k-SAT problems (Smyth 2004). In this paper, we develop
a “surrogate gradient” heuristic for MAX-k-SAT (on which
clause length is bounded by a constant k, e.g., MAX-3-SAT)
to help local search navigate plateaus. We apply a Walsh
transform of the MAX-k-SAT objective function to perform
a fast computation of the mean value of states over large
volumes of arbitrary radius around plateau states. We then
use this statistic to direct search across plateaus.

Our goal is to demonstrate that formal analysis of search
space structure can direct existing algorithms in a more
principled manner than random walks. Our contribution is
twofold. First, we exploit theoretical analysis (exact compu-
tation of mean objective values) to develop a heuristic that
guides local search through plateaus. Second, we empiri-
cally assess the utility of the heuristic in a study of its ap-
plication to MAX-k-SAT problems. We first test the hy-
pothesis that the guidance offered by the surrogate gradient
improves the time to escape a particular plateau. We then
apply the heuristic to the plateau phase of a hill-climbing
local search algorithm in order to determine whether this ul-
timately translates to faster convergence. We find the surro-
gate gradient to be advantageous in directing search through
plateaus to near-optimal levels.

Background
Formally, a combinatorial optimization problem is defined
by a set of discrete states X and an objective function f :
X → R. Assuming minimization (as we shall hereafter), a
solution to a particular combinatorial optimization problem
is a state

x∗ = argmin
x∈X

f(x).

Local search algorithms impose a neighborhood operator
N : X → 2X . A plateau is a maximal set P ⊆ X such that,
for all x, y ∈ P , there is a path (x = x1, x2, . . . , xp = y)
where, if p > 1, xi+1 ∈ N(xi) and f(xi+1) = f(xi) for
i = 1, 2, . . . , p. The level of P is the objective function
evaluation of its elements.

Since this definition allows for degenerate plateaus of
cardinality one, every state belongs to a unique plateau.
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Broadly speaking, hill-climbing local search algorithms pro-
gressively attempt to escape plateaus of constantly improv-
ing level. If no state on the plateau has a neighbor on a
lower level plateau, the plateau is closed. On the other hand,
a plateau that has one or more states with improving neigh-
bors is an open plateau and can eventually be escaped. De-
termining whether a plateau P is open or closed takes time
proportional to |P | in the worst case.

A hill-climbing local search algorithm can attempt to es-
cape a plateau region by moving across it using a random
walk or by performing systematic search. Either approach
can be prohibitive since the number of states in a particular
plateau can be exponential in the problem size. The distri-
bution of exit states across a plateau further impacts how
quickly it is escaped.

Hampson and Kibler (1993) empirically studied plateau
characteristics in MAX-k-SAT focusing on plateaus at near-
optimal levels. They found that the number of plateaus in
this region grows linearly with n (where n is the number
of variables). They also found that the size of plateaus at
better values grows exponentially with n, while the density
of escapes decreases with n, producing an O(n) increase
in waiting time to escape plateaus. Thus the linear growth
in waiting time on plateaus along with linear growth in the
number of plateaus should produce a growth rate for a single
hill-climbing episode that is roughly quadratic.

Frank et al. (1997) found that escape density on open
plateaus tends to decrease as plateau level approaches the
optimal objective function value. This implies that plateaus
nearer to optimal solutions become increasingly difficult
to escape. They also found that escape density for near-
optimal plateaus increases with constrainedness as mea-
sured by number of clauses. Smyth (2004) performed an
empirical analysis of plateau structure on uniform random
and structured problems. He found that closed plateaus tend
to be smaller than open plateaus and that structural char-
acteristics of plateaus correlate with instance hardness for
stochastic local search algorithms.

A common strategy for escaping plateaus is to introduce
a small amount of noise to the search process. For satisfia-
bility problems, noise is added to the local search process in
the form of a biased random walk (Selman, Kautz, and Co-
hen 1994) which gives rise to the high performance WALK-
SAT algorithm (Selman, Kautz, and Cohen 1996). Algo-
rithms from the WALKSAT family avoid plateaus by invert-
ing variables that belong to unsatisfied clauses even if the
move results in a disimproving value of the objective func-
tion. Within a clause, however, it may be necessary to break
ties among a collection of variables if they have equal score.
To address this, tie-breaking heuristics are based on the dy-
namics of the algorithm, such as how recently the variables
have been flipped, e.g., WALKSAT-TABU, Novelty, and R-
Novelty (McAllester, Selman, and Kautz 1997). Adding
stochasticity to the latter two results in the probabilistically
approximately complete variants: Novelty+ and R-Novelty+
(Hoos 1999). Further refinements include diversification
(Novelty++), deterministic greedy moves (G2WSAT) (Li
and Huang 2005), adaptive noise and combinations of these
strategies (Li, Wei, and Zhang 2007). In contrast to these tie-

breaking heuristics, our surrogate gradient is based solely on
features of the search space.

Computing a surrogate gradient
The state space for an n variable, m clause MAX-k-SAT in-
stance is the set of all complete variable assignments which
is isomorphic to {0, 1}n: the set of all binary strings of
length n. Let

fj(x) =
{

1 if clause j is unsatisfied under x;
0 otherwise.

The MAX-k-SAT objective function can be written as

f(x) =
m∑

j=1

fj(x).

The problem of maximizing the number of satisfied clauses
thus reduces to minimizing f .

Local search applied to MAX-k-SAT typically employs
the “flip” operator; the neighborhood consists of states that
can be reached by inverting exactly one variable in the as-
signment. Thus the search space can be characterized as a
metric space on {0, 1}n using Hamming distance.

In the following, we show how to efficiently calculate the
mean value of the objective function over volumes of the
search space and use it to distinguish among states of equal
value. To do so, we first introduce a Walsh transform of the
MAX-k-SAT objective function.

Walsh transform
For 0 ≤ i < 2n, the ith Walsh function is defined as

ψi(x) = (−1)〈i,x〉,

where the inner product is taken over the length-n binary
string x and the length-n binary string representation of the
index i. The order of the ith Walsh function is 〈i, i〉, that is,
the number of ones in the length-n binary string representa-
tion of i.

Any function h : {0, 1}n → R can be represented in the
orthogonal Walsh basis:

h(x) =
2n−1∑
i=0

wiψi(x),

wherewi is a real-valued constant called a Walsh coefficient.
Functions of this type can be seen as elements of a vector

space R2n

. The MAX-k-SAT objective function f described
above is one such example. The Walsh transform can be
applied to f in the following way.

w = Wf, f = W−1w,

where W is a 2n × 2n matrix such that

Wij =
1
2n
ψi(j).

Since W is a linear transform, the coefficient vector can be
computed as

w = Wf =
m∑

j=1

Wfj .
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Rana et al. (1998) have shown that if kj is the number of
literals in the jth clause then the order of nonzero Walsh
coefficients of the corresponding subfunction fj is bounded
by kj . This means that each subfunction fj contributes at
most 2kj nonzero Walsh coefficients to the Walsh transform
of f andw is sparse. Hence the objective function for MAX-
k-SAT with at most k literals per clause can be written as

f(x) =
∑

i

wiψi(x), (1)

and the number of nonzero terms is at most m2k. Since k
is typically taken to be constant, the Walsh transform can be
computed in O(m) time.

The mean of f over search space volumes
Let D(x, y) denote the Hamming distance between states x
and y. The sphere of radius r around a state x is the set of
all states lying at Hamming distance r from x defined as

S(r)(x) = {y : D(x, y) = r}.
The 2n × 2n sphere matrix of radius r is defined as

S(r)
xy =

{
1 if D(x, y) = r;
0 otherwise.

We use the fact that Walsh functions are eigenfunctions
of sphere matrices to compute the mean of f over spheres
of arbitrary radius in polynomial time. In general, we can
compute

S(r)ψi(x) = γ
(r)
i ψi(x) (2)

where γ(r)
i is a recursively-defined eigenvalue of S(r):

γ
(r)
i =

1
r

(
(n− 2〈i, i〉)γ(r−1)

i − (n− r + 2)γ(r−2)
i

)
(3)

with γ(1)
i = (n− 2〈i, i〉) and γ(0)

i = 1.
Equations (2) and (3) are proved in Sutton et al. (2010)

for the general case of k-bounded pseudo-Boolean functions
(which includes MAX-k-SAT).

Let the function g(r)(x) denote the mean value of f evalu-
ated over all states contained in a volume of Hamming space
within radius r of x. The total number of states lying within
a Hamming ball of radius r is

tr =
r∑

u=0

(
n

u

)
and the function g(r) can be computed as follows

g(r)(x) =
1
tr

r∑
u=0

∑
y∈S(u)(x)

f(y)

=
1
tr

r∑
u=0

S(u)f(x)

=
1
tr

r∑
u=0

∑
i

γ
(u)
i wiψi(x) by (1) and (2).

Figure 1: Empirical density function of g(5) evaluated over
equal neighbors of a plateau state x sampled from SATLIB
instance uf250-1065-01.

Figure 2: Schematic of surrogate gradient heuristic. Ham-
ming ball of radius two (denoted by closed splines) around
neighbors y1 and y2 of state x. Due to an improving state
near y2, it is likely that g(2)(y2) < g(2)(y1).

which is again computable in time polynomial in the number
of variables of the instance. Note that this bound holds even
if the cardinality of the region of space is exponential in n.

An important observation is that f(x) = f(y) does not
necessarily imply g(r)(x) = g(r)(y) and so g(r) might be
used to delineate among a set of states with equal evaluation.
For example, in Figure 1 we plot the empirical density func-
tion of g(5) evaluated over equal neighbors of a particular
state sampled from SATLIB instance uf250-1065-01.

All other things being equal, a plateau state with escapes
within radius r would be expected to have a lower aver-
age g(r) value than a state with no escapes within radius
r. Thus g(r) could function as a heuristic for choosing more
promising states among a set with equal evaluation. In other
words, g(r) might be used as a surrogate “gradient” function
to guide search across plateaus (see Figure 2).
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DPS(x, f, g(r))

1 gbest ← g(r)(x)
2 while not done
3 do N ← {y : D(x, y) = 1}
4 if ∃ y ∈ N : f(y) < f(x)
5 then return
6 E ← {y ∈ N : f(y) = f(x)}
7 x← argminz∈E g

(r)(z)
8 if g(r)(x) ≥ gbest

9 then x← random element of E

Figure 3: Directed plateau search process.

Escaping plateaus
In this section we test the hypothesis that a surrogate gradi-
ent function that computes the mean value of the objective
in a volume of search space of a given radius can direct a
search algorithm to escape a plateau more quickly than ran-
dom search alone.

Directed plateau search
On non-degenerate plateaus, the objective function is
no longer useful for directing search to more promising
states. Typically, hill-climbing search algorithms resort to a
stochastic process by iteratively selecting equal neighbors at
random until the plateau is escaped. We will instead use g(r)

to direct search across plateau states by choosing plateau
neighbors that lie in regions with lower average f . Given a
state x, we perform local search minimizing g(r) using only
neighbors with equivalent f values. The directed plateau
search process (DPS) is given in Figure 3.

Until a plateau exit is found, plateau moves are chosen to
minimize the surrogate gradient g(r). However, it is possi-
ble to reach a local optimum with respect to g(r). In this
case, the search reverts to a random plateau walk by taking
random plateau moves without regard to g(r) until a plateau
move with an improving g(r) value is found.

Empirical results
Our hypothesis is that the information provided by g(r) al-
lows DPS to escape plateaus more quickly on average than
a random plateau walk (RPW). Starting from an initial state
x, each plateau escape process generates a sequence of, not
necessarily unique, states (x = x1, x2, . . . , xt), called a
trace, until a plateau exit is found, or the number of states ex-
ceeds some bound. We define Ldps(c) to be the trace length
of DPS on level c: the length of a trace beginning at a state
x with f(x) = c until stopping criteria are met and define
Lrpw(c) to be the length of a trace generated by a random
plateau walk with initial state on level c.

If we choose states uniformly at random from a particular
level c, we can characterize Ldps(c) and Lrpw(x) as ran-
dom variables. So to test our hypothesis we must show that
Ldps(x) stochastically dominates Lrpw(c). Sampling these
random variables amounts to performing both a DPS and a

r 1 2 5 10 20
mean 30.38 29.75 28.88 29.55 29.87
sd 109.33 111.71 104.36 110.16 111.71

Table 1: Mean and standard deviation of DPS trace lengths
for different radius values on levels 4 and 5 of uf100-430

random plateau walk from states on a level and measuring
their trace lengths. To do so, we sampled 100 states each
at levels 5,4,3,2, and 1 on all 1000 instances in the SATLIB
benchmark set uf100-430. For each sampled state, we
measured the trace length of both DPS and a random plateau
walk. For the radius parameter we used a number of differ-
ent values: r = {1, 2, 5, 10, 20}.

Note that if the initial state has an improving neighbor,
the plateau can be immediately escaped by both processes
(trace of length 1) so such data points are useless to our
experiment and are removed from the data. Furthermore,
the maximum allowed trace length was set to 2000 states.
We say the process fails if it does not escape the plateau
within the allotted trace length. To remove states that may
lie on closed plateaus, we remove from consideration states
on which both the random walk and DPS process fail.

To test whether r has an effect on escape time, we mea-
sured the mean and standard deviation of the trace lengths
on levels 4 and 5 of the uf100-430 distribution. The re-
sults are shown in Table 1. The mean trace length for DPS
appears not to significantly depend directly on radius. For
the experiments in this paper, we will use r = 5.

The results for r = 5 on the uf100-430 distribution
are shown in Figure 4. The data come from a population
of 105 states (100 states/instance). The distribution of each
random variable is heavy-tailed, and follows an overdis-
persed Poisson distribution. Such a distribution can be mod-
eled by a negative binomial distribution with parameters
α = β = σ−2 where σ2 is the variance. To test for stochas-
tic dominance we perform the (nonparametric) sign test that
Lrpw(c) − Ldps(c) is, on average, greater than zero. For
each level and each radius, we compute a p-value of less
than 0.0001 when comparing to random plateau walk. We
can thus conclude there is a statistically significant effect,
and that DPS escapes plateaus more quickly on average than
a simple random plateau walk. Statistics for the escape ex-
periments are shown in Table 2.

Timing and efficiency. Clearly, the Walsh coefficients and
the sphere eigenvalues can be computed off-line. If the value
of g(r)(x) is stored when DPS is called, for any z ∈ N(x)
the value of g(r)(z) can be obtained using a difference equa-
tion. This equation can be evaluated in time proportional
to the number of literals containing the variable which must
be negated to transform x into z. Hence, there is a small
overhead associated with calculating the surrogate gradient
in each plateau search step. We would expect, however,
that shorter trace lengths ultimately translate to faster es-
cape time. To investigate this further, let Tdps(c) denote
the processing time needed by DPS to escape level c and
Trpw(c) be the processing time needed by a random plateau
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level 5 level 4 level 3 level 2 level 1
random dps random dps random dps random dps random dps

median trace 8 5 11 6 20 11 57 43 248 230
mean trace 23.19 17.89 44.23 34.78 115.58 103.21 283.34 271.97 574.92 561.42

std dev 76.71 76.21 131.89 116.27 291.16 280.45 504.00 503.98 679.23 678.45
% failures 0.03 0.05 0.14 0.07 0.96 0.87 4.16 4.15 10.94 10.69

mean % directed - 61.02 - 54.72 - 44.09 - 29.93 - 14.18
% both failed 0.003 0.072 0.974 9.991 60.572

Table 2: Results for plateau escape experiments: trace length statistics, percentage of runs each method failed (i.e., reached the
cutoff), and (for DPS) mean percentage of steps that utilized the surrogate gradient heuristic. We remove runs in which both
methods failed.

Figure 4: Plateau escape experiments (at radius 5) for levels
5,4,2, and 1 of uf100-430 distribution. A sign test con-
firms statistical significance for each with p < 0.0001.

walk. We measure the relative speed-up at level c as Trpw(c)
Tdps(c) .

We report the median relative speed-up for levels 10 to 1 on
the uf100-430 distribution in Figure 5. On higher levels,
when there is an improvement in trace length, we see this
corresponds to an improvement in processing time. How-
ever, as the lowest levels are approached, we see that the
advantage of DPS is diminished toward lower levels (c.f.
Figure 4), and the overhead for computing the surrogate gra-
dient translates to a slow down in processing time.

Hill-climbing search
An episode of hill-climbing local search can be seen as a
process that escapes plateaus at progressively improving lev-
els. Suppose a hill-climbing process is started from an ar-
bitrary state x0 and eventually reaches some state x∗ with
f(x∗) < f(x0) (recall we are minimizing). The waiting
time (in terms of number of evaluations) between these two
boundary states can be modeled as a sum over random vari-

Figure 5: Median relative CPU time speed-up (DPS) for
escaping best 10 levels of uf100-430 distribution.

ables which gives the time spent at each level between f(x0)
and f(x∗). Letting τc denote the number of evaluations per-
formed at level c, we have the total waiting time

Λ =
f(x0)∑

c=f(x∗)+1

τc (4)

Since not all levels are visited during an episode of hill-
climbing, let χc be the indicator random variable where

χc =
{

1 if search skips level c;
0 otherwise.

If the hill-climbing local search randomly selects among
equal neighbors, then we have

τc = Lrpw(c)(1− χc)

By linearity of expectation the expected waiting time is

E[Λ] =
f(x0)∑

c=f(x∗)+1

E[Lrpw(c)(1− χc)] (5)

Instead of a random walk, if DPS is implemented at each
level to direct search across plateaus, we can substitute
Lrpw(c) with Ldps(c) in Equation (5). If we assume that
the probability of skipping a level is invariant under plateau
search dynamics (and we have no reason to believe other-
wise), then given the results presented in the previous sec-
tion, we would expect statistically shorter convergence times
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Figure 6: Empirical run length distributions for 1000 runs
each on 1000 instance uf100-430 distribution for four dif-
ferent target levels.

for these hill-climbing episodes when compared to the stan-
dard random walk. In other words, using DPS to escape
plateaus should result in faster plateau escape times which
ultimately translate into faster convergence.

Empirical results
To test the hypothesis that directed plateau search can speed
up periods of hill-climbing local search, we incorporated the
DPS process into the plateau phase of GWSAT: a variant of
the randomized greedy hill-climbing local search algorithm
in which an unbiased random walk is performed with prob-
ability p in each step (Selman and Kautz 1993). Our rea-
soning for using GWSAT is that the random walk element
is necessary for probabilistically departing closed plateaus,
which still pose a problem to DPS.

Since we assess the effect of DPS on single episodes of
hill-climbing, we set the MAX-TRIES parameter to 1. We
set the MAX-FLIPS parameter of GWSAT to 10000 and
used a walk probability of p = 0.3. To observe the effect of
DPS on GWSAT’s convergence to specific levels of the ob-
jective function, we performed both GWSAT and GWSAT
with DPS (GWSAT-DPS) targeting different levels.

Run length distributions for levels 5, 3, 1, and 0 (level 0
being the optimal value) are plotted in Figure 6. To generate
these run length distributions, we performed both searches
1000 times for each instance in uf100-430. This set con-
tains 1000 instances so each empirical cumulative distribu-
tion function is generated from 106 data points. For these
target levels, GWSAT-DPS dominates. In target level 0,
there is a slight crossover around 2000 evaluations.

The SATLIB benchmark set we used contains filtered

Figure 7: Empirical run length distributions for 1000 runs
each on overconstrained instance s3v80c1000-1 for four
different target levels (44 is optimal).

random uniform problems generated at the phase transi-
tion region (clause to variable ratio ≈ 4.3). To investi-
gate the impact of adding DPS to a hill-climbing algorithm
deep into the overconstrained phase, we generated empir-
ical run length distributions for benchmark instances from
the Fourth MAX-SAT Evaluation in 2009.1 Again, we per-
formed both searches 1000 times on each instance in the set
s3v80c1000 (clause to variable ratio 12.5). We use the
same settings as above except for the radius argument for
DPS which we set to 10. Since each instance has a different
optimal value, we plot the empirical run length distribution
only for 1000 runs on a single instance (s3v80c1000-1)
in Figure 7. For this instance, the optimal value (found by
a complete solver) is 44. Again we see dominance for the
variant with DPS, but no crossover at the optimal level.

Implications for search
The empirical results suggest that GWSAT augmented with
DPS tends to dominate until the lowest level plateaus. A
closer look at the number of evaluations necessary for con-
vergence to levels 5 and 0 is given in Figure 8. The effect is
far less dramatic when converging to level 0.

The observed traces for DPS at each level suggest that
on near-optimal plateaus, the surrogate gradient is not fol-
lowed as often. For instance, in Table 2, at level 1 an aver-
age of approximately 14% of the steps are directed whereas
at level 5 just over 62% of the steps are directed. This is
likely due to a loss in resolution of the surrogate gradient at
lower levels. As the extremal value of f is approached, the

1http://www.maxsat.udl.cat/09/
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Figure 8: Comparison of number of evaluations (log scale)
to find level 5 (left) and level 0 (right) on uf100-430.

Figure 9: Mean convergence plot for GWSAT and GWSAT-
DPS over uf250-1065 distribution. Dashed lines indicate
standard deviation from mean convergence.

local volume will be composed mainly of states on disim-
proving levels. Furthermore, many plateaus at this level are
closed; GWSAT-DPS will have to rely on GWSAT’s walk
probability rather than plateau search. These characteristics
affect a heavy tailed distribution in waiting time on plateaus
at near optimal levels. These factors statistically obscure the
gains in convergence obtained by DPS on other levels.

In order to observe the convergence profile more clearly,
we plot the mean convergence for GWSAT and GWSAT-
DPS over the distribution uf250-1065 in Figure 9. The
gains begin occurring around level 20 and vanish near level
3 as long random walks on low level plateaus begin to dom-
inate.

To investigate this phenomenon on the overconstrained
set, we report the percentage of runs (out of 1000) that
reached certain levels near and at the optimal level. The op-
timal level is found by the complete solver MINIMAXSAT
(Heras, Larrosa, and Oliveras 2008). Let opt+` be the per-
centage of runs that reached the `th level above the optimal

inst. alg. opt+5 opt+4 opt+3 opt+2 opt+1 opt+0
1 GWSAT 96.9 93.2 88.2 83.8 59.0 43.1

GWSAT-DPS 97.6 94.4 90.3 87.5 61.3 51.6
2 GWSAT 98.3 95.8 86.3 71.3 47.0 35.2

GWSAT-DPS 99.2 96.8 85.7 72.8 46.8 32.3
3 GWSAT 88.9 70.1 61.3 52.1 29.5 29.4

GWSAT-DPS 90.5 70.4 64.7 53.4 29.2 28.8
4 GWSAT 92.4 89.1 82.0 78.1 42.0 18.9

GWSAT-DPS 95.0 91.4 85.2 80.8 41.3 17.1
5 GWSAT 95.4 93.1 86.5 75.5 42.5 28.9

GWSAT-DPS 97.0 96.1 89.5 77.0 40.4 30.7
6 GWSAT 88.7 73.0 72.7 67.6 58.4 43.6

GWSAT-DPS 92.5 73.8 73.3 70.2 60.5 49.5
7 GWSAT 98.7 98.3 95.4 89.7 74.6 73.8

GWSAT-DPS 99.7 99.5 96.3 93.0 74.7 64.0
8 GWSAT 96.3 89.4 68.5 63.8 39.3 18.7

GWSAT-DPS 98.2 92.8 75.1 71.1 47.1 18.2
9 GWSAT 97.1 95.6 95.0 90.0 86.4 40.0

GWSAT-DPS 97.8 97.4 97.1 94.0 93.4 53.5
10 GWSAT 92.8 88.8 81.1 80.0 62.1 25.7

GWSAT-DPS 95.8 94.3 88.9 87.4 69.5 32.7

Table 3: Percentage of runs that reached best six levels each
of the 10 instances from the MAX-SAT 2009 s3v80c1000
benchmark set. opt+` is percentage of runs (out of 1000) that
reached level `. Higher percentages are in boldface.

(opt+0 is the percentage of runs solved). We report these
data in Table 3. Again we see that the heavy-tail escape be-
havior obscures the advantage of DPS at the optimal level.

The results demonstrate that search space structure can
be used to influence the trajectory of plateau search in such
a way that certain plateaus may be escaped more quickly.
DPS may also be used to quickly move to better regions
of the objective function. This could be useful for faster ap-
proximations on large problems, or hybridized in the manner
of Kroc et al. (2009) to switch to a complete solver when the
surrogate gradient is no longer helpful.

Directing other search algorithms
In this paper our aim was to show that knowledge of search
space properties can direct a hill-climbing local search such
as GWSAT to escape plateaus more quickly. However,
GWSAT performs inferior to other local search paradigms
such as WALKSAT (Selman, Kautz, and Cohen 1996) in
the phase transition region and G2WSAT (Li and Huang
2005) in the overconstrained phase. Incorporating the DPS
method to the plateau phase of GWSAT does not offer
enough improvement (even early on) to perform competi-
tively with these other algorithms.

We used GWSAT to isolate as much as possible the im-
provement offered by the DPS heuristic to a simple hill-
climbing algorithm. One direction of future work is to
use the surrogate gradient to inform more advanced local
search algorithms on the relative benefit of different plateau
moves. Though algorithms from the WALKSAT family
are not strictly classified as hill-climbing algorithms (disim-
proving moves are allowed in non-extremal states (Li and
Huang 2005)), the surrogate gradient could be used as a
heuristic for breaking ties among moves of equal score.

To investigate this we modified the WALKSAT algorithm
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Figure 10: Comparison of number of evaluations (log scale)
to find level 10 (left) and level 5 (right) on uf100-430
using WALKSAT and WALKSAT-DPS.

by integrating the search step in DPS (Figure 3) to break
ties among moves of equal score. We measured the num-
ber of evaluations each variant required to reach certain lev-
els over the critically constrained uf100-430 distribution.
The results are given in Figure 10 for levels 10 and 5. A
one-sided t-test shows the integration of the DPS step re-
sults in a significant reduction in convergence time to both
levels at p < 10−15. As with GWSAT-DPS, the effect of
directed plateau search becomes negligible at the optimal
level. Again, we conjecture that here the loss in resolution
diminishes the power of the surrogate gradient.

In line 9 of the DPS process in Figure 3 performs a blind
random selection from the equal neighbors if no surrogate
gradient information is available. Another direction of fu-
ture work is to resort to a tie-breaking heuristic (such as
Novelty+ and its variants) in this random selection process to
perhaps further improve the performance of the augmented
hill-climbing local search.

Conclusion

One of the issues with local search applied to combinatorial
optimization problems is that often we do not understand
why and when it works. A large amount of effort is ex-
pended in ad-hoc tweaking and tuning without enough un-
derstanding of the processes that make search successful. In
this paper we showed that a structural analysis of the search
space can be used to guide a local search algorithm.

We developed a surrogate plateau “gradient” function
based on a Walsh transform of the MAX-k-SAT objective
function. This surrogate gradient gives the average objective
function value over localized volumes of the search space to
provide information to direct search through plateaus more
quickly. We have shown that this improves the convergence
time of hill-climbing local search on MAX-k-SAT prob-
lems, especially when targeting near-optimal levels.

We have thus shown that it is beneficial to use exact infor-
mation about the search space structure to escape plateaus,
rather than by resorting to blind random walks. We also be-
lieve that this approach will provide a rigorous foundation
for future algorithmic innovations.
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