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Abstract Representation techniques are important issues when designing successful

evolutionary algorithms. Within this field the use of neutrality plays an important role. We

examine the use of bit-wise neutrality introduced by Poli and López (2007) from a theo-

retical point of view and show that this mechanism only enhances mutation-based

evolutionary algorithms if not the same number of genotypic bits for each phenotypic bit is

used. Using different numbers of genotypic bits for the bits in the phenome we point out by

rigorous runtime analyses that it may reduce the optimization time significantly.

Keywords Evolutionary algorithms � Neutrality � Representations �
Running time analysis � Theory

1 Introduction

Evolutionary algorithms (EAs) are randomized search heuristics that are inspired by the

evolution process in nature. From biology it is known that many mutations in the genotype

do not have any effect on the phenotype, i.e., they are neutral. This form of redundancy

was first observed by Kimura (1968) when he tried to explain the high levels of poly-

morphism found within natural populations. The benefits of such neutral mutations have

widely been discussed in the context of natural evolution (see e.g., Huynen 1996; Huynen

et al. 1996; Schuster 2002). Such results from biology motivate the use of neutrality in

evolutionary algorithms. Using neutrality in an evolutionary algorithm implies that addi-

tional redundancy is introduced into the considered search space. This research topic has

attracted substantial interest in recent years. Several experimental studies have investigated
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whether redundancy can significantly help to come up with better algorithms (Collins

2005; Rothlauf 2003; Toussaint and Igel 2003; Weicker and Weicker 2001).

We examine the use of neutrality from a theoretical point of view and take a closer look

on bit-wise neutrality which has been introduced by Poli and López (2007). Bit-wise

neutrality is perhaps the most simple and natural way to use neutrality when working with

binary strings. In this model of neutrality the value of a phenotypic bit depends on a

specific number of bits in the genome. The value of a phenotypic bit is determined by the

corresponding genotypic bits and a chosen encoding function.

Our investigations point out that there is a direct correlation between the mutation

probability in the genotype and the phenotype for the different encoding functions investi-

gated by Poli and López (2007). Therefore working with this kind of neutrality in mutation-

based evolutionary algorithms has only the effect of changing mutation probability. Due to

this result it seems to be unnecessary to use bit-wise neutrality for such algorithms as the

effect can also be obtained by changing the mutation probability directly in the phenotype.

Later on, we point out that the use of bit-wise neutrality is useful when considering

different numbers of genotypic bits to encode the phenotypic bits. The reason for this is that

the number of genotypic bits used for a phenotypic bit determines the mutation probability

for this bit in the different encodings. We consider simple evolutionary algorithms and

analyze the effect of bit-wise neutrality with different numbers of genotypic bits by carrying

out rigorous runtime analyses. Analyzing the runtime time of evolutionary algorithms has

become an important topic in the theoretical analysis of evolutionary algorithms (see e.g.

Droste et al. 2002; He and Yao 2001) Using this kind of analysis, we point out that bit-wise

neutrality can indeed help to speed up the computation of evolutionary algorithms. In par-

ticular, we examine plateau and deceptive functions and show that the proposed model of bit-

wise neutrality can help to speed up the optimization process significantly if different

numbers of genotypic bits are used to encode the bits in the phenome.

The outline of the paper is as follows. In Sect. 2, we introduce the model of bit-wise

neutrality together with the different encodings we examine in the paper. Section 3 shows

the correlation between the genotypic and phenotypic mutation rates. Optimal genotypic

mutation rates are discussed in Sect. 4 and example functions where bit-wise neutrality

using different numbers of genotypic bits is provably useful are presented in Sect. 5.

Finally, we finish with some concluding remarks.

2 Model of neutrality

We are considering the search space {0,1}‘, i.e., each phenotype is a bitstring of length ‘.
We examine bitwise neutrality based on a genotype-phenotype mapping in the evolu-

tionary process. In this form of neutrality each phenotypic bit is obtained from a group of

genotypic bits via some encoding function. We consider three different kinds of genotype-

phenotype encodings and assume the i-th phenotypic bit is encoded using a number of ni

genotypic bits. The encodings are defined as follows.

• Parity encoding: xi is set to 1 if the number of ones among the ni corresponding

genotypic bits is even, otherwise xi is set to 0.

• Truth Table encoding: A truth table is generated and the outcome is chosen randomly.

2ni�1 randomly chosen assignments get output 0 and the other 2ni�1 assignments get an

output of 1. Considering ni genotypic bits the phenotypic bit is chosen according to the

corresponding output of the truth table.
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• Majority encoding: xi is set to 1 if the number of ones among the ni corresponding

genotypic bits is at least ni/2, otherwise xi is set to 0. We will only allow odd n to avoid

draws.

In Poli and López (2007) these concepts of neutrality have been examined using the same

number of n genotypic bits for each phenotypic bit, i.e., ni = n for all 1 B i B ‘. In this

case, one table is chosen that is used for each genotype-phenotype mapping in the Truth

Table encoding.

Our aim is to examine the correspondence between the genotypic and phenotypic

mutation rate in greater detail. Later on, we will examine in which situations it is useful to

have different numbers of genotypic bits for the bits of the phenotype. This is motivated by

neutrality observed in nature where different kind of information is encoded by parts of a

DNA strand of different length.

3 Correspondence between phenotypic and genotypic mutation rates

We are interested in the relation between the genotypic mutation rate pge and the phe-

notypic mutation rate pph depending on the applied genotype-phenotype encoding. The

understanding of this relation in important since the performance of an evolutionary

process depends greatly on the right choice of the mutation rate. Poli and López (2007)

already discovered that there is a direct correspondence between the genotypic and phe-

notypic mutation rate. In this section, we make this relation more comprehensible by

deriving simple explicit equations mapping one to the other.

Parity encoding: For this encoding, Poli and López (2007) have pointed out that the

mutation rate at phenotype level for the Parity encoding is given by

pph ¼
X

0� i� n

i� 1ðmod2Þ

n
i

� �
pi

geð1� pgeÞn�1:

In the following, we give a closed equation for this relationship that enables us to increase

insight into the correspondence between the mutation rates in the genome and phenome.

pph ¼
Xdn=2eþ1

i¼0

n

2iþ 1

� �
pge

2 iþ1ð1� pgeÞn�2 i�1

¼
Xdn=2eþ1

i¼0

Xn�2 j�1

j¼0

n� 2 j� 1

j

� �
n

2 iþ 1

� �
pge

2 iþ1ð� pgeÞj

¼
Xn

i¼1

n

i

� �
ð�2Þi�1pge

i

¼
1�

Pn
i¼0

n

i

� �
ð�2 pgeÞi

2

¼ 1� ð1� 2pgeÞn

2
:

ð1Þ

To illustrate the correspondence between the mutation rates the function is shown in

Fig. 1a and b for n = 5 and n = 10, respectively. Equation 1 and the two figures show that
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there is a direct mapping between the genotypic and phenotypic mutation rate if the

number of bits used in the genome is fixed. Note that pph(pge) is symmetric, i.e.,

pph(pge) = pph(1 - pge), for even n and antisymmetric, i.e., pph(pge) = 1 - pph(1 - pge),

for odd n. The simple closed form of Eq. 1 allows us to derive the inverse function easily.

That is, for odd n we get

pge ¼

1� ð1� 2 pphÞ1=n

2
for pph� 1=2

1þ ð2 pph � 1Þ1=n

2
for 1=2� pph\1:

8
>><

>>:
ð2Þ

As the mapping from pge to pph is not unique for even n, there are two inverse solutions for

even n:

pge 2
1� ð1� 2 pphÞ1=n

2
;
1þ ð1� 2 pphÞ1=n

2

( )
ð3Þ

Equations 2 and 3 are very useful when the optimal phenotypic mutation rate is known

and we want to choose the corresponding genotypic mutation rate. Such an example is

given in Sect. 4.

Truth Table encoding: When the Truth Table encoding is used, the phenotypic

mutation rate is given by

pph ¼
1� ð1� pgeÞn

2
: ð4Þ

For n = 5 and n = 10 this function is shown in Fig. 1c and d, respectively. Note that the

phenotypic mutation rate is upper bounded by 1/2 independent of the genotypic mutation rate.

It is also interesting to observe that for pge B 1/2, the phenotypic mutation rate for the

Truth Table encoding (cf. Eq. 4) is equal to the phenotypic mutation rate for the Parity

encoding (cf. Eq. 1) if we half the genotypic mutation rate pge. Hence, both encodings

result in the same phenotypic behavior if the Parity encoding uses half the mutation rate of

the Truth Table encoding.

As Eq. 4 essentially describes the lower branch pge B 1/2 of Eq. 1, it easy to find its

inverse function:

pge ¼ 1� ð1� 2 pphÞ1=n: ð5Þ

Again, this can be used to obtain optimal genotypic mutation rates if the optimal pheno-

typic mutation rates are known.

Majority encoding: The Majority encoding is much harder to analyze as its effect on

the phenotypic mutation rate depends on the current number of ones in the genotype. We

can, however, obtain numerical estimates. To understand the mapping from the genotypic

mutation rate to the phenotypic mutation rate, we have empirically examined the pheno-

typic effect of different genotypic mutation rates.

We approximate the resulting phenotypic mutation rate pph for a fixed genotypic

mutation rate pge with the relative number of phenotypic changes for a sequence of 106

genotype mutations with mutation rate pge. That is, we start with a random genome and

mutate each bit of the genome 106 times with mutation rate pge. Each time we count the

number of zeros and ones in the genome. As the genome must have an odd number of

genes, either the zeros or the ones hold the majority in the genome. We count the number

286 T. Friedrich, F. Neumann

123



the majority changes and set the resulting empiric phenotypic mutation rate to the number

of majority changes divided by the number of runs (here 106).

The resulting functions are shown in Fig. 1e and f. The calculated mappings give a very

good approximation of the dependence of the phenotypic mutation rate on the genotypic

genotypic mutation rate genotypic mutation rate
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(d) Truth Table (

(e) Majority ( (f) Majority (

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

genotypic mutation rate genotypic mutation rate
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

genotypic mutation rate genotypic mutation rate
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 1 Mapping from genotypic mutation rate to phenotypic mutation rate for different encodings

When to use bit-wise neutrality 287

123



mutation rate. This can be used to calculate the phenotypic mutation rate given the

genotypic mutation rate and vice versa.

4 Optimal genotypic mutation rates

For many test functions the optimal phenotypic mutation rates are known. In this section,

we derive the respective genotypic mutation rates for such cases.

For the ONEMAX-function on ‘ bits, it is well known that the optimization time is

minimized at a phenotypic mutation rate of pph = 1/‘ (see e.g. Droste et al. 1998). When

the Parity encoding is used, the optimal genotypic mutation rate is therefore (for ‘ C 2)

pge ¼
1� ‘�2

‘

� �1=n

2
:

Asymptotic in the problem size ‘, this is

pge ¼
1

n‘
þ O

1

‘2

� �
:

Since pge doubles when using the Truth Table encoding instead of the Parity encoding,

we get for the Truth Table encoding

pge ¼ 1� ‘� 2

‘

� �1=n

¼ 2

n‘
þ O

1

‘2

� �
:

Poli and López (2007) have examined the runtime behavior of mutation-based EAs on

ONEMAX depending on pge for ‘ = 14 bits. With the above derived theory we can now

calculate the optimal genotypic mutation rate for the ONEMAX problem. For ‘ = 14 the

optimal pge for the three different encodings and choice of n used by Poli and López (2007)

are shown in Table 1. Using this table the experimental results given in Table 4 of Poli and

López (2007) can be easily explained as it gets clear which genotypic mutation rate is close

to the optimal mutation rate when considering the function ONEMAX.

Table 1 Optimal genotypic
mutation rates for the ONEMAX-
function on ‘ = 14 bits

Encoding Optimal pge

Parity (n = 5): pge&0.0152

Parity (n = 6): pge&0.0127

Parity (n = 7): pge&0.0109

Parity (n = 8): pge&0.0095

Majority (n = 5): pge&0.0425

Majority (n = 7): pge&0.0377

Truth Table (n = 5): pge&0.0304

Truth Table (n = 6): pge&0.0254

Truth Table (n = 7): pge&0.0218

Truth Table (n = 8): pge&0.0191

288 T. Friedrich, F. Neumann

123



5 Benefits of bit-wise neutrality

In the following, we examine the case where the phenotypic bits may be encoded by a

different number of genotypic bits. As pointed out in the previous sections, the mutation

probability in the phenome depends on the genotypic mutation probability and the

number of bits used to encode one phenotypic bit. Considering evolutionary algorithms,

one usually works with a mutation probability that is the same for all bits. Hence, it

seems to be natural to keep the genotypic mutation probability pge fixed and examine the

effect of using different numbers of bits in the genome for the corresponding bits in the

phenome.

We show that two popular evolutionary algorithms can only optimize certain functions

in polynomial time if the phenotypic mutation rate is not fixed for all bits. We also prove

that for fixed genotypic mutation rates this can be achieved by using different numbers of

bits in the genome for each phenotypic bit. This shows a natural setting in which using

neutrality improves the asymptotic runtime of an evolutionary algorithm.

An interesting example of different mutation rates in nature has been investigated by

Stephens and Waelbroeck (1999). They observed that in the RNA sequences of the HI

virus the mutability is lower in functionally important areas than in areas that tend to be

recognized by a host’s immune system. This is implemented by typically using different

nucleotide triplets to encode the same amino acids in the two areas. In areas with high

mutability the codons are likely to undergo non-synonymous mutations as only a few

neighbors of the used codons are mapped to the same amino acid. On the other hand, in

areas with low mutability codons with high neutral degree, that is, with a large fraction of

neighboring codons that are mapped to the same amino acid, are used.

First, we investigate the function NH-ONEMAX defined by Gutjahr and Sebastiani (2008).

It has been used for the analysis of evolutionary algorithms and ant colony optimization

(Gutjahr and Sebastiani 2008; Neumann et al. 2007). The function is defined as

NH� OneMaxðxÞ ¼
Yk

i¼1

xi

 !
Xn

i¼kþ1

xi

 !

and consists of a NEEDLE-function on k bits and a ONEMAX-function on n - k bits. The

ONEMAX-part can only be optimized if the needle has been found beforehand. We call the

first k bits the NEEDLE-part and the remaining n - k bits the ONEMAX-part of a bitstring x.

We consider the case k = ln n bits.

Gutjahr and Sebastiani considered the behavior of a simple evolutionary algorithm

known as (1 ? 1) EA* in the literature (Jansen and Wegener 2001) on this function. The

algorithm can be defined as follows.

Algorithm 1 (1 ? 1) EA*

Choose an initial solution x [ {0,1}n uniformly at random.

repeat

Create x0 by flipping each bit of x with probability pph.

if f(x0) [ f(x) then set x := x0.

until stop
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The optimization time of an evolutionary algorithm is defined as the number of fitness

evaluations until an optimal search point has been obtained for the first time. Often the

expectation of this value is considered and called the expected optimization time.

Gutjahr and Sebastiani showed a superpolynomial lower bound on the expected opti-

mization time of the (1 ? 1) EA* on NH-ONEMAX when the standard choice pph = 1/‘ is

used. We generalize this result and show a superpolynomial lower bound that holds for

each fixed choice of pph.

Theorem 1 The optimization time of the (1 ? 1) EA* for each fixed choice of pph on
NH-ONEMAX is superpolynomial with probability 1 - o(1).

Proof We distinguish two cases and show that for pph B n-1/2 the (1 ? 1) EA is not able

to optimize the NEEDLE-part while for pph C n-1/2 the ONEMAX-part can not be optimize.

We consider the case pph B n-1/2 first. The initial solution has at most k - (ln n)/3 ones

in the NEEDLE-part with probability 1 - o(1) due to Chernoff bounds. As long as the needle

has been found steps no other solutions is accepted. The probability to produce from a

solution with at most k - (ln n)/3 ones in the NEEDLE-part the needle is upper bounded by

ð 1ffiffi
n
p Þðln nÞ=3 ¼ n�ðln nÞ=6 which implies that the optimization is superpolynomial with prob-

ability 1 - o(1) in this case.

For the case pph C n-1/2 holds we consider the ONEMAX-part. Let r ¼
Pn

i¼kþ1 xi be the

number of ones in the ONEMAX-part of the current solution x. For the initial solution n/

3 \ r \ (2/3)n holds with probability 1 - e-X(n) using Chernoff bounds. For the next

accepted solution the needle has to be found as otherwise no improvement can be achieved.

The expected number of ones that are turned into zeros in the ONEMAX-part is r � pph and the

expected number of zeros turned into ones is (n - r) � pph. This implies that the number of

ones that are turned into zeros is with probability 1� e�Xð
ffiffi
n
p
Þ at least Xð

ffiffiffi
n
p
Þ using

Chernoff bounds once more. Hence, an optimal solution has not been achieved with

probability exponentially close to 1 when the needle has been found for the first time.

We consider the point of time where r C (3/4) � n holds for the first time. Note, that an

optimal solution has not been reached at this time as Xð
ffiffiffi
n
p
Þ 1-bits flip with 1� e�Xð

ffiffi
n
p
Þ in

a step that leads to this situation. After having achieved r C (3/4) � n, expected number of

ones turned into zeros is at least (3/4) pphn and at least (2/3) pphn with probability

1� e�Xð
ffiffi
n
p
Þ using Chernoff bounds. Similarly, the expected number of zeros turned into

ones is at most (1/4) pph n and most (1/3) pph n with probability 1� e�Xð
ffiffi
n
p
Þ using Chernoff

bounds. Therefore, the number of ones in the ONEMAX-part decreases by at least

ð1=3Þpphn�
ffiffiffi
n
p

=3 with probability 1� e�Xð
ffiffi
n
p
Þ which implies that the number of steps

needed to increase the number of ones in the ONEMAX-part is exponential with probability

exponentially close 1 after having reaching a search point that has at least (3/4) � n ones in

ONEMAX-part. h

In the following, we point out how bit-wise neutrality using different number of

genotypic bits for the phenotypic bits may help to reduce the runtime of the (1 ? 1) EA*

significantly.

We investigate a model of bit-wise neutrality using the parity encoding although the result

can also be shown for other models of bit-wise neutrality. The mutation rate is pge = 1/‘ for

each genotypic bit but different numbers of genotypic bits for the bits in the phenome are used.

We choose ni = 2‘ for 1 B i B k and ni = 1 for k ? 1 B i B ‘. Hence, the number of bits in

the genome is 2‘k ? ‘ - k and we apply the evolutionary algorithm to the search space
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{0,1}2‘ k?‘-k. Note, that the fitness evaluation still takes place on the basis of the corre-

sponding phenotypic bits, i.e., a genotype is decoded before fitness evaluation.

The resulting mutation probabilities for the bits in the phenome can be computed using

Eq. 1. It holds

pphðxiÞ ¼
1� ð1� 2=‘Þ2‘

2
� 1=e; 1� i� k

and

pphðxiÞ ¼
1� ð1� 2=‘Þ1

2
¼ 1=‘; k þ 1� i� ‘:

Using this setting we can prove that the runtime behavior of the (1 ? 1) EA* changes

significantly. In particular the expected optimization time on NH-ONEMAX becomes a

polynomial of small degree.

Theorem 2 Using the (1 ? 1) EA* with pge = 1/‘ together with the parity encoding
where for each xi, 1 B i B k, of the phenotype 2‘ genotypic bits and for each xj, k ? 1 B j
B n, of the phenotype 1 genotypic bit is used, the expected optimization time on NH-

ONEMAX is O(n2 log n).

Proof Each bit on the NEEDLE-part in the phenotype is flipped with probability at least

1/e. The probability that a specific bit in the phenotype is not flipped is at least 1/2. Hence,

a solution x with k leading ones is produced with probability at least (1/e)lnn in the next

step. This means that the expected number of steps to produce a search point consisting of

k leading ones is O(n) and holds independently of the current solution. Each solution with k
leading ones that has at least one 1-bit in the ONEMAX-part is accepted. Assuming that all

bits in the ONEMAX-part are zeros the expected waiting time to flip one of these bits is

Oðn�k
n Þ ¼ Oð1Þ: Hence, the expected time to produce an accepted solution where the needle

is found and the number of ones in the ONEMAX-part is at least 1 is O(n). After this the

needle will not be lost and the number of ones in the ONEMAX-part can only increase until an

optimal solution has been found.

The (1 ? 1) EA* with mutation rate 1/‘ optimizes the function ONEMAX in an expected

number of O(n log n) steps (Droste et al. 2002). As the needle is re-sampled after an expected

number of O(n) steps the O(n2 log n) bound on the expected optimization time follows. h

Often EAs replace equally good search points in the selection steps. In this case, they

are able to deal with plateaus of moderate size. The following algorithm called (1 ? 1) EA

uses this selection methods and is frequently used for the runtime analysis.

Algorithm 2 (1 ? 1) EA

Choose an initial solution x [ {0,1}n uniformly at random.

repeat

Create x0 by flipping each bit of x with probability pph.

if f(x0) C f(x) then set x := x0.

until stop

It is not to hard to show that the (1 ? 1) EA with pph = 1/‘ optimizes the function NH-

ONEMAX in expected polynomial time by using results of the optimization of the 1 ? 1 EA
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on NEEDLE (see e.g. Garnier et al. 1999; Wegener and Witt 2005). However, this algorithm

has difficulties when replacing the NEEDLE-part by a TRAP-part that makes the problem

deceptive.

The function TRAP-ONEMAX differs from NH-ONEMAX by the role of the first k bits. It is

defined as

Trap-OneMaxðxÞ ¼
Yk

i¼1

xi

 !
Xn

i¼kþ1

xi

 !
þ
Xk

i¼1

ð1� xiÞ:

Similar to NH-ONEMAX, we call the first k bits the TRAP-part and the remaining n - k
bits the ONEMAX-part of a bitstring x and consider the case k = ln n. We first investigate the

case where each phenotypic bit has the same mutation rate pph and show that the

(1 ? 1) EA is not efficient on TRAP-ONEMAX in this case.

Theorem 3 The optimization time of the (1 ? 1) EA for each fixed choice of pph on
TRAP-ONEMAX is superpolynomial with probability 1 - o(1).

Proof Again, we distinguish two cases and show that for pph B n-1/2 the (1 ? 1) EA is not

able to optimize the TRAP-part while for pph C n-1/2 the ONEMAX-part cannot be optimize.

We consider the case pph B n-1/2 first. The initial solution has at most k - (ln n)/3 in

the TRAP-part with probability 1 - o(1) due to Chernoff bounds. As long as no solution

with k leading ones has been found, steps that increase the number of ones in the TRAP-part

are not accepted. Hence, the probability to produce a solution with k leading ones is upper

bounded by ð 1ffiffi
n
p Þðln nÞ=3 ¼ n�ðln nÞ=6 which implies that the optimization time is superpoly-

nomial with probability 1 - o(1) in this case.

For the case pph C n-1/2 holds we consider the ONEMAX-part. Thereby, we neglect the

time needed to reach the optimum on the TRAP-part. Note that as long as the optimum has

not been found on the TRAP-part the optimization process is completely independent of the

ONEMAX-part. As each bit is flipped with the same probability, we may assume that the bits

on the ONEMAX-part are uniformly distributed when the optimum on the TRAP-part has been

found for the first time.

Let r ¼
Pn

i¼kþ1 xi be the number of ones in the ONEMAX-part of the current solution x.

For the solution x where the optimum of the TRAP-part has been found for the first time n/

3 \ r \ (2/3)n holds with probability 1 - e-X(n). This implies that this solution is

accepted by the algorithm. Later on, only solutions that are optimal with respect to the

TRAP-part are accepted and we can follow the ideas in the proof of Theorem 1 to complete

the proof. h

The optimization time of the (1 ? 1) EA on TRAP-ONEMAX can be reduced significantly

using bit-wise neutrality with different numbers of genotypic bits. We use the setting

already investigated for the (1 ? 1) EA* on NH-ONEMAX and show that this can also help

to speed up the computation of the (1 ? 1) EA on TRAP-ONEMAX.

Theorem 4 Using the (1 ? 1) EA with pge = 1/‘ together with the parity encoding where
for each xi, 1 B i B k, of the phenotype 2‘ genotypic bits and for each xj, k ? 1 B j B n, of
the phenotype one genotypic bit is used, the expected optimization time on TRAP-ONEMAX

is O(n2 log n).

Proof Each bit on the TRAP-part is flipped with probability at least 1/e and with proba-

bility at most 1/2. Hence, a solution x with k leading ones is found after an expected

number of eln n = O(n) steps for the first time. To reach an improvement the number of one
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in the ONEMAX-part has to be at least k ? 1. As long the number of ones in the ONEMAX-part

is not at least k ? 1 the probability that the number of ones in this part increases by at least

ln n ? 1 is at least e-O(ln n?1) = X(1/n) as the number of flipping bits on the ONEMAX-part

is asymptotically Poisson distributed with parameter k = 1. Hence, the expected waiting

time to produce an optimal solution on the TRAP-part with at least k ? 1 ones in the

ONEMAX-part is O(n2).

The reach the optimum a search point with k leading ones has to be re-sampled which

means that non of the bits in the needle trap flip. The expected waiting time for the event is

again eln n = O(n). Using the O(n log n) runtime bound for (1 ? 1) EA with mutation rate

1/‘ on ONEMAX (Droste et al. 2002) the O(n2 log n) bound follows. h

6 Conclusions

We have examined the use of bit-wise neutrality in evolutionary algorithms. In our

investigations we have pointed out that there is a direct mapping between genotypic and

phenotypic mutation rates and derived simple closed equations for two encodings. Hence,

using for each phenotypic bit the same number of genotypic bits only changes the overall

mutation rate in the phenotype which can also be achieved by doing this directly without

using neutrality. Later on, we have shown that using different numbers of genotypic bits

for each phenotypic bit can help to speed up computation. These results are obtained by

rigorous runtime analyses on plateau and trap functions that point out that bit-wise neu-

trality may be useful for hard problems in this case.

A topic for future work is to examine the effect of neutrality for dynamic problems. In

such problems neutrality might have different effects that are helpful for the adaptation

process. In particular, it may help the algorithm to detect which components of the problem

change over time and adapt the mutation rates accordingly.

Acknowledgement We thank Riccardo Poli for an interesting discussion on the topic of this paper.

References

Collins M (2005) Finding needles in haystacks is harder with neutrality. In: Proceedings of the annual
conference on genetic and evolutionary computation (GECCO ’05). ACM Press, pp 1613–1618

Droste S, Jansen T, Wegener I (1998) A rigorous complexity analysis of the (1 ? 1) evolutionary algorithm
for separable functions with boolean inputs. Evol Comput 6(2):185–196

Droste S, Jansen T, Wegener I (2002) On the analysis of the (1 ? 1) evolutionary algorithm. Theor Comput
Sci 276:51–81

Garnier J, Kallel L, Schoenauer M (1999) Rigorous hitting times for binary mutations. Evol Comput
7(2):173–203

Gutjahr WJ, Sebastiani G (2008) Runtime analysis of ant colony optimization with best-so-far reinforce-
ment. Methodol Comput Appl Probab 10(3):409–433

He J, Yao X (2001) Drift analysis and average time complexity of evolutionary algorithms. Artif Intell
127(1):57–85

Huynen MA (1996) Exploring phenotype space through neutral evolution. J Mol Evol 43:165–169
Huynen MA, Stadler P, Fontana W (1996) Smoothness within ruggedness: the role of neutrality in adap-

tation. Proc Natl Acad Sci USA 93:397–401
Jansen T, Wegener I (2001) Evolutionary algorithms—how to cope with plateaus of constant fitness and

when to reject strings of the same fitness. IEEE Trans Evol Comput 5(6):589–599
Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

When to use bit-wise neutrality 293

123



Neumann F, Sudholt D, Witt C (2007) Comparing variants of MMAS ACO algorithms on pseudo-boolean
functions. In: Proceedings of engineering stochastic local search algorithms (SLS ’07), LNCS, vol
4638. Springer, pp 61–75
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