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ABSTRACT
The distribution of fitness values across a set of states sharply
influences the dynamics of evolutionary processes and heuris-
tic search in combinatorial optimization. In this paper we
present a method for approximating the distribution of fit-
ness values over Hamming regions by solving a linear pro-
gramming problem that incorporates low order moments of
the target function. These moments can be retrieved in
polynomial time for select problems such as MAX-k-SAT
using Walsh analysis. The method is applicable to any real
function on binary strings that is epistatically bounded and
discrete with asymptotic bounds on the cardinality of its
codomain.

We perform several studies on the ONE-MAX and MAX-
k-SAT domains to assess the accuracy of the approximation
and its dependence on various factors. We show that the
approximation can accurately predict the number of states
within a Hamming region that have an improving fitness
value.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Theory, Algorithms

Keywords
Pseudo-Boolean functions, search space analysis

1. INTRODUCTION
Evolutionary processes and heuristic search algorithms

operate by dynamically moving through a large set of states.
The behavior of such algorithms strongly depends on the dis-
tribution of fitness values over this configuration space. In
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general, it is intractable to characterize this distribution. It
can be approximated for general fitness functions by direct
sampling or by biased (e.g., Metropolis) sampling [8, 1, 2].
However, when the fitness function is epistatically bounded,
i.e., has bounded nonlinearity, it has a sparse representation
in an alternate (Walsh polynomial) basis which can be in-
voked for the efficient calculation of low order moments of
the distribution without resorting to sampling. In this paper
we will derive an analytical approximation of the distribu-
tion of certain epistatically bounded fitness functions over
volumes of Hamming space by exploiting this fact.

Heckendorn et al. [4] first showed how low order moments
of the distribution of fitness values over the entire configura-
tion space can be computed in polynomial time for epistat-
ically bounded functions (which they called embedded land-
scapes). Later, Heckendorn [3] extended this work to show
that moments of the distribution of fitness values over hyper-
planes can be computed in polynomial time for epistatically
bounded fitness functions.

While hyperplane statistics are important from the per-
spective of hyperplane sampling for selection-based genetic
algorithms, processes that explore the configuration space in
a localized manner are also strongly influenced by the distri-
bution of fitness values in volumes of the configuration space
that are in some sense “nearby”. Toward that end, Sutton et
al. [9] further generalized the work of Heckendorn et al. to
show how low order moments of the fitness distribution over
local regions (Hamming balls and spheres) can be computed
in polynomial time for epistatically bounded functions.

Though low moments of the fitness distribution over such
functions can be efficiently computed, it is still an open ques-
tion exactly how these moments relate to the fitness distri-
bution function itself. We show how the moments over Ham-
ming regions can be used to derive an approximation of the
fitness distribution over these regions when the fitness func-
tion is epistatically bounded and discrete with asymptotic
bounds on the cardinality of the codomain.

Rather than resorting to sampling, we take advantage of
the fact that the moments over Hamming regions are related
to the distribution over that region by a system of linear
equations. Though it is intractable to compute arbitrarily
high moments of this distribution, we use a linear program-
ming approach to solve an underdetermined linear system.
The solution of this system approximates the distribution of
fitness over any Hamming region.

Discrete, epistatically bounded fitness functions are per-
vasive in many combinatorial optimization domains such as
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MAX-k-SAT and MAX-CUT and appear in certain models
of evolutionary systems such as the quantized model of NK-
landscapes [7]. The distribution of fitness over a Hamming
region is an important analytical characteristic of the fitness
landscape. For instance, consider a Hamming region around
a particular state x. The fitness distribution over that region
determines quantities such as the count of elements in the
region with higher fitness than x, or even the count of best
values in the region. Approximations of this distribution are
directly applicable to estimating such quantities.

Given all the fitness function moments over a region, our
approach gives the exact distribution of values over that re-
gion. However, we show that if P 6= NP, it is intractable
to compute all the moments over general Hamming regions.
The linear programming formulation allows for the incorpo-
ration of bounds on higher moments into the approximation.
We also show the approach allows us to compute an exact
upper and lower bound on the fitness distribution function
over any Hamming region. This bound provides an exact
limit on the count of states at a particular fitness value ly-
ing in the region.

To demonstrate the accuracy of the approximation we first
compare the approximated fitness distribution function in
the ONE-MAX domain in which we can exactly calculate
true fitness distribution functions analytically. We find the
accuracy improves with region size and is better toward the
extrema of the fitness function. We then apply the approach
to an actual combinatorial optimization domain, the MAX-
k-SAT problem, and find the approximation accurately pre-
dicts the number of states in a region with higher fitness
than the point at the center of the region.

This approximation is useful to practitioners in several
ways. In general, the approximated distribution estimates
the number of states in a region of the configuration space
that lie within any range of the fitness function. Thus it may
be possible to estimate the probability of a global optimum
lying within a certain Hamming distance of a given state.
The approximated distribution can be also used to estimate
the probability of a hill-climbing search or a mutation-only
evolutionary algorithm reaching a state with a given fitness
value. Furthermore, the approximation makes it possible to
compare two arbitrary points in the search space by esti-
mating the relative merits of exploration near each state.

2. HAMMING REGIONS
We study fitness landscapes over length-n binary sequences
{0, 1}n where the fitness function f : {0, 1}n → A has the
following two properties.

1. f is epistatically bounded by a constant k.

2. The codomain A ⊂ R of f is discrete with cardinality
O(n).

Local search algorithms and some evolutionary processes
make small changes to a given state (e.g., by inverting a
small number of bits). The short-term dynamics of such al-
gorithms are influenced by the statistical properties of the
states that are mutually reachable by a small number of
changes. Accordingly, we are interested in the distribution
of fitness values over regions that are somehow “local” to
a given state. We formalize this as follows. Consider two
points x, y ∈ {0, 1}n. The Hamming distance D(x, y) is
the number of positions in which the strings x and y differ.

The set {0, 1}n together with the Hamming distance func-
tion form a metric space and, given a “centroid” x, we can
partition {0, 1}n into regions about x.

Definition 1. A sphere of radius r around a point x ∈
{0, 1}n is defined as the set

S(r)(x) = {y ∈ {0, 1}n : D(x, y) = r}.

Similarly, we define a union of concentric spheres as follows.

Definition 2. A ball of radius r around a point x ∈
{0, 1}n is defined as the set

B(r)(x) = {y ∈ {0, 1}n : D(x, y) ≤ r}.

We will use the term Hamming region to denote either a
sphere or ball of arbitrary radius around any arbitrary point.

2.1 The fitness statistics of Hamming regions
If X ⊆ {0, 1}n is a Hamming region as defined above, then

the cth moment of a function f over X is defined as

µc(X) =
1

|X|
X
y∈X

f(y)c (1)

For any k-bounded pseudo-Boolean function, as long as k
and c are taken to be constants, Heckendorn et al. [4] showed
that the cth moment of the fitness function over the entire
landscape can be computed in polynomial time using Walsh
analysis.

Sutton et al. [9] extended this result to Hamming regions
and used a Walsh transform to construct an algorithm that
computes µc(X) for any Hamming region X in time poly-
nomial in n. This moment computing algorithm relies on
the fact that k-bounded functions and their powers have a
sparse representation in the Walsh basis and that moments
of f over Hamming regions can be written as a bounded
sum of weighted Walsh functions. When the epistasis of f is
bounded by k, the moment algorithm of Sutton et al. has a
time complexity of O(rnck) where r is the Hamming radius
of the region. Moreover, if f can be expressed as a sum over
m � nk subfunctions, the complexity results can be im-
proved to O(rmc). Note that this bound holds even when
|X| is exponential in n (this includes the result of Heck-
endorn et al. [4] as a special case: when X is a Hamming
ball of radius n).

Since we have constrained the codomain of the fitness
function to a finite set with linearly bounded cardinality
it must take the form

f : {0, 1}n → A

where

A = {a0, a1, . . . , aq−1}

is a finite set of q elements where q is O(n). This asymp-
totic bound on the codomain size is important to subsequent
analysis since we later characterize the distribution of fitness
values as the solution to q linear equations in q unknowns.

Without loss of generality, let us impose a total order on
A so that i < j =⇒ ai < aj . Assuming maximization, let

a∗ = max
x∈{0,1}n

f(x)
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Given a Hamming region X, we define the measure

pX : A→ [0, 1]

where pX(ai) is the probability that the element chosen uni-
formly at random from X has fitness ai. In this case, pX
is a probability mass function with support A. For a given
distribution, the set of q discrete values {pX(ai)} are called
the impulses of the probability mass function.

We can thus define the distribution of fitness values, or the
fitness distribution function, over the region X as a function

NX : A→ N

where NX(ai) = |X|pX(ai) is the number of states y ∈ X
such that f(y) = ai.

The fitness distribution function thus exactly character-
izes the allocation of fitness values to states in a region X.
Under the assumption of maximization, NX(a∗) is the num-
ber of optimal solutions in X, andX

ai>f(x)

NX(ai)

is the number of states in the Hamming region with improv-
ing fitness function value with respect to a point x. Thus,
an approximation of this quantity can be used to estimate
the number of optimal solutions in X and the number of
states in in X with improving fitness.

When the fitness function has the constraints we have
imposed, the moments of a region X appear in a system
of equations that determine the fitness distribution NX . We
now show this.

2.2 Computing the exact fitness distribution
Consider a state drawn uniformly at random from the

Hamming region X. Its fitness can be modeled as a random
variable Z. Since each state y ∈ X has a probability 1

|X| of

being selected, we can write the expectation of Z raised to
the cth power as

E[Zc] =
1

|X|
X
y∈X

f(y)c

= µc(X) by (1). (2)

But E[Zc] is, by definition, the cth moment of the distribu-
tion of the random variable Z. Note that the distribution of
Z is the above defined probability mass function pX . Hence
we can write

E[Zc] =

q−1X
i=0

acipX(ai). (3)

Putting together Equations (2) and (3) we have the following
identity:

µc(X) =

q−1X
i=0

acipX(ai). (4)

In other words, the cth moment of f is equal to the cth

moment of the probability mass function pX .
Consider the lowest |A| = q moments of X:

{µ0(X), µ1(X), . . . , µq−1(X)}.

Using the identity in (4) we have the following system of q

equations in q unknowns.

q−1X
i=0

ajipX(ai) = µj(X) (5)

for j = {0, 1, . . . , q − 1}. Letting

p = (pX(a0), pX(a1), . . . , pX(aq−1))>

and

µ = (µ0(X), µ1(X), . . . , µq−1(X))>,

if the q × q matrix

Mi,j =
“

(ai)
j
”>

is nonsingular, there is a unique solution p to

Mp = µ

which defines the probability mass function for the Hamming
region since pX(ai) = pi. The fitness distribution is then
given by NX(ai) = |X|pX(ai).
M belongs to a well-known class of matrices known as

Vandermonde matrices. The determinant is

det(M) =
Y
i<j

(aj − ai) .

The matrix is nonsingular if and only if all the values of ai
are distinct. In our case, since A is a set, all elements ai ∈ A,
by definition are distinct so M always has an inverse and
the above system of equations always has a unique solution.
Hence, if we have q moments of the Hamming region, we
can obtain exactly the probability mass function over X by
solving the system. Since q is O(n), the size of the linear
system is polynomial in n, even if |X| is exponential in n.

3. DISTRIBUTION APPROXIMATION
In the foregoing, q moments of f over X are needed to

characterize NX . Thus we must be able to retrieve mo-
ments of arbitrary order. If P 6= NP, this is computationally
difficult, as is captured by the following theorem.

Theorem 1. In general, the calculation of NX is #P-
hard.

Proof. Let F be a propositional 3-SAT formula with n
variables and m clauses. Let f : {0, 1}n → {0, 1, . . . ,m} give
the number of clauses satisfied under an assignment. Note
that f satisfies the conditions we have imposed.

LetX be a ball of radius n around an arbitrary assignment
x. In other words, X = {0, 1}n andNX(m) gives the number
of satisfying assignments to F , solving #3-SAT which is #P-
complete [10].

Given all q moments, it is theoretically possible to solve
the linear system in polynomial time. Thus the computa-
tional intractability must arise in the calculation of the mo-
ments themselves. Indeed, the calculation of µc(X) is expo-
nential in c [4, 9]. Hence, we are interested in finding a way
to approximate the distribution using only low moments of
f over the region.

Given only 0 < c� q moments, we have the partial Van-
dermonde system where j in Equation (5) runs from 0 to
c−1. Algebraically, letM ′ be the c×q partial Vandermonde
matrix that consists of the first c rows of M and a truncated
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moment vector µ′ = (µ0(X), µ1(X), . . . , µc−1(X))> consist-
ing of the lowest c moments. We seek a solution p̂ to the
linear system1

M ′p̂ = µ′. (6)

This system is underdetermined, so there are potentially in-
finite solutions. Furthermore, there is no guarantee that p̂
gives a valid probability mass function. A solution to (6)
may contain elements that are meaningless as probabilities,
i.e., lying outside of the unit interval.

However, we can encode this requirement as a set of fixed
variables and bounding constraints by posing the formula-
tion of a solution to the partial Vandermonde system in
Equation (6) in terms of a linear programming problem.

max b>p̂
s.t. M ′p̂ = µ′.

0 ≤ p̂ ≤ 1.
(7)

where b is a length q vector of coefficients.
A solution to this system has a number of desirable prop-

erties. First, it is a probability mass function in the sense
that its elements lie between 0 and 1 because of the con-
straints imposed by the linear program. Moreover, the ze-
roth moment µ0(X) = 1 corresponding to the first row of
M ′ ensures the elements sum to unity. Thus we can de-
fine the approximated probability mass over X in terms of
p̂: p̂X(ai) = p̂i. Finally, the approximated probability mass
function shares low moments with the exact solution to (5).
This is captured by the following.

Theorem 2. Let p̂ be a solution to the above linear pro-
gram. Taken as probability mass functions pX has the same
jth moment as p̂X for 0 ≤ j < c.

Proof. Let 0 ≤ j < c. The jth moment of p̂X is

q−1X
i=0

aji p̂X(ai) =

q−1X
i=0

M ′
j,ip̂i

= µ′j by (7)

= µj(X).

By (4), µj(X) is equivalent to the jth moment of pX : the
true probability mass function over X.

In other words, since mean and variance depend only on
the first and second moments, for c > 2, the approximated
probability mass function given by solving the above linear
program has the same mean and variance as the true prob-
ability mass function of the region. The fitness distribution
over X is approximately

N̂X(a) = |X|p̂X(a). (8)

3.1 Choosing the coefficient vector
It is not immediately clear what an appropriate choice

for the coefficient vector b in the objective function for the
linear program in (7) might be. One particular approach
will be used in Section 3.3 to obtain an exact bound on the
fitness distribution function.

We would expect impulse values occurring near the mean
(that is, the values of ai closest to µ1(X)) to be highest in

1As a notational convention we use the prime symbol (′) to
denote truncation and the hat symbol (̂ ) to denote approx-
imation.

the probability mass function. Hence a heuristic might be
to maximize impulses near µ1(X). Let ω be a “window size”
parameter. Define also the index of the element nearest to
the mean as ζ = arg mini |ai − µ1(X)| (recall we have im-
posed a total order on A). We can then define the coefficient
vector as

bi =

(
1 if |ζ − i| ≤ ω
0 otherwise

Maximizing b>p̂ is akin to finding the approximated proba-
bility mass function in which impulses lying near the mean
value are maximal. Determining more principled values for
b remains a direction for future research.

3.2 Limiting impulse values
Since the linear program is very underconstrained, the

above approach tends to result in sparse probability mass
functions in which a large amount of mass is allocated to
few impulses. Empirical data suggests that the nonzero im-
pulse values tend to be “clustered” around the mean, each
with a limited mass. To further refine the accuracy of the
approximation we introduce an upper limit to the mass con-
tribution of each impulse.

If A ⊂ N and p̂X is reasonably well-behaved, then a suit-
able continuity correction would allow us to model p̂X with
a continuous distribution. Neglecting higher moments, we
note that a normal probability distribution with variance
σ2 has a maximum of 1√

2πσ2 . Hence we might limit the

maximum value of the impulses in p̂X by`
2π(µ2(X)− µ1(X)2)

´−1/2

to mitigate the sparse distribution of mass in the above ap-
proach.

Imposing this heuristic limit does not violate the con-
straints of the program and hence the resulting solution is
still a probability mass function with the same c moments
as pX . We find in many cases that the limit improves the
accuracy of the approximated fitness distribution function.

3.3 An exact bound
One consequence of the linear programming approach is

that we can use it to provide an exact bound on the impulses
of the distribution function. By choosing the appropriate co-
efficient vector, we can ensure the resulting solution bounds
a particular impulse of NX .

Theorem 3. Let X be a Hamming region. Let p̂?X be the
probability mass function obtained by solution to the linear
program in (7) with b being the standard jth basis vector:

bi = δij , i = 0, 1, . . . , q − 1

where δ is the Kronecker delta function. Then

NX(aj) ≤ |X|p̂?X(aj).

Proof. By definition, NX(aj) = |X|pX(aj) so it is enough
to prove that pX(aj) ≤ p̂?X(aj).

Suppose for contradiction that pX(aj) > p̂?X(aj). In other
words, we have pj > p̂?j . By definition, p̂? is the unique
solution that maximizes

b>p̂? = p̂?j = p̂?X(aj)

and satisfies the partial Vandermonde system M ′p̂? = µ′.
Now, consider the full Vandermonde systemMp = µ. Since
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all equations in the partial system corresponding to M ′ are
contained in the full system, it follows thatM ′p = µ′ is also
satisfied. But pj > p̂?j =⇒ b>p > b>p̂?, a contradiction
that p̂? maximizes the linear program corresponding to the
partial Vandermonde system.

Iteratively maximizing the linear program using the jth stan-
dard basis vector for j = 0, 1, . . . , q − 1 thus generates an
upper bound for each of the impulses of the distribution
function NX . A lower bound can be analogously found by
solving the corresponding minimization problem using jth

standard basis vectors.2

3.4 Incorporating bounds on higher moments
Another advantage to the linear programming approach

is that we can incorporate bounds on higher moments into
the approximation. Let c be the maximum moment degree
available and d be an arbitrary increment. Bounds on mo-
ments of higher degree can be added explicitly to the linear
program as doubly bounded constraints:

LB(µc+d(X)) ≤
q−1X
i=0

ajipX(ai) ≤ UB(µc+d(X)) (9)

where LB(µc+d(X)) and UB(µc+d(X)) are lower and upper
bounds (respectively) on the moment of order c+d. Obtain-
ing the exact moments of higher degrees becomes computa-
tionally difficult (and is generally intractable by Theorem 1).
However, if bounds on higher moments can be efficiently ob-
tained, they may be incorporated into the approximation in
this way.

We now impose some mild restrictions on the codomain
A of f and calculate upper and lower bounds on higher mo-
ments. First, we will assume ∀ai ∈ A, ai ≥ 0. Since A is
a finite set with cardinality linear in the problem size, we
can impose this condition without loss of generality since
the evaluation of f can always be shifted by an appropriate
constant. Before deriving upper and lower moment bounds,
we prove the following preparatory lemma.

Lemma 1. Let X be a Hamming region. As long as there
exist at least two states x1, x2 ∈ X with f(x1) ≥ 1 and
f(x2) ≥ 1, then, for c, d ≥ 1,

1

|X|
X
y∈X

f(y)c

0@ X
z∈X\{y}

f(z)d

1A ≥ µc(X).

Proof. Since either x1 ∈ X \ {y} or x2 ∈ X \ {y}, we
have

P
z∈X\{y} f(z)d ≥ 1.

The conditions for the lemma are relatively weak since, if
necessary, we can shift f without altering the total order on
A. We are now ready to give an upper bound on moments
of degree c+ d.

Theorem 4. Let X be a Hamming region with at least
two states x1, x2 ∈ X such that f(x1) ≥ 1 and f(x2) ≥ 1.
Let d ≥ 1. Then,

µc+d(X) ≤ |X|µc(X)µd(X)− µc(X).

2In practice we found this lower bound obtained with rea-
sonable values of c to be degenerate, i.e., NX(aj) ≥ 0.

Proof.

µc(X)µd(X) =

 
1

|X|
X
y∈X

f(y)c
! 

1

|X|
X
y∈X

f(y)d
!

=
1

|X|2
X
y∈X

f(y)c+d +
1

|X|2
X
y∈X

f(y)c

0@ X
z∈X\{y}

f(z)d

1A
=

1

|X|µc+d(X) +
1

|X|2
X
y∈X

f(y)c

0@ X
z∈X\{y}

f(z)d

1A
Rearranging terms and multiplying by the cardinality of X
we have

|X|µc(X)µd(X)− 1

|X|
X
y∈X

f(y)c

0@ X
z∈X\{y}

f(z)d

1A
= µc+d(X)

and by Lemma 1, |X|µc(X)µd(X)− µc(X) ≥ µc+d.

We can also derive the following trivial lower bound.

Theorem 5. Let X be a Hamming region such that for
all x ∈ X, f(x) = 0 or f(x) ≥ 1. Let d ≥ 1. Then,

µc+d(X) ≥ µc(X).

Proof. Since for all x ∈ X, f(x)c+d ≥ f(x)c we imme-
diately have

1

|X|
X
y∈X

f(y)c+d ≥ 1

|X|
X
y∈X

f(y)c

which proves the claim.

Again, the conditions for the theorem are relatively weak
since: (1) domains where A ⊂ N already satisfy them, and
(2) the elements of A can be appropriately shifted without
changing the total order. These bounds can be added to the
linear program in the manner mentioned at the beginning
of the section.

4. ACCURACY MEASUREMENTS
In order to demonstrate the proficiency of the approxima-

tion derived in the foregoing sections, we perform a number
of numerical measurements to compare the approximated
fitness distribution with the true fitness distribution. Since
we are working with discrete values, it is easier to visual-
ize and compare distribution functions using their cumula-
tive forms. We define the cumulative probability distribution
function as

cX(a) =
X
ai≤a

px(ai)

and the cumulative fitness distribution function as

CX(a) =
X
ai≤a

Nx(ai)

We define ĉX and ĈX analogously as the approximated cu-
mulative distribution functions simply by replacing the prob-
ability and fitness distribution functions in the above defi-
nitions with their approximated form. In order to compare
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1

0

ε

Figure 1: Illustration of the ε measure for two hy-
pothetical cumulative distribution functions. ε mea-
sures the shaded area: the extent to which two dis-
tribution functions disagree.

how well an approximated distribution fits the true distribu-
tion, we define the (normalized) measure of absolute error
as

ε =
1

q

q−1X
i=0

|cX(ai)− ĉX(ai)|.

Note that 0 ≤ ε ≤ 1 and measures the extent to which
the two cumulative probability distribution functions dis-
agree (see Figure 1). The ε metric has a loose similarity to
the Kolmogorov-Smirnov statistic which measures the max-
imum deviation between two (continuous) cumulative dis-
tributions.

4.1 ONE-MAX
According to the result of Theorem 1, for the general class

of epistatically bounded functions, it is #P-hard to compute
the true fitness distribution function for all possible Ham-
ming regions. However, if we restrict ourselves to a special
class of functions, we can take advantage of its properties to
compute the true distribution efficiently. It then becomes
straightforward to test the accuracy of the approximation,
even over intractably large regions of the space.

Given a binary sequence of length n, the ONE-MAX fit-
ness function simply counts the number of elements in the
sequence that are equal to one.

f : {0, 1}n → {0, 1, . . . , n}; f(x) = |{i : x[i] = 1}|, (10)

where x[i] denotes the ith element in the sequence. This
class of functions satisfies the constraints laid out in Section
2 since f is bitwise additively separable (and thus has max-
imum epistasis k = 1) and the cardinality of its codomain is
clearly linearly bounded in n.

The appeal of using the ONE-MAX fitness function is that

it becomes possible to derive an analytical expression for the
true fitness distribution function.

4.1.1 Analytical formula
The distribution of ONE-MAX fitness values over a sphere

of radius r can be written in closed form. We begin by
defining the following quantity.

Definition 3. Let x, y ∈ {0, 1}n. We define the quantity

β(x, y) = |{j : x[j] = 1 and y[j] = 0}|

to be the number of 1-bits in x that are inverted to produce
y (equivalently, the number of 1-bits in x∧ ȳ where ∧ and ȳ
represent bitwise conjunction and complementation, respec-
tively).

We claim a number of trivial constraints on β(x, y) that will
become useful in the proof of Theorem 6.

Claim 1. For any x, y ∈ {0, 1}n, the following constraints
hold for β(x, y).

1. Since β(x, y) is a count, β(x, y) ∈ N0.

2. Since there are f(x) 1-bits in x, β(x, y) ≤ f(x).

3. Since there are n − f(x) 0-bits in x, 0 ≤ D(x, y) −
β(x, y) ≤ n− f(x).

The analytical form of the fitness distribution function for
ONE-MAX is given by the following theorem.

Theorem 6. Let f be the ONE-MAX fitness function de-
fined in (10). Let x ∈ {0, 1}n. The count of states y in a
sphere of radius r around x with f(y) = a can be written in
the following closed form. Let ξ = 1

2
(f(x) + r − a).

Consider the following three conditions for ξ.

1. ξ ∈ N0

2. ξ ≤ f(x)

3. 0 ≤ r − ξ ≤ n− f(x)

then,

NS(r)(x)(a) =

(`
f(x)
ξ

´`
n−f(x)
r−ξ

´
if conditions on ξ hold;

0 otherwise.

(11)

Proof. Consider any y ∈ S(r)(x). Since D(x, y) = r, we
must invert exactly r elements of x to transform it into y.
According to Definition 3, there are β(x, y) 1-bits in x that
are inverted to produce y and r − β(x, y) 0-bits in x are
inverted to produce y. Since there are f(x) 1-bits in x, the
number of 1-bits in y is

f(y) = (f(x)− β(x, y)) + (r − β(x, y)). (12)

We can write

NS(r)(x)(a) = |{y ∈ S(r)(x) : f(y) = a}|

and by Equation (12),

= |{y ∈ S(r)(x) : a = f(x) + r − 2β(x, y)}|
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and, solving for β(x, y) in terms of a,

= |{y ∈ S(r)(x) : β(x, y) =
1

2
(f(x) + r − a)}|

Letting ξ = 1
2

(f(x) + r − a),

= |{y ∈ S(r)(x) : β(x, y) = ξ)}|

Thus we have equated the quantity NS(r)(x)(a) to the num-

ber elements y in the sphere where β(x, y) = ξ. Intuitively,
this is the number of ways of inverting exactly ξ 1-bits in x
and exactly r − ξ 0-bits in x.

If ξ satisfies the three constraints in Claim 1 above, then
there are  

f(x)

ξ

! 
n− f(x)

r − ξ

!
ways to choose ξ 1-bits in x and r − ξ 0-bits in x.

On the other hand, if ξ does not satisfy the three con-
straints on β(x, y) given in Claim 1, then it must be the

case that for any y ∈ S(r)(x), ξ 6= β(x, y). If so, then vacu-
ously,

{y ∈ S(r)(x) : β(x, y) = ξ)} = ∅

and NS(r)(x)(a) = 0.

Since the spheres around a state x are mutually disjoint we
always have the following identity

NB(r)(x)(a) =

rX
u=0

NS(u)(x)(a).

Substituting the terms on the r.h.s. with (11) gives the ana-
lytical expression for the true ONE-MAX fitness distribution
over the ball of radius r around a state x.

These formulas permit the direct calculation of the true
fitness distribution for ONE-MAX. We use this in our first
approach to assessing the accuracy of the approximation.

4.1.2 ONE-MAX approximation accuracy
Figure 2 plots the actual and estimated cumulative dis-

tributions for the n = 50 ONE-MAX fitness function. The
solid line gives the true cumulative distribution of fitness val-
ues obtained by the explicit formula in (11) over a Hamming
ball X of radius r = 10 in the space of length-50 bitstrings.
The centroid of the ball has a fitness of 5. The broken line
shows the approximation obtained by solving Equation (7)
with the truncated moment vector

µ′ = (µ0(X), . . . , µ5(X))>

containing six moments obtained by the algorithm in [9]. To
solve Equation (7) we used the GNU Linear Programming
Kit (GLPK) using a simplex-based LP solver [5].

The window length used was ω = 10. We used these
settings for all ONE-MAX distribution approximations re-
ported in this section.

The analytical formula in Equation (11) allows us to com-
pute the true distribution function without explicitly enu-
merating the region. Thus we can measure the accuracy of
the approximation over arbitrarily large regions of Hamming
space. A close examination of the analytical formula reveals
that the fitness distribution function over a Hamming ball
is uniquely determined by the fitness of its centroid and the
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Figure 2: Cumulative fitness distribution on a sin-
gle n = 50 ONE-MAX instance: actual vs. approxi-
mated over Hamming ball of radius 10 with centroid
fitness 5.

radius of the ball. Hence there are exactly (51)2 = 2601
uniquely determined ONE-MAX fitness distribution func-
tions over {0, 1}50. We can calculate each of these explicitly
along with the corresponding approximation and determine
the dependence of the accuracy measure (ε) on radius or
centroid fitness.

In Figure 3, the solid line shows the mean ε over all unique
ONE-MAX fitness distribution functions over {0, 1}50 as a
function of radius. The broken lines bracket the extremal
values above and below the mean. At radius 0 (a Hamming
ball containing only one point), the accuracy, of course, is
always perfect since the true fitness distribution contains a
single impulse whose location is entirely determined by the
first two moments µ0(X) and µ1(X). A similar phenomenon
occurs at radius 1. Subsequently, as radius increases, the ac-
curacy diminishes until the radius reaches values in the in-
terval [3, 6]. After this point, the accuracy begins to steadily
improve as a function of radius.

Figure 4 plots the accuracy (ε) over all unique ONE-MAX
fitness distribution functions over {0, 1}50 as a function of
centroid fitness. The broken line shows the maximum values
(the minimum value is always ε = 0, occurring at low radii,
c.f., Figure 3). For ONE-MAX, the accuracy is highest when
the fitness of the centroid lies at extremal boundaries of the
fitness function and decays as the centroid fitness approaches
n/2: the average fitness over {0, 1}n.

We remark that ε remains very low in all cases. This
corresponds to a high approximation accuracy.

4.2 MAX-k-SAT
The results in the last section are somewhat academic

since the approximation is unnecessary when an exact ex-
pression is available by Equation (11). In this section we
apply the approximation to the maximum k-satisfiability
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problem (MAX-k-SAT), an important NP-hard combinato-
rial problem. In this case, unless P = NP, it is intractable
to generate the true fitness distribution over all Hamming
regions since such a quantity yields a solution to the decision
problem.

Therefore, given a Hamming region, we construct the true
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Figure 5: A comparison of time (in seconds) to ex-
haustively compute true distribution and time to
perform LP approximation as a function of ball ra-
dius. The y-axis is on a logarithmic scale.

fitness distribution by a direct count of states at each fitness
value in the region and compare it with the approximated
distribution. Of course this limits the comparison to com-
putationally manageable regions. Figure 5 illustrates this
with a logarithmic plot of CPU time in seconds necessary
to compute the true distribution as a function of Hamming
ball radius on a 100 variable MAX-k-SAT instance. The
required time is directly proportional to the cardinality of
the Hamming ball which is exponential in the radius. As a
comparison, we also plot in Figure 5 the time required to
perform the LP approximation of the distribution. While
the time to compute the true distribution increases to over
20 minutes for each Hamming region, the time to perform
the LP approximation remains less than a second on av-
erage. This means it becomes intractable to compare the
approximation accuracy for all radius values on nontrivial
instances. However, we conjecture that the approximation
accuracy remains stable with increasing radius, or possibly
improves as it does in the case of ONE-MAX.

An instance of MAX-k-SAT consists of a Boolean formula
with n variables and a set of m clauses. Each clause is com-
posed of at most k literals in logical disjunction (a literal is
an instance of a variable or its negation). The objective is to
find a variable assignment that maximizes the number of sat-
isfied clauses. The fitness function f : {0, 1}n → {0, . . . ,m}
maps a variable assignment represented by a length-n bi-
nary string to the number of clauses satisfied under that
assignment.

The function f is a sum over m subfunctions of length at
most k, hence it is k-bounded. Furthermore, its codomain is
the set A = {0, 1, . . . ,m}, so we have exactly the type of spe-
cialized function described in Section 2. For any Hamming
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Figure 6: Cumulative fitness distribution on a single
MAX-2-SAT instance: actual vs. approximated over
region of radius 5.

region X, if we are given the m+ 1 moments

{µ0(X), µ1(X), . . . , µm(X)}

we could solve the (m+1)×(m+1) linear system (e.g., using
a specialized algorithm for pure Vandermonde systems [6])
to obtain NX . Due to Theorem 1, it is NP-hard to construct
all these moments in general. Since f is k-bounded, lower
moments can be found in polynomial time, even when |X|
is superpolynomial [9].

4.2.1 MAX-k-SAT approximation accuracy
In this section we report accuracy results for the approxi-

mation on the MAX-k-SAT domain. As a test set, we use the
10 instance s2v100c1200 MAX-2-SAT benchmark set from
the MAXSAT-2009 competition.3 Each instance contains
100 variables and 1200 clauses. Each fitness distribution is
evaluated over Hamming balls of fixed radius r = 5. Thus
the calculations are over regions containing 79375496 states.

We plot the actual vs. approximated cumulative distribu-
tion function in Figure 6 for a radius 5 Hamming ball around
a random point sampled from a particular instance from the
benchmark set (the results are consistent across instances).
The approximation is calculated using a truncated moment
vector of the first four moments of the region

µ′ = (µ0(X), µ1(X), µ2(X), µ3(X))>,

each generated using the algorithm in [9]. The approxi-
mation reported here also incorporates the upper and lower
bounds on moments µ4(X), µ5(X), and µ6(X), as in Section
3.4, and uses the heuristic impulse limit based on the second
moment (Section 3.2). The window was set to ω = 20. The
measured ε value is approximately 7.47× 10−5.

3http://www.maxsat.udl.cat/09/
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Figure 7: Dependence of approximation accuracy
on window size for MAX-k-SAT benchmark set
s2v100c1200. The y-axis is on a logarithmic scale.

To determine the dependence of approximation accuracy
on window size, we varied the window size from

ω = 5, 10, . . . , 40.

For each unique ω value, we sampled 10 states from each
of the 10 instances. For each state we compute the ε for
the approximation (using the current ω value) with respect
to the actual fitness distribution (obtained exhaustively).
Figure 7 shows that the accuracy as a function of window
size appears to tend toward a minimum at ω = 15.

To determine the dependence of approximation accuracy
on the length of the moment vector, added bounds on higher
moments (Section 3.4), and heuristic impulse limiting (Sec-
tion 3.2), we repeat the experiment, holding the window size
at 15 and varying the number of moments used (1 to 4), and
the bounds on higher moments. We performed the experi-
ments with and without heuristic impulse limiting. The re-
sults are given in Figure 8. As expected, the more moments,
the more accurate the approximation. The higher moment
bounds, however, do not appear to produce a strong effect.
Clearly, the heuristic impulse limit improves the approxima-
tion accuracy in this case.

The results for ONE-MAX suggest that the approxima-
tion accuracy depends on the fitness of the centroid point
(Figure 4). We also find this phenomenon occurs to some
degree in the MAX-k-SAT domain. To show this, we select
a representative instance (s2v100c1200-1) and measure the
approximation accuracy for a number of different centroid
states at varying fitness levels.

Since arbitrarily low fitness values are somewhat extrane-
ous in the MAX-k-SAT domain (at least from the perspec-
tive of optimization), we limit our investigation to a range
of fitness values that run from the average fitness of the
instance to near-optimal fitness values. Consider a MAX-k-
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SAT formula with n variables and m clauses such that each
clause contains exactly k literals. Given a particular literal,
a random assignment satisfies that literal with probability
1
2
. Each clause is satisfied by 2k − 1 of the 2k possible as-

signments of the literals they contain. Hence, each clause is

satisfied under a random assignment with probability 2k−1
2k .

Depending on whether it is satisfied or not, a clause con-
tributes a one or a zero to the fitness function. By linearity
of expectation, the expected fitness under a random assign-

ment is thus
“

2k−1
2k

”
×m. For the 1200 clause MAX-2-SAT

instance s2v100c1200-1, the expected fitness of a random
state is 3

4
× 1200 = 900. The optimal fitness level (found by

a complete solver) of this particular instance is 1031.
In order to focus on pertinent levels of the fitness function

for this instance, we considered a set of seven target fitness
levels: 900, 920, 940, 960, 980, 1000, and 1020, which range
from the random expectation value to near-optimal. For
each target fitness level, we performed 100 episodes of a local
hill-climbing search to generate solutions at or above the tar-
get level. Each resulting solution was then used as a centroid
in a Hamming ball of radius 5, the true and approximated
fitness distributions were subsequently calculated, and the
resultant ε was computed (see Figure 9). Due to statistical
noise, the MAX-k-SAT results are somewhat harder to in-
terpret than the exact ONE-MAX results. However, we do
note that accuracy has a stronger trend toward the bound-
ary values of the target value range.

Again, in all cases, we note the very small ε values. We
can thus conclude that the approximation is substantially
accurate.
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Figure 9: Dependence of approximation accu-
racy on centroid fitness for MAX-k-SAT instance
s2v100c1200-1. Expected fitness of a random solution
900, best fitness 1031. The y-axis is on a logarithmic
scale.

4.2.2 Estimating the number of improving states
To evaluate how well the model predicts the number of

improving states in a region, we generated 100 random states
on each of the 10 instances (1000 states total). For each
generated state x, we counted the actual number of states
with improving fitness that lie in the Hamming ball of radius
r = 5 about x:

|{y ∈ B(r)(x) : f(y) > f(x)}| = |B(r)(x)| − CB(r)(x)(f(x)).

We then computed our approximation of this quantity using
N̂X defined in (8). We plot the actual number of improv-
ing states vs. the number predicted in Figure 10. Using
the above settings, the approximation tends to slightly over-
predict for lower values.

To evaluate the approximation for high-fitness states, we
sampled, using hill-climbing local search, 700 states from in-
stance s2v100s1200-1 whose fitness values lie in the interval
[900, 1020] (recall the global optimum is at 1031). Using each
of these states as centroids, we enumerated a radius 5 Ham-
ming ball and counted the number of states lying in the ball
with fitness at least 90% of optimal. We compare this with
the corresponding count predicted by the approximation in
Figure 11. In both cases we find a tight correlation between
the estimate and the true count.

5. CONCLUSION
In this paper we have introduced a method for approxi-

mating the distribution of fitness values over regions of the
fitness landscape. Our method is applicable to epistatically
bounded fitness functions that map binary strings into a set
with bounded cardinality. Such fitness functions are often
found in hard combinatorial optimization problems such as
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Figure 11: Number of states within 90% of optimal
vs. number predicted in 700 high-fitness regions of
radius 5 on the s2v100c1200-1 instance taken from
the MAX-k-SAT benchmark set.

MAX-k-SAT, spin models, and MAX-CUT as well as certain
models of evolution, e.g., quantized NK-landscapes.

In tests on two domains, we found our method to be highly
accurate at approximating the distributions. The accuracy
of the approximation depends on the size of the moment
vector used, as well as the fitness of the centroid. Moreover,

the distribution in its cumulative form can be used to ac-
curately predict the number of improving states in a large
Hamming region.

Accurate predictions of the distribution of fitness values
over states in local regions can impact both evolutionary
and local search processes. These predictions can be used
to estimate the number of states in a region that lie in a
certain fitness range (such as closer to the optimal), or to
compare two arbitrary states to select the one more likely to
have improving states nearby (i.e., lying within a given Ham-
ming radius). Moreover, this information can be obtained
with reasonable computational effort and without resorting
to sampling.
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