
Approximation-Guided Evolutionary Multi-Objective Optimization

Karl Bringmann1, Tobias Friedrich1, Frank Neumann2, Markus Wagner2

1 Max-Planck-Institut für Informatik, Campus E1.4, 66123 Saarbrücken, Germany
2 School of Computer Science, University of Adelaide, Adelaide, SA 5005, Australia

Abstract

Multi-objective optimization problems arise fre-
quently in applications but can often only be solved
approximately by heuristic approaches. Evolution-
ary algorithms have been widely used to tackle
multi-objective problems. These algorithms use
different measures to ensure diversity in the objec-
tive space but are not guided by a formal notion
of approximation. We present a new framework of
an evolutionary algorithm for multi-objective op-
timization that allows to work with a formal no-
tion of approximation. Our experimental results
show that our approach outperforms state-of-the-
art evolutionary algorithms in terms of the quality
of the approximation that is obtained in particular
for problems with many objectives.

1 Introduction

Most real-world optimization problems are characterized by
multiple objectives. As these objectives are often in conflict
with each other, the goal of solving a multi-objective opti-
mization (MOO) problem is to find a (not too large) set of
compromise solutions. The Pareto front of a MOO prob-
lem consists of the function values representing the differ-
ent trade-offs with respect to the given objective functions.
Multi-objective optimization is assumed to be more (or at
least as) difficult as single-objective optimization due to the
task of computing several solutions. From a computational
complexity point of view even simple single-objective prob-
lems on weighted graphs like shortest paths or minimum
spanning trees become NP-hard when they encounter at least
two weight functions [12]. In addition, the size of the Pareto
front is often exponential for discrete problems and even infi-
nite for continuous ones.

Due to the hardness of almost all interesting multi-
objective problems, different heuristic approaches have been
used to tackle them. Among these methods evolutionary al-
gorithms are frequently used as they work at each time step
with a set of solutions called population. The population of
an evolutionary algorithm for a MOO is used to store desired
trade-off solutions for the given problem.

As the size of the Pareto front is often very large, evolu-
tionary algorithms and all other algorithms for MOO have to

restrict themselves to a smaller set of solutions. This set of
solutions should be a good approximation of the Pareto front.
The main question is now how to define approximation. The
literature (see e.g. [7]) on evolutionary multi-objective opti-
mization (EMO) just states that the set of compromise solu-
tions

• should be close to the true Pareto front,
• should cover the complete Pareto front, and
• should be uniformly distributed.
There are different evolutionary algorithms for multi-

objective optimization such as NSGA-II [8], SPEA2 [19], or
IBEA [18] which try to achieve these goals by preferring di-
verse sets of non-dominated solutions.

However, the above notion of approximation is not a for-
mal definition. Having no formal definition of approximation
makes it hard to evaluate and compare algorithms for MOO
problems. Therefore, we think that it is necessary to use a for-
mal definition of approximation in this context and evaluate
algorithms with respect to this definition.

Different formal notions of approximation have been used
to evaluate the quality of algorithms for multi-objective prob-
lems from a theoretical point of view. The most common
ones are the multiplicative and additive approximation (see
[6, 10, 17]). Laumanns et al. [16] have incorporated this
notion of approximation in an evolutionary algorithm for
MOO. However, this algorithm is mainly of theoretical in-
terest as the desired approximation is determined by a pa-
rameter of the algorithm and is not improved over time. An-
other approach related to a formal notion of approximation
is the popular hypervolume indicator [20] which measures
the volume of the dominated portion of the objective space.
Hypervolume-based algorithms such as MO-CMA-ES [15]
or SMS-EMOA [2] are well-established for solving MOO
problems. They do not use a formal notion of approxima-
tion but it has recently been shown that the worst-case ap-
proximation obtained by optimal hypervolume distributions
is asymptotically equivalent to the best worst-case approxi-
mation achievable by all sets of the same size [4, 5]. The ma-
jor drawback of the hypervolume approach is that it cannot
be computed in time polynomial in the number of objectives
unless P = NP [3].

In this paper, we introduce an efficient framework of an
evolutionary algorithm for MOO that works with a formal no-
tion of approximation and improves the approximation qual-

1198

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

ity during its iterative process. The algorithm can be ap-
plied to a wide range of notions of approximation which are
formally defined. As the algorithm does not have complete
knowledge about the true Pareto front, it uses the best knowl-
edge obtained so far during the optimization process.

The intuition for our algorithm is as follows. During the
optimization process, the current best set of compromise so-
lutions (usually called “population”) gets closer and closer to
the Pareto front. Similarly, the set of all non-dominated points
seen so far in the objective space (we call this “archive”) is
getting closer to the Pareto front. Additionally, the archive is
getting larger and larger and becoming an increasingly good
approximation of the true Pareto front. Assuming that the
archive approximates the Pareto front, we then measure the
quality of the population by its approximation with respect to
the archive. In our algorithm

• any set of feasible solutions constitutes an (potentially
bad) approximation of the true Pareto front, and

• we optimize the approximation with respect to all solu-
tions seen so far.

We show that this approach is highly successful in ob-
taining approximations according to the formal definition.
Comparing our results to state of the art approaches such
as NSGA-II, SPEA2, and hypervolume based algorithms, we
show that our algorithm gives significantly better approxima-
tions fulfilling the formal definition.

The outline of this paper is as follows. We introduce some
basic definitions in Section 2. The basic algorithm is pre-
sented in Section 3 and speed up techniques are discussed in
Section 4. We report on our experimental results in Section 5
and finish with some conclusions.

2 Preliminaries

We consider minimization problems with d objective func-
tions, where d ≥ 2 holds. Each objective function fi : S �→
R, 1 ≤ i ≤ d, maps from the considered search space S
into the real values. In order to simplify the presentation we
only work with the dominance relation on the objective space
and mention that this relation transfers to the corresponding
elements of S.

For two points x = (x1, . . . , xd) and y = (y1, . . . , yd),
with x, y ∈ Rd we define the following dominance relation:

x � y :⇔ xi ≤ yi for all 1 ≤ i ≤ d,

x ≺ y :⇔ x � y and x
= y.

The typical notions of approximation used in theoretical
computer science are multiplicative and additive approxima-
tion. We use the following definition

Definition 1. For finite sets S, T ⊂ R
d, the additive approxi-

mation of T with respect to S is defined as

α(S, T) := max
s∈S

min
t∈T

max
1≤i≤d

(si − ti).

This paper only regards additive approximation. However,
our approach can be easily adapted to multiplicative approxi-
mation where in Definition 1 just the term si − ti has to be
replaced by si/ti.

Algorithm 1: Measure approximation quality of a popu-
lation

input : Archive A, Population P
output: Indicator Sα(A,P)

1 S ← ∅;
2 foreach a ∈ A do
3 δ ← ∞;
4 foreach p ∈ P do
5 ρ ← −∞;
6 for i ← 1 to d do
7 ρ ← max{ρ, ai − pi};
8 δ ← min{δ, ρ};
9 S ← S ∪ {δ};

10 sort S decreasingly;
11 return S;

Algorithm 2: Insert point into archive

input : Archive A, Point p ∈ R
d

output: Archive consisting of the Pareto optimal points
of A ∪ {p}

1 dominated ← false;
2 foreach a ∈ A do
3 if a ≺ p then delete a from A;
4 if a � p then dominated ← true;
5 if not dominated then add p to A;
6 return A;

Our aim is to minimize the additive approximation of the
population P we output with respect to the archive A of all
points seen so far, i.e., we want to minimize α(A,P). The
problem is that α(A,P) is not sensitive to local changes of P .
α(A,P) only measures improvements of points which are
currently worst approximated.

To get a sensitive indicator which can be used to guide the
search, we consider instead the set {α({a}, P) | a ∈ A}
of all approximations of the points in A. We sort this set
decreasingly and call the resulting sequence

Sα(A,P) := (α1, . . . , α|A|).

The first entry α1 is again α(A,P). Our new goal it then
to minimize Sα(A,P) lexicographically. Note that this is an
augmentation of the order induced by α(A,P): If we have
α(A,P1) < α(A,P2) then we also have Sα(A,P1) <lex
Sα(A,P2). Moreover, this indicator is locally sensitive. Al-
gorithm 1 describes how to calculate it.

3 Simple Algorithm

Given the definition of Sα(A,P), it is easy to come up with
an algorithm which minimizes it lexicographically. Algo-
rithm 3 presents such an algorithm. It maintains a popula-
tion of μ individuals. In each generation, it generates λ new
offspring. From the union of the old population and the off-
spring generation it iteratively removes the individual p for
which Sα(A,P \ {p}) is lexicographically smallest. Every

1199

Algorithm 3: Simple (μ+λ)-Approximation Guided EA
1 Initialize population P with μ random individuals;
2 Set archive A ← P ;
3 foreach generation do
4 Initialize offspring population O ← ∅;
5 for j ← 1 to λ do
6 Select two random individuals from P ;
7 Apply crossover and mutation;
8 Add new individual to O;
9 foreach p ∈ O do

10 Insert offspring p in archive A with Algorithm 2;
11 Add offsprings to population, i.e., P ← P ∪O;
12 while |P | > μ do
13 foreach p ∈ P do
14 Compute Sα(A,P \ {p}) with Algorithm 1;
15 Remove p from P for which Sα(A,P \ {p}) is

lexicographically smallest;

new individual is added to the archive A such that the archive
only contains non-dominating solutions. As described in Al-
gorithm 2, this means that (i) a new offspring is only added if
it is not dominated by another individual already in A and (ii)
individuals in A which are dominated by a new individual are
removed. Note that in contrast to many other algorithms (like
Laumanns et al. [16] or all hypervolume-based algorithms),
our new algorithms needs no meta-parameters.

We now give an upper bound for the runtime of Algo-
rithm 2. One generation consists of producing and processing
λ offspring. The main part of the runtime is needed for the
O(λ(μ + λ)) computations of Sα(A,P \ {p}), each costing
O(d |A| (μ + λ) + |A| log |A|). Hence, we get a runtime of
O(λ(μ+ λ) |A| (d (μ+ λ) + log |A|)) for generating an off-
spring of λ points. This means for N function evaluations,
that is, N generated points overall, we get a total runtime of

O(N (μ+ λ) |A| (d (μ+ λ) + log |A|))
This algorithm works well for small population and offspring
sizes μ + λ, but for e.g. μ + λ = 100, it becomes very slow
due to the (μ+ λ)2 factor.

4 Fast Algorithm

We now show how to speed-up our approach. Let us first
assume that the approximations α({a}, {p}) are distinct for
all a ∈ A and p ∈ P . For all a ∈ A we denote the point
p ∈ P that approximates it best by p1(a) and the second
best by p2(a). The respective approximations we denote by
αi(a) := α({a}, {pi(a)}) for i ∈ {1, 2}. Now, let p
= q ∈ P
and consider Sp := Sα(A,P \ {p}) and Sq := Sα(A,P \
{q}). Significant for the comparison of the two are only the
positions a ∈ A where Sp or Sq differ from S := Sα(A,P).
This is the case for all positions in B := {a ∈ A | p1(a) ∈
{p, q}}. If we delete p from P , then the worst approximation
of one of the a ∈ B is the maximum of max{α2(a) | p1(a) =
p} and max{α1(a) | p1(a) = q}. Now observe that if

β(p) := maxa∈A{α2(a) | p1(a) = p}

Algorithm 4: Fast (μ+ λ)-Approximation Guided EA
11–1 See lines 1–11 of Algorithm 3

12 foreach a ∈ A do
13 p1(a) ← argminp∈P α({a}, {p});
14 p2(a) ← argminp1(a)�=p∈P α({a}, {p});
15 α1(a) ← minp∈P α({a}, {p});
16 α2(a) ← minp1(a)�=p∈P α({a}, {p});
17 foreach p ∈ P do
18 β(p) ← maxa∈A{α2(a) | p1(a) = p};
19 while |P | > μ do
20 Remove p∗ from P with β(p) maximal;
21 foreach a ∈ A with p1(a) = p∗ do
22 Compute p1(a), p2(a), α1(a), α2(a) as done

above in lines 13–16;
23 β(p1(a)) ← max{β(p1(a)), α2(a)};

is smaller than the respective β(q), then also the larger
term above is smaller, as max{α1(a) | p1(a) = q} <
max{α2(a) | p1(a) = q}. Hence, we end up with the fact
that we only have to compare β(p) and throw out the point p
with β(p) maximal (see Algorithm 4).

Recall that we assumed that all approximations
α({a}, {p}) with a ∈ A, p ∈ P are distinct. If this
does not hold, we can simply change the indicator Sα(A,P)
slightly and insert symmetry breaking terms a · ε, where
ε > 0 is an infinitesimal small number. This means that we
treat equal approximations as not being equal and hence in
some arbitrary order.

We now give an upper bound for the runtime of Algo-
rithm 4. For one generation, i.e., for producing and process-
ing λ offspring, the algorithm needs a runtime of O(d (μ +
λ) |A|) for computing the values p1(a), p2(a), α1(a), α2(a)
and β(p) initially. Then we repeat λ times: We delete the
point p∗ ∈ P with β(p) maximal in O(μ + λ), after which
we have to recompute the values p1(a), p2(a), α1(a), α2(a),
but only for a ∈ A with p1(a) = p∗. Observe that
we can store a list of these a’s during the initial compu-
tation and keep these lists up to date with no increase of
the asymptotic runtime. Also note that we would expect
to find O(|A|/|P |) points with p1(a) = p∗, while in the
worst case there may be up to O(|A|) such points. Sum-
ming up, we get a heuristic runtime for one generation of
O(d (μ+λ) |A|+λ((μ+λ)+d|P | · |A|/|P |)) which simpli-
fies to O(d(μ+ λ)|A|) as |A| ≥ μ+ λ. In the worst case we
replace O(|A|/|P |) by O(|A|) and get a runtime for one gen-
eration of O(dλ(μ + λ)|A|). For N fitness evaluations we,
therefore, get a runtime of O(d(1+μ/λ)|A|N) heuristically,
and O(d(μ+ λ)|A|N) in the worst case. Note that |A| ≤ N .
For any λ = O(μ), e.g. λ = 1 or λ = μ, this can be simpli-
fied to O(dμ|A|N) in both cases, while for λ = Ω(μ), e.g.
λ = μ, we get a reduced heuristic runtime of O(d|A|N).

5 Experimental Study

The fast (μ + λ)-version of our algorithm was implemented
in the jMetal framework [11]. The code is available upon re-

1200

2 3 4 5 6 8 10 12 14 16 18 20
10−2

10−1

100

101

102

103

dimension

ap
pr

ox
im

at
io

n
fo

rD
T

L
Z

1
(s

m
al

le
r=

be
tte

r)

2 3 4 5 6 8 10 12 14 16 18 20
10−2

10−1

100

dimension

hy
pe

rv
ol

um
e

fo
rD

T
L

Z
1

(l
ar

ge
r=

be
tte

r)

2 3 4 5 6 8 10 12 14 16 18 20
10−3

10−2

10−1

100

101

dimension

ap
pr

ox
im

at
io

n
fo

rD
T

L
Z

2
(s

m
al

le
r=

be
tte

r)

2 3 4 5 6 8 10 12 14 16 18 20
10−2

10−1

100

dimension

hy
pe

rv
ol

um
e

fo
rD

T
L

Z
2

(l
ar

ge
r=

be
tte

r)

Figure 1: Comparison of the performance of our algorithm AGE () with IBEA (), NSGA-II (), SMS-EMOA (), and
SPEA2 () on the test functions DTLZ1 and DTLZ2 with varying dimension d. The figures show the average of 100 repetitions each.
Only non-zero hypervolume values are shown. For reference, we also plot () the maximum hypervolume achievable for μ → ∞.

quest. We compared the performance of our AGE algorithm
to the established MOO algorithms IBEA [18], NSGA-II [8],
SMS-EMOA [13], and SPEA2 [19] on the DTLZ bench-
mark family [9]. We used the functions DTLZ 1-4, each
with 30 function variables and between 2 to 20 objective val-
ues/dimensions. Figure 3 shows the Pareto fronts of DTLZ1
and DTLZ2 for three objectives. The fronts of DTLZ3 and
DTLZ4 are equivalent to DTLZ2; they only differ in the map-
ping from the search space to the objective space. We limit
the calculations of the algorithms to a maximum of 100,000
fitness evaluations and a maximum computation time of four
hours per run. Note that the time restriction had to be used as
the runtime of some algorithms increases exponentially with
respect to the size of the objective space.

The further parameter setup of the algorithms was as fol-
lows. Parents were selected through a binary tournament,
in which we selected the individual out of two randomly
drawn ones with the better approximation of the archive. As
variation operators, the polynomial mutation and the simu-
lated binary crossover [1] were applied, which are both used
widely in MOO algorithms [8, 14, 19]. The distribution pa-

(a) DTLZ1. (b) DTLZ2.

Figure 3: Visualization of the Pareto fronts for d = 3.

rameters associated with the operators were ηm = 20.0 and
ηc = 20.0. The crossover operator is biased towards the cre-
ation of offspring that are close to the parents, and was ap-
plied with pc = 0.9. The mutation operator has a specialized
explorative effect for MOO problems, and was applied with
pm = 1/(number of variables).

Figures 1 and 2 present our results for population size μ =
100 and λ = 100, averaged over 100 independent runs. We
performed the same experiments also for μ ∈ {25, 50} and
observed similar behaviors. We assess the algorithms using

1201

2 3 4 5 6 8 10 12 14 16 18 20
10−1

100

101

102

103

104

dimension

ap
pr

ox
im

at
io

n
fo

rD
T

L
Z

3
(s

m
al

le
r=

be
tte

r)

2 3 4 5 6 8 10 12 14 16 18 20
10−2

10−1

100

dimension

hy
pe

rv
ol

um
e

fo
rD

T
L

Z
3

(l
ar

ge
r=

be
tte

r)

2 3 4 5 6 8 10 12 14 16 18 20
10−1

100

101

dimension

ap
pr

ox
im

at
io

n
fo

rD
T

L
Z

4
(s

m
al

le
r=

be
tte

r)

2 3 4 5 6 8 10 12 14 16 18 20
10−2

10−1

100

dimension

hy
pe

rv
ol

um
e

fo
rD

T
L

Z
4

(l
ar

ge
r=

be
tte

r)

Figure 2: Comparison of the performance of our algorithm AGE () with IBEA (), NSGA-II (), SMS-EMOA (), and
SPEA2 () on the test functions DTLZ3 and DTLZ4 with varying dimension d. The figures show the average of 100 repetitions each.
Only non-zero hypervolume values are shown. For reference, we also plot () the maximum hypervolume achievable for μ → ∞.

the following measures:
• Approximation: We approximate the achieved additive

approximation of the known Pareto fronts by first draw-
ing one million points of the front uniformly at random
and then computing the approximation which the final
population achieved for this set with Algorithm 1.

• The hypervolume [20] is a popular performance measure
which measures the volume of the dominated portion of
the objective space relative to a reference point r. For
DTLZ1 we choose r = 0.5d, otherwise r = 1d. We ap-
proximate the achieved hypervolume with an FPRAS [3]
which has a relative error of more than 2% with proba-
bility less than 1/1000. The volumes shown for DTLZ1
are normalized by the factor 2d.

As it is very hard to determine the minimum approximation
ratio achievable or the maximum hypervolume achievable for
all populations of a fixed size μ, we only plot the theoreti-
cal maximum hypervolume for μ → ∞. For this, a simple
geometric calculation gives a maximum (rescaled) hypervol-
ume of 1− 1/d! for DTLZ1 and a maximum hypervolume of
1− 2−d πd/2/(d/2)! for DTLZ2 (with n! := Γ(n+ 1)).

For all test functions, our new algorithm AGE ()
achieves the best approximation among the competing algo-
rithms for dimensions d > 5. We first discuss DTLZ1 and
DTLZ3 who are known to be hard to analyze as they con-
tain a very large number of local Pareto-optimal fronts [9].
For both functions, we achieve the best approximation among
all tested algorithms for d > 3. Remarkably, all other algo-
rithms (besides IBEA ()) are unable to find the front at
all for these instances. This results in extremely large ap-
proximations and zero hypervolumes. The reason for IBEAs
decreasing behaviour for very large dimension (d ≥ 18) is
that it was stopped after four hours and it could not perform
100′000 iterations. The same holds already for much smaller
dimensions in the case of SMS-EMOA (), which uses
an exponential-time algorithm to internally determine the hy-
pervolume. It did not finish a single generation for d ≥ 8
and only performed around 5′000 iterations within four hours
for d = 5. This implies that the higher-dimensional ap-
proximations plotted for SMS-EMOA () actually show
the approximation of the random initial population. Interest-
ingly, the approximations achieved by NSGA-II () and

1202

SPEA2 () are even worse as they are tuned for low-
dimensional problems and move their population too far out
to the boundaries for high dimensions. Our algorithm ()
and also NSGA-II () and SPEA2 () always finished
in less than four hours.

The plots of DTLZ2 and DTLZ4 reveal other properties.
Here, an approximation of the front seems generally much
easier. For small dimensions (d = 2, 3, 4), all algorithms find
acceptable solutions. However, for larger dimensions again
SMS-EMOA (), NSGA-II (), and SPEA2 () fail
for the said reasons. In these cases, our algorithm ()
still achieves the best approximation, but for 4 ≤ d ≤ 18
(DTLZ2) and 6 ≤ d ≤ 18 (DTLZ4), the solutions found
by IBEA () (which uses the hypervolume as an indica-
tor) have a larger hypervolume. The hypervolume of IBEA is
only worse for d = 20 because it could only perform a few
hundred iterations within the four hour time limit.

6 Conclusions

Evolutionary algorithms are frequently used to solve multi-
objective optimization problems. Often, it is very hard to
formally define the optimization that current state-of-the-art
approach work with. We have presented a new evolutionary
multi-objective algorithm that works with a formal notion of
approximation. The framework of our algorithm allows to
work with various formal notions of approximations. Our ex-
perimental results show that given a fixed time budget it out-
performs current state-of-the-art approaches in terms of the
desired additive approximation as well as the covered hyper-
volume on standard benchmark functions. This holds, in par-
ticular, for problems with many objectives, which most other
algorithms have difficulties dealing with.

References

[1] R. B. Agrawal and K. Deb. Simulated binary crossover
for continuous search space. Technical report, 1994.

[2] N. Beume, B. Naujoks, and M. Emmerich. SMS-
EMOA: Multiobjective selection based on dominated
hypervolume. European Journal of Operational Re-
search, 181(3):1653–1669, 2007.

[3] K. Bringmann and T. Friedrich. Approximating the vol-
ume of unions and intersections of high-dimensional ge-
ometric objects. Computational Geometry: Theory and
Applications, 43:601–610, 2010.

[4] K. Bringmann and T. Friedrich. The maximum hy-
pervolume set yields near-optimal approximation. In
Proc. 12th annual Conference on Genetic and Evolu-
tionary Computation (GECCO ’10), pages 511–518.
ACM Press, 2010.

[5] K. Bringmann and T. Friedrich. Tight bounds for the
approximation ratio of the hypervolume indicator. In
Proc. 11th International Conference Parallel Problem
Solving from Nature (PPSN XI), volume 6238 of LNCS,
pages 607–616. Springer, 2010.

[6] C. Daskalakis, I. Diakonikolas, and M. Yannakakis.
How good is the Chord algorithm? In Proc. 21st
Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’10), pages 978–991, 2010.

[7] K. Deb. Multi-objective optimization using evolutionary
algorithms. Wiley, Chichester, UK, 2001.

[8] K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan. A fast
and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Trans. Evolutionary Computation, 6(2):182–197,
2002.

[9] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scal-
able test problems for evolutionary multiobjective op-
timization. In Evolutionary Multiobjective Optimiza-
tion, Advanced Information and Knowledge Processing,
pages 105–145. 2005.

[10] I. Diakonikolas and M. Yannakakis. Small approxi-
mate Pareto sets for biobjective shortest paths and other
problems. SIAM Journal on Computing, 39:1340–1371,
2009.

[11] J. J. Durillo, A. J. Nebro, and E. Alba. The jMetal
framework for multi-objective optimization: Design
and architecture. In Proc. Congress on Evolutionary
Computation (CEC ’10), pages 4138–4325. IEEE Press,
2010.

[12] M. Ehrgott. Multicriteria optimization. Berlin,
Springer, 2nd edition, 2005.

[13] M. T. M. Emmerich, N. Beume, and B. Naujoks. An
EMO algorithm using the hypervolume measure as se-
lection criterion. In Proc. Third International Con-
ference on Evolutionary Multi-Criterion Optimization
(EMO ’05), pages 62–76. Springer, 2005.

[14] M. Gong, L. Jiao, H. Du, and L. Bo. Multiobjective
immune algorithm with nondominated neighbor-based
selection. Evolutionary Computation, 16(2):225–255,
2008.

[15] C. Igel, N. Hansen, and S. Roth. Covariance matrix
adaptation for multi-objective optimization. Evolution-
ary Computation, 15:1–28, 2007.

[16] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Com-
bining convergence and diversity in evolutionary mul-
tiobjective optimization. Evolutionary Computation,
10(3):263–282, 2002.

[17] C. H. Papadimitriou and M. Yannakakis. On the ap-
proximability of trade-offs and optimal access of web
sources. In Proc. 41st annual Symposium on Founda-
tions of Computer Science (FOCS ’00), pages 86–92.
IEEE Press, 2000.

[18] E. Zitzler and S. Künzli. Indicator-based selection in
multiobjective search. In Proc. 8th International Con-
ference Parallel Problem Solving from Nature (PPSN
VIII), volume 3242 of LNCS, pages 832–842. Springer,
2004.

[19] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:
Improving the strength Pareto evolutionary algorithm
for multiobjective optimization. In Proc. Evolution-
ary Methods for Design, Optimisation and Control with
Application to Industrial Problems (EUROGEN 2001),
pages 95–100, 2002.

[20] E. Zitzler and L. Thiele. Multiobjective evolutionary
algorithms: a comparative case study and the strength
Pareto approach. IEEE Trans. Evolutionary Computa-
tion, 3:257–271, 1999.

1203

