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Abstract

We present a new randomized diffusion-based algorithm for

balancing indivisible tasks (tokens) on a network. Our aim

is to minimize the discrepancy between the maximum and

minimum load. The algorithm works as follows. Every

vertex distributes its tokens as evenly as possible among its

neighbors and itself. If this is not possible without splitting

some tokens, the vertex redistributes its excess tokens among

all its neighbors randomly (without replacement).

In this paper we prove several upper bounds on the load

discrepancy for general networks. These bounds depend

on some expansion properties of the network, that is,

the second largest eigenvalue, and a novel measure which

we refer to as refined local divergence. We then apply

these general bounds to obtain results for some specific

networks. For constant-degree expanders and torus graphs,

these yield exponential improvements on the discrepancy

bounds compared to the algorithm of Rabani, Sinclair,

and Wanka [14]. For hypercubes we obtain a polynomial

improvement.

In contrast to previous papers, our algorithm is vertex-based

and not edge-based. This means excess tokens are assigned

to vertices instead to edges, and the vertex reallocates

all of its excess tokens by itself. This approach avoids

nodes having “negative loads” (like in [8, 10]), but causes

additional dependencies for the analysis.
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1 Introduction

During the last years, large parallel networks became
widely available for industrial and academic users. An
important prerequisite for their efficient usage is to bal-
ance the workload efficiently. Load balancing also has
applications in scheduling, routing, numerical computa-
tion, and finite element computations.

In this paper we analyze a very simple
neighborhood-based load balancing algorithm. We
assume that the processors are connected by an arbi-
trary d-regular network. In the beginning, every vertex
has a certain number of tokens (load). The goal is
to distribute the tokens as evenly as possible. More
precisely, we aim at minimizing the difference between
the minimum load and the maximum load, which we
call discrepancy.

In general, neighborhood-based load balancing algo-
rithms operate in parallel steps (sometimes also called
rounds). In each step, every processor is allowed to
probe the load of all of its neighbors (diffusion load bal-
ancing), or to probe the load of one neighbor (dimension
exchange). Then each processor decides how much load
it will forward to its neighbors. In this paper, we con-
sider a very natural diffusion-based approach. In the
continuous diffusion model, where tokens can be split
arbitrarily, the method works as follows. Along each
edge a load of load -difference/(d + 1) is sent from the
vertex with the higher load to the vertex with less to-
kens. Note that this method balances the load perfectly
if the number of steps is sufficiently large. Here we con-
sider the (arguably more realistic [15]) case of discrete
diffusion where tokens are indivisible. Quantifying by
how much the integrality assumption decreases the effi-
ciency of load balancing is an interesting question and
has been posed by many authors (e.g., [8, 11–15]).

Most results known so far ([9, 10, 14]) employ
an edge-oriented view where each edge decides be-
tween forwarding either �load -difference/(d + 1)� or
�load -difference/(d+1)� tokens (referred to as rounding
up or rounding down). Rounding up results in a load
balancing algorithm that keeps sending tokens back and
forth between processors with a small load difference.
Another disadvantage is that the approach can gener-
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ate “negative loads” for vertices with only a few tokens.
On the other hand, always rounding down results in a
discrepancy of up to d·diam(G), where diam(G) denotes
the diameter of the underlying graph G. To overcome
these problems we adopt a vertex-oriented view in this
paper where the vertices (not edges) decide randomly
how much they are sending.

1.1 Related Work. Due to the vast amount of liter-
ature on load balancing, we consider only previous work
dealing with diffusion load balancing or randomized al-
gorithms for neighborhood-based load balancing. We
do not consider literature on the dimension exchange
model in general, or literature for the token distribu-
tion model.

Continuous Diffusion. The diffusion model was
first studied by Cybenko [3] and, independently, Boillat
[1]. Cybenko [3] (see also [13, 15]) shows a tight
connection between the convergence rate of the diffusion
algorithm and the absolute value of the second largest
eigenvalue λmax of the diffusion matrix P with Pij =
1/(d + 1) if {i, j} ∈ E. Subramanian and Scherson
[15] observe similar relations between convergence time
and certain properties of the underlying network like
electrical and fluid conductance.

Muthukrishnan et al. [13] refer to the above diffu-
sion model as the first order scheme and generalize it
to the so called second order scheme. Here the load
transferred over an edge (i, j) in step t does not only
depend on the load difference of i and j, but also on the
amount of load transferred over the edge in step t − 1.
Diekmann, Frommer, and Monien [4] extend the idea
of [13] and propose a general framework to analyze the
convergence behavior of a wide range of diffusion type
methods.

Discrete Diffusion. Rabani et al. [14] consider
the diffusion algorithm that always rounds down (called
RSW algorithm in the following). They approximate
the idealized and continuous process by this process
with indivisible load. To quantify the deviation of the
discrete load process from the idealized process, they
propose a natural measure, the local divergence Ψ1. The
local divergence measures the sum of load differences
across all edges in the network, aggregated over the
time. They give a general bound on Ψ1 in terms of λmax

(which is the second largest eigenvalue in absolute value
of the diffusion matrix). By a more careful analysis,
they also get improved bounds on Ψ1 for tori graphs
resulting in tight bounds on the discrepancy achieved
by their algorithm.

Discrete Load Balancing via Random
Walks. Elsässer et al. [7, 8] propose an algorithm

based on random walks. They show that after
O (log(Kn)/(1− λmax)) steps, the maximum load
is at most the average load plus a constant [7]. In
comparison to our algorithm, their algorithm is more
complicated and not a simple diffusion type algorithm.
For example, vertices require an estimate of n and
they have to compute the average load during the
balancing procedure. Moreover, the final stage uses
concurrent random walks (representing tokens) to
reduce the maximum load. In this stage, the load
transfer along an edge may be much smaller (or higher)
than load -difference/(d+ 1).

Discrete Neighborhood Load Balancing with
Randomization. In [9], the authors consider a
dimension-exchange algorithm using randomly or deter-
ministically generated matchings. Their algorithm ran-
domly decides to round up or down. For detailed results
see Table 1. Note that an algorithm in the dimension-
exchange model is typically much easier to analyze than
diffusion algorithms since every node exchanges load
with at most one neighbor. In [10], the authors analyze
a deterministic modification of the standard diffusion al-
gorithm for hypercubes and constant-dimensional tori.
The idea is that each edge keeps track of its own round-
ing errors. In each step an edge’s decision to round up
or down is done in a way that the sum of its round-
ing errors is minimized. Again, the detailed results can
be found in Table 1. The authors of [10] also consider
a randomized version of the diffusion algorithm. Their
approach is edge-based, more precisely, edges decide in-
dependently at random whether to round up or down.
They present a general upper bound for their approach
in terms of λmax. Note that both algorithms in [10] may
generate negative load due to the edge-based rounding.

Source of Inspiration. We wish to point out that
our work was inspired by recent combinatorial results
regarding so-called rotor-router walks [2, 5]. Unlike in a
random walk, in a rotor-router walk each vertex serves
its neighbors in a fixed order. The resulting (completely
deterministic) walk nevertheless closely resembles a
random walk in several respects. Similarly, one can
say that in each round of our load-balancing algorithm
a vertex chooses a random order of its neighbors (and
itself) and sends around all its tokens in this order in a
round-robin fashion.

1.2 Our Contribution. Algorithm. We consider
a vertex-based randomized diffusion algorithm for the
discrete model with indivisible tokens. Let d be the
degree of the (regular) network and let Xi be the load of
vertex i. Our algorithm works as follows. First, vertex i
sends �Xi/(d+1)� tokens to each neighbor and keeps the
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same amount of tokens for itself. Then the remaining
Xi − (d + 1) �Xi/(d+ 1)� tokens (called excess tokens)
are randomly distributed (without replacement) among
vertex i and its d neighbors.

Results. To state our results formally, we let
τ(G,K) = O(log(Kn)/(1 − λmax)) be the number of
steps after which the continuous process achieves a
constant discrepancy for any initial load distribution
with discrepancy K (cf. Fact 2.2, [14]). All our bounds
on the discrepancy are independent of the initial load
vector, and hold with high probability (w.h.p.), i.e.,
with probability at least 1− n−Ω(1).

Theorem 1.1. Let G be an arbitrary d-regular graph
and let K be the initial discrepancy. Then the discrep-
ancy after τ(G,K) = O(log(Kn)/(1− λmax)) rounds is
w.h.p. at most

(1) O(Υ2(G)
√
d logn ),

(2) O(d+√
d log(n) ((Υ2(G))2 − d)

)
, and

(3) O(d log logn
1−λmax

)
.

The role of Υ2(G) is similar to the local divergence
Ψ1(G) used in [14] (cf. Definitions 2.1 and 2.2). Υ2(G)
is much smaller than Ψ1(G), i.e., Υ2(G) �

√
Ψ1(G)

for any graph G. The improvement is due to the more
balanced reallocation of the excess tokens due to our
randomized approach and

The next theorem provides more specific bounds on
the discrepancy. It is derived by first bounding Υ2(G)
and then applying Theorem 1.1.

Theorem 1.2. The following upper bounds on the dis-
crepancy after τ(G,K) = O(log(Kn)/(1 − λmax))
rounds hold w.h.p.

(1) O
(
d
√
logn +

√
d logn log d
1−λmax

)
,

(2) d-regular Expander: O(d log logn),
(3) r-dim. Torus, r = O(1): O(√logn ), and
(4) Hypercube: O(logn).
Let us compare our results to the RSW algorithm (see
[14]) since that algorithm is also a very natural diffusion
algorithm that avoids negative loads. For d-regular
expanders, [14] proves a discrepancy bound ofO(d log n)
after τ(G,K) rounds. This is almost tight, as d·diam(G)
is a simple lower bound for the RSW algorithm. Hence
for small d, we obtain an exponential improvement in
terms of the discrepancy.

For the r-dimensional Torus graph, [14, Theorem 8]
proves a bound of O(n1/r) on the discrepancy after
τ(G,K) rounds. This is tight due to the lower bound
of diam(G). Again, our new algorithm achieves an
exponential improvement. For the hypercube with n

vertices, [14, Theorem 4] implies a discrepancy bound
of O(log3 n) after τ(G,K) rounds.

The techniques used to analyze our new algorithm
can be used to prove a tight bound of Θ(log2 n) on
the discrepancy of the RSW algorithm. For our new
algorithm we obtain a smaller discrepancy bound of
O(logn).

Techniques. The key ingredient of the analysis
in [9, 10, 14] is “an appropriate edge-oriented view
of the rounding errors in each balancing step, which
allows them to be handled independently” (as stated by
Rabani et al. [14]). The problem with vertex-oriented
algorithms are the dependencies between the rounding
results for edges incident to the same vertex. To deal
with these dependencies we use a different analysis
compared to [9, 10]. Our analysis is based on martingale
tail estimates. The other main technical contribution is
the use of the new parameter Υ2(G) (Definition 2.2) as
opposed to the local divergence Ψ1(G) as used in [14].

2 Algorithms and Notation

We use standard graph-theoretical notation. Let G =
(V,E) be a connected, undirected, d-regular and simple
graph with n vertices [n] := {1, 2, . . . n}. The neigh-
borhood of a vertex i is denoted by N(i). For a pair
of vertices i, j ∈ V (G), let dist(i, j) be the length of a
shortest path between i and j, and diam(G) be the di-
ameter of G. [i : j] refers to an edge {i, j} ∈ E with
i < j. Every vertex in the graph has a certain amount
of load items (tokens). We assume that the load is in-
divisible and each token is of unit-size.

We denote by P the transition matrix, i.e., Pi,j =
1
d+1 if {i, j} ∈ E or i = j, and Pi,j = 0 otherwise. We

will often usePt which means that we raise the matrixP
to the power of t. Note that Pti,j can be also seen as the
probability for a random walk being located at vertex j
at step t, when having started from vertex i.

For the estimation of the convergence of our pro-
cesses, the absolute value of the second largest eigenval-
ues of P plays a crucial role. Let us denote the eigen-
values of P by 1 = λ1 � λ2 � λ3 � . . . � λn > −1 and
define

λmax := max{λ2, |λn|}.
We show the following general bound, the proof can be
found in the full version.

Lemma 2.1. For any graph G, 1/(1− λmax(G)) � 2n4.

For bounding the deviation between the discrete
and continuous process, we adapt a definition from [9]
that generalizes the original definition of local diver-
gence from [14] for p = 1.
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Graph class FS [9] RSW [14] FGS [10] det. FGS [10] rand. our algorithm

d-reg. graph

O(Ψ2(G)
√
logn ) O(Ψ1(G)) – – O(

Υ2(G)
√
d logn

)

O
(

d log log n
1−λmax

)
– – O

(
d log log n
1−λmax

)
O
(

d log log n
1−λmax

)

O
(√

d log n
1−λmax

)
O
(

d log n
1−λmax

)
– – O

(
d
√
logn +

√
d logn log d
1−λmax

)

d-reg. expander O(d log logn) O(d logn) – O(d log logn) O(d log logn)

hypercube O(log2 n) Θ(log2 n) Θ(logn) O(log2 n log logn) O(logn)

r-dim. torus O(n1/(2r)
√
logn ) Θ(n1/r) O(1) O(n1/r log logn) O(

√
logn )

Properties FS [9] RSW [14] FGS [10] det. FGS [10] rand. our algorithm

diffusion � � � � �

no neg. load � � � � �

Table 1: Discrepancy of neighborhood load balancing after τ(G,K) = Θ(log(Kn)/1− λmax) rounds.

Definition 2.1. ([9, 14]) For any p ∈ N>0, the local
p-divergence of a graph G = (V,E) is

Ψp(G) := max
k∈V

( ∞∑

t=0

∑

[i:j]∈E

∣∣Pti,k −Ptj,k
∣∣p
)1/p

.

Note that Ψ2(G)
2 � Ψ1(G) since

∣∣Pti,k − Ptj,k
∣∣ � 1 for

all t, i, k. As pointed out in [14], “Ψ1(G) is a natu-
ral quantity that measures the sum of load differences
across all edges in the network, aggregated over time
(and suitably normalized) which may be of independent
interest”. Here, we will mainly consider a natural ex-
tension of Ψ1(G) to the �2-norm, Ψ2(G), and Υ2(G)
which is defined below.

Definition 2.2. For any p ∈ N>0, the refined local
p-divergence of a graph G = (V,E) is defined as

Υp(G) := max
k∈V

(
1

2

∞∑

t=0

n∑

i=1

max
j∈N(i)

∣∣Pti,k −Ptj,k
∣∣p
)1/p

.

Note that Υp(G) � Ψp(G), since for each {i, j} ∈ E(G)
the term

∣∣Pti,k − Ptj,k
∣∣p appears once in Ψp(G) and at

most twice in Υp(G).
For our probabilistic analysis, we use the following

concentration result for martingales, which is commonly
known as the “method of average bounded differences”.

Theorem 2.1. ([6, p. 83]) Let Y1, . . . , Yn be an arbi-
trary set of random variables and let f be a function of
these random variables satisfying the property that for
each � ∈ [n], there is a non-negative c� such that
∣∣E [f | Y�, Y�−1, . . . , Y1]−E [f | Y�−1, . . . , Y1]

∣∣ � c�.

Then for any δ > 0,

Pr [|f −E [f ] | > δ] � 2 exp

(
− δ2

2c

)
,

where c :=
∑n

�=1 c
2
� .

2.1 Our Discrete Process. Our balancing proce-
dure proceeds in rounds 1, 2, . . .. Fix a vertex i at some
round and let Xi be the current load of this vertex.
Then i sends �Xi/(d + 1)� tokens to each of its neigh-
bors and keeps �Xi/(d + 1)� for itself. The remaining
Xi − (d + 1)�Xi/(d+ 1)� ∈ [0, d] excess-tokens are dis-
tributed randomly (without replacement) among i and
its d neighbors.

To describe our processes more formally, we first
present our notation that is based on [14]. For any
round t, let X(t) be the n-dimensional load-vector at
(the end of) step t (load vectors are always regarded
as column-vectors here). The discrepancy of the load

vectorX(t) at step t is defined as maxi,j∈[n]
∣∣X(t)

i −X(t)
j

∣∣.
For each edge {i, j} ∈ E we define a random vari-

able Z
(t)
i,j with Z

(t)
i,j = 1 if i sends an excess token to

j at step t, and Z
(t)
i,j = 0 otherwise. Similarly, let Z

(t)
i,i

be one if i keeps an excess token for itself, and zero oth-

erwise. Note that each Z
(t)
i,j with j ∈ N(i) ∪ {i} is a

Bernoulli random variable with

Pr
[
Zti,j = 1

]
=
X

(t−1)
i

d+ 1
−
⌊
X

(t−1)
i

d+ 1

⌋
.

Additionally, the number of excess tokens sent out by i
satisfies

Z
(t)
i,i +

∑

j : {i,j}∈E
Z

(t)
i,j

= X
(t−1)
i − (d+ 1)

⌊
X

(t−1)
i

d+ 1

⌋
.(2.1)

Note that Zi,j and Zj,i are independent for i 	= j. Now
we can describe the discrete process as follows,

X
(t)
i =

⌊
X

(t−1)
i

d+ 1

⌋
+ Z

(t)
i,i
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+
∑

j : {i,j}∈E

(⌊
X

(t−1)
j

d+ 1

⌋
+ Z

(t)
j,i

)
.(2.2)

2.2 The Continuous Process. Here we consider
the continuous process where the load is arbitrarily
divisible. The load vector in round t of this process is
denoted by ξ(t). To analyze X(t) we bound its deviation
from ξ(t) Here we use the fact that the evolution of ξ(t)

is well-understood in the area of Markov chain theory
since ξ(t) = ξ(t−1) P, which results in ξ(t) = ξ(0) Pt.
Alternatively, we can write

ξ
(t)
i = ξ

(t−1)
i +

∑

j : {i,j}∈E

ξ
(t−1)
j − ξ(t−1)i

d+ 1
.(2.3)

We define the average load as ξ :=
∑n
i=1 ξ

(0)
i /n. The fol-

lowing result bounds the load difference of the vertices
and the average load in step t of the continuous process.

Lemma 2.2. ([13, Lem. 1]) Let G = (V,E) be an ar-
bitrary connected graph. Then for any initial vector ξ(0)

and time step t � 0,

n∑

i=1

(
ξ
(t)
i − ξ

)2 � λ2tmax

n∑

i=1

(
ξ
(0)
i − ξ

)2
.

We will use the following immediate consequence of this
lemma.

Corollary 2.1. Let G = (V,E) be an arbitrary con-
nected graph. Then for any time step t � 0 and any
vertex k ∈ V ,

n∑

i=1

(
Pti,k −

1

n

)2 � λ2tmax.

The following well-known result bounds the discrep-
ancy of ξ.

Theorem 2.2. ([14, Thm. 1]) Let G be a regular
graph with n vertices. For the continuous process, the
discrepancy is reduced to ε > 0 after

2

1− λmax
· ln

(
K n2

ε

)

steps, where K is the discrepancy of the initial load
vector.

By τ(G,K) we denote the number of steps required for
the continuous process to achieve a discrepancy of 1 for
any initial load vector with discrepancy K. Fact 2.2
implies that τ(G,K) = O((log(Kn)/(1− λmax)).

2.3 Difference between Continuous Process
and Discrete Process. To obtain results for the dis-
crete process, we upper bound the deviation between
the discrete and continuous process at step t, assuming
that both processes are initialized with the same load
vector. t is chosen large enough so that after t steps
the continuous process has achieved a discrepancy of at
most 1 for every load vector with initial discrepancy K
(cf. Fact 2.2). Hence, the discrepancy of the discrete
process is upper bounded by the deviation between the
discrete and continuous process (plus 1).

Similar to [9, 10, 14], we first express the discrep-
ancy between the discrete and idealized process by a
sum of weighted rounding errors (equation (2.7)). In
this sum, the rounding errors are weighted by powers of
the transition probabilities. In contrast to [9, 10, 14],
the rounding errors (of the same time step) are not in-
dependent for all edges. This is due to our vertex-based
approach and complicates the analysis.

To obtain a recursion for the discrete process, which
similar to equation (2.3) for the continuous process, we
plug equation (2.1) into equation (2.2) and obtain

X
(t)
i =

⌊
X

(t−1)
i

d+ 1

⌋
−
(

∑

j : {i,j}∈E
Z

(t)
i,j

)
+X

(t−1)
i

− (d+ 1)

⌊
X

(t−1)
i

d+ 1

⌋

+
∑

j : {i,j}∈E

(⌊
X

(t−1)
j

d+ 1

⌋
+ Z

(t)
j,i

)

=X
(t−1)
i +

∑

j : {i,j}∈E

(⌊
X

(t−1)
j

d+ 1

⌋
−
⌊
X

(t−1)
i

d+ 1

⌋

+ Z
(t)
j,i − Z(t)

i,j

)
.(2.4)

Comparing equation (2.4) to equation (2.3) motivates

the definition of the random variable Δ
(t)
i,j , which counts

the rounding error made by vertex i on the edge {i, j}
in step t.

Δ
(t)
i,j :=−

X
(t−1)
j

d+ 1
+
X

(t−1)
i

d+ 1
+

⌊
X

(t−1)
j

d+ 1

⌋
−
⌊
X

(t−1)
i

d+ 1

⌋

+ Z
(t)
j,i − Z(t)

i,j .(2.5)

This allows us to write

X
(t)
i = X

(t−1)
i +

∑

j : {i,j}∈E

X
(t−1)
j −X(t−1)

i

d+ 1
+Δ

(t)
i,j .

(2.6)
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Now we state some basic properties of the rounding
errors. The proofs can be found in the full version of
the paper.

Lemma 2.3. Let G = (V,E) be an arbitrary connected
graph.

(1) For every {i, j} ∈ E and time step t, Δ
(t)
i,j = −Δ(t)

j,i

and E
[
Δ

(t)
i,j

]
= 0.

(2) Consider two vertex-disjoint edges ({i, j}, {k, �}) ∈
E and assume that X(t−1) is fixed. Then Δ

(t)
i,j and

Δ
(t)
k,� are independent.

We now continue by returning to equation (2.6).
For any vertex i ∈ V and step t, let us define an error

vector Δ(t−1) with Δ
(t)
i :=

∑
j : {i,j}∈E Δ

(t)
i,j . With this

notation we have

X(t) = X(t−1)P+Δ(t).

Solving this recursion (see [14]) and setting ξ(0) = X(0)

results in

X(t) = X(0)Pt +
t−1∑

s=0

Δ(t−s)Ps

= ξ(t) +

t−1∑

s=0

Δ(t−s)Ps,

where P0 is the n × n-identity matrix. Hence, for any
vertex k ∈ V

X
(t)
k − ξ(t)k =

t−1∑

s=0

n∑

i=1

Δ
(t−s)
i Psi,k

=

t−1∑

s=0

n∑

i=1

∑

j : {i,j}∈E
Δ

(t−s)
i,j Psi,k

=

t−1∑

s=0

∑

[i:j]∈E
Δ

(t−s)
i,j

(
Psi,k −Psj,k

)
,(2.7)

where the last equality uses Δ
(t−s)
i,j = −Δ(t−s)

j,i (see
Lemma 2.3 (1)).

3 Proof of Theorem 1.1

We now bound the discrepancy of our discrete process
in terms of the local divergence Υ2(G). We do this
by upper bounding the deviation between the discrete
and the continuous process. A similar approach was
used in Rabani et al. [14], who bounded this deviation
in terms of Ψ1(G). They showed that reducing the
initial discrepancy fromK to O(Ψ1(G)) can be achieved
within O(log(Kn)/(1−λmax)) steps for any initial load

vector. However, it turns out that our randomized
process can be bounded in terms of Υ2(G). Note
that Υ2(G) is in general much smaller than Υ1(G)
(or Ψ1(G)) (cf. the remarks after Definition 2.1).

Proof. [Proof of Theorem 1.1] We start with the proof
of the first statement. Let us now fix a vertex k ∈ V
and a time step t. Recall from equation (2.7) that

X
(t)
k − ξ(t)k =

t−1∑

s=0

∑

[i:j]∈E
Δ

(t−s)
i,j

(
Psi,k −Psj,k

)

=

t∑

s=1

∑

[i:j]∈E
Δ

(s)
i,j

(
Pt−si,k −Pt−sj,k

)
.(3.8)

Consider the random variable X
(t)
k − ξ

(t)
k . By

Lemma 2.3, E
[
X

(t)
k − ξ

(t)
k

]
= 0. Our goal is to ap-

ply the martingale tail estimate from Theorem 2.1 to

fk := X
(t)
k − ξ(t)k . We first rewrite fk,

fk =

t∑

s=1

∑

[i:j]∈E
Δ

(s)
i,j

(
Pt−si,k −Pt−sj,k

)

=

t∑

s=1

∑

[i:j]∈E

(
− X

(t−1)
j

d+ 1
+
X

(t−1)
i

d+ 1
+

⌊
X

(t−1)
j

d+ 1

⌋

−
⌊
X

(t−1)
i

d+ 1

⌋
+ Z

(t)
j,i − Z(t)

i,j

)
· (Pt−si,k −Pt−sj,k

)
,

where the last equality follows by the definition of Δ
(s)
i,j .

We observe that for a fixed load vector X(0) the
function fk depends only on the randomly chosen des-
tinations of the excess tokens. There are t steps, n
nodes, and at most d excess tokens per node per step.
We describe these random choices by a sequence of
t · n · d random variables, Y1, Y2, . . . , Ytnd. For any �
with 1 � � � tnd, let (s, i, r) ∈ [t] × [n] × [d] be such
that � = (s − 1)nd + (i − 1) d + r (note that (s, i, r) is
the �-th largest element in an increasing lexicographic
ordering of [t] × [n] × [d]). Then Y� refers to the desti-
nation of the r-th excess token of vertex i at step s (if
there is one). More precisely,

Y� :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

j if r � X
(s−1)
i − (d+ 1)

⌊
X

(s−1)
i

d+1

⌋
and

the r-th excess token of vertex i at
step s is sent to j,

0 otherwise.

In order to apply Theorem 2.1, we have to upper bound

∣∣E
[
fk | Y�, . . . , Y1

]−E
[
fk | Y�−1, . . . , Y1

]∣∣.(3.9)
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Consider now a fixed � that corresponds to (s1, i1, r1)
in the lexicographic ordering. To bound equation (3.9),
we use equation (3.8) to get

∣∣E
[
fk | Y�, Y�−1, . . . , Y1

]−E
[
fk | Y�−1, . . . , Y1

]∣∣

�
t∑

s=1

∑

[i:j]∈E

∣∣E
[
Δ

(s)
i,j | Y�, Y�−1, . . . , Y1

]

−E
[
Δ

(s)
i,j | Y�−1, . . . , Y1

]∣∣ · ∣∣Pt−si,k −Pt−sj,k

∣∣

In the remainder of the proof we split the sum over s
into the three parts 1 � s < s1, s = s1, and s1 < s � t.
We prove that the parts s < s1 and s > s1 both
equal zero while the part s = s1 is upper bounded by
2 ·maxj∈N(i1)

∣∣Pt−s1i1,k
−Pt−s1j,k

∣∣.
s < s1 : For every {i, j} ∈ E, Δ

(s)
i,j is already

determined by Y�−1, . . . , Y1. Hence,

s1−1∑

s=1

∑

[i:j]∈E

∣∣E
[
Δ

(s)
i,j | Y�, Y�−1, . . . , Y1

]−

E
[
Δ

(s)
i,j | Y�−1, . . . , Y1

]∣∣ · ∣∣Pt−si,k −Pt−sj,k

∣∣ = 0.(3.10)

s = s1 : This is the most involved case due to the

dependencies among {Δ(s)
i,j : {i, j} ∈ E}.

∑

[i:j]∈E

∣∣E
[
Δ

(s)
i,j

∣∣Y�, Y�−1, . . . , Y1
]

−E
[
Δ

(s)
i,j | Y�−1, . . . , Y1

]∣∣ · ∣∣Pt−si,k −Pt−sj,k

∣∣

�
∑

[i:j]∈E

∣∣∣∣E
[
− X

(s−1)
j

d+ 1
+
X

(s−1)
i

d+ 1
+

⌊
X

(s−1)
j

d+ 1

⌋

−
⌊
X

(s−1)
i

d+ 1

⌋
+ Z

(s)
j,i − Z(s)

i,j

∣∣∣Y�, Y�−1, . . . , Y1
]

−E

[
− X

(s−1)
j

d+ 1
+
X

(t−1)
i

d+ 1
+

⌊
X

(s−1)
j

d+ 1

⌋
−
⌊
X

(s−1)
i

d+ 1

⌋

+ Z
(s)
j,i − Z(s)

i,j

∣∣∣Y�−1, . . . , Y1
]∣∣∣∣ ·

∣∣Pt−si,k −Pt−sj,k

∣∣

=
∑

[i:j]∈E

∣∣∣E
[
Z

(s)
j,i − Z(s)

i,j | Y�, Y�−1, . . . , Y1
]

−E
[
Z

(s)
j,i − Z(s)

i,j | Y�−1, . . . , Y1
]∣∣∣ ·

∣∣Pt−si,k −Pt−sj,k

∣∣
(3.11)

�
∑

[i:j]∈E

(∣∣∣E
[
Z

(s)
i,j | Y�, Y�−1, . . . , Y1

]

−E
[
Z

(s)
i,j | Y�−1, . . . , Y1

]∣∣∣ ·
∣∣Pt−si,k −Pt−sj,k

∣∣+

∣∣∣E
[
Z

(s)
j,i | Y�, Y�−1, . . . , Y1

]−

E
[
Z

(s)
j,i | Y�−1, . . . , Y1

]∣∣∣ ·
∣∣Pt−si,k −Pt−sj,k

∣∣
)

=
∑

i∈V

∑

j∈N(i)

∣∣Λ(s)
i,j

∣∣ · ∣∣Pt−si,k −Pt−sj,k

∣∣

�
∑

i∈V

(
max
j∈N(i)

∣∣Pt−si,k −Pt−sj,k

∣∣
) ∑

j∈N(i)

∣∣Λ(s)
i,j

∣∣,
(3.12)

where we used

Λ
(s)
i,j := E

[
Z

(s)
i,j | Y�, Y�−1, . . . , Y1

]

−E
[
Z

(s)
i,j | Y�−1, . . . , Y1

]

to simplify the notation. Eqn. 3.11 follows as
Y�−1, . . . , Y1 determine the load vector X(s−1). To

bound equation (3.12) we consider
∑
j∈N(i)

∣∣Λ(s)
i,j

∣∣ for
i = i1 and i 	= i1 separately.

Case 1: Let i = i1. Assume first Y� = 0. This means
that node i1 has less than r1 extra tokens at step t1.
Hence

∣∣Λsi,j
∣∣ = 0.

Now we assume that Y� 	= 0. This means that
node i1 has at least r1 extra tokens at step t1. Let
b � r1 be the number of extra tokens of i1 at step s1.
Clearly, b and the destinations of the extra tokens
considered in the previous rounds, Y�−r1+1, . . . , Y�−1,
are already determined by Y�−1, . . . , Y1 (note that
if r1 = 1 then this set is empty). The remain-
ing Y�+1, . . . , Y�+b−r1 are chosen uniformly at random

among (N(i1)∪{i1})\
{
Y�−r1+1, . . . , Y�

}
=: Ñ(i1) with-

out replacement. Let w ∈ Ñ(i1) be the destination of
the r1-th excess token of i1 at step s1, that is, Y� = w

and consequently, Z
(s1)
i1,w

= 1. Clearly, 0 < Λ
(s1)
i1,w

� 1,

and for all j ∈ Ñ(i1) \ {w}, Λ(s1)
i1,j

< 0. For the vertices

j ∈ {
Y�−r1+1, . . . , Y�−1

}
, Λ

(s1)
i1,j

= 0, as Y�−1, . . . , Y1 al-

ready determined that Z
(s1)
i1,j

= 1. Linearity of expecta-
tions yields

∑

j∈N(i1)∪{i1}
Λ
(s1)
i1,j

=E

[
∑

j∈N(i1)∪{i1}
Z

(s1)
i1,j

∣∣∣Y�, Y�−1, . . . , Y1

]

−E

[
∑

j∈N(i1)∪{i1}
Z

(s1)
i1,j

∣∣∣Y�−1, . . . , Y1

]
= 0.

The last equality holds since
∑

j∈N(i1)∪{i1} Z
(s1)
i1,j

= b
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and b is determined by Y�−1, . . . , Y1. Hence,
∑

j∈N(i1)∪{i1}

∣∣Λ(s1)
i1,j

∣∣

=
∑

j∈N(i1)∪{i1} :
Λ

(s1)

i1,j>0

Λ
(s1)
i1,j
−

∑

j∈N(i1)∪{i1} :
Λ

(s1)

i1,j�0

Λ
(s1)
i1,j

= 2 ·
∑

j∈N(i1)∪{i1} :
Λ

(s1)

i1,j>0

Λ
(s1)
i1,j

= 2
∣∣Λ(s1)
i1,w

∣∣ � 2.(3.13)

Case 2: i 	= i1. As � corresponds to (s1, i1, r1), the

random variable Z
(s1)
i,j is independent of Y�, which is

the choice of the r1-th excess token of vertex i1 at step
s1. Hence

∑

j∈N(i)

∣∣Λ(s1)
i,j

∣∣ =
∑

j∈N(i)

∣∣∣E
[
Z

(s)
i,j | Y�, Y�−1, . . . , Y1

]

−E
[
Z

(s)
i,j | Y�−1, . . . , Y1

]∣∣∣ = 0.

Combining Case 1 and Case 2 we obtain

(3.12) =

(
max

j∈N(i1)

∣∣Pt−si1,k
−Pt−sj,k

∣∣
) ∑

j∈N(i1)

∣∣Λ(s)
i1,j

∣∣

+
∑

i∈V,i�=i1

(
max
j∈N(i)

∣∣Pt−si,k −Pt−sj,k

∣∣
) ∑

j∈N(i)

∣∣Λ(s)
i,j

∣∣

� max
j∈N(i1)

∣∣Pt−si1,k
−Pt−sj,k

∣∣ · 2 + 0.

(3.14)

s > s1 : Let �̃ be the largest integer that corre-
sponds to time-step s−1. Since s > s1, we have s−1 �
s1 and therefore �̃ � �. By the choice of �̃, Y

˜�, . . . , Y1
determine the load vector at the end of step s1, X

(s1).

By Lemma 2.3, we obtain E
[
Δ

(s)
i,j | Y˜�, . . . , Y1

]
= 0,

and by the chain rule of expectations,

E
[
Δ

(s)
i,j | Y�, Y�−1, . . . , Y1

]

= E
[
E
[
Δ

(s)
i,j | Y˜�, . . . , Y1

] | Y�, Y�−1, . . . , Y1
]

= E [0 | Y�, Y�−1, . . . , Y1]
= 0.

With the same arguments, E
[
Δ

(s)
i,j | Y�−1, . . . , Y1

]
= 0,

and therefore

t∑

s=s1+1

∑

[i:j]∈E

∣∣E
[
Δ

(s)
i,j | Y�, Y�−1, . . . , Y1

]

−E
[
Δ

(s)
i,j | Y�−1, . . . , Y1

]∣∣ · ∣∣Pt−si,k −Pt−sj,k

∣∣

= 0.(3.15)

This finishes the case distinction. Combining equa-
tions (3.10), (3.14), and (3.15) for the three cases s < s1,
s = s1, and s > s1, we obtain that for every fixed
1 � � � tnd,

∣∣E
[
fk | Y�, Y�−1, . . . , Y1

]−E
[
fk | Y�−1, . . . , Y1

]∣∣

�
t∑

s=1

∑

[i:j]∈E

∣∣E
[
Δ

(s)
i,j | Y�, Y�−1, . . . , Y1

]

−E
[
Δ

(s)
i,j | Y�−1, . . . , Y1

]∣∣ · ∣∣Pt−s1i,k −Pt−s1j,k

∣∣

= 0 + max
j∈N(i1)

∣∣Pt−s1i1,k
−Pt−s1j,k

∣∣ · 2 + 0

= 2 · max
j∈N(i1)

∣∣Pt−s1i1,k
−Pt−s1j,k

∣∣ =: c�.

To apply Theorem 2.1, we first estimate
∑tnd

�=1(c�)
2.

tnd∑

�=1

(c�)
2 =

t∑

s=1

n∑

i=1

d∑

r=1

(
2 max
j∈N(i)

∣∣Pt−si,k −Pt−sj,k

∣∣
)2

= 4d

t−1∑

s=0

n∑

i=1

max
j∈N(i)

(
Psi,k −Psj,k

)2

� 4d max
k∈V

( ∞∑

s=0

n∑

i=1

max
j∈N(i)

(
Psi,k −Psj,k

)2
)

= 8d (Υ2(G))
2
.(3.16)

So we have for any δ � 0,

Pr [|fk| > δ] � 2 exp
(− δ2/(2

tnd∑

�=1

(c�)
2
))
.

Hence by choosing δ := Υ2(G)
√
32d lnn , the probabil-

ity above gets smaller than 2n−2. Applying the union
bound we obtain

Pr [∀k ∈ V : |fk| > δ] � n 2n−2 = 2n−1.

By equation (3.8), maxk∈[n]X
(t)
k � |ξ(t)k | + |fk|. For

t := τ(G,K), we obtain |ξ(t)k − ξ| � 1 for every vertex k.
Hence

max
k∈[n]

X
(t)
k − min

k∈[n]
X

(t)
k � 2|fk|+ 2.

This implies

Pr
[
max
i,j∈[n]

∣∣X(t)
i −X(t)

j

∣∣ � 2δ + 2
]
� 1− 2n−1,

as needed.
Now we prove of the second statement. Fix a vertex

k ∈ V . Recall from equation (3.8) that

X
(t)
k − ξ(t)k =

t∑

s=1

∑

[i:j]∈E
Δ

(s)
i,j

(
Pt−si,k −Pt−sj,k

)
.(3.17)
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We split the right hand side of equation (3.17) at step
t− 1 to obtain

=:g︷ ︸︸ ︷
t−1∑

s=1

∑

[i:j]∈E
Δ

(s)
i,j

(
Pt−si,k −Pt−sj,k

)

+
∑

[i:j]∈E
Δ

(s)
i,j

(
P0
i,k −P0

j,k

)

︸ ︷︷ ︸
=:h

.

We can bound h using the triangle inequality as follows

|h| �
∑

[i:j]∈E

∣∣∣Δ(t)
i,j

∣∣∣ ·
∣∣P0

i,k −P0
j,k

∣∣

� 1 ·
∑

[i:j]∈E

∣∣ P0
i,k −P0

j,k

∣∣ = d,

since

|Δ(t)
i,j | � 1 and

n∑

i=1

P0
i,k = 1.

To bound h, we use the same approach as in the
proof of the first statement in Theorem 1.1. Again, we
define a sequence of random variables Y� with 1 � � �
(t − 1)nd. In order to apply Theorem 2.1, we have to
estimate the differences c�, 1 � � � (t − 1)nd. As in
equation (3.16) we obtain

(t−1)nd∑

�=1

(c�)
2 � 2d

t−1∑

s=1

n∑

i=1

max
j∈N(i)

(
Pt−si,k −Pt−sj,k

)2
.

Since
∑n

i=1 maxj∈N(i)

(
P0
i,k −P0

j,k

)2

= 2d, we obtain

that

2d

t−1∑

s=1

n∑

i=1

max
j∈N(i)

(
Pt−si,k −Pt−sj,k

)2

� 4d · ((Υ2(G))
2 − d)

By Theorem 2.1, we obtain that

Pr [|h| > δ] � 2 exp

(
− δ2

/(
8d · ((Υ2(G))

2 − d)
))

.

Hence by choosing δ :=
√
16 log(n) d ((Υ2(G))2 − d)

we get Pr [|h| > δ] � 2n−2. Hence,

Pr
[∣∣X(t)

k − ξ(t)k
∣∣ � d+ δ

]

� Pr [|g| � d]

+Pr
[
|h| �

√
16 log(n) d ((Υ2(G))2 − d)

]

� 0 + 2n−2 = 2n−2.

Taking the union bound over all vertices k yields,

Pr
[
∀k ∈ V :

∣∣X(t)
k − ξ(t)k

∣∣

� d+
√
16 log(n) d ((Υ2(G))2 − d)

]

� n 2n−2 = 2n−1.(3.18)

The third statement is shown by a similar approach.
Again, fix a vertex k ∈ V and a time step t. Now we
split the right hand side of equation (3.17) at step t−ϑ,
where ϑ := (4 ln lnn)/(1− λmax).

t∑

s=1

∑

[i:j]∈E
Δ

(s)
i,j

(
Pt−si,k −Pt−sj,k

)

=

t−ϑ∑

s=1

∑

[i:j]∈E
Δ

(s)
i,j

(
Pt−si,k −Pt−sj,k

)

︸ ︷︷ ︸
=:g

+
t∑

s=t−ϑ+1

∑

[i:j]∈E
Δ

(s)
i,j

(
Pt−si,k −Pt−sj,k

)

︸ ︷︷ ︸
=:h

.

We first bound the last part directly by applying
the triangle inequality as follows.

|g| �
t∑

s=t−ϑ+1

∑

[i:j]∈E

∣∣Δ(s)
i,j

∣∣ ∣∣Pt−si,k −Pt−sj,k

∣∣

� ϑ
∑

[i:j]∈E

(
Pt−si,k +Pt−sj,k

)
� ϑ d,

where the first inequality holds since |Δ(s)
i,j | � 1 and

where the last inequality holds since
∑n
i=1 P

t−s
i,k = 1 for

every k.

To bound h, we use the same approach as in the
proof of the first statement in Theorem 1.1. Also
here, we define a sequence of random variables Y� with
1 � � � (t − ϑ)nd. In order to apply Theorem 2.1, we
have to estimate the differences c�, 1 � � � (t − ϑ)nd.
As in equation (3.16) we obtain

(t−ϑ)nd∑

�=1

(c�)
2 � 2d

t−ϑ∑

s=1

n∑

i=1

max
j∈N(i)

(
Pt−si,k −Pt−sj,k

)2
.

By Theorem 2.1, we obtain that

Pr [|h| > δ]

� 2 exp

(
−δ2

/(
4d

t−ϑ∑

s=1

n∑

i=1

max
j∈N(i)

(
Pt−si,k −Pt−sj,k

)2
))

.
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Hence by choosing

δ :=

√√√√8 log(n) d
t−ϑ∑

s=1

n∑

i=1

max
j∈N(i)

(
Pt−si,k −Pt−sj,k

)2

we get Pr [|h| > δ] � 2n−2 and

Pr
[∣∣X(t)

k − ξ(t)k
∣∣ � ϑ d+ δ

]

� Pr [|g| � ϑ d] +Pr [|h| � δ]

� 0 + 2n−2 = 2n−2.

Taking the union bound over all vertices k yields,

Pr
[
∀k ∈ V :

∣∣X(t)
k − ξ(t)k

∣∣ � ϑ d+ δ
]

� n 2n−2 = 2n−1.(3.19)

In order to complete the proof, it remains to prove
that δ = O((d ln lnn)/(1− λmax)).

t−ϑ∑

s=1

n∑

i=1

max
j∈N(i)

(
Pt−si,k −Pt−sj,k

)2

=

t−1∑

s=ϑ

n∑

i=1

max
j∈N(i)

(
Psi,k −Psj,k

)2

� 2

t∑

s=ϑ

n∑

i=1

max
j∈N(i)

((
Psi,k −

1

n

)2

+

(
Psj,k −

1

n

)2
)

� 2

t−1∑

s=ϑ

n∑

i=1

(
Psi,k −

1

n

)2

+ 2

t−1∑

s=ϑ

n∑

i=1

max
j∈N(i)

(
Psj,k −

1

n

)2

� 2
t−1∑

s=ϑ

n∑

i=1

(
Psi,k −

1

n

)2

+ 2
t−1∑

s=ϑ

n∑

j=1

d

(
Psj,k −

1

n

)2

� (2d+ 2)

t−1∑

s=ϑ

λ2smax,

where the first inequality uses (x−y)2 � 2(x−z)2+2(y−
z)2 and the last inequality follows from Corollary 2.1.
The last term can be now bounded as follows,

(2d+ 2)

∞∑

s=ϑ

λ2smax

� (2d+ 2)
λ
2 ( 4 ln lnn

1−λmax
)

max

1− (λmax)2

� (2d+ 2)
e−8 ln lnn

1− λmax

= (2d+ 2)
(logn)−8

1− λmax
,

where the second last inequality uses the fact that
x1/(1−x) � 1/e for x ∈ [0, 1). We can now use this
bound to get a more explicit expression for the bound
in equation (3.19),

Pr

[
∀k ∈ V :

∣∣X(t)
k − ξ(t)k

∣∣ � 4d ln lnn

1− λmax

+

√

24 log(n) d2
(logn)−8

1− λmax

]
� 2n−1.

We choose t = τ(G,K) to get |ξ(t)k −ξ| � 1 for every
vertex k. As in the proof of Theorem 1.1 this yields

Pr

[
max
i,j∈[n]

∣∣X(t)
i −X(t)

j

∣∣ � 2δ + 2

]
� 1− 4n−1.

This completes the proof of the third statement.

4 Bounds on the Local Divergence and Proof
of Theorem 1.2

Bounds on the Local 2-Divergence. We first
present upper bounds on the (refined) local 2-divergence
that are then used to prove Theorem 1.2.

Theorem 4.1. For any graph G,

Υ2(G) = O
(√

d+
log d

1− λmax

)

Since for r-dimensional tori 1/(1−λmax) = Θ(n2/r)
and for hypercubes 1/(1 − λmax) = Θ(logn), the
following theorems represent improvements over the
bound in Theorem 4.1 for these specific networks.

Theorem 4.2. For the r-dimensional torus graph with
r = O(1),

Υ2(G) � Ψ2(G) = O(1).

Theorem 4.3. For the hypercube G with n vertices
(d = log2 n),

Υ2(G) =
√
d+O(1) .

Note that since Υ2(G) �
√
d for any d-regular

network, this bound is also tight. The proofs of
Theorem 4.2 and Theorem 4.3 will be given in the
full version of the paper. Now Theorem 1.2 follows by
combining the three theorems above with Theorem 1.1.
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Bounds on the Local 1-Divergence. In the
following we give an exact bound on Ψ1(G).

Theorem 4.4. If G is the hypercube with n vertices,

Ψ1(G) =
log2(n) + 1

n

log2(n)−1∑

p=0

log2 n∑

�=p+1

(
log2 n

�

)

= Θ(log2 n).

As the discrepancy of the RSW algorithm is at most
Ψ1(G) after τ(G,K) rounds [14, Cor. 3], we obtain:

Corollary 4.1. The discrepancy of the RSW algo-
rithm [14] is at most O(log2 n) after τ(G,K) =
O(log(Kn) · log2 n) time steps.

Note that the best-possible result from [14, Theorem 4]
yields only a weaker bound of O(log3 n). Our result is
tight since d · diam(G) = (log2 n)

2 is a lower bound.

5 Discussion

We presented a new diffusion-based load-balancing
scheme which is very simple and avoids negative load.
We show bounds on the discrepancy for general graphs
depending on the local (or refined local) divergence and
the eigenvalue gap of the graph. For (constant-degree)
expander graphs we prove a discrepancy of O(log logn),
for hypercubes of O(log n), and for r-dimensional torus
graphs of O(√log n ).
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