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a b s t r a c t

We study the fully-dynamic all pairs shortest path problem for graphs with arbitrary non-
negative edge weights. It is known for digraphs that an update of the distance matrix costs
O(n2.75 polylog(n)) worst-case time (Thorup, 2005 [20]) and O(n2 log3(n)) amortized
time (Demetrescu and Italiano, 2004 [4]) where n is the number of vertices. We present
the first average-case analysis of the undirected problem. For a random update we show
that the expected time per update is bounded by O(n4/3+ε) for all ε > 0. If the graph is
outside the critical window, we prove even smaller bounds.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Dynamic graph algorithms maintain a certain property (e.g., connectivity information) of a graph that changes (a new
edge inserted or an existing edge deleted) dynamically over time. They are used in a variety of contexts, e.g., operating
systems, information systems, database systems, network management, assembly planning, VLSI design and graphical
applications. An algorithm is called fully-dynamic if both edge weight increases and edge weight decreases are allowed.
While a number of fully dynamic algorithms have been obtained for various properties on undirected graphs (see [6]), the
design and analysis of fully-dynamic algorithms for directed graphs has turned out to be much harder (e.g., [16,17,15,9]).

In this article, we consider the fully-dynamic all-pairs shortest path problem (APSP) for undirected graphs, which is one
of the most fundamental problems in dynamic graph algorithms. The problem has been studied intensively since the late
sixties (see [4] and references therein).We are interested in algorithms thatmaintain a complete distancematrix as edges are
inserted or deleted. The static directed APSP problem can be solved in O(mn+n2 log log n) time [14] where n is the number
of vertices andm is the number of edges. For dense graphs the problem can be solved in time O(n3 √

log log(n)/ log n) [19]
in general and in time O(n2.575) [22] for integer edge weights. These bounds also give an upper bound on the worst-case
update time for a static recomputation from scratch. The first major improvement that is provably faster than this only
worked on digraphs with small integer weights. King [10] presented a fully-dynamic APSP algorithm for general directed
graphs with positive integer weights less than C that supported updates in O(n2.5√C log n). In the remainder of the paper,
we will only consider non-negative real-valued edge weights. Demetrescu and Italiano pursued this problem in a series of
papers and showed that it can be solved in O(n2 log3 n) amortized time per update [4]. This has been slightly improved to
O(n2(log n + log2((m + n)/n))) amortized time per update by Thorup [21]. In [20], Thorup showed a worst-case update
time of O(n2.75 polylog(n)).

We are interested in expected update times. It is known that the static APSP problem can be solved in average time
O(n2 log n) for a nonnegativelyweighted directed graph [12]. The only known result for the online case is for the undirected,
unweighted, decremental, randomized, and approximate version of the APSP problem. Roditty and Zwick [18] showed for
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this setting an expected amortized time ofO(n polylog(n)). For our setting of the problemon undirected graphswith arbitrary
non-negative edge weights, there is nothing known about the average-case update times.We analyze a variant of Demetrescu
and Italiano’s algorithm described in Section 3. Let R(p) denote the expected runtime of our algorithm for a single random
edge update of a random graph G ∈ G(n, p). Let ε, ε′ > 0. For arbitrary p, we can show R(p) = O(n4/3+ε). However, for
most pwe can prove that the runtime is actually much smaller. The above bound is best only at the phase transition around
pn = 1, i.e., when the size of the largest component rapidly grows from Θ(log n) to Θ(n). When the graph is sparser, our
algorithm is much faster. In this case, we can show R(p) = O(n2/3+ε) for pn ≤ 1 − n−1/3 and R(p) = O(nε) for pn < 1/2.
Similarly, the algorithm becomes faster when a giant component emerges. We show R(p) = O(nε/p) for pn ≥ 1 + ε′. The
final result is given in Theorem 11. For inserting random edges into the empty graph until it becomes complete this yields
an expected amortized update time of O(n1/3+ε).

Additionally to these asymptotic upper bounds on the expected runtime, we also examined the empirical average
runtime. Interestingly, this also shows that the update costs are first increasing and later decreasing when more edges
are inserted. This corresponds well with the above phase distinction for the asymptotic bounds.

The remainder of this paper is organized as follows. The next section presents all necessary graph theoretical notations.
In Section 3 we present our algorithm. In Section 4 we prove a number of random graph properties which are then used in
Section 5 to show the asymptotic bounds. The last section presents some empirical results.

2. Preliminaries

Demetrescu and Italiano [5] performed several experiments on directed random graphs.Wewant to bound the expected
runtime of random updates on a random graph of a very similar algorithm. We utilize the random graph model G(n, p)
introduced and popularized by Erdős and Rényi [7]. The G(n, p)model consists of a graphwith n vertices in which each edge
is chosen independently with probability p. We assume that the edge weights are chosen uniformly at random from [0, 1].
In our model, a random update first chooses two vertices x and y (x ≠ y). Then, with (fixed) probability δ, it inserts the edge
(x, y) with a random weight w ∈ [0, 1]. If the edge was already in the graph, it changes its weight to w. Otherwise, with
probability 1 − δ, a random update deletes the edge (x, y) if (x, y) is in the graph (otherwise, it does nothing).

A random update of a graph where each edge is present with the same probability yields a graph where also each edge
is present with the same probability. Let ρ(T ) be this probability after T random updates. Hence,

ρ(0) = p

ρ(T + 1) = δ

[
(1 − ρ(T ))


ρ(T ) + 1

n
2


+ (ρ(T ))2

]
+ (1 − δ)

[
(1 − ρ(T ))ρ(T ) + ρ(T )


ρ(T ) − 1

n
2

]
= ρ(T )


1 − 1

n
2


+ δ

n
2


= δ + (ρ(0) − δ)


1 − 1

n
2

T+1

.

This implies that T random updates on a random graph G ∈ G(n, p) lead to a graph with edges present with probability
p′

= δ + (p − δ)

1 − 1/

 n
2

T
, but not necessarily mutually independent.

Throughout the paper, we use the following notations:

• G = (V , E) is an undirected graph with arbitrary non-negative edge weights.
• ∆ := maxv∈V deg(v) is the maximum degree of the graph G.
• length of a path is the sum of its edge weights
• dist(x, y) (distance) is the length of a shortest path from x to y.
• diam(G) (diameter) is the greatest (hop-)distance between any two vertices of one component.
• C(x) denotes the component that contains the vertex x.
• C(G) denotes the largest component of G.
• wxy denotes the weight of an edge (x, y).
• πxy = ⟨u0, u1, . . . , uk⟩ is a path from vertex x = u0 to vertex y = uk, i.e., a sequence of vertices such that with

(ui, ui+1) ∈ E for each 0 ≤ i < k (no repeated edges).
• w(πxy) =

∑k−1
i=0 wuiui+1 is the weight of a path.

• πxy ◦ πyz denotes the concatenation of two paths πxy and πyz .
• ℓ(πxy) denotes the subpath πxa of πxy such that πxy = πxa ◦ ⟨a, y⟩.
• r(πxy) denotes the subpath πby of πxy such that πxy = ⟨x, b⟩ ◦ πby.

We assume without loss of generality that there is only one shortest path between each pair of vertices in G. Otherwise,
ties can be broken as discussed in Section 3.4 of [4].
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3. Algorithm

Wewill now describe our algorithm. It is a slight modification of the algorithm of Demetrescu and Italiano [4] as our aim
is an average-case analysis of the undirected problemwhile they were interested in the amortized costs for directed graphs.

Themain tool Demetrescu and Italiano [4] very cleverly introduced and applied is the concept of ‘‘locally shortest paths’’.
A path πxy is locally shortest if every proper subpath is a shortest path or it consists of only a single vertex. The algorithm
maintains the following data structures:
• wxy weight of edge (x, y)
• Pxy priority queue of the locally shortest paths from x to y (priority w(πxy))
• P∗

xy set containing the shortest path from x to y, if y is reachable from x
• L(πxy) set of left-extensions ⟨x′, x⟩ ◦ πxy of πxy that are locally shortest paths
• L∗(πxy) set of left-extensions ⟨x′, x⟩ ◦ πxy of πxy that are shortest paths
• R(πxy) set of right-extensions πxy ◦ ⟨y, y′

⟩ of πxy that are locally shortest paths
• R∗(πxy) set of right-extensions πxy ◦ ⟨y, y′

⟩ of πxy that are shortest paths

Note that P∗
xy ⊆ Pxy and that everyminimumweight path in Pxy is also a shortest path. Each pathπxy ∈ Pxy is stored implicitly

with constant space by just storing two pointers to the subpaths ℓ(πxy) and r(πxy).
The pseudo-code of our algorithm is given in Fig. 1. The first four phases are equivalent to [5]. We will just describe them

briefly. A detailed description can be found in [4]. In the first phase, the algorithm deletes from the data structure all the
paths that would stop being locally shortest if we deleted the edge (u, v). In doing so it stores the pairs of the endpoints of
the affected paths in the temporary list A. In the following phase it adds the edge (if it is an insert or update operation) to the
data structures. The third phase initializes the heap H with the minimum weight paths πxy for all (x, y) ∈ A. In the fourth
phase the algorithm repeatedly extracts the cheapest path πxy from H . The first extracted path for each pair (x, y) must be
a shortest path. If this is the case, the path is stored in the data structures. To propagate this information, also its left- and
right-extensions are updated and added to H to find all further extensions.

The amortized number of new locally shortest paths can be Ω(n3) per update. To allow a better amortized performance,
Demetrescu and Italiano [4] had to delay the update of the data structure in a very clever way. Their data structure can
contain paths in Pxy which are not locally shortest any more. We avoid this with the fifth phase. There, all locally shortest
paths which stopped being locally shortest because one of their two subpaths stopped being shortest path are detected and
deleted.

We analyze the expected time for the algorithm to insert a randomly chosen edge e in the graphG ∈ G(n, p) andmaintain
the sets of shortest path and locally shortest path. The weights of e and of the edges in G are chosen uniformly at random
from the set [0, 1].

4. Random graph properties

To bound the runtimeof our algorithm in the next section,we first provide someproperties of randomgraphsG ∈ G(n, p).
The main result of this section will be Theorem 9. It bounds the quantity µ(p) which we define as the expected number of
locally shortest paths and shortest paths passing a fixed edge of G. Let lsp denote the set of all locally shortest paths and sp
the set of all shortest paths in G. We will use the following four lemmas.

Lemma 1 (Bollobás [2]). Let G ∈ G(n, p) with pn < 1/2. Then, Pr [|C(G)| ≤ 20 log n] = 1 − O(n−2).

Lemma 2 (Bollobás [2]). For every α > 0 and G ∈ G(n, p) with pn = α log n, Pr [G is connected] = 1 − O(n1−2α).

Lemma 3 (Chung and Lu [3]). For every ε > 0 and G ∈ G(n, p) with pn = 1 + ε, Pr [diam(G) ≤ 2 log n] = 1 − o(n−1).

Lemma 4 (Nachmias and Peres [13]). Let x ∈ G and G ∈ G(n, p) with pn ≤ 1 + n−1/3. Then, Pr

|C(x)| > 2n2/3


= O(n−1/3).

The following lemma gives a general upper bound on the expected diameter of a random graph G ∈ G(n, p) for arbitrary
p. Recall that we defined the diameter of a disconnected graph as the maximum diameter of its components.

Lemma 5. Let G ∈ G(n, p). Then, E [diam(G)] = O(n1/3).

Proof. Let G be a complete graph on n vertices with edge weights uniformly distributed at random in [0, 1]. Let G≤p =

(V , E≤p) be the subgraph of G containing all vertices but only those edges with weight less or equal p. Then G≤p is a G(n, p)-
graph. We apply Kruskal’s algorithm [11] for the construction of a minimum spanning forest of G, i.e., we look at the edges
in increasing weight order and integrate every edge that does not introduce a cycle in the current edge set. We stop this
process if the current edge has weight greater than p and denote the obtained subset of edges EKruskal,≤p. Let us also denote
the edge set of the spanning forest which is returned from the completed Kruskal algorithm by EKruskal. By Addario-Berry
et al. [1], the expected diameter of GKruskal := (V , EKruskal) is of order Θ(n1/3). Clearly, EKruskal,≤p ⊆ EKruskal ∩ E≤p. As
GKruskal,≤p := (V , EKruskal,≤p) is a minimum spanning forest of G≤p, we get

E

diam(G≤p)


≤ E


diam(GKruskal,≤p)


≤ E [diam(GKruskal)] = O(n1/3). �
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Fig. 1. The slightly modified APSP algorithm of Demetrescu and Italiano [5].

To prove the desired bound on µ(p) we also need the following three technical lemmas.

Lemma 6. Let G ∈ G(n, p) with pn ≥ 4 log n. Then every shortest path in G has weight O(
log2 n

n ) with probability 1 − O(n−2).

Proof. Let us consider two random graphs G1,G2 ∈ G(n, 2 log n
n ) on the same set of vertices and let G∪ be the union of G1 and

G2 (union of the edge sets). Thenwe getG∪ ∈ G(n, 4 log n
n −

4 log2 n
n2

). By Lemmas 2 and 3,Gi is connected and diam(Gi) ≤ 2 log n
with probability 1 − O(n−1) for i = 1, 2. As the two random graphs are chosen independently, at least one of them is
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connected and has diameter O(log n) with probability 1 − O(n−2). By construction, this also holds for G∪. Therefore all
G ∈ G(n, p) with pn ≥ 4 log n are connected and have a diameter of order O(log n) with probability 1 − O(n−2).

We nowprove that every shortest path inG has a total weight ofO
 log2 n

pn


with probability 1−O(n−2). For this, recall that

the edgeweights of G are chosen uniformly at random from [0, 1]. Let us consider the subgraphG0 =

V , E

≤
4 log n
pn


consisting

of all vertices but only those edges of G with weight at most 4 log n
pn . This is a random graph G


n, 4 log n

n


with weights chosen

uniformly at random from

0, 4 log n

pn


. As we have shown above, G0 is connected and has diameter of order O(log n) with

probability 1−O(n−2). This implies that every shortest path inG0 has a total weight ofO(
log2 n
pn )with probability 1−O(n−2).

This upper bound also holds with the same probability for all shortest paths in G. �

Lemma 7. Let G ∈ G(n, p). The subgraph Gsp = (V , Esp) of all edges that are shortest paths in G fulfills for all ε > 0,∆(Gsp) ≤ nε

with probability 1 − O(n−2). In particular, |lsp| ≤ |sp| nε with probability 1 − O(n−2).

Proof. Let us first consider the case pn ≥ 4 log n. We know from Lemma 6 that all elements of Esp have weight O(
log2 n
pn )

with probability 1−O(n−2). Thus, Gsp is a subgraph of a random graph in G(n, log2 n
n ). Therefore, we can prove the first claim

of the lemma by bounding ∆(G′) for G′
∈ G(n, log2 n

n ). Using Stirling’s formula, the probability for a vertex in G′ to have a
degree greater or equal nε is at most n

nε

 log2 n
n

nε

≤
(log2 n)n

ε

√
2πnε

 nε

e

nε ≤ n−εnε/2

for n large enough. Hence, the probability for ∆(G′) to be greater or equal nε is at most

1 −


1 − n−εnε/2

n
≤ 1 −


1 − n−εnε/2

nεnε/2
−1
2n1−εnε/2

≤ 1 − e−2n1−εnε/2
≤ n−nε/3

,

where we used 2n1−εnε/2
≤ n−nε/3

for n large enough and 1 + x ≤ ex for all x ∈ R. This proves ∆(Gsp) ≤ nε with probability
1−O(n−2). The second claim is a consequence of the fact, that each locally shortest path from vertex x to vertex y is uniquely
determined by its first and also by its last edge. Moreover, every locally shortest path with at least 2 edges starts and ends
with edges that are shortest paths themselves. Thus, there are at most O(nε) locally shortest paths for each shortest path
with probability at least 1 − O(n−2), which proves the lemma for pn ≥ 4 log n.

Let pn < 4 log n. We consider G′
∈ G(n, 4 log n

n ) with edge weights chosen randomly in [0, 4 log n
pn ]. Although the weights

of this graph are scaled up by the factor 4 log n
pn , we get ∆(G′

sp) ≤ nε with probability 1 − O(n−2), since the scaling has no
effect on the subgraph G′

sp of all shortest path edges in G′. Now the subgraph G of all edges of G′ with weight less or equal 1
is a G(n, p)-graph with edge weights chosen uniformly at random from [0, 4 log n

pn ]. Hence, every edge that is a shortest path
in G is also a shortest path in G′. With this we get ∆(Gsp) ≤ nε with probability 1 − O(n−2). The second claim follows with
the same arguments as in the case pn ≥ 4 log n. �

Lemma 8. Let G ∈ G(n, p) with pn ≥ 1/2. For all ε > 0, µ(p) = O

E [diam(G)] |sp| nε−2 / p


.

Proof. We consider the subgraph G′
= (V , E<1/(2pn)) containing all vertices of G but only those edges with weight less than

1/(2pn). Then by Lemma1G ∈ G(n, 1/(2n)) and the largest component ofG′ is of orderO(log n)with probability 1−O(n−2).
Thus, every path in G′ contains O(log n) edges with probability 1 − O(n−2). The expected weight of the heaviest element
of lsp is at most E [diam(G)]. Moreover, in the case p ≥

4 log n
n the expected weight of the heaviest element of lsp is at most

O(
log2 n
pn ) as shown in Lemma 6. Thus, in expectation the largest number of edgeswith aweight greater or equal 1/(2pn) in an

element of lsp is of order O(E [diamG] pn) and O(log2 n) if p ≥
4 log n

n . This implies an upper bound of O(E [diamG] log2 n)
for the maximal number of edges with weight greater or equal 1/(2pn) in locally shortest paths of G in expectation for all
p ≥ 1/(2pn).

By Lemma7we know that the bound |lsp| = O(|sp| nε/2) is violatedwith probabilityO(n−2). In this casewe can estimate
the number of locally shortest paths and shortest paths in G by O(n3) (the first edge and the other endpoint of a locally
shortest path determines the path uniquely) and the length of this paths trivially by n − 1. Since the probability for this
event is O(n−2), the contribution to the expected number of edges in the multiset of all edges of all (locally) shortest paths
is O(n2). If |lsp| = O(|sp| nε/2), the maximal number of edges with weight greater or equal 1/(2pn) in locally shortest
paths of G is O(E [diamG] log2 n) in expectation. Now in every (locally) shortest path in G there can only be consecutive
parts of edges of G′ of order O(log n) and they must be followed by an edge with weight greater or equal 1/(2pn). Since
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there can only be O(E [diamG] log2 n) of these edges in the path in expectation, the total number of edges in the longest
of all (locally) shortest paths is O(E [diamG] log3 n) in expectation. Thus, the multiset of all edges of all (locally) shortest
paths contains O(|sp|E [diamG] nε/2 log3 n) edges. By Chernoff bounds G has Θ(pn2) edges. Therefore, the average number
of (locally) shortest paths through a fixed edge is O(E [diamG] |sp| nε−2/p). �

We are now well-prepared to prove the main theorem of this section. It bounds µ(p) which is the expected number of
locally shortest paths and shortest paths passing a fixed edge.

Theorem 9. Let G ∈ G(n, p). For all ε, ε′ > 0,

(i) µ(p) = O(1) for pn < 1/2,
(ii) µ(p) = O(n2/3) for 1/2 ≤ pn ≤ 1 − n−1/3,
(iii) µ(p) = O(n1+ε) for 1 − n−1/3

≤ pn ≤ 1 + n−1/3,
(iv) µ(p) = O(n4/3+ε) for 1 + n−1/3

≤ pn ≤ 1 + ε′,
(v) µ(p) = O(nε/p) for 1 + ε′

≤ pn.

Proof. (i) We bound µ(p) by the total number of paths passing a fixed edge. Let us first estimate the expected number of
paths of a fixed length k in G going through a fixed edge. There are k possible positions of the fixed edge in a path of length k.
Furthermore, we can choose the remaining k− 1 vertices of such a path in

∏k−1
i=1 (n− i) different ways. As edges are present

in G with probability p, the expected number of paths in G that go through a fixed edge is bounded above by
n−1−
k=1

kpk−1
k−1∏
i=1

(n − i) ≤

n−1−
k=1

k(pn)k−1
≤ (pn)−1

n−
k=1

k(pn)k.

Thus, the expected number of paths in G going through a fixed edge is at most

(pn)−1
n−

k=1

n−
i=k

(pn)k =

n−
k=1

(pn)k−1
− (pn)n

1 − pn
≤

1 − (pn)n

(1 − (pn))2
≤

1
(1 − pn)2

.

Thus, µ(p) = O(1) for pn ≤ 1/2.
(ii) Using the bound in (i), we get µ(p) = O(1/(1 − pn)2) = O(n2/3) for pn ≤ 1 − n−1/3.
(iii) Applying Lemma 4, we get |sp| = O(n5/3) with probability 1 − O(n−1/3) and |SP| = O(n2) otherwise. Combining

this with Lemma 8 and Lemma 5 gives µ(p) = O(n1+ε).
(iv) By Lemma 5, the expected diameter of G is O(n1/3). Thus, Lemma 8 yields µ(p) = O(n4/3+ε).
(v) By Lemma 3, we get E [diamG] = O(log n). Now Lemma 8 yields µ(p) = O(nε/p) as nε is asymptotically larger than

log n for all ε > 0. �

5. Runtime analysis

In this section we describe the runtime of our algorithm in terms of the parameter µ(p). With this, the main result
Theorem 11 is an immediate corollary of the bounds on µ(p) from the previous section.

Theorem 10. Let G ∈ G(n, p). The expected runtime of our algorithm for a random edge update on G is O(µ(p) nε) for all ε > 0.

Proof. To bound the runtime, we will use the quantity µ(p) which is the expected number of locally shortest paths and
shortest paths through a fixed edge e of G. If the algorithm performs the deletion of the edge e, this is exactly the number of
paths that stop being shortest or locally shortest. In the case of the insertion, we get (almost) the same picture by making
a backwards analysis. Instead of the insertion of e to G = (V , E) we can also investigate the deletion of e from the graph
G′

= (V , E ∪ {e}). Therefore the quantity µ(p) is also the expected number of paths in G′ that start being shortest or locally
shortest. The slight modification that G′ contains one edge more than G has no consequence for the order of µ(p).

We bound the runtime of all five phases separately. The algorithm is running through the first phase, only if the
considered edge e is already in the graph and has to be deleted or updated. If this is the case, the algorithm goes through
the while loop for every locally shortest path of G that contains the edge e at most twice, since a locally shortest path can
be added to Q as a left- and as a right-extension. The only part of the while loop with more than constant runtime is the
removing of the path πxy from the lists Pxy, L(r(πxy)), and R(ℓ(πxy)). Since every locally shortest path is uniquely determined
by the first (respectively the last edge), we can bound the runtime of Phase 1 by O(µ(p)nε) using Lemma 7.

The runtime of the second phase is constant. The while loop in the third phase has an expected length of O(µ(p)). Since
adding the path πxy to the priority queue H costs O(log n), the runtime of Phase 3 is O(µ(p) log n).

For the analysis of the runtime of Phase 4 it is crucial to observe that every line in the for-loops as well as every other
line is executed O(µ(p)) times in expectation. Moreover, the algorithm has to add the extended paths πx′y and πxy′ to lists
of locally shortest path and the priority queue H which is done in time less than O(nε) in every execution. Thus, the runtime
of the algorithm in Phase 4 is O(µ(p) nε).

If the algorithm performs an insertion or an update, the set Q in Phase 5 contains all shortest paths of G that stop being
the shortest. If the algorithmperforms a deletion,Q is empty. Thus, the algorithm is running through thewhile loopO(µ(p))
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Insertion of 3000 random edges. Deletion of 3000 random edges.

Fig. 2. Experimental results for the algorithm of Demetrescu and Italiano [5].We start with an empty graphwith n = 100 vertices and insert 3000 random
edges. (a) shows the measured runtimes depending on the number of inserted edges. Analogously, (b) shows the measured runtimes for the deletion of
3000 edges in a random order until the empty graph is obtained again. The horizontal axes describe the current number of edgesm. The vertical axes show
the measured runtimes averaged over three million runs.

times in expectation. The for-loops are both performed O(nε/2) times using Lemma 7 in the same way as in the beginning
of this proof but with ε/2 instead of ε. In the same way, we can bound the expected runtime of the lines in the for-loops by
O(nε/2). Altogether this gives an expected runtime of O(µ(p) nε) in Phase 5.

With this we can now conclude our main result.

Theorem 11. Let R(p) denote the expected runtime for an edge update in a graph G ∈ G(n, p). For all ε, ε′ > 0we have shown
that

(i) R(p) = O(nε) for pn < 1/2,
(ii) R(p) = O(n2/3+ε) for pn ≤ 1 − n−1/3,
(iii) R(p) = O(n1+ε) for pn ≤ 1 + n−1/3,
(iv) R(p) = O(n4/3+ε) for pn ≤ 1 + ε′,
(v) R(p) = O(nε/p) for pn ≥ 1 + ε′.

Let us give an intuition how the properties of G(n, p) change when more and more edges are inserted and how this
affectsR(p). In the early stage (i) of the random graph process, the graph consists ofmany small components of sizeO(log n)
which are trees or unicyclic. There, it is very fast to update edges. Soon after in stage (ii), the components become larger
and it becomes likely for a new edge to connect two of them. Therefore, the expected number of new (locally) shortest
paths increases significantly. In stage (iii) and (iv) a giant component grows and the algorithm has to update many (locally)
shortest paths whenever the giant component catches other components of the graph. In (v) the last isolated vertex joins
the giant component and the graph becomes connected. As the process evolves, the minimum degree and the connectivity
grows and it becomes less and less likely that an inserted edge is a shortest path. Thus, the expected insertion costs are also
going down.

6. Empirical observations

To show that the theoretically observed behavior indeed occurs in practice, we also performed some experiments. For
this, we used the original algorithm of Demetrescu and Italiano [5] available from http://www.dis.uniroma1.it/∼demetres/
experim/dsp/. Analogous to the experiments of Demetrescu and Italiano [5], we used the D-LHP code without smoothing.
All experiments are conducted on 2.4 GHz Opteron machines running Debian GNU/Linux. As the number of locally shortest
paths between any pair of nodes has been reported to be very small [5], we assume that the experimental performance of
our algorithm described in Section 3 should be similar to that of Demetrescu and Italiano.

We start with an empty graphwith n = 100 vertices and add 3000 edges in a randomorder. Fig. 2(a) shows themeasured
runtimes per insertion averaged over three million runs. Afterwards, we examine the opposite direction and remove all
edges in a random order. The measured average runtimes per deletion are shown in Fig. 2(b). Note that as predicted in
Theorem 11, both charts identify the largest update complexity shortly after the critical window.
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