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Abstract. We analyze iterative learning in the limit from positive data
with the additional information provided by a counter. The simplest type
of counter provides the current iteration number (counting up from 0 to
infinity), which is known to improve learning power over plain iterative
learning.

We introduce five other (weaker) counter types, for example only pro-
viding some unbounded and non-decreasing sequence of numbers. Ana-
lyzing these types allows for understanding what properties of a counter
can benefit learning.

For the iterative setting, we completely characterize the relative power
of the learning criteria corresponding to the counter types. In particular,
for our types, the only properties improving learning power are unbound-
edness and strict monotonicity.

Furthermore, we show that each of our types of counter improves
learning power over weaker ones in some settings, and that, for iterative
learning criteria with one of these types of counter, separations of learn-
ing criteria are necessarily witnessed by classes containing only infinite
languages.

Keywords: Inductive Inference.

1 Introduction

We analyze the problem of algorithmically learning a description for a formal
language (a computably enumerable subset of the natural numbers) when pre-
sented successively all and only the elements of that language. For example, a
learner h might be presented more and more even numbers. After each new num-
ber, h may output a description of a language as its conjecture. The learner h
might decide to output a program for the set of all multiples of 4, as long as no
even number not divisible by 4 has been presented. Later, when h sees an even
number not divisible by 4, it might change this guess to a program for the set
of all multiples of 2.
� Timo Kötzing was supported by the Deutsche Forschungsgemeinschaft (DFG) under

grant no. NE 1182/5-1.
�� The author would like to thank John Case, Sanjay Jain, Frank Stephan and Sandra

Zilles for valuable and fruitful discussions.

J. Kivinen et al. (Eds.): ALT 2011, LNAI 6925, pp. 40–54, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Iterative Learning from Positive Data and Counters 41

Many criteria for deciding whether a learner h is successful on a language L
have been proposed in the literature. Gold, in his seminal paper [Gol67], gave a
first, simple learning criterion, TxtEx-learning1, where a learner is successful iff,
on every text for L (listing of all and only the elements of L) it eventually stops
changing its conjectures, and its final conjecture is a correct description for the
input sequence.

Trivially, each single, describable language L has a suitable constant function
as an Ex-learner (this learner constantly outputs a description for L). Thus, we
are interested for which classes of languages L is there a single learner h learning
each member of L. This framework is known as language learning in the limit
and has been studied extensively, using a wide range of learning criteria similar
to TxtEx-learning (see, for example, the text book [JORS99]).

In this paper we are concerned with a memory limited variant of TxtEx-
learning, namely iterative learning [Wie76, LZ96] (It). While in TxtEx-learning
a learner may arbitrarily access previously presented data points, in iterative
learning the learner only sees its previous conjecture and the latest data point.
It is well known that this setting allows for learning strictly fewer classes of
languages. The successive literature analyzed iterative learners with some ad-
ditional resources, for example a bounded example memory [LZ96]; “long term”
finite memory states [FKS95]; or feedback learning, i.e. the ability to ask for the
containment of examples in previously seen data [LZ96, CJLZ99].

A different option for providing additional learning power for iterative learning
was suggested in [CM08b], where iterative with counter learning was introduced.
In this setting, a learner, in each iteration, has access to its previous conjecture,
the latest datum, and the current iteration number (counting up from 0 to
infinity). [CM08b] shows that this learning criterion is strictly more powerful
than plain iterative learning, strictly less powerful than TxtEx-learning, and
incomparable to set-driven learning [WC80].

In set-driven learning, the learner has access only to the (unordered) set of
data seen so far, with duplicates removed. Consider now a learning criterion,
where the learner has access to the set of data seen so far, just as in set-driven
learning, but also to the current iteration number (just as in iterative with
counter learning as introduces in [CM08b]). It is easy to see that this learning
criterion is equivalent to partially set-driven (or rearrangement independent)
learning [SR84]; it is well known that partially set-driven learning is equivalent
to TxtEx-lerning.

The main aim of this paper is to discuss how and why such a counter improves
learning power. In particular, we want to understand what properties of a counter
can be used in a learning process to increase learning power. Is it the higher
and higher counter values, which we can use to time-bound computations? Is it
knowing the number of data items seen so far? Is it the complete enumeration
of all natural numbers which we can use to divide up tasks into infinitely many
subtasks to be executed at the corresponding counter value?

1 Txt stands for learning from a text of positive examples; Ex stands for explanatory.
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We approach these questions by introducing different counter types, each mod-
eling some of the possibly beneficial properties mentioned above. Formally, a
counter type is a set of counters ; a counter is a mapping from the natural num-
bers to itself. Instead of giving the learner the current iteration number, we will
map this number with a counter drawn from the counter type under considera-
tion.

We define the following counter types.2

(i) Complete and ordered: Id = {idN};3
(ii) Strictly monotone: �R! = {c | ∀i : c(i + 1) > c(i)};
(iii) Monotone & unbounded: �R = {c | ∀i : c(i + 1) ≥ c(i) ∧ lim infi→∞ c(i) =

∞};
(iv) Eventually above any number: Rinf=∞ = {c | lim infi→∞ c(i) = ∞};
(v) Unbounded: Rsup=∞ = {c | lim supi→∞ c(i) = ∞};
(vi) Complete: Ronto = {c | range(c) = N}.
By requiring a learner to succeed regardless of what counter was chosen from
the counter type, we can provide certain beneficial properties of a counter, while
not providing others. For example, counters from Ronto provide a complete enu-
meration of all natural numbers, but do not allow to infer the number of data
items seen so far.

We illustrate the inclusion properties of the different sets of counters with
the following diagram (inclusions are top to bottom; thus, inclusions of learning
power when such counters are used are bottom to top).

Id

�R!

�R

Rinf=∞

Rsup=∞

Ronto

The weakest type of counter is Rsup=∞, the unbounded counter. The advan-
tage over having no counter at all is to be able to make computations with higher
and higher time bounds; in fact, it is easy to see that set-driven learning merely
requires a counter from Rsup=∞ to gain the full power of TxtEx-learning. John
Case pointed out that any text for an infinite language implicitly provides a
counter from Rsup=∞.

A somewhat stronger counter type is Rinf=∞; the intuitive advantage of this
counter is that a learner will not repeat mistakes made on small counter values
2 The counter types (i), (iii) and (v) were suggested by John Case in private commu-

nication.
3 “Id” stands for identity; N denotes the natural numbers and idN the identity on N.
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indefinitely, but only the behavior on large counter values affects the learning
process in the limit.

For the monotone counters from �R, the advantage is again that early mistakes
are not repeated once learning has proceeded to a later stage (as in, higher
counter value), as well as a monotonicity in advancing through these stages.

Counters from �R! have the additional benefit of providing an upper bound on
the number of examples seen so far.

Id is the strongest type of counter providing exactly the number of data
elements presented so far. Also, all natural numbers are listed, which allows a
learner to divide up tasks into infinitely many subtasks to be executed at the
corresponding counter value; the counter type Ronto models this latter advantage
while dropping the order restriction.

The main results of this paper consider iterative learning and are as follows.
Even adding the weakest type of counter, Rsup=∞, to plain iterative learning al-
lows for an increase in learning power; however, there is no increase on learning
classes of infinite languages only (Theorem 4). Furthermore, the criteria corre-
sponding to the six counter types are divided into two groups of criteria of equal
learning power as depicted by the following diagram (the gray line divides the
two groups).

It Id

�R!

�R

Rinf=∞

Rsup=∞

Ronto

In particular, only the strict monotonicity of a counter gives additional learn-
ing power over Rsup=∞ counters. The proofs for the claims inherent in the dia-
gram can be found in Section 5.

Theorem 9 in Section 5 shows the separation depicted in the above diagram;
its proof uses a self-learning class of languages [CK10, CK11] and Case’s Operator
Recursion Theorem (ORT) [Cas74, JORS99]. Because of space limitations, we
only sketch that argument below.

Extending these results to settings where learners have additional resources
is ongoing work; preliminary results show that, for adding a finite number of
memory states, we get a similar diagram as for iterative learning above.

One may wonder whether some two of the counter types introduced above
always yield the same learning power (as many did in the case of iterative learn-
ing), across all possible settings. In Section 2 we show and discuss that this is
not the case.
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After this, the paper is organized as follows. Section 3 gives some mathematical
preliminaries. In Section 4 we establish that any separation of learning criteria
power will necessarily be witnessed by a class containing only infinite languages,
if the considered learning criteria have access to any of the six counter types. As
already mentioned, Section 5 gives some details for the diagram above.

2 Differences in Counters

In this section we show that, for any choice of two different counter types, there
is a learning criterion which, when augmented with one of the counter types,
yields different classes of languages learnable than when augmented with the
other.

We already saw some such separations in the setting for iterative learning.
Now we will give some other settings witnessing other separations.

First, consider iterative learning with one additional feedback query (see
[LZ96, CJLZ99]). In this setting, in each iteration, the learner may ask about
one datum whether it has been presented previously. Frank Stephan and San-
jay Jain (private communication) have a proof that, in this setting, there are
classes of languages learnable with Ronto counters which are not learnable with
�R! counters. Thus, there are settings where Id separates from �R!, and where
Ronto separates from Rsup=∞.

For more separations, we turn to very simple learning criteria. We consider
transductive learning (Td), that is, learning without memory (which equals a
degenerate case of memoryless learning with bounded memory states, where the
bound on the number of states is 1; [CCJS07, CK08]). In this somewhat artificial
toy setting a learner is presented a datum (and possibly a counter value) in each
iteration, and not more. Note that, learners are allowed to output the special
symbol ? to, in effect, keep the previous conjecture as the latest guess.

It is not hard to see that, for transductive learning, adding an Rsup=∞ or
Ronto counter does not improve learning power. However, other types of counter
do provide increases. The general result is depicted in the following diagram,
using the same format as in the diagram on iterative learning above.

Td Id

�R!

�R

Rinf=∞

Rsup=∞

Ronto
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The intuitive reasons for the separations are as follows. An infinite limit inferior
guarantees that mistakes on early counter values are not repeated infinitely often.
With a strictly monotone counter, any mistake on a counter value z is guaranteed
to be preceded by at most z other data items; thus, if the language contains at
least z + 1 data items giving the correct output, the mistake will be rectified.

The situation changes if we require of the learner additionally to never aban-
don correct conjectures – either only not semantically (called non-U-shaped
learning [BCM+08]) or not even syntactically (strongly non-U-shaped learn-
ing [CM08a]). The resulting groupings and separations are depicted in the fol-
lowing two diagrams.

NUTd Id

�R!

�R

Rinf=∞

Rsup=∞

Ronto

SNUTd Id

�R!

�R

Rinf=∞

Rsup=∞

Ronto

Intuitively, for learning criteria requiring non-U-shapedness, order plays an
important role (wrong conjectures may only come before correct ones), leading
to the separations between Rinf=∞ and �R. For strongly non-U-shaped learning
with Rinf=∞ counter, a learner may not give two different conjectures for any
two pairs of datum/counter value.

All the above settings together show that, for each two different types of
counter, there are settings of associated learning criteria where the learning
power separates.

Because of space restrictions, the only theorem regarding transductive learn-
ing we will prove in this paper is given in Theorem 10, giving a flavor of the
proofs concerning transductive learning.

3 Mathematical Preliminaries

Unintroduced notation follows [Rog67].
N denotes the set of natural numbers, {0, 1, 2, . . .}. The symbols ⊆, ⊂, ⊇,

⊃ respectively denote the subset, proper subset, superset and proper superset
relation between sets. For any set A, we let Pow(A) denote the set of all subsets
of A. ∅ denotes both the empty set and the empty sequence.

With dom and range we denote, respectively, domain and range of a given
function. We sometimes denote a partial function f of n > 0 arguments x1, . . . , xn

in lambda notation (as in Lisp) as λx1, . . . , xn f(x1, . . . , xn). For example, with
c ∈ N, λx c is the constantly c function of one argument.
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We fix any computable 1-1 and onto pairing function 〈·, ·〉 : N × N → N.4
Whenever we consider tuples of natural numbers as input to a function, it is
understood that the general coding function 〈·, ·〉 is used to code the tuples into
a single natural number. We similarly fix a coding for finite sets and sequences,
so that we can use those as input as well.

If a function f is not defined for some argument x, then we denote this fact
by f(x)↑, and we say that f on x diverges; the opposite is denoted by f(x)↓,
and we say that f on x converges. If f on x converges to p, then we denote this
fact by f(x)↓ = p.

The special symbol ? is used as a possible hypothesis (meaning “no change
of hypothesis”). We write f → p to denote that f ∈ P converges to p, i.e.,
∃x0 : f(x0) = p ∧ ∀x ≥ x0 : f(x)↓ ∈ {?, p}.5

P and R denote, respectively, the set of all partial computable and the set of
all computable functions (mapping N → N).

We let ϕ be any fixed acceptable programming system for P . Further, we let
ϕp denote the partial computable function computed by the ϕ-program with
code number p.

A set L ⊆ N is computably enumerable (ce) iff it is the domain of a computable
function. Let E denote the set of all ce sets. We let W be the mapping such that
∀e : W (e) = dom(ϕe). For each e, we write We instead of W (e). W is, then, a
mapping from N onto E . We say that e is an index, or program, (in W ) for We.

In this paper, an operator is a mapping from any fixed number of arguments
from P into P .

The symbol # is pronounced pause and is used to symbolize “no new input
data” in a text. For each (possibly infinite) sequence q with its range contained
in N ∪ {#}, let content(q) = (range(q) \ {#}).

3.1 Learning Criteria

A learner is a partial computable function.
A language is a ce set L ⊆ N. Any total function T : N → N∪ {#} is called a

text. For any given language L, a text for L is a text T such that content(T ) = L.
This kind of text is what learners usually get as information. We will extend the
notion of texts to include counters as follows.

For any type of counters R, we let TxtCtr[R] be the set of all functions
〈T, c〉 = λi 〈T (i), c(i)〉 with T a text and c ∈ R. We call an element from
TxtCtr[R] a text/counter, and the content of any text/counter is the content
of its text component.

A sequence generating operator is an operator β taking as arguments a func-
tion h (the learner) and a text/counter T and that outputs a function p. We call
p the learning sequence of h given T . Intuitively, β defines how a learner can
interact with a given text/counter to produce a sequence of conjectures.

4 For a linear-time example, see [RC94, Section 2.3].
5 f(x) converges should not be confused with f converges to.
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We define the sequence generating operators It and Td (corresponding to the
learning criteria discussed in the introduction) as follows. For all h, T, i,

It(h, T )(i) =

{
h(∅), if i = 0; 6

h(It(h, T )(i − 1), T (i − 1)), otherwise.

Td(h, T )(i) =

{
h(∅), if i = 0;
h(T (i − 1)), otherwise.

Thus, in iterative learning, the learner has access to the previous conjecture, but
not so in transductive learning.

Successful learning requires the learner to observe certain restrictions, for
example convergence to a correct index. These restrictions are formalized in our
next definition.

A sequence acceptance criterion is a predicate δ on a learning sequence and a
text/counter. We give the examples of explanatory (Ex), non-U-shaped (NU)
and strongly non-U-shaped (SNU) learning, which were discussed in Sections 1
and 2. Formally, we let, for all p, T ,

Ex(p, T ) ⇔ [∃q : p converges to q ∧ Wq = content(T )];
NU(p, T ) ⇔ [∀i : Wp(i) = content(T ) ⇒ Wp(i+1) = Wp(i)];

SNU(p, T ) ⇔ [∀i : Wp(i) = content(T ) ⇒ p(i + 1) = p(i)].

We combine any two sequence acceptance criteria δ and δ′ by intersecting them.
For any set of text/counters α, any sequence generating operator β and any

combination of sequence acceptance restrictions δ, αβδ is a learning criterion.
A learner h αβδ-learns the set

αβδ(h) = {L ∈ E | ∀T ∈ α : content(T ) = L ⇒ δ(β(h, T ), T )}.
Abusing notation, we also use αβδ to denote the set of all αβδ-learnable

classes (learnable by some learner).

4 Separations by Classes of Infinite Languages

In this section we show that, for iterative learning, all separations between the
learning criteria corresponding to the different counter types are necessarily wit-
nessed by sets of infinite languages. The reasoning for this can be extended to
include many other learning criteria.

For an operator Θ, a learning criterion I is called Θ-robust iff, for any class of
languages L, I-learnability of L is equivalent to I-learnability of Θ(L) (element
wise application of Θ).7

We let Θ0 be the mapping L �→ 2L ∪ (2N + 1). Obviously, there is a function
f0 such that ∀e : Θ0(We) = Wf0(e). Note that Θ0 has an inverse Θ−1

0 for which
a function analogous to f0 exists.
6 h(∅) denotes the initial conjecture made by h.
7 [CK11] explores some notions of robustness for function learning.
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Theorem 1. Let R ∈ {Rsup=∞, Rinf=∞, �R, �R!, Id, Ronto}. Then we have that
the learning criterion TxtCtr[R]ItEx is Θ0-robust.

Proof. Let L ∈ TxtCtr[R]ItEx. Obviously, Θ0(L) can be learned using the
learner for L by ignoring odd data (considering them as #) and halving all even
data, mapping all conjectures with f0. Conversely, let a learner h0 for Θ0(L) be
given. Consider first the case of R = Id. Define the following function h′.

∀e, x, z : h′(e, x, z) = h0(h0(e, 2x, 2z), 2z + 1, 2z + 1).

Intuitively, on a text T , h′ simulates h0 on the text where 2T is interleaved with
odd data. We use 1-1 s-m-n to get a function to turn conjectures for a language
from Θ0(L) into the corresponding language from L (we use 1-1 so that we can
extract and use the conjectures of h0 from the previous generation as input to
h0), resulting in a learner h. Note that, for R = Ronto, the above construction
of h works just as well. All other cases are similar as follows.

For R ∈ {Rsup=∞, Rinf=∞, �R}, when we see counter value of z, we simulate
h0 on all odd data ≤ z and on the current datum times two, using a counter
value of z for all of them.

For R = �R!, when we see counter value of z, we simulate h0 on all odd data
< z and on the current datum times two, using a counter value of z2 + i for the
ith run of h0. Thus, within these batches of data, the counter values are strictly
increasing. The next batch will start with a counter value of (z+1)2 = z2+2z+1.
This exceeds the last counter used in the previous batch, as the previous batch
had a size ≤ z + 1.

Theorem 2. Let I and I ′ be Θ0-robust learning criteria. Then I and I ′ separate
in learning power iff they separate on classes of infinite languages.

Proof. Suppose a class of languages L separates I and I ′. Then Θ0(L), a class
of infinite languages, also witnesses this separation, as I and I ′ are Θ0-robust.

From what we saw in this section we get the following corollary.

Corollary 3. Let R, R′ ∈ {Rsup=∞, Rinf=∞, �R, �R!, Id, Ronto}. Then the learn-
ing criteria TxtCtr[R]ItEx and TxtCtr[R′]ItEx separate iff the separation is
witnessed by a class of infinite languages. Furthermore, it is witnessed by a class
of languages all containing all odd numbers.

5 Comparison of Counter Types

In this section we present the proofs for the results regarding iterative learn-
ing with counter. First we compare the weakest counter with no counter at all
(Theorem 4). The Theorems 5 through 8 give equivalences of learning power as
indicated in Section 1. Finally, Theorem 9 gives the separation between strictly
monotone counters and weaker counters.
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Looking into the proof of Theorem 4 in [CM08b] (showing that an Id counter
allows for learning languages which cannot be learned set-drivenly), we see
that even the counters from Rsup=∞ allow for learning more than learning set-
drivenly. This leads to the first part of the next theorem. However, this proof
makes use of finite languages. John Case remarked that Rsup=∞-counters are
provided by texts for infinite languages for free, leading to the second part of
the theorem. We let E∞ denote the set of all infinite ce sets.

Theorem 4. We have

TxtItEx ⊂ TxtCtr[Rsup=∞]ItEx

and
Pow(E∞) ∩ TxtItEx = Pow(E∞) ∩TxtCtr[Rsup=∞]ItEx.

For the next step up the hierarchy of counter types, we don’t get an increase in
learning power.

Theorem 5. We have

TxtCtr[Rsup=∞]ItEx = TxtCtr[Rinf=∞]ItEx.

Proof. Clearly we get “⊆”. The intuitive reason for the inclusion “⊇” is as follows.
We can use the max of counter value, hypothesis and datum as a new counter
to work with. If the conjecture changes infinitely often, then, without loss of
generality, the new counter is from Rinf=∞. Hence, the learning will converge;
furthermore, for any fixed number z, only finitely many data points are evaluated
with a counter value below z.

Let L ∈ TxtCtr[Rinf=∞]ItEx as witnessed by h0. By Corollary 3, we can
assume, without loss of generality, that L contains only infinite languages. Ob-
viously, using standard padding arguments, we can assume the sequence of h0’s
conjectures, on any text, to be non-decreasing in numeric value. Furthermore,
we can assume that, whenever h0 would make a mind change when the present
datum was replaced with a #, then it would also change its mind on the actual
datum.

Let h be such that

h(∅) = h0(∅);
∀e, x, z : h(e, x, z) = h0(e, x, max(e, x, z)).

That is, h has the same initial conjecture as h0 and uses the maximum of current
conjecture, current datum (we let # count as 0) and current counter value as
new counter value.

Let L ∈ L, T a text for L and c ∈ Rsup=∞ a counter. Suppose, by way of
contradiction, h on T and c does not converge. Then h simulates h0 on T and a
counter from Rsup=∞; this converges, a contradiction.

Suppose, by way of contradiction, h on T and c does not converge to an index
for L. We focus on the text after h’s convergence to some (wrong) conjecture e.
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Consider first the case where there is a finite s such that, for all s′ ≥ s,
h0(e, #, s′) �= e, that is, h0 changes its mind on # for all but finitely many
counter values. Then, clearly, at some point after the convergence of h on T , we
get a counter value ≥ s so that h will change its mind, a contradiction.

Consider now the case where, for infinitely many s, h0(e, #, s) = e. Let T ′

be the text derived from T where we do not change anything before the point
of h’s convergence on T , and afterwards replace all repeated data with #es. Let
c′ be such that, for all i, c′(i) = maxt[h0(e, T ′(i), t) = e] (possibly ∞) – that
is, c′ denotes the maximum counter value for h0 to not change its mind. As
e is incorrect and needs to be changed by h0 eventually on any counter with
infinite limit inferior, c′ has finite limit inferior. Thus, there is a bound s such
that, for infinitely many i, maxt[h0(e, T ′(i), t) = e] ≤ s. Because of the case
we consider now, we know that there are infinitely many i with T ′(i) �= # and
maxt[h0(e, T ′(i), t) = e] ≤ s. One of these pairwise different T ′(i) = T (i) will be
larger than s, leading to a mind change with h, a contradiction.

Note that the just above proof is not entirely a simulation argument – h0 is
being simulated, but not on counters for which we have immediate performance
guarantees.

Also the next step in the counter hierarchy does not yield a difference in
learning power.

Theorem 6. We have

TxtCtr[Rinf=∞]ItEx = TxtCtr[�R]ItEx.

Proof. Clearly we get “⊆”. Let L ∈ TxtCtr[�R]ItEx as witnessed by h0. Ob-
viously, using standard padding arguments, we can assume the sequence of h0’s
conjectures, on any text, to be non-decreasing in numeric value. Furthermore,
we can assume each conjecture to exceed the counter value on which it was first
output.

For all e, z, we let f(e, x, z) be the least t with e ≤ t ≤ max(e, z) and
h0(e, x, t) �= e, if existent (undefined otherwise). Note that the domain of f
is decidable.

Let h be such that, for all e, x, z,

h(∅) = h0(∅);

h(e, x, z) =

{
h0(e, x, f(e, x, z)), if f(e, x, z)↓,
e, otherwise.

Let L ∈ L, T a text for L and c ∈ Rinf=∞ a counter. We define a counter c′

on argument i thus. Let e be the conjecture of h after T [i]; if, in the definition
of h(e, T (i), c(i)), the first case holds with some t, then c′(i) = t. Otherwise, if
there will be a mind change of h on T with counter c later, then c′(i) = e, else
c′(i) = max(e, min{c(j) | j ≥ i}).

It is easy to see that c′ ∈ �R and h on T and c simulates h0 on T and c′.
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Note that, in the proof just above, the argument is again not entirely a simula-
tion – defining the counter c′ requires knowledge of future mind changes and of
infinitely many future counter values.

Next we show that complete counters do not give an advantage over Rsup=∞
counters.

Theorem 7. We have

TxtCtr[Rsup=∞]ItEx = TxtCtr[Ronto]ItEx.

Proof. The inclusion “⊆” is trivial. Suppose, by way of contradiction, a set L
separates the two criteria considered by this theorem. Then, using Corollary 3,
we get that a class of languages all containing all odd data witness the separation
as well. From a text for such a languages we can extract a complete counter (by
dividing each datum by 2, rounding down), a contradiction.

Last we show that also the top-most in the counter hierarchy gives no difference
in learning power.

Theorem 8. We have

TxtCtr[�R!]ItEx = TxtCtr[Id]ItEx.

Proof. Clearly we get “⊆”. The intuitive idea for “⊇” is as follows. The learner
can store in the conjecture the last counter on which it changed the conjecture
and fill up all the gaps in between two counter values with #es.

Let L ∈ TxtCtr[Id]ItEx as witnessed by h0. Without loss of generality, we
assume that h0 will change its mind on any datum whenever it would change
its mind on a # (this is not as trivial as for other counter types, but straight-
forward to show). Using 1-1 s-m-n, we fix any 1-1 function pad such that, for
all e, x, Wpad(e,x) = We. We use this function for a learner to memorize certain
information (at the cost of a mind change).

We define a function h∗
0 inductively as follows. For all e, z,

h∗
0(e, ∅, z) = e;

∀σ, x : h∗
0(e, σ x, z) = h0(h∗

0(e, σ, z), x, z + len(σ)).

Let h be such that, for all e, x, z, z′,

h(∅) = pad(h0(∅), 0);

h(pad(e, z′), x, z) =

{
pad(h∗

0(e, #z−z′
x, z′), z + 1), if h∗

0(e, #z−z′
x, z′) �= e;

e, otherwise.

Let L ∈ L, T a text for L and c ∈ �R! a counter. We define a text T ′ thus.

∀i : T ′(i) =

{
T (k), if i = c(k);
#, otherwise.
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Clearly, T ′ is a text for L and T ′ ◦ c = T . Let p be the sequence of outputs of h
on T and p′ the sequence of outputs of h0 on T ′. Now we have p′ ◦ c = p, as h
makes mind changes on data whenever it would make a mind change on a pause
with the same counter value.

The next theorem shows that the remaining two classes of learning power do
separate.

Theorem 9. We have

TxtCtr[�R]ItEx ⊂ TxtCtr[�R!]ItEx.

Informal sketch of the argument. The inclusion is trivial. The intuitive idea
of the separation is as follows. We use a self-learning class of languages (see
the definition of L below for an example of a self-learning class; these classes
are discussed in more detail in [CK10, CK11]). We will then suppose that this
class can be learned with �R counters by some function h. We will suggest to
h to change its mind on certain data (we call them a(0), a(1), . . . ); if h never
changes its mind, then this will suffice to make h fail. Otherwise, we are still
free to suggest to h not to change its mind on this data for high counter values
(above some threshold we call c0). We now add some other data (we call them
b(0), b(1), . . . ) on which h should not change, unless it has changed on some
a-values previously. In fact, we add exactly c0 such data points. With a counter
from �R, these data points may all come very early, on a low and always the same
counter value; h will not be able to change its mind then (otherwise we just start
over and find infinitely many mind changes on data where no mind change was
suggested). Furthermore, h will change its mind later on some a, leading to no
success in identification.

With a strictly increasing counter, however, h would have no problem: if all
b-values come before the a-values, then the counter would be pushed high enough
such that on a-values there need not be a mind change.

Finally, we give two theorems regarding transductive learning.

Theorem 10. We have

TxtCtr[Ronto]TdEx = TxtTdEx = TxtCtr[Rinf=∞]SNUTdEx.

Proof. We start with the first equality, where the inclusion “⊇” is trivial. Let L
be TxtCtr[Ronto]TdEx-learnable, as witnessed by h. Without loss of generality,
we can assume h to output ? on # with any counter value. Otherwise, the number
output on pause may be infinitely output on learning any language, in which
case L can have at most one element, which we can learn using only the initial
conjecture and outputting ? on # with any counter value.

We claim that, for all L ∈ L, there is a p such that

– L = Wh(∅) or ∃x ∈ L∀z : h(x, z) = p;
– ∀x ∈ L, z ∈ N : h(x, z) ∈ {?, p}.
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Suppose, by way of contradiction, that we can get two different outputs p and
p′ on two datum/counter pairs. Then we can force infinite oscillation between p
and p′, a contradiction. Thus, there is at most one p ever output on a datum.
Suppose that, for each x ∈ L, there is a z such that h(x, z) =?. Then we can list
all x ∈ L such that h always outputs ? and fill up missing counter values with
#. As L is learned by h, L = Wh(∅).

Clearly, any h as above might as well ignore the counter and learn without
such additional help.

Regarding TxtCtr[Rinf=∞]SNUTdEx, it is easy to see that it includes
all TxtTdEx-learnable classes (using the characterization of learnability as
given by the above list). Furthermore, note that any two syntactically differ-
ent outputs of a learner lead to a syntactic U-shape on some text/counter, with
the counter from Rinf=∞. Thus, the above characterization for languages from
TxtCtr[Ronto]TdEx also characterizes the languages from that are learnable in
the sense of TxtCtr[Rinf=∞]SNUTdEx.

Theorem 11. We have

TxtCtr[Rinf=∞]TdEx = TxtCtr[�R]TdEx.

Proof. The inclusion “⊆” is trivial. Let L be TxtCtr[�R]TdEx-learnable, as
witnessed by h.

We show that h witnesses L ∈ TxtCtr[Rinf=∞]TdEx. Let L ∈ L, T a text
for L and c ∈ Rinf=∞. Permute 〈T, c〉 into a text/counter 〈T ′, c′〉 such that c′ is
non-decreasing. Note that h on 〈T ′, c′〉 converges to an index for L.

We distinguish two cases. Either h on 〈T ′, c′〉 makes infinitely many non-?
outputs. Then h on 〈T, c〉 makes the same infinitely many non-? outputs, and
all of those are equal and correct.

Otherwise h on 〈T ′, c′〉makes only finitely many non-? outputs. Then all those
finitely many outputs are correct, as we could permute all later elements before
any given output (and decrease the counter value as required to retain mono-
tonicity of the counter). Thus, h on 〈T, c〉 converges to an index for L.
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