
Too Fast Unbiased Black-Box Algorithms

Benjamin Doerr
Max-Planck-Institut für

Informatik
Saarbrücken, Germany

Timo Kötzing
Max-Planck-Institut für

Informatik
Saarbrücken, Germany

Carola Winzen
Max-Planck-Institut für

Informatik
Saarbrücken, Germany

ABSTRACT
Unbiased black-box complexity was recently introduced as
a refined complexity model for randomized search heuris-
tics (Lehre and Witt, GECCO 2010). For several problems,
this notion avoids the unrealistically low complexity results
given by the classical model of Droste, Jansen, and Wegener
(Theor. Comput. Sci. 2006).

In this work, we show that for two natural problems the
unbiased black-box complexity remains artificially small.
For the classical Jumpk test function class and for a
subclass of the well-known Partition problem, we give
mutation-only unbiased black-box algorithms having com-
plexity O(n logn). Since the first problem usually needs
Θ(nk) function evaluations to be optimized by standard
heuristics and the second is even NP-complete, these black-
box complexities seem not to indicate the true difficulty of
the two problems for randomized search heuristics.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Theory, algorithms

Keywords
Black-box complexity, running time analysis, theory

1. INTRODUCTION
Complexity theory aims at determining the difficulty of

computational problems. In classical theoretical computer
science, the fruitful interplay between complexity theory,
typically proving that a certain effort is necessary to solve a
problem, and theory of algorithms, giving an algorithmic so-
lution for a problem and thus showing that it can be solved
with a certain computational effort, was a driving force to
develop the field.
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For evolutionary algorithms, or more broadly, random-
ized search heuristics, the classical complexity notions are
not very useful. They assume that the algorithm is fully
aware of the complete problem instance. This is very dif-
ferent from the typical application of a randomized search
heuristic. Here, we usually do not have the full problem data
available, either because we really do not have it, or because
we do not want to fully exploit it (e.g., due to its size or
complexity). Rather, the typical randomized search heuris-
tic only obtains information about the problem by learning
the fitness (quality) of the search points it generates.

The notion of black-box complexity tries to build a com-
plexity theory for such settings. In simple words, the black-
box complexity of a problem is the number of fitness eval-
uations necessary to solve the problem. This notion was
introduced in [8] (see [9] for the journal version). Earlier
related work exists, e.g., [1, 12,16].

As observed already in [9], this unrestricted notion of
black-box complexity, by allowing too powerful algorithms,
yields unrealistically low complexities. Examples include
a black-box complexity of less than 2 for the (not permu-
tation invariant) BinaryValue function class or a poly-
nomial black-box complexity for the NP-complete Max-
Clique problem.

After these results, the quest for a complexity theory
for randomized search heuristics seemed to have come to
an early end (apart from the again unrealistically low
Θ(n/ logn) bound for the OneMax function class due to
Anil and Wiegand [2]).

Black-box complexity was revived by Lehre and Witt in
their best-paper awarded GECCO 2010 paper [15]. To over-
come the drawbacks of the previous unrestricted black-box
model, they restricted the class of admitted black-box opti-
mization algorithms in a natural way, still admitting a large
class of classically used algorithms. In their unbiased black-
box complexity model, they require that all solution candi-
dates must be obtained by variation operators. In addition,
these variation operators must be unbiased, that is, treat
the bit positions and the bit entries 0 and 1 in an unbiased
way (see Section 2 for a precise definition). This model, in
addition to excluding some highly artificial algorithms, also
admits a notion of arity. A k-ary unbiased black-box al-
gorithm is one that employs only such variation operators
that take up to k arguments. This allows, e.g., to talk about
mutation-only algorithms (arity one).

For several function classes, the unbiased model leads to
more realistic complexities. While in the unrestricted model
any function class consisting of a single function has a black-
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box complexity of one, in the unbiased model more function
evaluations are needed to generate an optimal solution from
applying the variation operators. The mutation only black-
box complexity of any class of functions having a unique
global optimum is Ω(n logn) [15]. The (permutation invari-
ant) LeadingOnes function class, having an unrestricted
black-box complexity of O(n logn) proven in [8], now has a
mutation-only black-box complexity of Θ(n2) [15], matching
the run time (defined as expected number of function evalu-
ations until an optimal search point is queried) of standard
randomized search heuristics. Hence, for mutation-only
black-box algorithms, the unbiased model leads to much bet-
ter complexity estimates.

When higher arity-variation operators are used, smaller,
but still not completely unrealistic complexities were ob-
served in [5]. Among others, an O(n) binary (that is, allow-
ing crossover-type variation operators) complexity for the
OneMax class and an O(n logn) binary complexity for the
LeadingOnes class were shown.

In this paper, we show that also the mutation-only unbi-
ased black-box complexity can be ridiculously small. For the
Jumpk function class, typically needing Ω(nk) function eval-
uations to be solved via a randomized search heuristic, we
present a mutation-only unbiased black-box algorithm solv-
ing the problem in O(n logn) queries. Similarly, for an NP-
hard subclass of the Partition problem, we again prove a
unary black-box complexity of O(n logn).

These results indicate that, in addition to the progress
made in [15], more effort is needed to define a complex-
ity model that gives realistic complexity statements for a
broader class of problems.

2. PRELIMINARIES
In this section we first introduce the notation used in this

paper, followed by a formal definition of the unrestricted
and the unbiased black-box models.

2.1 Notation
The positive integers are denoted by N. For any k ∈ N, we

abbreviate [k] := {1, . . . , k}. Analogously, we define [0..k] :=
[k] ∪ {0}.

For a bit string x = x1 · · ·xn ∈ {0, 1}n we denote by x̄
the bitwise complement of x (i.e., for all i ∈ [n] we have
x̄i = 1 − xi). The bitwise exclusive-OR is denoted by ⊕.
When we say that y is created from x by flipping the i-th
bit in x, we require y = x⊕ei where ei denotes the i-th unit
vector.

For any set S we denote by 2S the power set of S, i.e., the
set of all subsets of S.

For n ∈ N, we let Sn be the set of all permutations of
[n]. For σ ∈ Sn and x ∈ {0, 1}n we abbreviate σ(x) :=
xσ(1) · · ·xσ(n).

Lastly, with log we denote the natural logarithm to
base e := exp(1).

2.2 Unrestricted and Unbiased Black-Box
Model

A usual way to measure the complexity of a problem is to
measure the performance of the best algorithm out of some
class of algorithms (e.g., all those algorithms which can be
implemented on a Turing machine [11, 13]). As we would
like to measure the complexity of a problem’s optimizability
by randomized search heuristics, we restrict the class of per-

missible algorithms to those which obtain information about
the problem to be solved by learning the objective value of
possible solutions (“search points”). The objective function
is given by an oracle or as a black-box. Using this oracle,
the algorithm may query the objective value of all possible
solutions, but any such query does only return this search
point’s objective value and no other information about the
objective function.

For simplicity, we shall restrict ourselves to real-valued
objective functions defined on the set {0, 1}n of bit strings
of length n (so called pseudo-Boolean functions). This is
motivated by the fact that many evolutionary algorithms
use such a representation. For results on more general search
spaces confer [6].

Naturally, we do allow that the algorithms use random de-
cisions. From the black-box concept, it follows that the only
type of action the algorithm may perform is, based on the
objective values learned so far, deciding on a probability dis-
tribution on {0, 1}n, sampling a search point x ∈ {0, 1}n ac-
cording to this distribution, and querying its objective value
(“fitness”) from the oracle. This leads to the scheme of Algo-
rithm 1, which we call an unrestricted black-box algorithm.

As performance measure of a black-box algorithm we take
the number of queries to the oracle performed by the algo-
rithm until it first queries an optimal solution. We call this
the run time, or optimization time, of the black-box algo-
rithm. This is justified by the observation that in typical
applications of randomized search heuristics, evaluating the
fitness of a search point is more costly than the generation of
a new search point. Since we mainly talk about randomized
algorithms, we regard the expected number of queries.

We can now follow the usual approach in complexity the-
ory. Let F be a class of pseudo-Boolean functions. The com-
plexity of an algorithm A for F is the maximum expected
run time of A on a function f ∈ F (worst-case run time).
The complexity of F with respect to a class A of algorithms
is the minimum (“best”) complexity among all A ∈ A for F .
The unrestricted black-box complexity of F is the complexity
of F with respect to the class of all (unrestricted) black-box
algorithms. This is the black-box complexity as introduced
by Droste, Jansen, and Wegener [9].

Algorithm 1: Scheme of an unrestricted black-box algorithm

1 Initialization: Sample x(0) according to some

probability distribution p(0) on {0, 1}n. Query f(x(0)).
2 Optimization: for t = 1, 2, 3, . . . until termination

condition met do
3 Depending on(

(x(0), f(x(0))), . . . , (x(t−1), f(x(t−1)))
)

choose a

probability distribution p(t) on {0, 1}n.

4 Sample x(t) according to p(t), and query f(x(t)).

Obviously, the class of all black-box algorithms is very
powerful. For example, for any function class F = {f}
consisting of one single function, the unrestricted black-box
complexity of F is 1—the algorithm that simply queries an
optimal solution of f as first action shows this bound.

This drawback of the unrestricted black-box model in-
spired Lehre and Witt [15] to introduce a more restrictive
black-box model, where algorithms may generate new solu-
tion candidates only from random or previously generated
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search points and only by using unbiased variation opera-
tors. Still the model allows for most of the commonly stud-
ied search heuristics, such as many (µ+λ) and (µ, λ) evolu-
tionary algorithms (EAs), simulated annealing algorithms,
the Metropolis algorithm, and the Randomized Local Search
algorithm.

Definition 1. For all k ∈ N, a k-ary unbiased distri-
bution

(
D(· | y(1), . . . , y(k))

)
y(1),...,y(k)∈{0,1}n is a family of

probability distributions over {0, 1}n such that for all inputs

y(1), . . . , y(k) ∈ {0, 1}n the following two conditions hold.

(i)∀x, z ∈ {0, 1}n :

D(x | y(1), . . . , y(k)) = D(x⊕ z | y(1) ⊕ z, . . . , y(k) ⊕ z) ;

(ii) ∀x ∈ {0, 1}n ∀σ ∈ Sn :

D(x | y(1), . . . , y(k)) = D(σ(x) | σ(y(1)), . . . , σ(y(k))) .

We refer to the first condition as ⊕-invariance and to the
second as permutation invariance. An operator sampling
from a k-ary unbiased distribution is called a k-ary unbiased
variation operator.

Note that the only 0-ary unbiased distribution over {0, 1}n
is the uniform one. 1-ary, also called unary operators are
sometimes referred to as mutation operators, in particular
in the field of evolutionary computation. 2-ary, also called
binary operators are often referred to as crossover operators.
If we allow arbitrary arity, we call the corresponding model
the ∗-ary unbiased black-box model.
k-ary unbiased black-box algorithms can now be described

via the scheme of Algorithm 2. The k-ary unbiased black-box
complexity of some class of functions F is the complexity of
F with respect to all k-ary unbiased black-box algorithms.

Algorithm 2: Scheme of a k-ary unbiased black-box algo-
rithm

1 Initialization: Sample x(0) ∈ {0, 1}n uniformly at

random and query f(x(0)).
2 Optimization: for t = 1, 2, 3, . . . until termination

condition met do

3 Depending on
(
f(x(0)), . . . , f(x(t−1))

)
choose up to

k indices i1, . . . , ik ∈ [0..t− 1] and a k-ary unbiased

distribution D(· | x(i1), . . . , x(ik)).
4 Sample x(t) according to D(· | x(i1), . . . , x(ik)) and

query f(x(t)).

Note that, for all k ≤ `, each k-ary unbiased black-box al-
gorithm is contained in the `-ary unbiased black-box model.

As mentioned in the introduction, Lehre and Witt [15]
proved, among other results, that all functions with a single
global optimum have a unary unbiased black-box complex-
ity of Ω(n logn). For several standard test problems this
bound is met by different unary randomized search heuris-
tics, such as the (1+1) EA or the Randomized Local Search
algorithm on. Recall that, as pointed out above, the unre-
stricted black-box complexity of any such function is 1. For
results on higher arity models refer to the work of Doerr et
al. [5].

Rather than bounding the expected run time of an al-
gorithm, it is sometimes easier to show that it solves the

given problem with good probability in some number s of
iterations. If we are only interested in asymptotic black-
box complexities, the following remark allows us to use such
statements for computing upper bounds.

Remark 2. Suppose for a problem P there exists a black-
box algorithm A that, with constant success probability,
solves P in s iterations (that is, queries an optimal solu-
tion after s queries). Then the black-box complexity of P is
at most O(s).

Proof. Let c be an upper bound for the failure probabil-
ity of algorithm A after s iterations. We call the s iterations
of A a run of A. If Xi denotes the indicator variable for
the event that the i-th independent run of A is success-
ful (i.e., computes an optimum), then Pr[Xi = 1] ≥ 1 − c.
Clearly, Y := min{k ∈ N |Xk = 1} is a geometric ran-
dom variable with success probability at least 1− c. Hence,
E[Y ] = (1− c)−1, i.e., the expected number of independent
runs of A until success is at most (1 − c)−1. Thus, we can
optimize P in an expected number of at most (1 − c)−1s
iterations. Since c is constant, the claim follows.

3. JUMP FUNCTIONS
In this section we analyze the unbiased black-box com-

plexity of the so-called jump functions: for all k < n/2, let
Jumpk denote the fitness function defined by

Jumpk(x) =


n, if |x|1 = n;

|x|1, if k < |x|1 < n− k;

0, otherwise,

for all x ∈ {0, 1}n.
We show that for every k, k constant, the black-box com-

plexity of Jumpk is surprisingly low. Key to the analysis is
the following lemma. It shows that one can compute, with
high probability, the OneMax value of any search point x
with few black-box calls to Jumpk. With this, we can orient
ourselves on the large plateau surrounding the optimum and
thus revert to the problem of optimizing OneMax.

We collect these computations in a subroutine, to be called
by black-box algorithms.

Lemma 3. For all constants k and c, there is a unary
unbiased subroutine s using c+1 queries to Jumpk such that,
for all bit strings x, s(x) = OneMax(x) with probability
1−O(n−c).

Proof. We use a unary unbiased variation operator
flipk, which samples uniformly a k-neighbor (a bit string
which differs in exactly k positions) of the argument. Next
we give the subroutine s, which uses Jumpk to approximate
OneMax as desired, see Algorithm 3. Intuitively, the sub-
routine samples c bit strings in the k-neighborhood of x; if
|x|1 ≥ n − k then it is likely that at least once only 1s of
x have been flipped, leading to a Jumpk-value of |x|1 − k;
as no sample will have a lower Jumpk-value, adding k to
the minimum non-0 fitness of one of the sampled bit strings
gives the desired output. The case of x with |x|1 ≤ k is
analogous.

Clearly, the subroutine is correct with certainty on all x
with k < |x|1 < n− k. The other two cases are symmetric,
so let x with |x|1 ≥ n − k be given. Obviously, the return
value of the subroutine is correct if and only if at least one of
the c samples flips only 1s in x. We denote the probability
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Algorithm 3: Simulation of OneMax using the jump func-
tion.

1 subroutine s(x) is
2 if Jumpk(x) 6= 0 then output Jumpk(x);
3 M ← {Jumpk(flipk(x)) | i ∈ [c]};
4 if max(M) < n/2 then m← max(M)− k;
5 else m← min(M \ {0}) + k;
6 output m;

of this event with p. We start by bounding the probability
that a single sample flips only 1s. We choose which k bits to
flip iteratively so that, after i iterations, there are at least
n − k − i bit positions with a 1 out of n − i unchosen bit
positions left to choose. This gives the bound of(

n−k
n

)
·
(
n−k−1
n−1

)
· · ·
(
n−k−(k−1)
n−(k−1)

)
=
∏k−1
i=0

(
1− k

n−i

)
≥
(

1− k
n−k

)k
≥
(

1− k2

n−k

)
,

using Bernoulli’s inequality. Thus, we have

p ≥ 1−
(

k2

n− k

)c
.

Now we can use the subroutine from Lemma 3 to turn
results on the unbiased black-box complexity for OneMax
into results on Jumpk for constant k.

Theorem 4. For constant k, the unbiased black-box com-
plexity of Jumpk is

• O(n logn), for unary variation operators;

• O(n/ logm), for m-ary variation operators with 2 ≤
m ≤ n;

• O(n/ logn), for ∗-ary variation operators.

Proof. Note that the above black-box complexities
claimed for Jumpk are shown for OneMax in [5]. We use
Lemma 3 with c = 4 and run the unbiased black-box algo-
rithms of the appropriate arity for OneMax; all sampled
bit strings are evaluated using the subroutine s. Thus, this
algorithm samples as if working on OneMax and finds the
bit string with all 1s after the desired number of iterations.
Note that, for up to n logn uses of s, we expect no more than
n lognO(n−4) ≤ O(n−2) incorrect evaluations of s. There-
fore, there is a small chance of failing, and the claim follows
from Remark 2.

Note that the subroutine from Lemma 3 requires to know
the parameter k; however, this subroutine can be modified
to work without that knowledge as follows. The first time
that the subroutine samples a search point with fitness 0
it will determine k; after knowing k, it will work as before
(and before sampling a search point of fitness 0, it does not
need to know). The parameter k is determined by sampling
sufficiently many i-neighbors of the search point with fitness
0, starting with i = 1 and stopping when a search point with
fitness 6= 0 is found. This search point will have maximum
fitness among all non-optimal search points, equal to n−k−
1. From this fitness and n, the subroutine can infer k.

There may be cases when one of the algorithms implicit
in the proof of Theorem 4 never samples a search point with
fitness 0 and does not have to determine k. In this case,
such an algorithm will optimize the target function without
completely learning it. However, in a second phase after
finding the optimum, an algorithm could determine k with
a binary search, as k equals the largest distance from the
optimum at which all and any search point has fitness 0.
This phase requires O(log(n)) queries.

4. PARTITION
One criticism received by the unrestricted previous black-

box model is that there are NP-hard problems which have
a polynomial black-box complexity. As an example let us
consider the well-known Clique problem. Although it is
known to be NP-hard, Droste et al. [9] show that Max-
Clique has an unrestricted black-box complexity of at most(
n
2

)
+1 = Θ(n2). That is, even the optimization problem can

be solved by an unrestricted black-box algorithm in Θ(n2)
queries.

In this section we prove that in the unbiased black-box
model, too, there are NP-hard problems having a polyno-
mial black-box complexity.

To this end we consider an NP-hard subclass of the Par-
tition problem. Whereas the decision version of the Parti-
tion problem asks the question “Given a multiset I of posi-
tive integers (“weights”), is it possible to split the set into two
disjoint subsets I = I0∪̇ I1 such that

∑
w∈I0 w =

∑
w∈I1 w

?”, the optimization version asks for a partition (I0, I1) of I
such that the difference |

∑
w∈I0 w−

∑
w∈I1 w| is minimized.

It is known that Partition permits heuristics which solve
many instances of the problem in a polynomial number of fit-
ness evaluations. For example, Frenk and Kan [10] showed
that the greedy approach converges to optimality almost
surely for reasonably chosen random instances. Further-
more, greedy approaches are known to deliver in polynomial
number of queries solutions of good approximation quality.
For example, Witt [17] has shown that both the Random-
ized Local Search algorithm and the (1+1) EA need at most
O(n2) iterations until they reach for the first time a solution
of approximation quality 4/3. More results can be found in
[4] and [17].

The decision version of Partition has been shown to be
NP-hard, cf. [11, 14]. It actually is one of the most famous
NP-hard problems. Thus, assuming P 6= NP, the decision
problem does not allow a polynomial-time algorithm. Note
that this also implies that the optimization problem cannot
be solved in polynomial time.

It is easily seen that Partition remains NP-hard if we
restrict the problem to instances with all weights distinct.

Lemma 5 (folklore). Partition remains NP-hard
when restricted to instances I with v 6= w for all v, w ∈ I.

Proof. Omitted for space restrictions.

In the following, let Partition6= be the subclass of Par-
tition instances with pairwise different weights. There is
no one best way of how to consider Partition6= as an opti-
mization problem. In the following we present two different
fitness function and show that for both problems a polyno-
mial unary unbiased black-box complexity can be achieved.
In Section 4.1 we consider a signed fitness function where we
learn from the fitness values which bin is the heavier one.
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We show that the unary unbiased black-box complexity of
Partition6= under this fitness function is O(n logn).

In Section 4.2 we then consider an unsigned fitness func-
tion. A priori we do have less information than in the sit-
uation of Section 4.1. However, we are still able to prove
the same asymptotic bound. This second fitness function is
probably the more natural one but note that the key argu-
ments for our upper bound are essentially the same.

4.1 The Signed Fitness Function
As mentioned above, we consider in this section a signed

fitness function for Partition6=. Given an instance I of
Partition6=, we set FI := {(I0, I1) ∈ 2I×2I | I0∪̇ I1 = I},
the set of all feasible solutions of I. We define the (signed)
fitness function to measures the quality of the queried solu-
tions via

f∗I : F → Z, (I0, I1) 7→
∑
w∈I0

w −
∑
w∈I1

w .

Note that we aim at minimizing |f∗I |.
Since unbiased black-box complexity typically requires the

search space {0, 1}n, let us fix some enumeration σ : I →
[n] of the elements of I. To ease readability, let σ be the
ordering of the elements in I, i.e., σ(v) < σ(w) for all v, w ∈
I with v < w. For any x ∈ {0, 1}n let I0(x) := {w ∈
I |xσ(w) = 0} and, accordingly, I1(x) := {w ∈ I |xσ(w) =
1}. Note that {0, 1}n → FI , x 7→ (I0(x), I1(x)) is a bijection
between {0, 1}n and the original search space FI . Therefore,
we let

fI : {0, 1}n → Z, x 7→
∑

i∈[n],xi=0

σ−1(i)−
∑

i∈[n],xi=1

σ−1(i) .

Theorem 6. The unary unbiased black-box complexity of
Partition6= modeled via the signed fitness functions fI is
O(n logn), where n := |I| denotes the size of the input set
I.

In the proof of Theorem 6 we will apply only two variation
operators, namely uniform(), which samples a bit string x ∈
{0, 1}n uniformly at random and RLS(·) (randomized local
search) which, given some x ∈ {0, 1}n, creates from x a new
bit string y ∈ {0, 1}n by flipping exactly one bit in x, the
bit position being chosen uniformly at random. Note that
RLS(·) equals flip1(·) as defined in Section 3. The following
is straightforward to verify from the definition of unbiased
variation operators.

Remark 7. uniform() is a (0-ary) unbiased variation op-
erator. RLS(·) is a unary unbiased variation operator.

Proof of Theorem 6. We need to show that there ex-
ists an algorithm which, for any instance I of Partition6=,
needs an expected O(|I| log |I|) iterations to compute a par-
tition (O0,O1) ∈ 2I × 2I such that |

∑
w∈O0

w−
∑
w∈O1

w|
is minimized. We shall show that Algorithm 4 satisfies this.
As mentioned above, it only employs two different variation
operators, uniform() and RLS(·), both unbiased and of arity
at most 1.

Let us fix some instance I of Partition6= and let |I| =: n.
Abbreviate f := fI .

Let us now comment on the different steps of the algo-
rithm.

After an expected number of (1 + o(1))n logn iterations,
we have learned the weights of the problem instance as fol-
lows. First note that in the t-th iteration of the algorithm,

Algorithm 4: Unary unbiased black-box algorithm for
Partition6= with the signed fitness function

1 Initialization:

2 Sample x(0) ← uniform(). Query f(x(0));
3 Initialize t← 0 and , I′0, I′1,W0 = ∅;
4 Learning the integers:

5 while |Wt| < n do
6 t← t+ 1;

7 Sample x(t) ← RLS(x(0)). Query f(x(t));

8 Update Wt ←Wt−1 ∪ {|f(x(0))− f(x(t))|/2};
9 if f(x(0)) > f(x(s)) then

10 I′0 ← I′0 ∪ {|f(x(0))− f(x(s))|/2};
11 else I′1 ← I′1 ∪ {|f(x(0))− f(x(s))|/2};
12 Optimization:

13 Offline compute an optimal solution (O0,O1) and set
M← {w ∈ O0 |w /∈ I′0} ∪ {w ∈ O1 |w /∈ I′1}, the set of
integers that need to be moved;

14 Set z ← x(0);
15 while |M| > 0 do
16 Sample y ← RLS(z). Query f(y);
17 if w := |f(y)− f(z)|/2 ∈M then
18 z ← y and M←M\{w};

the weight of the flipped bit is |f(x(0))− f(x(t))|/2. There-

fore, let Wt := {|f(x(0))− f(x(s))|/2 | s ∈ [t]}. By a coupon
collector argument (cf., e.g., Theorem 1.21 in [3]) the ex-
pected number of queries until we have flipped each bit po-
sition of x(0) at least once is (1 + o(1))n logn. Thus, we
can expect that we need t∗ = (1 + o(1))n logn queries until
Wt∗ = I. That is, we can assume to have learned all n
different weights in I in (1 + o(1))n logn queries.

Knowing the problem instance I we can compute an op-
timal partition (O0,O1) for I offline, i.e., we do not need to
query any further search points for this step. The computa-
tion can be done, e.g., by applying the brute force algorithm
which compares all 2n possible solutions. All we need to do
now is to create a representation of (O0,O1) via unbiased
variation operators of arity at most 1.

To this end let us define I′0(x(0)) := {|f(x(0)) −
f(x(s))|/2 | s ∈ [t∗], f(x(0)) > f(x(s))} and, accordingly,

I′1(x(0)) := {|f(x(0)) − f(x(s))|/2 | s ∈ [t∗], f(x(0)) <

f(x(s))}. It is easily verified that x(0) is a binary repre-

sentation of the partition (I′0(x(0)), I′1(x(0))).

To create (O0,O1) we setM := {w ∈ O0 |w /∈ I′0(x(0))}∪
{w ∈ O1 |w /∈ I′1(x(0))}, the set of all weights that, in order
to generate the optimal solution (O0,O1), need to be moved

from one of the sets I′0(x(0)), I′1(x(0)) to the other one.
In the optimization phase we do the following. In each

iteration we create a new solution y from the current solution
z by flipping exactly one bit of z. If w := |f(y)− f(z)|/2 ∈
M, we update z ← y and M←M\{w}.

As discussed above we can expect that after (1 +
o(1))n logn such one bit flips we have flipped each bit posi-
tion i ∈ [n] at least once. That is, after an expected number
of (1 + o(1))n logn queries, we have M = ∅ and that we
created (O0,O1).

Putting everything together, we see that, despite us-
ing only unary unbiased variation operators, we can opti-
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mize any instance I of the Partition6= problem modeled
via the signed fitness function in an expected number of
2(1 + o(1))n logn = O(n logn) queries.

4.2 The Unsigned Fitness Function
One might dislike the fact that in the proof of Theorem 6

we neither minimize nor maximize fI itself but only its ab-
solute value |fI |. However, we can achieve the same asymp-
totic optimization complexity as in the statement of Theo-
rem 6 if we only allow the latter, unsigned fitness function.
Although the algorithm itself does not become more difficult
to define, the proof of correctness is more technical. The dif-
ficulty for the analysis stems from the fact that, given two
bit strings x and y which differ in only one bit position, we
cannot unambiguously learn from the corresponding fitness
values |fI(x)| and |fI(y)| the weight of the flipped bit, cf.
Remark 9. This results in a more complex procedure to
learn all the weights.

Theorem 8. The unary unbiased black-box complexity
Partition6= with respect to |fI | is O(n logn). Here, n := |I|
denotes the size of the input set I.

For a clearer presentation of the proof, we defer some tech-
nical elements used in the proof of Theorem 8 to Lemmas,
which will be presented after the proof of the main Theorem.

Proof of Theorem 8. By Remark 2 it suffices to show
that there exists an algorithm that, for any instance I
of Partition6=, with high probability (w.h.p.), needs only
O(|I| log |I|) fitness queries until it queries an optimal search
point.

Let us fix an instance I of Partition 6=, let n := |I| and
abbreviate f := |fI |, where fI is defined as in Section 4.1.

For readability purposes let us introduce the following no-
tation. Note, however, that these values are a priori not
identifiable for the algorithm. First note that, using the no-
tation from Section 4.1, each x ∈ {0, 1}n corresponds to a
solution (I0(x), I1(x)) ∈ FI . We set S0(x) :=

∑
w∈I0(x) w

and S1(x) :=
∑
w∈I1(x) w, the corresponding sum of the

weights and let Imax(x) be the set of weights belonging to
the bin of larger weight, that is Imax := I0 if S0(x) ≥ S1(x)
and Imax(x) = I1 otherwise. We call Imax the “heavier” bin
and we call the other one the “lighter” bin.

Lastly, let wmax = max I be the maximum weight of
instance I.

The general approach of Algorithm 5 is the following.
First, we produce a string which represents a solution where
all weights are in the same class of the partition, i.e., at the
end of this phase we have Imax(x) = I. With high probabil-
ity this can be achieved with 4n logn queries. Next, we per-
form 2n logn RLS steps (i.e., random one bit flips). Through
this we learn all n different weights in I w.h.p. After that,
we compute an optimal solution offline. A representation of
this solution can be generated in another 3n logn iterations
w.h.p.

If in any iteration of Algorithm 5 we have constructed a
solution s with f(s) = 0 we are obviously done and do not
need to run the algorithm any further. Therefore, we assume
in the following that for all search points s but the last one
we have f(s) 6= 0.

Algorithm 5 employs only two different variation opera-
tors, uniform() and RLS(·), which (cf. Remark 7) are un-
biased and of arity at most 1. It remains to show that

Algorithm 5: Unary unbiased black-box algorithm for
Partition6= with the unsigned fitness function

1 Initialization:

2 Sample x(1,0) ← uniform(). Query f(x(1,0));
3 Shifting all weights to one bin:

4 for t = 1 to 2n logn do

5 Sample x(1,t) ← RLS(x(1,0)) and query f(x(1,t));

6 Let ` ∈ arg max0≤t≤2nlogn f(x(1,t))

7 x← x(1,`);
8 for t = 2n logn+ 1 to 4n logn do
9 Sample y ← RLS(x) and query f(y);

10 if f(y) > f(x) then x← y;

11 Learning the instance I:
12 for t = 1 to 2n logn do

13 Sample x(2,t) ← RLS(x) and query f(x(2,t));

14 Optimization:

15 Compute an optimal solution (O0,O1) such that
wmax ∈ O1 offline and set M←O1.

16 for t = 1 to 2n logn do

17 Sample x(3,t) ← RLS(x) and query f(x(3,t));

18 if f(x) > 2wmax and f(x(3,t)) < f(x) then

19 compute w :=
(
f(x)− f(x(3,t))

)
/2;

20 if w 6= wmax and w ∈M then

21 x← x(3,t); M←M\{w};

22 for t = 1 to n logn do

23 Sample x(4,t) ← RLS(x) and query f(x(4,t));

w.h.p. Algorithm 5 queries an optimal solution after at most
O(n logn) queries. We show correctness for the three phases.
The high probability statement follows from a simple union
bound over the failure probabilities.

Shifting all weights to one bin. It follows from
the coupon collector argument (cf., e.g., Theorem 1.23
in [3]) that, with probability at least 1 − n−1, there ex-
ists for each i ∈ [n] at least one ti ≤ 2n logn such

that x(1,0) and x(1,ti) differ exactly in the i-th bit. Us-
ing this information, Lemma 10 yields that for each string
x(1,`) ∈ {x(1,t) | t ∈ [0..2n logn]} with the largest fitness

f(x(1,`)) = max{f(x(1,t)) | t ∈ [0..2n logn]} it holds that

wmax ∈ Imax(x(1,`)). Let us fix one such ` and set x := x(1,`).
Lemma 10 and Lemma 11 verify the following. If y is

created from x by flipping the i-th bit of x, then f(y) > f(x)
if and only if the i-th heaviest weight is not in the heavier
bin, i.e., σ(i) /∈ Imax(x).

In the second part of the first phase we aim at creating
a string x′ with Imax(x′) = I. We do that by querying
y = RLS(x) and updating x ← y if and only if f(y) > f(x).
From the statement of the previous paragraph this is the
case only if the bit flip has moved the corresponding weight
from the lighter to the heavier bin. Again from the coupon
collector argument it follows that after an additional 2n logn
iterations we have Imax(x) = I, with probability at least
1− n−1.

Hence, after a total number of 4n logn+ 1 iterations, we
have created a bit string x with Imax(x) = I, with proba-
bility at least 1− 2n−1.

Learning instance I. For the correctness of the sec-
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ond phase observe that either we have wmax ≥
∑
w∈I w/2

in which case one of the strings x(2,t), t ∈ [2n logn] is op-

timal (i.e., {wmax} = Imax(x(2,t)) for some t ∈ [2n logn])
with probability at least 1− n−1. This is again the coupon
collector argument. Note that we are done in this case.
Otherwise we have that for any t ≤ 2n logn it holds that
f(x(2,t)) < f(x) (since we are always shifting exactly one
weight from the bin containing all weights to the empty one)
and that the corresponding weight which has been flipped
from one bin to the other is of size (f(x) − f(x(2,t)))/2. In
this case we have, again by the coupon collector argument
that I′ := {(f(x) − f(x(2,t)))/2 | t ∈ [2n logn]} equals I,
with probability at least 1− n−1.

Optimization phase. Knowing instance I, we can now
compute an optimal solution (O0,O1) for I offline, e.g., by
the brute force algorithm. Note that for each y ∈ {0, 1}n and
its bitwise complement ȳ it holds that f(ȳ) = f(y). Thus,
we can assume without loss of generality that (O0,O1) is
chosen such that wmax ∈ O1.

For creating the bit string which corresponds to (O0,O1),
we initialize M := O1. Throughout this phase M denotes
the set of all weights that, in order to create the string cor-
responding to (O0,O1), still need to be “moved” from one
bin to the other. The key idea here is that we required
wmax ∈M and that we do not accept the weight wmax to be
flipped too early. This is important for the following reason.

Recall from Remark 9 that if y is created from x by flip-
ping the i-th bit in x and if f(y) < f(x) then the correspond-
ing weight σ−1(i) ∈ {((f(x) − f(y))/2), (f(x) + f(y))/2}.
But, as long as f(x) > 2wmax we have (f(x) + f(y))/2 >
wmax (unless f(y) = 0 in which case we are done). That is,
as long as f(x) > 2wmax it holds in the situation above that
σ−1(i) = (f(x)− f(y))/2.

It is easy to verify that as soon as f(x) ≤ 2wmax we
have M = {wmax}. It again is the coupon collector ar-
gument which ensures with probability at least 1−n−1 that
after 2n logn iterations of the third phase we are in this
situation. Thus, all we need to do now is to put wmax

from bin Imax(x) to the other one, i.e., we need to flip
σ(wmax). As for each iteration the probability to flip this
position is 1/n, we can bound the probability that we have
flipped it after an additional n logn iterations from below
by 1 − (1 − 1/n)n logn ≥ 1 − 1/n. Here we have used that
for all r ∈ R we have 1 + r ≤ exp(r).

Let us now prove the statements omitted in the proof of
Theorem 8. We use the same notation as above.

Remark 9. Let I be an instance of Partition 6=
equipped with the ordering σI and fitness function f = |fI |.
If y has been created from x by flipping the i-th bit of x and
0 6= f(y) 6= f(x) 6= 0, we cannot uniquely identify the corre-
sponding weight wi = σ−1(i). More precisely, if we do not
have further knowledge on the size of the weights, there are
the two possibilities

wi ∈

{
{ 1
2

(
f(y)− f(x)

)
, 1

2

(
f(y) + f(x)

)
}, if f(y) > f(x),

{ 1
2

(
f(x)− f(y)

)
, 1

2

(
f(y) + f(x)

)
}, if f(y) < f(x).

Proof. The first statement follows from the second.
But for a simple example consider the following situa-
tion. Let I := {1, 2, 3, 4, 6}, σI the ordering of I and
x := (1, 0, 0, 0, 1), i.e., weights 1 and 6 are in one bin and the
other weights are in the second bin. Then f(x) = |7−9| = 2.

Now both bit strings y := (0, 0, 0, 0, 1) and z := (1, 0, 1, 0, 1)
have Hamming distance 1 from x and both have fitness
f(y) = |6 − 10| = 4 = f(z). Hence, knowing x, knowing
that |x − z|1 = 1, and knowing the fitness values f(x) and
f(z) does not suffice to compute the bit in which x and z
differ.

For the second statement we distinguish whether f(y) >
f(x) or f(x) > f(y).
Case 1, f(y) > f(x). If Imax(y) ∩ Imax(x) 6= {wi} then

wi /∈ Imax(x) for otherwise f(y) = f(x)−2wi < f(x). Thus,
wi /∈ Imax(x) and f(y) = f(x) + 2wi.

In case Imax(y) ∩ Imax(x) = {wi} then wi ∈ Imax(x) and
f(y) = 2wi − f(x). Furthermore, since f(y) > f(x), this
yields wi > f(x).

Case 2, f(y) < f(x). In this case we must have wi ∈
Imax(x) for otherwise f(y) = f(x) + 2wi > f(x).

If Imax(y) ⊆ Imax(x) then f(y) = f(x) − 2wi and if
Imax(y) ∩ Imax(x) = {wi} then wi > f(x)/2 and f(y) =
2wi − f(x). Since f(y) < f(x) we also have wi < f(x).

This enumerates all possible combinations and the claim
follows.

Lemma 10. Let I be an instance of Partition 6=, let σ =
σI be its ordering, and let f = |fI |.

Furthermore, let x(0) ∈ {0, 1}n and for each i ∈ [n] let

x(i) be created from x(0) by flipping the i-th bit.
If we choose ` ∈ [0..n] such that f(x(`)) =

max{f(x(t)) | t ∈ [0..n]}, then wmax ∈ Imax(x(`)).

Proof. We assume that wmax /∈ Imax(x(`)) to show the
contrapositive. If ` = 0, we can flip the bit corresponding to
wmax (by our assumption on σ this is the n-th bit) in x(0) to

get f(x(n)) = f(x(0)) + 2wmax > f(x(0)). Similarly, if ` = n

then f(x(0)) = f(x(n)) + 2wmax. All other values of ` imply

wmax /∈ Imax(x(0)) and thus, f(x(n))−f(x(0)) = 2wmax. But
since the weights are pairwise different, σ−1(`) < wmax and

thus f(x(`))− f(x(0)) < 2wmax.

The previous lemma has shown that the largest weight
wmax is in the larger of the two bins of x(`). The following
lemma shows that if we have iteratively increased the value
of x(`) through 1-bit flips, we only have shifted weights from
the smaller bin to the larger one.

Lemma 11. Let I be an instance of Partition 6=, let σ :=
σI be the ordering of I, and f := |fI |.
(i) If x ∈ {0, 1}n with f(x) ≥ wmax, then for all i ∈ [n] we

have f(x⊕ei) > f(x) if and only if wi := σ−1(i) /∈ Imax(x`).

(ii) For x(0), . . . , x(n) and ` as in Lemma 10 we have

f(x(`)) ≥ wmax.

Proof. (i). Let x ∈ {0, 1}n with f(x) ≥ wmax and let
i ∈ [n]. Clearly, if wi /∈ Imax(x) then f(x ⊕ ei) = f(x) +
2wi > f(x). On the other hand, if wi ∈ Imax(x) then either
f(x⊕ ei) = f(x)− 2wi < f(x) or f(x⊕ ei) = 2wi − f(x) ≤
2wi − wmax ≤ wmax ≤ f(x).

(ii). If wmax /∈ Imax(x(0)), then ` = n since for all i ∈ [n]
we have

f(x(n)) = f(x(0)) + 2wmax ≥ f(x(0)) + 2wi ≥ f(x(i)) .

The above calculation immediately yields f(x(`)) > wmax.

Therefore, we may thus assume that wmax ∈ Imax(x(0)).

To show the contrapositive, let us also assume that f(x(`)) <

wmax. Then f(x(0)) ≤ f(x(`)) < wmax and thus f(x(n)) =
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2wmax − f(x(0)) > wmax > f(x(`)), contradicting the choice

of `. Thus, f(x(`)) ≥ wmax.

It is not difficult to see that already with 3-ary variation
operations it is possible to access every bit position in a
linear number of iterations. Hence, a small modification of
Algorithm 4 solves Partition6= and even Partition in a
linear number of steps, using only unbiased variation oper-
ators of arity at most 3.

Remark 12. The 3-ary unbiased black-box complexity of
Partition is at most linear in the size |I| of the input set I.

Since in the unrestricted model we can learn the weights
by querying first the all-zeros bit string and then the n dif-
ferent unit vectors (0, . . . , 0, 1, 0, . . . , 0), it is easy to verify
the following.

Theorem 13. The unrestricted black-box complexity of
Partition is at most linear in the size |I| of the input set I.

5. CONCLUSIONS
We have shown that already the unary unbiased black-box

model contains algorithms which solve NP-hard problems
in a polynomial number of queries. Furthermore, we could
also prove that the unary unbiased black-box complexity of
the Jumpk function is of order O(n logn), a bound which is
not achieved by standard search heuristics.

These results indicate that the unbiased black-box model,
while clearly closer to the truth than the unrestricted one,
still does not give a full picture on how difficult a problem
is to be solved via randomized search heuristics. It seems
that further restrictions to the power of the algorithms are
needed to obtain meaningful results. A recent step into this
direction is the work by the first and the third author [7],
who following a suggestion by Nikolaus Hansen investigate a
black-box model where the algorithm can only compare the
quality of solutions, but has no access to the absolute value
of the fitness. We do not know yet what is the black-box
complexity of, e.g., Partition in this new model.
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