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actual real-world events unfolded.4 
Social networks spreading news so 
quickly is remarkable; the structure of 
social networks and the process that 
distributes news were not designed 
for this purpose. On the contrary, they 
were not designed at all but evolved in 
a random and decentralized manner. 

Is it correct to assume social net-
works ease the spread of information 
(“rumors”)? And, if they do, which of 
their properties make it possible? To 
answer, we simulated a simple rumor-
spreading process on several graphs 
reflecting the structure of existing 
large social networks (see Figure 
1). For example, a rumor begun at a 
random node of the Twitter network 
reaches on average 45.6 million of the 
total of 51.2 million members within 
only eight rounds of communication. 

We also analyzed this process on 
an abstract model of social networks, 
the so-called PA graphs introduced in 
1999 by Barabási and Albert.3 In Do-
err et al.,17 we devised a mathematical 

proof that rumors in these networks 
spread much more quickly than in 
many other network topologies—even 
quicker than in networks with a com-
munication link between any two 
nodes (complete graphs). As an ex-
planation, we observe that nodes with 
relatively few neighbors build a short-
cut between nodes with large degree 
(hubs) that, due to their large number 
of possible communication partners, 
talk less often to each other directly. 

Rumor spreading 
Social networks arise in a variety of 
contexts, formed by people connect-
ed by knowing each other, Facebook 
members agreeing to be friends (in 
Facebook), scientific authors having a 
joint publication, and actors appear-
ing in the same production. 

Despite this diversity, many differ-
ent types of networks share charac-
teristic properties. Well known is that 
any two individuals are connected 
through just “six degrees of separa-

tion,” as first formulated in 2003 by 
Frigyes Karinthy (see Barabási2) and 
became known to a broad audience 
through Stanley Milgram’s “small 
world study.”25 Likewise, for the 
Web, Albert et al.1 predicted a diam-
eter (maximum distance between two 
nodes in the graph) of only 19 connec-
tions in the network formed by Web 
pages and the links between them. 

Several experimental studies1,13,22 

have revealed another intrinsic prop-
erty of social networks: The histo-
gram of node connectivity follows a 
power law; the number of nodes with 
k neighbors is inversely proportional 
to a polynomial in k. To explain this 
phenomenon, Barabási and Albert3 
suggested the PA model for real-world 
networks that show a power law. The 
model is widely used, due to its sim-
plicity, and the article was the fifth 
most cited in Science, as of April 2012, 
according to ISI Web of Knowledge 
(http://www.webofknowledge.com/). 
Graphs in the PA model are construct-
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ed in a random, “rich-get-richer” 
fashion; a newly entering node con-
nects to m existing nodes chosen ran-
domly but gives preference to nodes 
that are already popular; that is, they 
have many neighbors. Note that the 
parameter m controls the density of 
the graph, or the ratio of the number 
of present edges to the number of 
all possible edges. For these graphs, 
Barabási and Albert3 empirically dis-
covered a power law of k−3 later proved 
mathematically by Bollobás et al.11 
Similar models emerged at the time, 
all leading to a power-law distribu-
tion. Also known is the PA model does 

not share all properties observed in 
real-world networks; for example, it is 
less clustered. 

Still, the PA model has helped de-
duce many interesting properties of 
social networks. Famous structural 
results prove small diameters for such 
graphs,10 determine their degree (in 
terms of number of neighbors) dis-
tribution,11 and show high expansion 
properties24 and robustness against 
random damage, along with vulner-
ability against malicious attacks.8,9,15,18 
Algorithmic work shows that in such 
networks, viruses spread more easily 
than in many other network topolo-
gies5 and that gossip-based decentral-
ized algorithms are better at approxi-
mating averages.12

Here, we assume a rumor is suffi-
ciently interesting so people learn it 
when talking to someone who knows 
it. This is substantially different from 
the probabilistic virus-spreading 
model5 where the probability of being 
infected is proportional to the num-
ber of neighbors infected. Two types 
of rumor-spreading mechanisms have 
been identified in the literature: In the 
push model, only nodes that know the 
rumor contact neighbors to inform 
them, and is used to transmit infor-
mation in computer networks.16,21 In 
contrast, to capture the effect of gos-
siping in social networks, it is more 

appropriate for uninformed nodes to 
actively ask for new information. We 
use the push-pull model of Demers 
et al.16 (see also Karp et al.20) in which 
all nodes regularly contact a neighbor 
and exchange all the information they 
have. 

We assume nodes choose their 
communication partners uniformly 
at random from their neighbors, ex-
cluding the person they contacted 
immediately before. In this model, 
we regard the spread of a single piece 
of information initially present at a 
single node. For simplicity, as in most 
previous work, the rumor-spreading 
process is synchronized; that is, it 
takes place at discrete points over 
time and each time step, with each 
node contacting a neighbor to ex-
change information. This simplifies 
a real-world scenario where users act 
at different speeds, but in sufficiently 
large networks these differences bal-
ance out and thus assume an average 
speed used by all nodes. 

Note that the communications 
process is different in each social 
network. The push-pull model we 
analyze is naturally best at capturing 
personal communication between 
two individuals by, say, phone, text 
message, email message, or other 
directed communication. Many on-
line social networks also allow other 
ways to communicate (such as posts 
on personal Web pages), possibly re-
sulting in friends being notified of a 
post when they next log in and then 
forwarding the news, given that it is 
of sufficient interest. Such forms of 
communication can be modeled only 
by more complicated means than the 
push-pull protocol. 

experimental Results 
Supporting the notion that news 
spreads quickly in social networks, we 
have simulated the rumor-spreading 
process on samples from the Twit-
ter and Orkut social networks (from 
Bhattacharjee et al.6,23), as well as on 
PA graphs. As most social networks 
have roughly similar structure, we 
chose these large networks (data read-
ily available) as instances of social 
networks. For comparison, we also 
included complete graphs and ran-
dom-attachment graphs (also called 
the m-out model, as in, for example, 

figure 1. how a rumor progresses from  
a large-degree node A to another node B; 
due to their having large number of  
neighbors, A and B need more time to  
push or pull the rumor. 

With fewer neighbors, C pulls the rumor 
from A and quickly pushes it to B.

A B

C

figure 2. Average number of informed nodes as a function of time for the orkut network  
and preferential attachment, random attachment, and complete graphs of the same size  
n = 3,072,441 nodes and density parameter m = 38. 
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the real network and the mathematical model 
for social networks are both characterized by 
significantly quicker rumor dissemination.
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Bohman and Frieze7) in which each 
node chooses m neighbors uniformly 
at random from all nodes. 

Note that in both the random at-
tachment (RA) and the PA graph mod-
el, we are able to control the density 
of the graph through the parameter 
m, allowing us to run experiments 
on graphs with the same number of 
nodes and density as equivalent real-
world graphs. 

Figures 2 and 3 reflect how a rumor 
begun in a random node spreads in 
graphs corresponding to the Orkut 
and Twitter social networks. News 
spreads much more quickly in real-
world networks and in PA graphs than 
in complete and RA graphs. In the 
Twitter experiment, a considerable 
difference is apparent between the PA 
model and the real-world graph, indi-
cating the Twitter graph is captured 
less well by the theoretical model. 

To determine how graph size might 
influence the speed a rumor spreads, 
we ran the process on PA graphs, RA 
graphs, and complete graphs of vary-
ing size. The results (see Figure 4) in-
dicate logarithmic time is needed for 
RA and complete graphs, whereas for 
PA graphs time is needed of a slightly 
smaller order of magnitude. 

Mathematical Analysis 
We supported this empirical finding 
through mathematical analysis, prov-
ing the rumor-spreading process dis-
seminates news in sublogarithmic 
time, or the time needed to inform all 
nodes, as well as any constant fraction 
(such as 1%, 10%, or 50%). 

We denote by Gn
m the PA graph on 

n nodes with density parameter m. 
Since the graph Gn

m  is a random graph, 
none of the statements mentioned 
earlier holds with certainty. However, 
the probability that the random graph 
Gn

m does not satisfy our assumptions 
and observations tends to zero for n 
growing to infinity. In the following 
paragraphs, when we make a state-
ment concerning a random object, 
that statement is meant to hold with 
high probability. For the PA graph Gn

m, 
with m being any constant larger than 
one, we were able to prove that after 
a surprisingly short time any given 
news item spreads to all nodes. 

Theorem 1. There is a constant K 
such that the rumor-spreading pro-

cess we described spreads a rumor 
from any starting node to all other 
nodes in at most K · log(n)/log(log(n)) 
time steps. This result improves 
the previous best bound for rumor 
spreading in PA graphs14 of order 
log(n)2. Theorem 1 showed for the first 
time (in 2011) that rumor spreading 
in PA graphs is much quicker than for 
the other network topologies covered 
here so far. For RA graphs, it is easy to 
see that the diameter is of order log(n), 
which is also clearly a lower bound for 
rumor-spreading time. Similar rea-
soning also shows that, independent 
of starting node, a constant fraction of 
all nodes has distance Θ(log(n)) from 
the starting node. Hence a logarith-
mic number of rounds is needed to 
inform any constant fraction of the 
nodes. Similar bounds follow for hy-
percube networks common in com-
puter science applications. 

However, the diameter of the net-
work does not always reveal the time 
needed to spread a rumor. The com-
plete graph has a diameter of exactly 
one, but time to all other networks is 
of logarithmic order. This result was 
proved in 2000 by Karp et al.20 for a 
rumor-spreading process in which 
nodes were allowed to choose their 
random communication partners 
from among all neighbors, including 
the one they might have just talked to. 
It is not difficult to see the Karp et al. 
proof is valid in our setting. That proof 
also shows that a logarithmic number 
of rounds is still necessary to inform 
any constant fraction of the nodes. 
Similar results hold for the classical 
Erdös-Rényi random graphs as might 
be deduced from Fountoulakis et al.19 
and Karp et al.20 All these results were 
proved through mathematical means; 
that is, they did not rely on experi-
ments conducted for certain graph 
sizes n but are valid for all graph sizes. 
For the proof of Theorem 1 see Doerr 
et al.,17 though here we outline a main 
argument that also explains why ru-
mor spreading in social networks is 
so speedy. 

Toward this goal, let A and B be 
neighboring nodes in Gn

m. We denote 
their degrees by dA and dB. Assume that 
A is informed and B is not. How does 
the rumor progress from A to B? Since 
A contacts its neighbors randomly, 
it will take approximately dA rounds 

surprisingly, nodes 
with few neighbors 
are crucial for quick 
dissemination. 



74    CoMMuniCATions of The ACM    |   june 2012  |   vol.  55  |   no.  6

contributed articles

until A contacts B; thus A pushes the 
news to B. Likewise, it takes an expect-
ed number of approximately dB time 
steps until B calls A, pulling the rumor 
from there. If dA and dB are large (such 
as n1/3), then it would take an expected 
number of almost 1/2n1/3 rounds to 

a third node C that is a neighbor of 
both A and B and has a small degree 
dC of, say, only four neighbors. After 
an expected number of roughly dC = 
4 rounds, C will have contacted A and 
thus learned the news from A. Like-
wise, after another expected number 
of dC = 4 rounds, C will have contacted 
B and told it the news. That is, in 2 · 
dC = 8 time steps, the rumor went from 
A to B through C. Fortunately, such a 
node C exists with high probability; 
the PA rule ensures newly entering 
nodes put enough preference on con-
necting with A and B. 

One mechanism enabling the 
spread of rumors in social networks is 
that small-degree nodes learn the ru-
mor from an informed neighbor, then 
quickly forward it to all other neigh-
bors. In a sense, they act as an auto-
matic link between their neighbors; 
once one neighbor is informed, then 
all other neighbors are informed—
without doing anything. Such a mech-
anism is missing (such as in complete 
graphs) because all nodes have a high 
degree of n − 1. Consequently, all 
neighbors of the starting-node A have 
a small probability of calling A and 
asking for the news; A is just one of 
their n – 1 neighbors. 

Also note that such high-speed 
links are abundant in PA graphs. To 
clarify, call a node popular if it has 
a degree of Θ(log(n)2) or higher. We 
can now show that between any two 
popular nodes, there is a path of 
length O(log(n)/log(log(n))) such that 
every second node on the path has 
the minimal possible degree of m. As 
per our assumptions, equations, and 
observations these nodes function as 
quick links, propagating rumors in 
an expected number of roughly 2·m 
rounds. Consequently, the expected 
time a rumor must traverse the whole 
path is about m times its length. With 
extra care, namely by showing there 
is a huge number of such paths be-
tween any two popular nodes, we can 
even show that once a popular node is 
informed, after O(log(n)/log(log(n))) 
rounds with high probability, all pop-
ular nodes are informed. 

Since nodes tend to attach to popu-
lar nodes, a rumor started in a small-
degree node is propagated to some 
popular node even quicker, namely in 
O(log(n)3/4 log(log(n))) rounds. Once all 

propagate the rumor from A to B along 
the direct link. 

Theorem 1 established a much 
smaller bound. Hence there must be a 
better way to get the news from A to B. 
It is the small-degree nodes that make 
the difference. Now assume there is 

figure 3. Average number of informed nodes over time for the Twitter network and  
comparable preferential attachment, random attachment, and complete graphs (size  
n = 51,217,936 nodes, density parameter m = 32). 
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Twitter network
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the two plots modeling social networks  
again outperform the random attachment  
and complete graph. 

figure 4. Average time needed to inform all nodes of different networks of varying size;  
the data shows logarithmic dependence for random-attachment and complete graphs. 
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For preferential attachment graph (a mathematical model for social networks), the times appear to 
be of lower order. note that the generally speedy propagation partially obscures the advantage of the 
preferential attachment network structure. Alternatively, if one is willing to include 16 rounds of rumor-
spreading communications between people (on average), then one can share a rumor with more than 
300,000 others, as in the preferential attachment model, but with only around 30,000 people organized 
in random-attachment fashion. 
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popular nodes are informed, a sym-
metric argument can show that after 
another O(log(n)3/4 log(log(n))) rounds, 
the remaining small-degree nodes, 
mostly by calling more popular nodes, 
would all be informed; for more, see 
Doerr et al.17 

Conclusion 
We simulated a natural rumor-spread-
ing process on various graphs repre-
senting real-world social networks 
and several classical network topolo-
gies. We also performed a mathe-
matical analysis of the process in PA 
graphs. Simulation and analysis both 
demonstrate the speediness of rumor 
spreading in social networks. 

A key observation in the mathe-
matical proof, as well as being a good 
explanation for this phenomenon, is 
that small-degree nodes learn a rumor 
once one of their neighbors knows it, 
then quickly forward it to their neigh-
bors. This propagation scheme facili-
tates sending rumors from one large-
degree node to another. 

How does this play out in everyday 
life? It partially explains why social 
networks are observed to spread in-
formation quickly, even though the 
process is not organized centrally, 
and the network is not designed in 
an intelligent way. Crucial is fruitful 
interaction between hubs with many 
connections and average users with 
few friends. Hubs make the news 
available to a big audience, whereas 
average users quickly convey the in-
formation from one neighbor to the 
next.  
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A rumor begun at 
a random node of 
the Twitter network 
reaches on average 
45.6 million of the 
total of 51.2 million 
members within 
only eight rounds  
of communication. 




