
A Parameterized Runtime Analysis of Evolutionary
Algorithms for MAX-2-SAT

Andrew M. Sutton Jareth Day Frank Neumann

School of Computer Science
University of Adelaide

Adelaide, SA 5005, Australia
{andrew.sutton, jareth.day, frank.neumann}@adelaide.edu.au

ABSTRACT
We investigate the MAX-2-SAT problem and study evolu-
tionary algorithms by parameterized runtime analysis. The
parameterized runtime analysis of evolutionary algorithms
has been initiated recently and reveals new insights into
which type of instances of NP-hard combinatorial optimiza-
tion problems are hard to solve by evolutionary computing
methods. We show that a variant of the (1+1) EA is a
fixed-parameter evolutionary algorithm with respect to the
standard parameterization for MAX-2-SAT. Furthermore,
we study how the dependencies between the variables affect
problem difficulty and present fixed-parameter evolutionary
algorithms for the MAX-(2,3)-SAT problem where the stud-
ied parameter is the diameter of the variable graph.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Theory, Algorithms, Performance

Keywords
Combinatorial Optimization, MAXSAT, Theory, Runtime
Analysis

1. INTRODUCTION
Bio-inspired computing methods such as evolutionary al-

gorithms [5] and ant colony optimization [3] have been widely
used for problems from combinatorial optimization. The
mentioned algorithms iteratively try to improve currently
best solutions during the optimization process and heavily
rely on the use of randomness for creating new solutions
and/or selecting solutions for the next iteration. Treating

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12, July 7–11, 2012, Philadelphia, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1177-9/12/07 ...$10.00.

evolutionary algorithms as a special type of randomized al-
gorithms allows them to be analyzed in a rigorous way. We
contribute to this line of research which has been very suc-
cessful during the last 15 years. This includes results on
artificial functions that rigorously point out the working
principles of bio-inspired algorithms as well as results for
a wide range of classical combinatorial optimization prob-
lems. A comprehensive presentation of such results can be
found in [1, 11].

Recently, evolutionary algorithms have been analyzed in
the framework of fixed-parameter tractability [4]. Here an
additional parameter to measure the hardness of an instance
is taken into account. Initial results in the field of evolution-
ary algorithms have been obtained for two NP-hard com-
binatorial optimization problems, namely the vertex cover
problem [10] and the problem of computing a spanning tree
with a maximal number of leaves [9]. We want to push for-
ward this relatively young line of research as it allows one to
figure out which type of instances of a given (NP-hard) com-
binatorial optimization problem is provably easy to solve by
evolutionary algorithms. Consequently, our runtime anal-
ysis will take into account the size of the given problem
denoted by n (as usual for the analysis of algorithms) and
an additional parameter k which measures the difficulty of
an instance.

We study the well-known MAX-SAT problem. MAX-
SAT is already NP-hard if the clauses have two variables
as this corresponds to the optimization of quadratic pseudo-
Boolean functions. We consider MAX-2-SAT and analyze
the runtime behavior of evolutionary algorithms for this
problem with respect to the standard parameterization, i.e.
the value of an optimal solution. Our analysis takes into ac-
count results on the fitness landscape of such instances [13]
by introducing a mutation operator that obeys Grover’s wave
equation [8] for MAX-2-SAT which has the interesting side-
effect of an existence proof of an elementary landscape for
the MAX-2-SAT problem. To our knowledge, this result is
novel. We employ this difference equation to show that the
(1+1) EA is a fixed-parameter algorithm for the standard
parameterization of MAX-2-SAT. This bridges for the first
time the field of runtime analysis and the study of landscapes
in the field of theory of evolutionary computation.

Afterwards, we turn our attention the MAX-(2,3)-SAT
problem which is an NP-hard subclass of MAX-2-SAT. We
consider a parameterization which takes into account the
degree of dependencies between the different variables. In
the variable graph of a given MAX-(2,3)-SAT problem, the

433

nodes are given by the Boolean variables of the problem
and there is an edge between any pair of variables if they
are present in the same clause. The parameter that we an-
alyze is the diameter of the variable graph. We show that
the (1+1) EA is a randomized XP-algorithm for this prob-
lem and show how a more global search behavior taking
into account the variable graph can lead to fixed-parameter
randomized algorithms. Furthermore, we explore different
more local evolutionary algorithms working on the variable
graph and show that these are fixed-parameter evolutionary
algorithms for MAX-(2,3)-SAT.

The content of the paper is as follows. In Section 2, we
introduce the MAX-2-SAT problem and the concept of pa-
rameterized analysis. In Section 3, we show that the clas-
sical (1+1) EA is a fixed-parameter evolutionary algorithm
with respect to the standard parameterization. Section 4
analyzes the MAX-(2,3)-SAT problem parameterized by the
diameter of the variable graph and shows that evolutionary
algorithms are fixed-parameter algorithms for this problem.
Furthermore, we present additional fixed-parameter evolu-
tionary algorithms acting more locally for the MAX-(2,3)-
SAT in Section 5. We summarize our findings with some
concluding remarks.

2. PRELIMINARIES
The maximum 2-satisfiability problem (MAX-2-SAT) is

a classic optimization problem in which, given a Boolean
formula in conjunctive normal form where each clause is of
cardinality exactly two,1 one must find an assignment to
its variables that satisfies the maximum number of clauses.
Despite its apparent simplicity, the MAX-2-SAT problem
belongs to the class of NP-hard problems [7].

An instance of a MAX-2-SAT problem is represented as a
collection of m unique clauses

C = {(`1,1 ∨ `1,2), (`2,1 ∨ `2,2), . . . , (`m,1 ∨ `m,2)}

where each `i,j is a Boolean variable or its negation. The set
of all assignments to a set of n Boolean variables is isomor-
phic to {0, 1}n by interpreting each position of the string as
the state of exactly one Boolean variable vi (i.e., a 1 cor-
responds to vi = true ; a 0 corresponds to vi = false).
Thus, given a MAX-2-SAT instance with n variables and m
clauses, we represent candidate solutions to the instance as
length-n bitstrings and define the function2 f : {0, 1}n →
{0}∪ [m] where f(x) counts the elements in C that are satis-
fied under the assignment corresponding to x ∈ {0, 1}n. The
task is then reduced to the optimization of a pseudo-Boolean
function f .

In this paper we rigorously analyze the runtime character
of the (1+1) EA maximizing the pseudo-Boolean function
f . The (1+1) EA is defined as follows.

Algorithm 1: The (1+1) EA.

Choose x uniformly at random from {0, 1}n;1

repeat forever2

x′ ← mutate(x);3

if f(x′) ≥ f(x) then x← x′4

1Some authors refer to this as MAX-E2-SAT.
2For a natural number n, throughout the paper we denote
the set {1, . . . , n} as [n].

The mutate() procedure is a randomized operator that
negates some elements of the current string to produce a
new string. Since the (1+1) EA relies on random deci-
sions, we consider it as a special case of a randomized al-
gorithm. We view the (1+1) EA as an infinite stochastic

process (x(1), x(2), . . .) where x(t) denotes the string that the
(1+1) EA produces in iteration t. For a given instance of
MAX-2-SAT, let fmax = maxx∈{0,1}n f(x). We denote as

T the lowest value of t such that f(x(t)) = fmax. T is a
discrete random variable over N, and we can measure the
expected optimization time of the (1+1) EA as E(T), the
expectation of T .

Recently, the concept of parameterized analysis has been
introduced into the theoretical analysis of evolutionary al-
gorithms [10, 9]. Parameterized analysis allows for a more
detailed understanding of the source of runtime complexity
for NP-hard combinatorial optimization problems. A param-
eterized analysis expresses the runtime of an algorithm not
only in terms of the size of the problem, but also as a func-
tion of a parameter that somehow measures the difficulty of
the problem.

A parameterized problem (L, κ) consists of a language L
over a finite alphabet Σ and a parameterization κ : Σ∗ → N.
(L, κ) is fixed-parameter tractable if there is an algorithm

that decides x ∈ L in time bounded by g(κ(x)) · |x|O(1)

where g : N → N is an arbitrary recursive function. Such
an algorithm is called an fpt-algorithm and the problem class
FPT consists of all decision problems that can be decided by
an fpt-algorithm. A problem L is in the class XP if there is an
algorithm that decides x ∈ L in time bounded by |x|g(κ(x))
for some computable function g.

A Monte Carlo fpt-algorithm for (L, κ) is a randomized
fpt-algorithm such that for all x ∈ Σ∗ that in time bounded
by g(κ(x)) · |x|O(1) will accept x with probability at least
1/2 if x ∈ L and with probability 0 if x /∈ L. Similarly, a
Monte Carlo XP-algorithm for (L, κ) is a randomized algo-
rithm that, for all x ∈ Σ∗, if x ∈ L accepts x with probabil-
ity at least 1/2 in time |x|g(κ(x)), otherwise it accepts with
probability 0.

An evolutionary algorithm is a fixed-parameter evolution-
ary algorithm for a parameterized problem (L, κ) if its ex-
pected optimization time E(T) is bounded above by g(κ(x))·
|x|O(1). Similarly, an evolutionary algorithm is an XP evolu-

tionary algorithm if its runtime is bounded above by |x|g(κ(x)).
We will later see that when the parameterization is related to
the optimal solution of a combinatorial optimization prob-
lem, then a fixed-parameter evolutionary algorithm can be
transformed into a Monte Carlo fpt-algorithm.

3. MAX-2-SAT
We now introduce a simple parameterized result for the

(1+1) EA that connects the field of runtime analysis to the
study of fitness landscapes. We devise a particular mutation
operator that allows the (1+1) EA to at least make local
improvements in such a way that it is guaranteed to reach
a solution of a specific fitness in expected polynomial time.

3.1 Uniform-complement mutation
The standard (uniform) mutation operator in the tradi-

tional implementation of the (1+1) EA generates an off-
spring of x ∈ {0, 1}n by flipping each bit of x with prob-
ability 1/n. In uniform-complement mutation, we proceed

434

similarly, except we also include with constant probability
the complement of x, that is, the string obtained by flipping
all bits of x.

Function uniform-complement-mutate(x)

y ← x;1

choose r ∈ [0, 1] uniformly at random;2

if r < 1/2 then3

flip each bit of y with probability 1/n;4

else5

flip each bit of y with probability 1;6

return y;7

We point out that uniform mutation can also generate the
complement of x with finite probability. The distinction is
that the probability of obtaining the complement of x under
uniform-complement mutation is a constant, whereas it is
O(n−n) under uniform mutation. This constant probability
to generate the complement is vital to our analysis.

The uniform-complement operator induces a connectiv-
ity on {0, 1}n which obeys a strict difference equation from
the theory of landscapes usually attributed to Grover [8] on
MAX-2-SAT. This property will allow us to prove that the
(1+1) EA discovers solutions of a certain quality in polyno-
mial time.

Consider a MAX-2-SAT problem with n variables and m
clauses. Given an element x ∈ {0, 1}n, we denote N(x)
as the set constructed from taking the union of immediate
Hamming neighbors of x and the complement of x. We have
the following result

Lemma 1. For all x ∈ {0, 1}n,∑
y∈N(x)

f(y) = 3m+ (n− 3)f(x).

Proof. Denote as ci : {0, 1}n → {0, 1} the indicator
function that evaluates to 1 if and only if clause i is sat-
isfied by the assignment corresponding to x.

If the i-th clause is not satisfied by x, then there are ex-
actly three elements y ∈ N(x) under which it is satisfied:
the two distinct Hamming neighbors that negate each vari-
able appearing in the clause, and the element corresponding
to the complement of x, which negates both variables in the
clause.

If the i-th clause is satisfied by x then at least one of its
literals evaluates to true under x. In the case that exactly
one of its literals evaluates to true, then there is exactly
one element y ∈ N(x) in which the clause is not satisfied
(corresponding to the negation of the variable involved in
the true literal). If both its literals evaluate to true under
x, then there is exactly one element in N(x) such that the
clause is not satisfied (corresponding to the complement of
x). Hence we can write ci as∑
y∈N(x)

ci(y) = 3(1−ci(x))+(|N(x)|−1)ci(x) = 3+(n−3)ci(x).

Since f(x) =
∑m
i=1 ci(x), we have∑

y∈N(x)

f(y) =

m∑
i=1

(
3 + (n− 3)ci(x)

)
= 3m+ (n− 3)f(x).

This completes the proof.

Lemma 1 states that Grover’s equation holds for MAX-
2-SAT under uniform-complement mutation. Equivalently,
this means that the fitness landscape induced by the uniform-
complement operator and that MAX-2-SAT fitness function
corresponds to an elementary landscape [14]. The existence
of a move operator that induces an elementary landscape for
the MAX-2-SAT problem was, to our knowledge, previously
unknown. One immediate result we can obtain from this
condition is that solutions of certain quality can be gen-
erated in polynomial time by making local improvements.
This is due to the fact that, on such a landscape, local op-
tima (with respect to N) cannot have arbitrarily poor fit-
ness.

Lemma 2. The (1+1) EA using uniform-complement mu-
tation finds a solution x′ where f(x′) ≥ 3

4
m after an expected

O(mn) iterations.

Proof. We first prove that after a polynomial number
of mutation steps, the (1+1) EA has reached a solution x′

such that for all y ∈ N(x′), f(y) ≤ f(x). Let x be the
current state generated by the (1+1) EA . If there are no
states y ∈ N(x) with strictly improving fitness, then clearly
x′ = x.

On the other hand, suppose there exists at least one state
y ∈ N(x) with f(y) > f(x). We show that in this case,
the probability that mutation generates the specific improv-
ing state in N(x) is Ω(1/n). We make the following case
distinction.

Case 1. The complement of x is an improving state. In
this case, uniform-complement mutation generates an
improving state with probability at least 1/2.

Case 2. A Hamming neighbor of x is an improving state.
The mutation operator generates a specific Hamming
neighbor with probability

1

2

[
1

n

(
1− 1

n

)n−1
]
≥ 1

2en
= Ω(1/n).

It follows that the waiting time to make an improvement
from such a state is at most O(n). The number of improve-
ments made by the (1+1) EA is bounded by the cardinality
of the codomain. Hence the (1+1) EA can reach a state x′

such that no improving moves exist in N(x′) in expected
time bounded by O(mn).

It is now straightforward to show that Lemma 1 entails a
bound on the fitness of x′. In particular, consider

1

|N(x′)|
∑

y∈N(x)

f(y) ≤ f(x′),

since otherwise the assumption that no improving states ex-
ist in N(x′) would be contradicted. By Lemma 1,

1

|N(x′)|
(
3m+ (n− 3)f(x′)

)
≤ f(x′),

and since |N(x′)| = n+ 1,

3m

(n+ 1)
+

(n− 3)

(n+ 1)
f(x′) ≤ f(x′).

It follows from simple algebraic manipulation of the above
inequality that f(x′) ≥ 3

4
m which completes the proof.

435

The above result depends on the fact that, on MAX-2-
SAT, the complement operation can escape certain lower-
quality states that the Hamming neighborhood cannot. It is
possible to have a state with no improving Hamming neigh-
bors that does not satisfy the quality bound of 3

4
m. As an

example, consider a Boolean formula constructed as follows.
Let Ai,j be the 3-set of clauses defined on two variables vi
and vj

Ai,j = {(¬vi ∨ ¬vj), (¬vi ∨ vj), (vi ∨ ¬vj)}.

We construct a MAX-2-SAT instance on 2q variables by tak-
ing the union of q 3-sets of clauses

A1,2 ∪A3,4 ∪ · · · ∪A2q−1,2q.

Thus for this instance, m = 3q. Let x̂ = (111 · · · 1) be the
length-2q bitstring of all ones. The assignment correspond-
ing to x̂ satisfies the two clauses in each set Ai,j that contain
non-negated variables.

Consider a Hamming neighbor of x̂ that is generated by
flipping some bit i that, without loss of generality, corre-
sponds to variable vi of the instance. Since vi only appears
in clauses that are in Ai,j , it suffices to inspect the effect on
Ai,j . In this case, the clause (¬vi ∨ ¬vj) becomes satisfied,
while the clause (vi ∨ ¬vj) becomes unsatisfied. The clause
(¬vi ∨ vj) remains satisfied and so the number of satisfied
clauses of the instance remains the same under the Ham-
ming neighbor. Hence no Hamming neighbor of x̂ can be an
improving state. Since x̂ satisfies 2 clauses in each set Ai,j ,
we have

f(x̂) = 2q =
2

3
m <

3

4
m.

In this example, however, the state generated by taking the
complement of x̂ satisfies all m clauses.

3.2 Standard parameterization
Assuming maximization, given a combinatorial optimiza-

tion problem Q with maximum evaluation OPTQ, the stan-
dard parameterization of Q is the parameterized problem
where, given an instance of Q of size n and a parameter
k, the task is to decide whether OPTQ ≥ k [6]. Using the
previous results, we now show that the (1+1) EA, under
uniform-complement mutation, is a fixed-parameter evolu-
tionary algorithm with respect to the standard parameteri-
zation of MAX-2-SAT.

Theorem 1. The (1+1) EA using uniform-complement mu-
tation solves the standard parameterization of MAX-2-SAT
with n variables and m clauses in O

(
max{mn, k2.67·k}

)
ex-

pected time.
Furthermore, after O(max{mn2, nk2.67·k}) iterations, the

(1+1) EA using uniform-complement mutation has solved
the standard parameterization of MAX-2-SAT almost surely.

Proof. Let T denote the random variable that corre-
sponds to the first time that the (1+1) EA using uniform-
complement mutation has solved the standard parameteri-
zation of MAX-2-SAT.

We make the following case distinction. First, suppose
that m ≥ 4

3
k. In this case, by Lemma 2, (1+1) EA has

found a solution f(x) ≥ 3
4
m ≥ k after an expected O(mn)

steps and hence E(T) = O(mn). Now suppose that m < 4
3
k.

Since there are at most 2m variables, the number of variables
n is bounded by 8

3
k. The probability that the (1+1) EA

transforms an arbitrary assignment into an optimal assign-

ment is at least (1/n)n ≥ ((8/3)k)−(8/3)k. In this case
E(T) = O(k2.67·k) which is a function that depends only
on k.

For the tail bound, we need only to appeal to the Markov
inequality (see, e.g., [2]) which states that, for a non-negative
random variable T , Pr(T ≥ λE(T)) ≤ λ−1 for all λ ≥ 1.
Suppose m ≥ 4

3
k. Letting c ≥ 1 be an arbitrary constant,

by the Markov inequality we have

Pr(T ≥ cmn2) ≤ 1/cn.

In the case that m < 4
3
k,

Pr(T ≥ cnk2.67·k) ≤ 1/cn.

Hence the probability that the (1+1) EA has solved the
standard parameterization in O(max{mn2, nk2.67·k}) steps
is 1− o(1).

Note that in the case of the standard parameterization, a
fixed-parameter evolutionary algorithm can be transformed
into a Monte Carlo fpt-algorithm as follows. If OPTQ ≤ k,
then the probability that the fixed-parameter evolutionary
algorithm finds the optimal solution in 2E(T) is at least 1/2
by the Markov inequality. On the other hand, if OPTQ > k,
no solution of fitness at most k exists. Therefore running
the evolutionary algorithm for twice the expected runtime
yields a Monte Carlo fpt-algorithm for the decision problem.

4. MAX-(2,3)-SAT
We now turn our attention to more interesting parame-

terizations. In particular, we introduce a variant of MAX-2-
SAT that we can analyze with respect to a parameter that
somehow measures the source of complexity inherent in the
structure of the problem itself.

The MAX-(2,3)-SAT problem is a restricted class of MAX-
2-SAT in which each variable appears in at most 3 clauses
of the formula. Though slightly more restrictive, the MAX-
(2,3)-SAT problem is still NP-hard [12]. Thus, assuming
P 6= NP, the expected runtime of an evolutionary algorithm
must be superpolynomial. We now perform a parameterized
analysis of the (1+1) EA on the MAX-(2,3)-SAT problem
in order to express the runtime as a function that isolates
the source of the exponential complexity in a parameter.

Denote as G(V,E) the variable graph of an instance where
V corresponds to the set of variables and

E = {{u, v} ⊂ V : u and v appear together in a clause}.

We define the diameter of a (possibly disconnected) graph
G(V,E) as the maximum shortest-path distance in any of
its connected components.

Lemma 3. Consider a MAX-(2,3)-SAT formula in which
the diameter of the variable graph is bounded by k. Then for
any variable v ∈ V , the size of the connected component in
G(V,E) which contains v is bounded by 3 · 2k − 2.

Proof. Let v be an arbitrary variable. Denote as C(v) ⊆
V the set of all nodes reachable on a path from v in G.
Consider the breadth-first tree in G rooted at v. Since the
degree of each vertex is bounded by 3 and the depth of the
tree is bounded by k, there can be at most 3 children of the
root, and each internal node can have at most 2 children.
The number of nodes in this tree is hence bounded by

1 + 3 + 3 · 2 + · · ·+ 3 · 2k−1 = 3 · 2k − 2 ≥ |C(v)|.

436

Since the subgraph of G(V,E) induced by C(v) corresponds
to the connected component containing v, the proof is com-
plete.

4.1 An XP evolutionary algorithm
Using Lemma 3, we can prove that as long as the diameter

k of the variable graph is not too large, improving mutations
are somehow close by in terms of Hamming distance. This
results in an XP evolutionary algorithm in the parameter k,
meaning that the expected runtime is bounded by a function
of the form ng(k) where g depends only on k. We point out
that the following theorem also follows from a result due to
Wegener and Witt [15, Theorem 5.2] on separable quadratic
functions with the slight modification that the size of the
codomain of the fitness function can be restricted to O(m).

Theorem 2. Let F be a MAX-(2,3)-SAT formula where
the diameter of the variable graph is bounded by k. Then
the expected runtime of the (1+1) EA on F is bounded by

O(mn3·2k−2). In other words, the (1+1) EA is an XP evo-
lutionary algorithm for MAX-(2,3)-SAT.

Proof. The set of variables can be partitioned into sets
C = {C1, C2, . . . , Cq} representing the connected compo-
nents in G. Consider the i-th component Ci. Denote as
fi(x) the number of clauses containing a variable from Ci
satisfied by the assignment corresponding to x and let

ai = max
z∈{0,1}n

fi(z).

Since C partitions the clause set, optimal value of f is a1 +
a2 + · · ·+ aq.

As long as f(x) is suboptimal, there exists a component
Ci such that fi(x) < ai. We show that in this case there al-
ways exists an improving move within a bounded Hamming
distance. Let z ∈ {0, 1}n be a string such that fi(z) = ai.
Denoting as x[j] the j-th component of the bitstring x and
vj the corresponding Boolean variable in V , we define the
bitstring x′ as follows.

x′[j] =

{
z[j] if vj ∈ Ci;
x[j] otherwise.

It follows that fi(x
′) = fi(z) = ai. Moreover, C partitions

V , so fj(x) = fj(x
′) for all j ∈ [q] \ {i}. Thus we have

f(x′) = f(x)− fi(x) + ai and therefore f(x′) > f(x).
Let d denote the number of bits that differ between x and

x′. The probability that the (1+1) EA transforms x into
x′ under uniform mutation is (1/n)d(1− 1/n)n−d. Invoking
Lemma 3, d ≤ |Ci| ≤ 3 · 2k − 2. Hence, as long as x is
suboptimal, the probability of making an improving move is

bounded below by e−1n−(3·2k−2). The number of steps until
an improving move is found is thus distributed geometrically

with expectation bounded by O(n3·2k−2). Finally, there are
at most m suboptimal values of f , providing the claimed
bound.

4.2 A fixed-parameter evolutionary algorithm
In this section, we investigate a method to produce a fixed-

parameter tractable algorithm for the MAX-(2,3)-SAT prob-
lem, yielding a runtime exponential in k but polynomial in
n.

Following the format of the previous section, we consider
the sets C = {C1, C2, . . . , Cq} representing the connected

Figure 1: Probability characteristics of the Simple
FPT (1+1) EA . Variable x′i at depth 0 is the se-
lected variable. White variables are flipped, black
variables are unflipped.

components in G(V,E). We use fi(x) to represent the num-
ber of clauses in component Ci satisfied by x, and ai to rep-
resent the optimum value of fi. We define the component
which contains the Boolean variable vj to be C(vj).

Algorithm 3: The FPT (1+1) EA.

Choose x uniformly at random from {0, 1}n;1

repeat forever2

x′ ← x;3

Select i ∈ [n] uniformly at random;4

Let vi be the Boolean variable corresponding to5

element i of x;
Flip all bits of x′ corresponding to vj ∈ C(vi) with6

probability 1
2
;

if f(x′) ≥ f(x) then x← x′7

Algorithm 3 uses the (1+1) EA structure as defined in
Section 2. The mutation used in this FPT algorithm selects
a bit of the solution uniformly at random and flips all bits
within the selected variable’s set with probability 1/2, as
demonstrated by Figure 1. If the resultant solution is at
least as fit as the original solution, the new solution replaces
the original solution.

Theorem 3. Let F be a MAX-(2,3)-SAT formula in which
the diameter of the variable graph is bounded by k. Then the
expected runtime of the FPT (1+1) EA on F is bounded by

O(n logn · 2(3·2k−2)).

Proof. We analyze the waiting time to generate a so-
lution that satisfies all the clauses in each connected com-
ponent. Given a state x, a component Ci is solved by x if
fi(x) = ai. Otherwise, it is unsolved by x. A solution is
optimal if and only if it solves all the connected components
of G(V,E). From line 5 of Algorithm 3, if a variable is se-
lected for flipping, each variable in its connected component
in G(V,E) will also be flipped with probability 1/2. If the
mutation process selects a variable in an unsolved compo-
nent Ci, the probability of generating a state that also solves
Ci (and thus increases the overall fitness) is at least

(1/2)|Ci| ≥ (1/2)3·2
k−2

since Lemma 3 appropriately bounds |Ci|.
Suppose that j > 0 connected components are unsolved

by x. The probability that mutation selects a variable that

437

belongs to an unsolved component is j/n. Hence the prob-
ability of producing a state that also solves at least one un-
solved component is

j

n
· 2−(3·2k−2).

Since only monotonically improving moves are accepted and
G(V,E) has at most n connected components, the total wait-
ing time until all components are solved is bounded above
by the series

n∑
j=1

n

j
· 23·2k−2 = O(n logn · 23·2k−2),

yielding the claimed result.

5. ALTERNATIVE FPT ALGORITHMS
When the connected components of the variable graph

are large, flipping all the variables within a component with
constant probability is somewhat disruptive and thus contra-
dicts the philosophy of a localized mutation operator since
many variables are likely to be changed at once. Indeed,
when there is a single connected component, Algorithm 3
essentially resorts to a uniform random search in {0, 1}n.
To address this, we introduce in this section three alter-
native fixed-parameter evolutionary algorithms which make
less disruptive changes by attenuating the probability of
changing variables that are further away in G(V,E) from
the variable selected for mutation.

5.1 Modified FPT (1+1) EA
The Modified FPT (1+1) EA utilizes probability attenu-

ation in order to achieve a more natural solution that flips
nodes with a lesser probability the further they are from the
selected variable. This creates a more practical approach, al-
beit one with a greater upper bounds on the expected time
to completion.

Algorithm 4: The Modified FPT (1+1) EA.

Choose x uniformly at random from {0, 1}n;1

repeat forever2

x′ ← x;3

Select i ∈ [n] uniformly at random;4

Let vi be the Boolean variable corresponding to5

element i of x′;
Su ← {vi};6

Sv ← ∅;7

c← 1;8

while Su 6= ∅ do9

Flip all bits of x′with corresponding variables in10

Su with probability
(
1
2

)c
;

Sv ← Sv ∪ Su;11

c← c+ 1;12

Su ← {v ∈ V \ Sv : ∃ ({v, v′} ∈ E ∧ v′ ∈ Sv)};13

if f(x′) ≥ f(x) then x← x′14

The Modified FPT (1+1) EA detailed in Algorithm 4 has
a decreasing probability of flipping bits the further they are
from the selected bit. The mutation maintains a set of vis-
ited nodes Sv, and determines the set of unvisited adjacent
nodes Su. The bits in x′ corresponding to Boolean variables

in Su are flipped with probability 1/2 raised to the power
of the distance from the originally selected variable vi, as
demonstrated by Figure 2. If the modified solution is at
least as fit as the original solution, the new solution replaces
the original solution.

Figure 2: Probability characteristics of the Modi-
fied FPT (1+1) EA . Variable x′i at depth 0 is the
selected variable. White variables are flipped, black
variables are unflipped.

Theorem 4. Let F be a MAX-(2,3)-SAT formula in which
the diameter of the variable graph is bounded by k. Then
the expected runtime of the modified FPT (1+1) EA on F is

bounded by O(n logn · 2(3k·2k−2k)).

Proof. As the diameter of the variable graph is bounded
by k, the maximum graph distance from any selected vari-
able to any other variable within the component is k. Thus,
the probability to flip each bit is bounded below by (1/2)k.
With this, we may determine the runtime in the same man-
ner as in Theorem 3.

Again, we say a connected component Ci is solved by a
state x if fi(x) = ai. Suppose a variable in an unsolved
component Ci is selected during mutation. The probability
in this case of generating a state which solves Ci is at least

((1/2)k)|Ci| ≥ (1/2)(3·2
k−2)k

where the bound on |Ci| comes from Lemma 3.
If j > 0 components are unsolved by x, the probability of

producing a state that solves at least one of the components
is

j

n
· 2(−(3·2k−2)k).

Since there are at most n connected components in G(V,E),
the waiting time until all components are solved is bounded
by the series

n∑
j=1

n

j
· 2(3·2k−2)k = O(n logn · 23k·2k−2k),

thus providing the claimed runtime bound.

5.2 Propagation FPT (1+1) EA
In this section, we propose two final FPT (1+1) EAs for

the MAX-(2,3)-SAT problem. The algorithms presented by
Algorithm 5 and 6 utilize probability propagation. Rather
than flipping arbitrary nodes based on their distance from
the selected variable, these algorithms flip only variables ad-
jacent to previously flipped variables. This results in an
algorithm with an easier implementation.

Algorithm 5, the Propagation FPT (1+1) EA, uses a local
probability for each variable of 1/2 rather than the global

438

Algorithm 5: The Propagation FPT (1+1) EA.

Choose x uniformly at random from {0, 1}n;1

repeat forever2

x′ ← x;3

Select i ∈ [n] uniformly at random;4

Let vi be the Boolean variable corresponding to5

element i of x′;
Su ← {vi};6

Sv ← ∅;7

while Su 6= ∅ do8

Sf ← ∅;9

foreach v ∈ Su do10

Choose r ∈ [0, 1] uniformly at random;11

if r < 1
2

then12

Flip the bit of x′ corresponding to v;13

Sf ← Sf ∪ {v};14

Sv ← Sv ∪ Su;15

Su ← {v ∈ V \ Sv : ∃ ({v, v′} ∈ E ∧ v′ ∈ Sf)};16

if f(x′) ≥ f(x) then x← x′17

calculation from Algorithm 4. As before, the mutation main-
tains a set of visited nodes Sv, and determines the set of
unvisited adjacent nodes Su. In Algorithm 5, however, bits
are flipped with probability 1/2, with flipped bits stored in
a third set Sf . Propagation to the adjacent unvisited nodes
only occurs if the current bit flips. The bits in x′ corre-
sponding to Boolean variables in Su are thus flipped with
probability 1/2 raised to the power of the distance from the
originally selected variable vi only if the previous bit was
flipped. An example of this behaviour can be seen in Fig-
ure 3. If the modified solution is as least as fit as the original
solution, the new solution replaces the original solution.

Figure 3: Probability characteristics of the Propa-
gation FPT (1+1) EA . Variable x′i at depth 0 is the
selected variable. White variables are flipped, black
variables are unflipped. The gray variable at depth
2 is unreachable and hence can not be flipped.

Theorem 5. Let F be a MAX-(2,3)-SAT formula in which
the diameter of the variable graph is bounded by k. Then the
expected runtime of the propagation FPT (1+1) EA on F is

bounded by O(n logn · 2(3·2k−2)2).

Proof. Suppose a variable v is selected for mutation.
The variable negation process propagates out from v such
that each subsequently flipped variable lies on a simple path
of already-flipped variables of length d to v in G(V,E). Dur-
ing this process, the variable is flipped only if its neighbor on
the path to v was flipped, and in that case with probability

1/2. Therefore, the probability that the variable is flipped is
(1/2)d+1 for some d > 0. Since the length of a simple path
in G(V,E) is bounded above by the cardinality of its largest
connected component, Lemma 3 applies and the probability
the process flips a variable in the same connected component

as v is at least (1/2)3·2
k−2.

Let x be a suboptimal solution. If a variable in an un-
solved component Ci is selected during mutation, the prob-
ability of generating a state which also solves Ci is at least

((1/2)3·2
k−2)|Ci| ≥ (1/2)(3·2

k−2)2 .

The remainder of the proof follows the proof of Theorem 4
by imposing a bound on the probability of generating a new
state x′ in which at least one more component is solved than
x. Again, if there are j unsolved components, the waiting
time until such an improving move is generated is at most

(n/j)·2(3·2k−2)2 . Since the number of connected components
in G(V,E) is at most n, summing over the waiting times

yields the bound O(n logn · 2(3·2k−2)2).

This result is undesirable since it is somewhat larger than
the runtime bound on Algorithm 4 given by Theorem 4. This
can be solved by imposing a limit on the length of the path
to the initial variable. Algorithm 6 performs this function
by continuing to visit but not flipping variables along the
path after an unflipped variable.

Algorithm 6: The Modified Propagation FPT
(1+1) EA.

Choose x uniformly at random from {0, 1}n;1

repeat forever2

x′ ← x;3

Select i ∈ [n] uniformly at random;4

Let vi be the Boolean variable corresponding to5

element i of x′;
Su ← {vi};6

Sv ← ∅;7

Sd ← ∅;8

while Su 6= ∅ and Su 6⊂ Sd do9

Sf ← ∅;10

foreach v ∈ Su \ Sd do11

Choose r ∈ [0, 1] uniformly at random;12

if r < 1
2

then13

Flip the bit of x′ corresponding to v;14

Sf ← Sf ∪ {v};15

Sv ← Sv ∪ Su;16

Su ← {v ∈ V \ Sv : ∃ ({v, v′} ∈ E ∧ v′ ∈ Sv)};17

Sd ← Sd ∪ (Su \ Sf);18

if f(x′) ≥ f(x) then x← x′19

This modification is implemented simply by marking the
children of unflipped nodes as disallowed, unable to flip. By
maintaining another set of disallowed variables Sd, the prop-
agation algorithm investigates the variables in a tree-like
search, maintaining the k bounds for the distance from the
selected variable to any other. This modification creates a
much stricter behaviour as demonstrated in Figure 4. Note
that the probability propagation follows a directed acyclic
path from the root to strictly deeper nodes. The probabil-
ity of any node being flipped is dependent on at least one

439

of its parents being flipped. The joint distribution of any
component (or indeed any set of components) C can thus
be written as

p(C) =
∏
v∈C

p(v|pa(v)),

where pa(v) is the set of parents of v, demonstrating that
the graph is a Bayesian network.

Figure 4: Probability characteristics of the Modified
Propagation FPT (1+1) EA . Variable x′i at depth 0
is the selected variable. White variables are flipped,
black variables are unflipped. The gray elements at
depth 2 and 3 are located after an unflipped variable
and hence will also not be flipped. Note that one of
the gray variables has an adjacent flipped node; to
be viable for flipping, a variable must have a flipped
parent at one depth shallower.

Theorem 6. Let F be a MAX-(2,3)-SAT formula in which
the diameter of the variable graph is bounded by k. Then the
expected runtime of the modified propagation FPT (1+1) EA

on F is bounded by O(n logn · 2(3k·2k−2k)).

Proof. Each variable within a component is flipped with
probability 1/2 if and only if its parent was also flipped. As
the maximum path length of the propagation is bounded by
k, this provides a lower bound on the probability for each bit
flip of (1/2)k. Using this probability, the rest of this proof
proceeds exactly as in Theorem 4.

6. CONCLUSION
The MAX-SAT problem is one of the most famous NP-

hard optimization problems. The parameterized runtime
analysis of evolutionary algorithms provides new insights
into the behavior of evolutionary algorithms because it al-
lows one to measure the difficulty of instances of an NP-hard
combinatorial optimization problem by taking an additional
parameter into account. In this paper, we have carried out
a parameterized analysis of evolutionary algorithms for the
MAX-2-SAT problem. Using results from the field of el-
ementary landscapes, we have shown that the well-known
(1+1) EA is a fixed-parameter algorithm with respect to the
standard parameterization. Furthermore, we have analyzed
the class of MAX-(2,3)-SAT problems with respect to the
diameter of the variable graph. Our results show that the

classical (1+1) EA is an XP-algorithm for this problem. Fur-
thermore, we have shown that a mutation operator based on
the structure of the variable graph leads to fixed-parameter
evolutionary algorithms for this problem.

7. REFERENCES
[1] A. Auger and B. Doerr, editors. Theory of

Randomized Search Heuristics: Foundations and
Recent Developments. World Scientific, 2011.

[2] B. Doerr. Analyzing randomized search heuristics:
Tools from probability theory. In Auger and Doerr [1].

[3] M. Dorigo and T. Stützle. Ant Colony Optimization.
MIT Press, 2004.

[4] R. G. Downey and M. R. Fellows. Parameterized
Complexity. Springer, 1999.

[5] A. Eiben and J. Smith. Introduction to Evolutionary
Computing. Springer, 2nd edition, 2007.

[6] J. Flum and M. Grohe. Parameterized complexity
theory. Springer-Verlag, 2006.

[7] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer.
Some simplified NP-complete graph problems.
Theoretical Computer Science, 1(3):237–267, 1976.

[8] L. K. Grover. Local search and the local structure of
NP-complete problems. Operations Research Letters,
12:235–243, 1992.

[9] S. Kratsch, P. K. Lehre, F. Neumann, and P. S.
Oliveto. Fixed parameter evolutionary algorithms and
maximum leaf spanning trees: A matter of mutation.
In R. Schaefer, C. Cotta, J. Kolodziej, and
G. Rudolph, editors, Eleventh International
Conference on Parallel Problem Solving from Nature
(PPSN XI), volume 6238 of Lecture Notes in
Computer Science, pages 204–213. Springer, 2010.

[10] S. Kratsch and F. Neumann. Fixed-parameter
evolutionary algorithms and the vertex cover problem.
In Proceedings of the Eleventh Annual Conference on
Genetic and Evolutionary Computation, GECCO ’09,
pages 293–300, New York, NY, USA, 2009. ACM.

[11] F. Neumann and C. Witt. Bioinspired Computation in
Combinatorial Optimization – Algorithms and Their
Computational Complexity. Springer, 2010.

[12] V. Raman, B. Ravikumar, and S. S. Rao. A simplified
NP-complete MAXSAT problem. Information
Processing Letters, 65(1):1–6, 1998.

[13] C. M. Reidys and P. F. Stadler. Combinatorial
landscapes. SIAM Review, 44:3–54, 2002.

[14] P. F. Stadler. Toward a theory of landscapes. In
R. Lopéz-Peña, R. Capovilla, R. Garćıa-Pelayo,
H. Waelbroeck, and F. Zertruche, editors, Complex
Systems and Binary Networks, pages 77–163. Springer
Verlag, 1995.

[15] I. Wegener and C. Witt. On the analysis of a simple
evolutionary algorithm on quadratic pseudo-Boolean
functions. Journal of Discrete Algorithms, 3(1):61–78,
2005.

440

