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a b s t r a c t

The hypervolume indicator is an increasingly popular set measure to compare the quality
of two Pareto sets. The basic ingredient of most hypervolume indicator based optimization
algorithms is the calculation of the hypervolume contribution of single solutions regarding
a Pareto set. We show that exact calculation of the hypervolume contribution is #P-hard
while its approximation is NP-hard. The same holds for the calculation of the minimal
contribution. We also prove that it is NP-hard to decide whether a solution has the least
hypervolume contribution. Even deciding whether the contribution of a solution is at most
(1 + ε) times the minimal contribution is NP-hard. This implies that it is neither possible
to efficiently find the least contributing solution (unless P = NP) nor to approximate it
(unless NP = BPP).

Nevertheless, in the second part of the paperwe present a fast approximation algorithm
for this problem. We prove that for arbitrarily given ε, δ > 0 it calculates a solution with
contribution atmost (1+ε) times theminimal contributionwith probability at least (1−δ).
Though it cannot run in polynomial time for all instances, it performs extremely fast on
various benchmark datasets. The algorithm solves very large problem instances which are
intractable for exact algorithms (e.g., 10,000 solutions in 100 dimensions) within a few
seconds.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Multi-objective optimization deals with the task of optimizing several objective functions at the same time. As these
functions are often conflicting, we cannot aim for a single optimal solution but for a set of Pareto optimal solutions.
Unfortunately, the Pareto set frequently grows exponentially in the problem size. In this case, it is not possible to compute
the whole front efficiently and the goal is to compute a good approximation of the Pareto front.

There are many indicators to measure the quality of a Pareto set, but there is only one widely used that is strictly Pareto
compliant [28], namely the hypervolume indicator. Strictly Pareto compliance means that given two Pareto sets A and B the
indicator values A higher than B if the Pareto set A dominates the Pareto set B. The hypervolume (HYP) measures the volume
of the dominated portion of the objective space. It was first proposed and employed for multi-objective optimization by
Zitzler and Thiele [26].

The hypervolumemeasure has become very popular recently and several algorithms have been developed to calculate it.
The first onewas theHypervolume by Slicing Objectives (HSO) algorithmwhichwas suggested independently by Zitzler [25]
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and Knowles [13]. To improve its runtime on practical instances, various speed up heuristics of HSO have been suggested
[22,24]. For n points in d dimensions, the currently best asymptotic runtime is O(n log n + nd/2 log n). It is obtained by
Beume and Rudolph [3,2] via an adaption of Overmars and Yap’s algorithm [16] for Klee’s Measure Problem [12]. There
are also various algorithms for small dimensions [11,15] and for calculating the contribution of a single point to the total
hypervolume [5,8].

From a geometric perspective, the hypervolume indicator is just measuring the volume of the union of a certain kind of
boxes in Rd

≥0, namely of boxes which share the reference point1 as a common point. We will use the terms point and box
interchangeably for solutions as the dominated volume of a point defines a box and vice versa. Given a set M of n points in
Rd

≥0, we define the hypervolume ofM to be

HYP(M) := vol
 

(x1,...,xd)∈M

[0, x1] × · · · × [0, xd]


.

In [6,7] the authors have proven that it is #P-hard2 in the number of dimensions to calculate HYP precisely. Therefore, all
hypervolume algorithms must have an exponential runtime in the number of objectives or boxes (unless P = NP). Without
the widely accepted assumption P ≠ NP, the only known lower bound for any d is Ω(n log n) [4]. Note that the worst case
combinatorial complexity (i.e., the number of faces of all dimensions on the boundary of the union) of Θ(nd) does not imply
any bounds on the computational complexity.

Though the #P-hardness of HYP dashes the hope for an exact subexponential algorithm, there are a few estimation
algorithms [6,1] for approximating the hypervolume based on Monte Carlo sampling. However, the only approximation
algorithm with proven bounds is presented in [6]. There, the authors describe an FPRAS for HYP which gives an ε-
approximation of the hypervolume with probability (1 − δ) in time O(log(1/δ) nd/ε2).

New complexity results

We will now describe a few problems related to the calculation of the hypervolume indicator and state our results.
For this, observe that calculating the hypervolume itself is actually not necessary in most hypervolume-based evolutionary
multi-objective optimizers as formost algorithms it suffices to find a boxwith theminimal contribution to the hypervolume.

The contribution of a box x ∈ M to the hypervolume of a set M of boxes is the volume dominated by x and no other
element ofM . We define the contribution CON(M, x) of x to be

CON(M, x) := HYP(M) − HYP(M \ x).

We are only aware of two algorithmswhich calculate CON(M, x) directly without the detour viaHYP(M)−HYP(M \x) [5,8].
In Section 2 we show that CON(M, x) is #P-hard to solve exactly. Furthermore, approximating CON by a factor of 2d1−ε

is
NP-hard for any ε > 0. Hence, CON is not approximable. Note that this is no contradiction to the above-mentioned FPRAS
for HYP as an approximation of HYP does not yield an approximation of CON.

As a hypervolume-based optimizer is only interested in the box with the minimal contribution, we also consider the
following problem. Given a setM of n boxes in Rd

≥0, find the least contribution of any box inM , that is,

MINCON(M) := min
x∈M

CON(M, x).

The reduction in Section 2 shows thatMINCON is #P-hard and not approximable, even if we know the boxwhich is the least
contributor.

Both mentioned problems can be used to find the box contributing the least hypervolume, but their hardness does not
imply hardness of the problem itself, which we are trying to solve, namely calculating which box has the least contribution.
Therefore we also examine the following problem. Given a set M of n boxes in Rd

≥0, we want to find a box with the least
contribution inM , that is,

LC(M) := argmin
x∈M

CON(M, x).

If there are multiple boxes with the same (minimal) contribution, we are, of course, satisfied with any of them. In Section 2
we prove that this problem isNP-hard to decide, that is, for a given box one cannot decide whether it is the least contributor
or not.

However, for practical purposes it most often suffices to solve a relaxed version of the above problem. That is, we just
need to find a box which contributes not much more than the minimal contribution, meaning that it is only a (1+ ε) factor
away. If we then throw out such a box, we have an error of at most ε. We will call this ε-LC(M) as it is an ‘‘approximation’’

1 Without loss of generality we assume the reference point to be 0d .
2 #P is the analog of NP for counting problems. For details see either the original paper by Valiant [21] or the standard textbook on computational

complexity by Papadimitriou [17].
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of the problem LC. Given a setM of n boxes in Rd
≥0 and ε > 0, we want to find a box with contribution at most (1+ ε) times

the minimal contribution of any box inM , that is,
CON(M, ε-LC(M)) ≤ (1 + ε)MINCON(M).

The final result of Section 2 is the NP-hardness of ε-LC. This shows, that there is no way of computing the least contributor
efficiently, and even no way to approximate it.

New approximation algorithm

In Section 3 we will give a ‘‘practical’’ algorithm for determining a small contributor. Technically speaking, it solves the
following problem which we call ε–δ-LC(M): given a set M of n boxes in Rd

≥0, ε > 0 and δ > 0, with probability at least
1 − δ find a box with contribution at most (1 + ε)MINCON(M).

Pr[CON(M, ε–δ-LC(M)) ≤ (1 + ε)MINCON(M)] ≥ 1 − δ.

As we will be able to choose δ arbitrarily, solving this problem is of high practical interest. By the NP-hardness of ε-LC there
is no way of solving ε–δ-LC efficiently, unless NP = BPP. This means, our algorithm cannot run in polynomial time for all
instances. Its runtime depends on some hardness measure H (cf. Section 3.2), which is an intrinsic property of the given
input, but generally unbounded, i.e., not bounded by some function in n and d.

However, in Section 4 we show that our algorithm is practically very fast on various benchmark datasets, even for
dimensions completely intractable for exact algorithms like d = 100 for which we can solve instances with n = 10,000
points within seconds. This implies a huge shift in the practical usability of the hypervolume indicator.

2. Hardness of approximation

In this section we first show hardness of approximating MINCON, which we will use afterwards to show hardness of LC
and ε-LC. We will reduce #MON-CNF to MINCON, which is the problem of counting the number of satisfying assignments
of a Boolean formula in conjunctive normal form in which all variables are unnegated. While the problem of deciding
satisfiability of such formula is trivial, counting the number of satisfying assignments is #P-hard and even approximating it
by a factor of 2d1−ε

for any ε > 0 is NP-hard, where d is the number of variables (see [20] for a proof).

Theorem 1. MINCON is #P-hard and approximating it by a factor of 2d1−ε
is NP-hard for any ε > 0.

Proof. To show the theorem, we reduce #MON-CNF to MINCON. Let �(a1, . . . , ad) denote a box [0, a1] × · · · × [0, ad]. Let
f =

n
k=1


i∈Ck

xi be a monotone Boolean formula given in CNF with Ck ⊆ [d] := {1, . . . , d}, for k ∈ [n], d the number of
variables, n the number of clauses. First, we construct a box Ak = �(ak1, . . . , a

k
d, 2

d
+ 2) ⊆ Rd+1

≥0 for each clause Ck with one
vertex at the origin and the opposite vertex at (ak1, . . . , a

k
d, 2

d
+ 2), where we set

aki =


1, if i ∈ Ck
2, otherwise , i ∈ [d].

Additionally, we need a box B = �(2, . . . , 2, 1) ⊆ Rd+1
≥0 and the set M = {A1, . . . , An, B}. Since we can assume without

loss of generality that no clause is dominated by another, meaning Ci ⊈ Cj for every i ≠ j, every box Ak overlaps uniquely
a region [x1, x1 + 1] × · · · × [xd, xd + 1] × [1, 2d

+ 2] with xi ∈ {0, 1}, i ∈ [d], so that the contribution of every box Ak is
greater than 2d and the contribution of B is at most 2d, so that B is indeed the least contributor.

Observe that the contribution of B to HYP(M) can be written as a union of boxes of the form Bx = [x1, x1 + 1] × · · · ×

[xd, xd + 1]× [0, 1] with x = (x1, . . . , xd) ∈ {0, 1}d. Let x ∈ {0, 1}d. We will now show that Bx is a subset of the contribution
of B to HYP(M) if and only if x satisfies f .

First, assume that Bx is not a subset of the contribution of B to HYP(M). Then it is a subset of
n

k=1 Ak and hence a subset
of some Ak. This implies that aki ≥ xi + 1 for all i ∈ [d] and i /∈ Ck for all i with xi = 1. In other words, x satisfies


i∈Ck

¬xi
for some k. This proves then that x satisfies the negated formula f̄ =

n
k=1


i∈Ck

¬xi.
The same holds in the opposite direction, that is, if Bx is a subset of the contribution of B, then x satisfies f . Together with

the fact vol(Bx) = 1 this yields MINCON(M) = CON(M, B) = |{x ∈ {0, 1}d | x satisfies f }| which implies a polynomial
time algorithm solvingMINCON(M). This finishes the proof as this would result in a polynomial time algorithm for #MON-
CNF. �

Note that the reduction from above implies that MINCON is #P-hard and NP-hard to approximate even if the least
contributor is known. Moreover, since we constructed boxes with integer coordinates in [0, 2d

+2] a number of b = O(d2n)
bits suffices to represent all d+1 coordinates of the n+1 constructed points. Hence,MINCON is hard even if all coordinates
are integral. We define as input size b+ n+ d, where b is the number of bits in the input. We will use this result in the next
proof. Also note that the same hardness for CON follows immediately, as it is hard to compute CON(M, B) as constructed
above.

By reducingMINCON to LC, one can now show NP-hardness of LC. We skip this proof and directly prove NP-hardness of
ε-LC by using the hardness of approximatingMINCON in the following theorem.
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Theorem 2. ε-LC is NP-hard for any constant ε. More precisely, it is NP-hard for (1 + ε) bounded from above by 2d1−c
−1 for

some c > 0.

Proof. We reduce MINCON to ε-LC. Let M be a set of n boxes in Rd
≥0, i.e., a problem instance of MINCON represented by a

number of b bits, so that the input size is b + n + d.
As discussed above, we can assume that the coordinates are integral. We can further assume that d ≥ 2 as MINCON is

trivial for d = 1. The minimal contribution of M might be 0, but this occurs if and only if one box in M dominates another.
As the latter can be checked in polynomial time, we can without loss of generality also assume thatMINCON(M) > 0.

Now, let V be the volume of the bounding box of all the boxes in M , i.e., the product of all maximal coordinates in the d
dimensions. We know that V is an integer with 1 ≤ V ≤ 2b, as there are only b bits in the input.

We now define a slightly modified set of boxes:

A = {�(a1 + 2V , a2, . . . , ad) | �(a1, . . . , ad) ∈ M},

B = �(2V , . . . , 2V ),

Cλ = �(1, . . . , 1, 2V + λ),

Mλ = A ∪ {B} ∪ {Cλ}.

The boxes in A are the boxes of M , but shifted along the x1-axis. By definition, ai 6 V , i ∈ [d] for all �(a1, . . . , ad) ∈ M .
The contribution to HYP(Mλ) of a box in A is the same as the contribution to HYP(M) of the corresponding box in M as the
additional part is overlapped by the ‘‘blocking’’ box B. Also note that the contribution of a box in A is less than or equal to V .

The box B uniquely overlaps at least the space [V , 2V ] × · · · × [V , 2V ] (as every coordinate of a point in M is less than
equal to V ) which has volume at least V . Hence, B is never the least contributor ofMλ. The box Cλ then has a contribution of
vol([0, 1] × · · · × [0, 1] × [2V , 2V + λ]) = λ, so that Cλ is a least contributor if and only if λ is less than or equal to the
minimal contribution of any box in A to HYP(Mλ) which holds if and only if we have λ ≤ MINCON(M).

As we can decide whether Cλ is the least contributor by one call to LC(Mλ), we can do a sort of a binary search on λ.
As we are interested in a multiplicative approximation, we search for κ := log2(λ) to be the largest value less than equal
to log2(MINCON(M)), where κ now is an integer in the range [0, b]. Since we can only answer ε-LC-queries, we cannot do
exact binary search. However, we can still follow its lines, recurring on the left half of the current interval, if for the median
value κm we get ε-LC(Mλm) = Cλm , where λm = 2κm , and on the right half, if we get any other result.

The incorrectness of ε-LCmay misguide our search, but since we have

CON(M, ε-LC(M)) ≤ (1 + ε)MINCON(M)

it can give awrong answer (i.e., not the least contributor) only if we have (1+ε)−1MINCON(M) ≤ 2κ
≤ (1+ε)MINCON(M).

Outside of this interval our search goes perfectly well. Thus, after the binary search, i.e, after at most ⌈log2(b)⌉ many calls to
ε-LC, we end up at a value κ which is either inside the above interval (in which case we are satisfied) or the largest integer
smaller than log2((1 + ε)−1MINCON(M)) or the smallest integer greater than log2((1 + ε)MINCON(M)). Hence, we have

κ ≤ log2((1 + ε)MINCON(M)) + 1

implying

λ = 2κ
≤ 2(1 + ε)MINCON(M).

Analogously, we get

λ = 2κ
≥

1
2(1 + ε)

MINCON(M).

Therefore after O(log(b)) many calls to ε-LC we get a 2 (1 + ε) approximation of MINCON(M). Since this is NP-hard for
2 (1+ ε) bounded from above by 2d1−c

for some c > 0, we showed NP-hardness of ε-LC in this case. Note that this includes
any constant ε. �

The NP-hardness of ε-LC not only implies NP-hardness of LC, but also the non-existence of an efficient algorithm for ε–
δ-LC unless NP = BPP. The above proof also gives a very good intuition about the problem ε-LC: as we can approximate the
minimal contribution by a small number of calls to ε-LC, there cannot be amuch faster way to solve ε-LC but to approximate
the contributions — approximating at least the least contribution can be only a factor of O(log(b)) slower than solving ε-LC.
This motivates the algorithm we present in the next section, which tries to approximate the contributions of the various
boxes.
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3. Practical approximation algorithm

The last section ruled out the possibility of a worst case efficient algorithm for computing or approximating the least
contributor. Nevertheless, we are now presenting an algorithm A that is ‘‘safe’’ and has a good practical runtime, but no
polynomial worst case runtime (as this is not possible). By ‘‘safe’’ we mean that it provably solves ε–δ-LC, i.e., it holds that

Pr[CON(M, A(M, ε, δ)) ≤ (1 + ε)MINCON(M)] ≥ 1 − δ. (1)

We consider an ε around 10−2 or 10−3 as sufficient for typical instances. This implies for most instances that we return
the correct result as there are no two small contributions which are only a (1 + ε)-factor apart. For the remaining cases
we return at least a box which has contribution at most (1 + ε) times the minimal contribution, which means we make an
‘‘error’’ of ε.

Additionally, the algorithm is going to be a randomized Monte Carlo algorithm, which is why we need the failure
probability δ and do not always return the correct result. However, we will be able to set δ = 10−6 or even δ = 10−12

without increasing the runtime overly. In the following we will describe algorithm A, prove its correctness and describe its
runtime.

3.1. The algorithm A

Our algorithm works as follows. First, it is essential to determine for each box A the minimal bounding box of the space
that is uniquely overlapped by the box. To do so we start with the box A itself. Then we iterate over all other boxes B. If
B dominates A in all but one dimension, then we can cut the bounding box in the nondominated dimension. This can be
realized in time O(d n2).

Having the bounding box BBA of the contribution of A we start to sample randomly in it. For each random point we
determine if it is uniquely dominated by A. If we checked noSamples(A) random points and noSuccSamples(A) of them
were uniquely dominated by A, then the contribution of A is aboutVA :=

noSuccSamples(A)

noSamples(A)
vol(BBA), (2)

where vol(BBA) denotes the volume of the bounding box of the contribution of A. Additionally, we can give an estimate of
the deviation ofVA from VA, the correct contribution of A (i.e., VA = CON(M, A)). Using Chernoff’s inequality we get that for

∆R(A) :=


log(2nR1+γ δ−1(1 + γ )/γ )

2noSamples(A)
vol(BBA) (3)

the probability that VA deviates fromVA by more than ∆R(A) is small enough. Here, as usual n is the number od boxes and
δ is the probability of error we want to have overall. Additionally, R is a variable parameter (the round we are in), and
γ ∈ (0, 1] is a constant, which one can adjust to get the best performance. The log-factor is chosen such that the analysis
of the algorithm works out. Note that independently a similar sampling approach has been described in another context in
[19].

We would like to sample in the bounding boxes in parallel such that everyVA deviates about the same ∆. We do this in
rounds: in the first roundwe initialize∆ = ∆1 arbitrarily (e.g.,∆1 = maxA∈M vol(BBA)). In every other round Rwe decrease
∆ by a constant factor, e.g., ∆R =

1
2∆R−1. Then we sample in each bounding box until we have ∆R(A) ≤ ∆R for each box A.

If we then have at any point two boxes A and B withVA − ∆R(A) > VB + ∆R(B) (4)

we can with good probability assume that A is not a least contributor, as we would need to have VA − VA > ∆R(A) or
VB −VB > ∆R(B) for A having a smaller contribution than B (which is necessary for A being the least contributor). Hence, in
such cases we can delete A from our race, meaning that we do not have to sample in its bounding box anymore. Note that we
never have to compare two arbitrary boxes, but only a box A to the currently smallest box LC , i.e., the box withVLC minimal.

We can run this race, deleting boxes if their contribution is clearly too much by the above selection equation until either
there is just one box left, in which case we have found the least contributor, or until we have reached a point where we have
approximated all contributions well enough. Given an abortion criterion ε we can just return LC (the box with currently
smallest approximated contribution) when we have (being in round R)

VA − ∆R(A) > 0 and
VLC + ∆R(LC)VA − ∆R(A)

≤ 1 + ε,

for any box A ≠ LC still in the race. If this equation holds, then we can be quite sure that any box has contribution at least
1

1+ε
VLC . So, returning LC , we have solved ε–δ-LC after all.
Above you can find in pseudo code what we just described. The only new thing is a line indicating that the algorithm

makes an assumption about the VA’s. This line will help in the proof of correctness: first, it can easily be seen that the
algorithm solves ε-LC if all assumptions being made are true. In a second step we have to bound the probability of any
assumption to be wrong, to show that the algorithm solves ε–δ-LC.
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Algorithm 1 A(M, ε, δ) solves ε–δ-LC(M) for a set M of n boxes in Rd
≥0 and ε, δ > 0, i.e., it determines a box x ∈ M such

that Pr[CON(M, x) ≤ (1 + ε)MINCON(M)] ≥ 1 − δ.
determine the bounding boxes BBA for all A ∈ M
initialize noSamples(A) = noSuccSamples(A) = 0 for all A ∈ M
initialize R = 0, ∆R = maxA∈M vol(BBA)
set S := M
repeat
set ∆R+1 := ∆R/2
set R := R + 1
for all A ∈ S do

repeat
sample a random point in BBA
increase noSamples(A) and possibly noSuccSamples(A)
updateVA and ∆R(A) according to (2) and (3)

until ∆R(A) ≤ ∆R
od
set LC := argmin{VA | A ∈ S}
assume |VA − VA| ≤ ∆R(A) for all A ∈ S
for all A ∈ S do

ifVA − ∆R(A) > VLC + ∆R(LC) then
S := S\{A}

od
od

until |S| = 1 or (VA − ∆R(A) > 0 and
VLC+∆R(LC)VA−∆R(A)

≤ 1 + ε ∀LC ≠ A ∈ S)

return LC
3.2. Runtime

As discussed above, our algorithmneeds a runtime of at leastΩ(dn2). This seems to be the true runtime onmany practical
instances (cf. Section 4). However, by Theorem 2 we cannot hope for a matching upper bound. In this section we present an
upper bound on the runtime depending on some characteristics of the input.

For an upper bound, observe that we have to approximate each box A up to ∆ = O(VA − MINCON(M)) to be able to
delete it. One can also show that the expected value of ∆ where we delete box A is Ω(VA − MINCON(M)). By Eq. (3) solved
for noSamples(A) we observe that we need a number of

log(2nR1+γ δ−1(1 + γ )/γ )vol(BBA)
2

Ω(VA − MINCON(M))2
= O


log(nR1+γ δ−1)vol(BBA)

2

(VA − MINCON(M))2


samples to delete box A on average. For the least contributor LC , we need O


log(nR1+γ δ−1)vol(BBLC )2

(sec-min(V )−MINCON(M))2


many samples until we

have finally deleted all other boxes, where sec-min(V ) denotes the second smallest contribution of any box in M . We have
∆R = 2−R maxA∈M vol(BBA) so that ∆ = O(VA − MINCON(M)) happens for R = Θ


log


maxA∈M vol(BBA)

VA−MINCON(M)


. Putting this

into above bounds we get an upper bound for the expected number of samples of our algorithm. Since each sample takes
runtime O(dn) and everything besides the sampling takes much less runtime, we get an overall runtime of

O(dn (n + H)),

where

H :=
vol(BBLC )

2

(sec-min(V ) − MINCON(M))2


log(n/δ) + log log


maxA∈M vol(BBA)

sec-min(V ) − MINCON(M)


+


LC≠A∈S

vol(BBA)
2

(VA − MINCON(M))2


log(n/δ) + log log


maxA∈M vol(BBA)

VA − MINCON(M)


is a certain measure of hardness of the input. As we have vol(BBA) ≥ VA we conclude that H ≥ (n − 1) log(n/δ). Of course,
the log log-factors do not increase the hardness too much. Focussing on the first factors, the hardness H is small, if we have
for all boxes vol(BBA) ≈ VA and MINCON(M) ≪ VA. On the other hand, this value is large if we are in one of the following
two situations: First, there may be a point with a large bounding box vol(BBA) but a small contribution VA. Cases where
the ratio of the two is arbitrarily large can easily be constructed. Second, there may be two or more boxes contributing the
minimal contribution or only slightly more than it. In this case the value VA − MINCON(M) is small. These two situations
are the hard cases for our algorithm. However, we observed empirically that in random instances these cases rarely occur.
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To be precise, the hardnessHmay even be undefined: if there are twominimal contributors, then VA −MINCON(M) = 0
for one of the two boxes, so that we divide by 0. This clearly has to be the case, as we can never decide of two contributions
whether they are equal or just nearly equal, if the difference is tiny. In this case our abortion criterion comes into play: with
high enough probability after approximating every contribution up to ∆ =

ε
4+2εMINCON(M) we haveVLC ≤ VLC + ∆, thusVLC ≤ VLC + ∆, andVA ≥ VLC − ∆ for every other box A still in the race. Then we concludeVLC + ∆(LC)VA − ∆(A)

≤
VLC + 2∆
VLC − 2∆

=
1 + 2 ε

4+2ε

1 − 2 ε
4+2ε

= 1 + ε

for every box LC ≠ A ∈ S, so thatwe return a (1+ε)-approximation. Hence, the above defined value for∆ suffices to enforce
abortion. As we get this ∆ after noSamples(A) =

log(2nR1+γ δ−1(1+γ )/γ )vol(BBA)2

2( ε
4+2ε MINCON(M))2

samples and R = log


(4+2ε)maxA∈M vol(BBA)

ε·MINCON(M)


,

this yields another upper bound for the overall number of samples, a still unbounded but always finite value:

O


log(n/δ) + log log

maxA∈M vol(BBA)

ε · MINCON(M)

 
A∈M

vol(BBA)
2

ε2MINCON(M)2


.

However, for the random test cases that we consider in Section 4 the above defined hardness H is a more realistic
measure of runtime as there are never two identical contributions, not too many equally small contributions and the
bounding box is never toomuch larger than the contribution. There one observes values forH that roughly lie in the interval
[n log(n/δ), 10n log(n/δ)].

3.3. Correctness of our algorithm

To prove correctness of our algorithmwe need to show two things: first, if all the assumptions the algorithmmakes (see
the line ‘‘assume |VA − VA| ≤ ∆R(A) for all A ∈ S’’) turn out to be true, then it returns a box X contributing not more than
(1 + ε)MINCON(M), meaning that it solves ε-LC. Second, the probability of any assumption being wrong is small. The next
two lemmas will show these two statements:
Lemma 3. If all assumptions made by the algorithm are true and the algorithm terminates, then it solves ε-LC.
Proof. Assume the assumptions |VA − VA| ≤ ∆R(A) and |VB − VB| ≤ ∆R(B) are true. At the point at which the selection
criterion is met, i.e., we haveVA − ∆R(A) > VB + ∆R(B), we conclude that

VA ≥ VA − ∆R(A) > VB + ∆R(B) ≥ VB,

so that we have VA > VB. Hence, the box A clearly cannot be a least contributor and we can discard it from our race.

Furthermore, suppose that we haveVA − ∆R(A) > 0 and
VB+∆R(B)VA−∆R(A)

≤ 1 + ε. We can conclude that

VB

VA
≤

VB + ∆R(B)VA − ∆R(A)
≤ 1 + ε,

meaning that we have VB ≤ (1 + ε)VA. Using this for B = LC we get that LC really is a box contributing not more than
(1 + ε)MINCON(M) if the abortion criterion is met. This shows correctness of the algorithm, as long as all assumptions
being made are true. �

We now show that the probability of any assumption of the algorithm being wrong is small:
Lemma 4. The probability of any assumption made by the algorithm being wrong is at most δ.
Proof. For any box A in every round R we make an assumption A(A, R) onVA, given that A survived until round R. Observe
that this assumption is made when noSamples(A) = mA,R for some deterministically determined mA,R (meaning that it is
no random variable). Hence, we can bound as follows:

Pr[assumption A(A, R) is wrong] = Pr

A survives until round R and |VA − VA| > ∆R(A) | noSamples(A) = mA,R


≤ Pr[|VA − VA| > ∆R(A) | noSamples(A) = mA,R].

We use the definition ofVA =
noSuccSamples(A)

noSamples(A)
vol(BBA) and write noSuccSamples(A) as a sum of independent identically

distributed random variables Xi with Xi = 1 indicating that the ith sample was successful and Xi = 0 otherwise. Putting in
the definition of ∆R(A) we get

= Pr
 mA,R

i=1

Xi ·
vol(BBA)

mA,R
− VA

 >


log(2nR1+γ δ−1(1 + γ )/γ )

2mA,R
vol(BBA)



= Pr
 mA,R

i=1

Xi − mA,R
VA

vol(BBA)

 >


log(2nR1+γ δ−1(1 + γ )/γ )mA,R/2


.
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We observe that VA
vol(BBA)

is the expected value of each Xi. This allows us to use Chernoff’s inequality which states that we

have for X =
mA,R

i=1 Xi the inequality Pr[|X − E[X]| > a] ≤ 2 exp(−2a2/mA,R). In our case this yields

Pr[assumption A(A, R) is wrong] ≤
γ δ

nR1+γ (1 + γ )
.

We use the Union Bound to bound the probability of any assumption being wrong:

Pr[any assumption is wrong] ≤


A∈M

∞
R=1

Pr[assumption A(A, R) is wrong]

≤


A∈M

∞
R=1

γ δ

nR1+γ (1 + γ )

=

∞
R=1

γ δ

R1+γ (1 + γ )
,

as |M| = n. One can easily bound
∞
R=1

1
R1+γ

≤ 1 +


∞

1

1
x1+γ

dx = 1 + 1/γ .

Using this, we finally get

Pr[any assumption is wrong] ≤ δ. �

Both lemmas together directly imply the correctness of our algorithm.
Corollary 5 (Correctness of A). The probability of A(M, ε, δ) being a correct result of ε-LC is at least (1 − δ), i.e.,

Pr[CON(M, A(M, ε, δ)) ≤ (1 + ε)MINCON(M)] ≥ 1 − δ.

3.4. Heuristical improvements

To increase the practical efficiency of our algorithm,we implemented a few further optimizations that decrease the actual
runtime. In this section we will describe three implemented heuristics.

3.4.1. Push on ∆(LC)

Since we compare all boxes still in the race with the currently minimal one LC , it is intuitively a good idea to decrease
∆(LC) faster than all other ∆(A), i.e., if we have a current bound of ∆(A) ≤ ∆ for any A ∈ S we should sample in LC until we
have ∆(LC) ≤ α∆ for some constant α < 1. This improves the runtime by up to a factor of 4: if we needed some value of ∆
to distinguish boxes A and LC before, we now only need ∆′

=
2

1+α
∆ for A and ∆′(LC) =

2α
1+α

∆. As the number of samples

needed is proportional to ∆−2 it changes by a good factor of 1+α2

4 ≈
1
4 for n − 1 boxes and a worse factor of 1+α2

4α2 for the
one box LC . On practical instances α = 0.2 seemed to be a reasonable value.

3.4.2. Sampling heuristic
It is clear how to find a random point X inside a bounding box BBA. Then we have to check whether X lies in a box

A ≠ B ∈ M . If no B dominates X , then X is counted as a successful sample, otherwise not. Now it suffices to test whether
X lies in a subset of M . Only points with all coordinates bigger than the lower vertex of the bounding box BBA can possibly
dominate X . By determining these once at the beginning and saving them we get a space requirement of O(n2) but an
improvement of the runtime of between one and two orders of magnitude. Furthermore, we can decide to rearrange these
points such that we check whether X lies in all possible dominating boxes B in descending order of the volume of the part of
BBA that is dominated by B. This way we intuitively speed up all ‘‘unsuccessful’’ searches, i.e., all samples where X is indeed
dominated. On real instances this yields another speedup of small constant factor.

3.4.3. Exact calculation
As an involved sampling algorithm only makes sense for large instances, our implementation uses a classical exact

algorithm for small n and d. The difficulty is to decide when to do so. Our approach works as follows. After we determined
the boxes that dominate the lower vertex of a bounding box BBA, i.e., the boxes that ‘‘influence’’ the contribution of A, some
of those sets of influencing boxes have quite a small cardinality nA. Especially boxes with small contribution tend to have
only a small number of influencing boxes. Hence if this number is small we can determine the contribution exactly by using
some classical hypervolume algorithm. In this case, we just restrict the nA influencing boxes to the bounding box BBA and
solve the induced HYP problem (inside BBA) to get a volume v. After that, we subtract v from vol(BBA) which gives us the
correct contribution of A.
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This can be done for any box Awith a small number of influencing boxes nA. After calculating its contribution exactly we
just have to set ∆(A) := 0 which works fine in our algorithm. The only problem is to decide which values of nA are to be
considered ‘‘small’’ in this respect. For each box A we count how many elementary operations we made so far for sampling
in its bounding box (by counting how many coordinate comparisons we made), calling this number noOps(A). We also try
to estimate the runtime (number of elementary operations) we would need for computing the contribution of A exactly.
This, of course, depends on the algorithm one uses. We use the well-known HSO algorithm by Zitzler [25] and the algorithm
by Beume and Rudolph [3,2] which we will call BR, but one can, of course, use an arbitrary exact hypervolume algorithm.
For those algorithms we can bound the runtime by O(n

n+d−2
d−1


) for HSO [23] and O(n log n + nd/2 log n) for BR [3,2]. By

estimating the constant hidden in the asymptotic notation, we get an upper bound of the number of operations the two
algorithms make. Having this, we can at any point in the algorithm decide to compute a contribution exactly rather than
continue to sample in it. That is, if noOps(A) > estimatedRuntimeHSO(nA, d) we just compute it exactly. This way we need
only twice as much time as if we had computed the contribution exactly right from the start. Also, if we needed only a small
number of samples more to throw A out of the race, we only needed twice as much time overall computing the contribution
exactly than continuing to sample. Hence, by this decision we always need at most twice the number of operations we
would have needed with the optimal decision. This also implies that asymptotically our runtime with this heuristic is upper
bounded by the minimum of HSO and BR.

Note that this improvement changes nothing for high dimensions (say, d > 20) as both exact algorithms quickly become
unusable for these cases. The observed power of our algorithm for high dimensions (like d = 100) comes from the sampling,
not from the combination with the exact algorithms.

4. Experimental analysis

To demonstrate the performance of the described approximation algorithm for the hypervolume contribution, we have
implemented it and measured its performance on different datasets. We now first describe the used benchmark datasets
and then our results.

4.1. Datasets

We used five different fronts similar to the DTLZ test suite [10]. As we do not want to compare the hypervolume
algorithms for point distributions specific to different optimizers like NSGA-II [9] or SPEA2 [27], we have sampled the points
from different surfaces randomly. This allows full scalability of the datasets in the number of points and the number of
dimensions.

To define the datasets, we use random variables with two different distributions. Simple uniformly distributed random
variables are provided by the built-in random number generator rand( ) of C++. To get random variables with a Gaussian
distribution, we used the polar form of the Box–Muller transformation as described in [18].

4.1.1. Linear dataset
The first dataset consists of points (x1, x2, . . . , xd) ∈ [0, 1]d with

d
i=1 xi = 1. They are obtained by generating dGaussian

random variables y1, y2, . . . , yd and then using the normalized points

(x1, x2, . . . , xn) :=
(|y1|, |y2|, . . . , |yn|)

|y1| + |y2| + · · · + |yd|
.

4.1.2. Spherical dataset
To obtain uniformly distributed points (x1, x2, . . . , xd) ∈ [0, 1]d with

d
i=1 x

2
i = 1 we follow the method of [14]. That is,

we generate d Gaussian random variables y1, y2, . . . , yd and take the points

(x1, x2, . . . , xn) :=
(|y1|, |y2|, . . . , |yn|)
y21 + y22 + · · · + y2d

.

4.1.3. Concave dataset
Analogous to the spherical dataset we choose points (x1, x2, . . . , xd) ∈ [0, 1]d with

d
i=1

√
xi = 1. For this, we generate

again d Gaussian random variables y1, y2, . . . , yd and use the points

(x1, x2, . . . , xn) :=
(|y1|, |y2|, . . . , |yn|)

(
√

|y1| +
√

|y2| + · · · +
√

|yd|)2
.

For d = 3, the surface of the dataset is shown in Fig. 1. Additionally to random points lying on a lower-dimensional
surface, we have also examined the following two datasets with points sampled from the actual space similar to the random
dataset examined by While et al. [23].
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(a) Spherical dataset. (b) Linear dataset. (c) Concave dataset.

Fig. 1. Visualization of the first three datasets.

(a) Spherical dataset. (b) Linear dataset. (c) Concave dataset.

Fig. 2. Experimental results for d = 3.

4.1.4. Random dataset 1
We first draw n uniformly distributed points from [0, 1]d and then replace all dominated points by new random points

until we have a set of n nondominated points.

4.1.5. Random dataset 2
Very similar to the previous dataset, we choose random points until there are no dominated points. The only difference

is that this time the points are not drawn uniformly, but Gaussian distributed in Rd
≥0 with mean 1.

Note that the last two datasets are far from being uniformly distributed. The points of the first set all have at least one
coordinate very close to 1 while the points of the second set all have at least one coordinate which is significantly above the
mean value. This makes their computation for many points (e.g., n > 100) in small dimensions (e.g., d 6 5) computationally
very expensive as it becomes more and more unlikely to sample a nondominated point.

4.2. Comparison

We have implemented our algorithm in C++ and compared it with the available implementations of HSO by Eckart
Zitzler [25] and BR by Nicola Beume [3,2]. For this we ran both algorithms on the whole front once and for every point
on the front once without that point, to calculate all contributions as the differences. We did not add any further heuristics
to both exact algorithms as all published heuristics do not improve the asymptotic runtime and even a speedup of a few
magnitudes does not change the picture significantly.

All experiments were run on a cluster of 100 machines, each with two 2.4 GHz AMD Opteron processors, operating in
32-bit mode, running Linux. For our approximation algorithm we used the parameters δ = 10−6 and ε = 10−2. The code
used is available upon request and will be distributed from the homepage of the second author.

Figs. 2–6 show double-logarithmic plots of the runtime for different datasets and number of dimensions. The shown
values are the median of 100 runs each. To illustrate the occurring deviations below and above the median, we also plotted
all measured runtimes as lighter single points in the background. As both axes are scaled logarithmically, also the examined
problem sizes are distributed logarithmically. That is, we only calculated Pareto sets of size n if n ∈ {⌊exp(k/100)⌋ | k ∈ N}.
We examined dimensions d = 3, 10, 100 for the first three datasets and d = 5, 100 for the last two datasets.

Independent of the number of solutions and dimensions, we always observed that, unless n 6 10, our algorithm
outperformed HSO and BR substantially. On the usedmachines this means that only if the calculation timewas insignificant
(say, below 10−4 s), the exact algorithm could compete. On the other hand, the much lower median of our algorithm also
comeswith amuch higher empirical standard deviation and interquartile range. In fact, we observed that the upper quartile
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(a) Spherical dataset. (b) Linear dataset. (c) Concave dataset.

Fig. 3. Experimental results for d = 10.

(a) Spherical dataset. (b) Linear dataset. (c) Concave dataset.

Fig. 4. Experimental results for d = 100.

(a) Random dataset 1. (b) Random dataset 2.

Fig. 5. Experimental results for random datasets with d = 5.

can be up to five times slower than themedian (for the especially degenerated randomdataset 1). The highest ratio observed
between themaximum runtime and the average runtime is 66 (again for the randomdataset 1). This behavior is represented
in the plots by the spread of lighter datapoints in the back of themedian. However, there are not toomany outliers and even
their runtime outperforms HSO and BR. The non-monotonicity of our algorithm around n = 10 for d = 10 is caused by the
approximations for the runtimes of the exact algorithms.

For larger dimensions the advantage of our approximation algorithm becomes tremendous. For d = 100 we observed
that within 100 s our algorithm could solve all problems with less than 6000 solutions while HSO an BR could not solve any
problem for a population of 6 solutions in the same time. For example for 7 solutions on the 100-dimensional linear front,
HSO needed 13 min, BR 7 h while our algorithm terminated within 0.5 ms.

Parallel to ourwork, Bader and Zitzler [1] presented an approximation algorithm for the hypervolume contribution based
on user-defined confidence levels. To use it, one has to choose four parameters (fitness parameter k, maximum number
of sampling points Mmax, desired confidence L, and sampling interval Θ). Though in their experiments they always use a
fixed number of sampling points, we still expect that there is a mapping from our two parameters ε and δ to their set of
parameters such that both algorithms eventually behave alike. However, we did not try to prove that such a mapping exists
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(a) Random dataset 1. (b) Random dataset 2.

Fig. 6. Experimental results for random datasets with d = 100.

as we consider our algorithmic framework to be much simpler since the user only has to choose two parameters ε and δ
such that the probabilistic performance guarantee of Eq. (1) from Section 3 matches his needs.

On the other hand, there recently also appeared the first exact algorithm for the hypervolume contribution [5]. Bradstreet
et al. [5] examined it on random fronts and fronts from the DTLZ test suite [10] with n < 1000 and d 6 13. The maximum
speedup they observed for any such front compared to HSO was 50. This compares to speedups of our algorithm compared
to HSO of more than 1000 already for fronts with n = 20 and d = 10. For more points or more dimensions we could not
calculate the speedup factor as HSO becomes much too slow.

5. Conclusions

We have proven that most natural questions about the hypervolume contribution which are relevant for evolutionary
multi-objective optimizers are not only computationally hard to decide, but also hard to approximate. On the other hand,
we have presented a new approximation algorithmwhichworks extremely fast for all tested practical instances. It can solve
efficiently large high-dimensional instances (d > 10, n > 100) which are intractable for all previous exact algorithms and
heuristics.

It would be very interesting to compare the algorithms on further datasets. We believe that only when two solutions
have contributions of very close value, our algorithm slows down. For practical instances this should not matter as it simply
occurs too rarely—but this conjecture should be substantiated by some broader experimental study in the future.
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