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ABSTRACT

The integrated analysis of data of different types and with
various interdependencies is one of the major challenges
in computational biology. Recently, we developed Key-
PathwayMiner, a method that combines biological networks
modeled as graphs with disease-specific genetic expression
data gained from a set of cases (patients, cell lines, tis-
sues, etc.). We aimed for finding all maximal connected
sub-graphs where all nodes but K are expressed in all cases
but at most L, i.e. key pathways. Thereby, we combined
biological networks with OMICS data, instead of analyz-
ing these data sets in isolation. Here we present an al-
ternative approach that avoids a certain bias towards hub
nodes: We now aim for extracting all maximal connected
sub-networks where all but at most K nodes are expressed
in all cases but in total (!) at most L, i.e. accumulated
over all cases and all nodes in a solution. We call this strat-
egy GLONE (global node exceptions); the previous prob-
lem we call INES (individual node exceptions). Since find-
ing GLONE-components is computationally hard, we de-
veloped an Ant Colony Optimization algorithm and im-
plemented it with the KeyPathwayMiner Cytoscape frame-
work as an alternative to the INES algorithms. KeyPath-
wayMiner 3.0 now offers both the INES and the GLONE
algorithms. It is available as plugin from Cytoscape and
online at http://keypathwayminer .mpi-inf .mpg.de.
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1. INTRODUCTION

Since the introduction of the so-called next generation
sequencing technology it appears that we have finally ar-
rived in the post-genome era. At the web site of the Na-
tional Center for Biotechnology Information we find regis-
tered sequencing projects for 1520 eukaryotes, 8604 prokary-
otes and 2987 viruses [21]. However, we still lack funda-
mental knowledge about crucial genetic programs, the in-
terplay of genes and their products (the proteins) and their
biochemical regulations and fine-tuning. We know very lit-
tle about how cells, organs and tissues regulate survival,
reproduction, movement, etc. in response to changing en-
vironmental conditions [20, 7]. The most important con-
trol mechanisms are transcriptional gene regulations and
protein-protein interactions [8, 17]. They are typically mod-
eled as graphs, where nodes correspond to genes/proteins
and edges to biological interactions between them [9, 10].
In this regard, we may study statistical network proper-
ties [13], discuss node degree distributions [5], investigate
network centrality node lists [4], or identify protein com-
plexes [26], to name a few possibilities. On the other hand,
we use so-called OMICS technologies for measuring the ac-
tivity of biological entities within living cells under differ-
ent conditions (stimuli, diseases, infections, etc.). The most
prominent examples for such technologies are microarrays
or RNA-seq (transcriptomics), genome-wide promoter/gene
methylation assays (epigenetics), mass spectrometry (pro-
teomics), and ion mobility spectrometry (metabolomics). A
typical example for high-throughput OMICS data analysis
(with relation to this paper) is cancer sub-typing based on
the identification of genome-wide gene expression similari-
ties [24, 25], to give only one of many possible examples.
Recent advances in large-scale systems biology wet lab ma-
chinery provided us with huge amounts of both network
data and OMICS data. In the Gene Expression Omnibus
(GEO), the standard repository for microarray, RNA-seq
and methylation profiling data, we have 680,000 samples
measured at almost 10,000 platforms available for public
download [12]. The most impressive number on the net-
work side comes from the PSICQUIC platform, a SOAP-



based online querying interface and meta-database that cov-
ers 16 interactome databases and provides access to 16 mil-
lion protein-protein interactions of various evidence levels
and for several species [3].

Although the integrated analysis of data from different
types and with various interdependencies is one of the
major challenges in computational biology, both kinds of
data types, the rather static network data as well as the
quite dynamic, case-specific OMICS data are usually stud-
ied in isolation. Therefore, we recently developed KeyPath-
wayMiner [2, 1], a method that combines biological networks
modeled as graphs with disease-specific genetic expression
data gained from a set of cases (patients, cell lines, tissues,
etc.). Our approach aims to find all maximal connected sub-
graphs, w.r.t. the number of nodes, where all nodes but K
are expressed in all cases but at most L. We refer to these
maximal connected components as key pathways. First, we
checked, for each node individually, whether the L-condition
was fulfilled (expressed in all cases but L). If not, we marked
the corresponding nodes as exception nodes, of which we al-
low at most K in a valid solution. We call this strategy INES
(individual node exceptions). Using INES means, however,
that we tend to prefer nodes with high degrees (hub nodes)
as exception nodes, since they are more likely to maximize
the sub-graph by connecting it with others. Depending on
the underlying real world question, this bias may or may
not be desired. Here we present an alternative approach
that tackles this problem by slightly varying the optimiza-
tion problem: Now we aim to extract all maximal connected
sub-networks where all but at most K nodes are expressed in
all cases but in total (!) at most L, i.e. accumulated over all
cases and all nodes in a solution. In other words, a solution is
valid when it is maximal w.r.t. the number of nodes and for
all nodes but K we have at most L nonexpressed cases. We
call this strategy GLONE (global node exceptions). Since
finding such GLONE-components is NP-hard, we developed
an Ant Colony Optimization algorithm and implemented
it with the KeyPathwayMiner Cytoscape framework as an
alternative to the INES algorithms. We demonstrate the
power of GLONE by utilizing the same data sets that were
used for evaluating the INES algorithms of the previous Key-
PathwayMiner release [1] as well as related computational
tools [23, 14, 2, 11]: the human protein-protein interaction
network together with gene expression data of Huntington’s
disease patients.

2. DESCRIPTION OF ALGORITHMS

The formal model for the problem is as follows. Given an
undirected graph G = (V, E) and a node labeling function
f:V = N, as well as parameters L and K, find a set of
nodes S C V' of mazimal cardinality such that

e S in G is connected;

e the sum over f(v) for all v € S, except the K nodes
with highest f(v), is at most L.

We call such a set S a GLONE-component. This problem
is NP-hard (see [23] for a discussion). Intuitively, the nodes
of the graph correspond to genes/proteins and the edges to
biological interactions between them. For each node v, f(v)
corresponds, for example, to the number of not differentially
expressed cases.
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Algorithm 1: Max-Min Ant System

1 Input: G = (V,E); f; L; K,

2 initialize all pheromones to 1/2 ;

3 foreach v in the start node list do

4 let S* ={V};

5 while some improvement recently do

6 construct a solution S according to Algorithm 2;
7 apply local search to S
8
9

if |S*| < |S| then S* =S

return best solution found;

In [16] an ACO algorithm framework for finding solutions
to subset problems was given. To find GLONE-components,
we follow the general ideas inherent in this framework (as
we are looking for a subset of nodes), but in pheromone up-
date rules, follow an approach according to a Max-Min Ant
System [22]. In what follows, we give a detailed description
of our algorithm; an overview is given in Algorithm 1.

A list of all parameters to the algorithm, as well as the
default values used for testing, can be found in Table 1.
Experimentation showed that the default parameter values
result in good solutions; careful adjustments of the values
can lead to much faster termination, but possibly at the
cost of a somewhat lower quality of the solutions (see also
Figure 1).

| Parameter | Value |
ALPHA 2.0
(Pheromone intensity)
BETA 5.0
(Edge desirability importance)
RHO 0.1
(Pheromone decay rate)
MAX_RUNS_WITHOUT_CHANGE | 100
(Max. iterations without change)
NUM_STARTNODES 100
(Number of starting nodes)
TAU_MIN 0.1
(Minimum node pheromone value)

Table 1: Parameter specification (default values).

The algorithm maintains a single best-so-far solution,
which is the only solution used to update the pheromones.
Pheromones are deposited on the nodes of the input graph.
The algorithm makes a number of independent runs with
different start nodes (the number is specified by a param-
eter of the algorithm). In each iteration, each ant grows
a connected subgraph of the input graph beginning at the
current start node until no node can be added without ex-
ceeding the limit in cumulative L-value (ignoring the K most
costly nodes). After this, a local search is applied: We try
all nodes w from the subgraph of the ant such that removing
this node will not make the subgraph disconnected; we now
remove u and add neighboring nodes in a greedy fashion un-
til no nodes can be added without violating the constraint
imposed by the K and L values. The number of ants per
iteration is a parameter of the algorithm.
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Figure 1: Comparison of the greedy algorithm (blue
line) and our ACO algorithm (red chart with stan-
dard deviations).

Let a node v be given. The amount of pheromone on v is
denoted by 7(v); we also associate a heuristic value with v,
denoted by n(v), equal to 1/f(v). This heuristic value is
fixed during a run of the algorithm and is aimed at direct-
ing the algorithm to promising areas (low f-value). We
make a multiplicative trade-off between pheromone value
and heuristic value and choose node v proportional to

T(0)* -0 (v)”.

Both « and (8 are parameters of the algorithm. Note that
only nodes connected to the component constructed so far
are considered.

All pheromones values are kept between the pheromone
borders Tmin and Tmax = 1 — Tmin and initialized to 0.5,
following the scheme of a Max-Min Ant System. When up-
dating with the best-so-far solution S, the pheromone 7 is
updated according to the following rule. For all nodes v,

Tnew(’l)) = {mln((l - p)T(’l}) + P, Tmax), lf v E S’

max((1 — p)7(v), Tmin), otherwise.

The algorithm stops the run for the current start node when
there were no improvements in a fixed number of iterations
(a parameter to the algorithm). The list of start nodes is de-
terministically created by choosing the nodes with the small-
est average f-value of their neighborhood. Other heuristics
are possible here, this one has shown a good performance in
experiments.

Algorithm 2: Component Construction from v

Input: start vertex v;

S = {v};

while FN(S) # (0 do
let R = ZueFN(s) 7(u)® - "](U)BQ
choose u € FN(S) with probability 7(u)*
S=SU{u}

return S;

-n(uw)?/R;

N OO0t s N

The construction of a solution is an iterative procedure
detailed in Algorithm 2. For any set .S of nodes of the input

graph, we let N(S) ={u|u & SATv € S s.t. {u,v} € E} be
the set of all nodes in the graph which have a neighbor in S.
For a connected set S, a node u € N(S) can be added to S,
if SU{u} is a feasible solution. We call such nodes feasible
neighbors, and denote the set of all feasible neighbors by
FN(S).

We observed that after a few hundred iterations our ACO
algorithm always outperforms the greedy solution. Figure 1
shows an experimental comparison for L = 400 and K = 2
on the Ulitskty et al. data set [23]. The size of the solu-
tion of the greedy algorithm is the blue line. The quality
of the best-so-far solution after each iteration and the re-
spective standard deviations for 100 runs is shown in red.
Note that the horizontal axis is scaled logarithmically. For
this parameter setting, the best-so-far solution of our ACO
algorithm is better than the solution of the greedy algo-
rithm after 160 iterations on average. The behavior is simi-
lar for other parameter combinations. However, the greedy
approach is significantly faster than the ACO.

3. EXPERIMENTS

In this chapter we elucidate the GLONE algorithm’s char-
acteristics and performance. We first compare the results to
our previous algorithm INES (KPM 2.0 ACO) [1]. Subse-
quently, we present a comparison regarding identified known
relevant genes to other software approaches. In the closing
section we provide an analysis showing the running times
and behavior of the GLONE algorithm in relation to vary-
ing parameter specifications.

3.1 Data

For evaluation purposes we use a human PPI network con-
taining 7,384 nodes and 23,462 interactions extracted and
compiled from several interaction databases. For the extrac-
tion of disorder-specific key pathways, we used gene expres-
sion data taken from the Gene Expression Omnibus (GEO)
which was obtained using oligonucleotide arrays [6]. This
data set consists of 38 affected samples taken from the cau-
date nucleus region of the brain. Since there is no commonly
accepted gold standard data, we used the same data that
was used by Ulitsky et al. [23]. To ensure comparability, we
also used the same thresholds and p-values to determine dif-
ferential gene expressions in our pre-processing. Note that
generating an artificial gold standard is not feasible. We
would be able to see that our algorithms solve the combi-
natorial optimization problem but not if the optimization
model itself is appropriate. Hence, we work with real world
data instead.

3.2 Evaluation

We tested the applicability of GLONE by comparing the
found relevant genes to the following sources of already
known and published HD-relevant genes:

¢ KEGG HD Pathway: The KEGG HD Pathway is part
of the KEGG Pathway database [18] which consists of
most of the known metabolic pathways and some of
the known regulatory pathways.

e Calcium Signaling Pathway: This pathway is related
to the KEGG HD Pathway and is also available at the
KEGG Pathway database. It plays an important role
in the development of HD.
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Figure 2: Merged networks from both GLONE and INES.

e HD Modifiers: These genes have been reported in the
work of Kaltenbach and Romero [15] as important
modifier genes playing key roles in the development
of HD.

Since the GLONE approach requires a slight reformulation
of the optimization problem, the L parameter now shows
significantly higher values when compared to previous INES
parameterization. We determined the overall network cost
induced by our former INES approach (KPM 2.0 ACO) by
accumulating all case exceptions over all nodes contained
in the INES solution to determine new values for L. How-
ever, exception nodes were excluded. This strategy assures
that both algorithms’ computations are based on the same
preconditioning, resulting in very similar and comparable
solution networks that differ from each other only due to
corresponding algorithmic characteristics.

Therefore, we set L=164 with K'=2 which resembles the
(now deprecated) INES parameter specification of L=8 and
K =2 for the previously described HD gene expression data.
We left the remaining parameters at their default values
(Table 1). Since ant colony optimization is non-deterministic
(random seeding), we report the worst as well as the best
solution found. However, when comparing GLONE to INES
we show the best solutions for both. Please note that all test
runs resulted in finding key pathways of very similar sizes,
varying by one node. This is an indicator for the algorithm’s
robustness and reliability.
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3.2.1 GLONE versus INES

While INES could only use nodes that did not exceed
the L parameter, GLONE is able to include more expen-
sive nodes to maximize the sub-graph as long as the overall
cost threshold (the new L) for the network is not exceeded.
We evaluated the results of the GLONE algorithm and com-
pared them to our previous approach INES implemented by
the KPM 2.0 ACO algorithm and published under [1]. We
visualized both the GLONE and the INES solution networks
in Figure 2. The figure depicts the GLONE network (blue
nodes), the INES network (green nodes) and their overlap
(red nodes). The GLONE network consists of 38 nodes, com-
pared to 37 nodes in the INES network, although the con-
struction of both networks involved the same overall costs.
It is noteworthy that GLONE selects fairly distributed nodes
with lesser degrees as exception nodes, while the INES al-
gorithm tends to have a bias towards picking hub-nodes in
order to maximize the sub-graph. Depending on the data
and local characteristics within the human PPI network this
bias may or may not be desired.

By comparing the genes contained in the reported path-
way solution to all combined known relevant genes (KEGG
HD Pathway, Calcium Signaling Pathway, HD Modifiers),
GLONE outperforms INES by two genes in the KEGG HD
Pathway and in the Calcium Signaling Pathway (Gene Sym-
bols: GNAQ, PLCBL1), please refer also to Table 2. How-
ever, with INES we found one gene in the HD modifiers that
was not identified using GLONE (Gene Symbol: CTNNB1).



INES | GLONE | GLONE | CUSP | GiGA | jActive- | t-test
(worst) (best) Modules | top
Number of genes 37 37 38 34 34 282 34
Contains HTT ? Yes Yes Yes Yes No No No
HD modifiers 8 6 7 7 3 12 2
KEGG HD pathway | 8 8 10 4 0 4 0
Calcium pathway 5 5 7 6 5 10 3

Table 2: Table comparing the largest affected pathways found for K =2 and L = 8 by the ACO 2.0, the worst
and best results from the ACO 3.0 and other pathway extraction methods such as CUSP [23], GiGA [11],
jActiveModules [14] and the top 34 active genes with the most significant t-scores.

Furthermore, even though INES included the Huntingtin
gene (Gene Symbol: HTT) in the network, it was an ex-
ception node. Using GLONE the Huntingtin gene is added
to the pathway as a regular node in the process.

3.2.2 Comparing GLONE with other approaches

We also evaluated the GLONE algorithm by comparing its
performance to four additional software approaches respec-
tively: CUSP, GiGA, jActiveModules, and t-test top. Table
2 shows the evaluation results. We used equal parameteriza-
tion for each evaluation step regarding the allowed number
of case exceptions K and the cost threshold for gene excep-
tions L. The GLONE algorithm found the highest overall
amount of known HD-relevant genes, except for the jAc-
tiveModules, which finds a very large pathway. Apparently,
the larger the pathway the higher the probability that it also
contains one or many of the known relevant genes. However,
large networks contain a lot of noise and thus are far from
representing a key pathway. To address this, we use a metric
(overlap) that accounts for the number of genes in relation
to the network size. This is important since it is a measure
for the key pathway’s significance. Figure 3 showcases this

30

25

20 + M GLOME(best)

ECUsP
15 +

GiGA

% overlap

jActiveModules

10
mt-test top

HD modifiers KeggHD pathway Calcium pathway

Figure 3: Bar diagram showing the % overlap of the
reported found key pathway of each approach with
each of the three control sets of known HD-relevant
genes

relationship. We illustrate the overlap of each key pathway
with the three control data sets of known relevant genes.
Compared to the HD modifiers and the Calcium Signaling
Pathway, the GLONE pathway reaches an 18% overlap and
a 27% overlap with the KEGG HD Pathway. With CUSP
having a slightly larger overlap with the HD modifiers con-
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trol dataset, the GLONE algorithm outperforms any other
approach having the greatest differences with respect to the
KEGG HD Pathway.

To summarize the comparisons’ results, GLONE is able to
find the most significant key pathway regarding the number
of identified known relevant genes from the three control
datasets with respect to the size of the key pathway.

3.2.3 GLONE Running Times

All running time analyses were executed on an ordinary
personal computer. Table 3 shows detailed hardware speci-
fications. We varied the parameters K and L in a common
value spectrum. Note that these values are always data spe-
cific and it could in some cases be desirable to use signifi-
cantly smaller or higher values. Figure 4 shows these results.

Running Times

600
12}
ke
=]
Q
2 400
1}
=
(]
£
2
g 200
ot
Mk
Oi L | | |
0 2 4 6 8 10

Allowed Gene Exceptions K

Figure 4: GLONE running time behavior for varying
K and L using the HD data sets

When the solution space is extended by increasing both
K and L, each iteration is more complex, as more nodes
become available. However, while this increases the compu-
tation time to find the best solution it is noticeable that the
margin of deviation is also increased. For a fixed L value,
the amount of iterations and the computational cost per it-
eration can vary between different values of K in such a
way that, to a limited extend, the algorithm may converge
faster towards the best solution even for higher values of K
or more slowly for lower values, thus, increasing the margin



of deviation. This is due to both changing random seeds
determining different starting conditions for the ACO and
corresponding local characteristics of the PPI network.

Model: Dell Latitude E6510
CPU: Intel Core i5 CPU M540 @2.53GHz
RAM: 3.24GB

Operating System: | Windows XP Prof. 2002 SP 3

Table 3: System specifications

4. CONCLUSIONS

In this paper we presented KeyPathwayMiner 3.0, a set
of algorithms tackling the computational problem of finding
maximal sub-networks where all nodes but K are active in
all studied cases but L.

Here, we complement the INES (individual node excep-
tions) approach from the previous KeyPathwayMiner release
by addressing a potential bias regarding hub nodes with our
GLONE (global node exceptions) approach. Now we aim to
extract all maximal connected sub-networks where all but at
most K nodes are active in all cases but in total (!) at most
L, i.e., accumulated over all cases and all nodes in a solution.
Since finding such solutions is computationally intensive we
implemented and described a sophisticated ACO algorithm,
which we compared to the KeyPathwayMiner release 2.0 as
well as to similar software solutions. For our comparison, we
used data sets previously utilized for the CUSP algorithm
where our method performs as well as or better than the
other methods.

In summary, our main contribution in comparison to re-
lease 2.0 is an alternative method for avoiding a potential
bias towards hub/exception nodes. Regarding other meth-
ods, our main contribution is a method that requires mini-
mal user input of two intuitive parameters that control the
noise that we wish to allow in the network data (K) as well
as the expression data (L). No prior knowledge regarding
these two parameters is necessary. Besides methodological
considerations, our implementation has some benefits over
other approaches: KeyPathwayMiner 3.0 comes as an easy-
to-use, easy-to-install Cytoscape plug-in, and its parallel im-
plementation allows for speedups on multi-core computers.

In the future we plan to extend our approach to di-
rected networks, such as metabolic networks and gene reg-
ulatory networks. Furthermore, we aim to integrate the
method into CoryneRegNet [19, 9]. We are also work-
ing on a dedicated web server for online-only computa-
tions as well as a SOAP-based web service provider. Al-
gorithmically, we will evaluate if a hybrid approach of us-
ing the results of our greedy strategy as seeding for the
ACO algorithm will improve convergence (lower compute
time) without running into local optima (similar accu-
racy).
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