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Abstract. State of the art extension based argument acceptance is currently biased
toward attacks: while the defending extension of an argument a is internally coher-
ent, no such requirement is imposed on its attacking set. On the other hand, if we
restrict ourselves only to conflict-free sets of attacking arguments, then we could
have different attacking sets for a specified argument a (any two conflicting attack-
ers of a must belong to different a’s attacking sets). Having only one defending
extension for all these attacking sets would contradict the deliberative nature of ar-
gumentation in the real world, where only the coherent sets of attacks matter and
the defending sets of arguments depend on the former.
In this paper we introduce a new type of acceptability of an argument, in which

its attacking and defending sets of arguments are uniformly treated. We call it de-
liberative acceptance, discuss how this and the classical acceptance notions in-
terrelate and analyze its computational properties. In particular, we prove that the
corresponding decision problem is ΠP2-complete, but its restrictions on bipartite or
co-chordal argumentation frameworks are in P.

Keywords. abstract argumentation, argument acceptability, computational properties
of argumentation

1. Introduction

The notion of argument acceptance is central in argumentation. The graph-theoretic
model of argumentation frameworks introduced by Dung [1] focuses on the manner in
which a specified set A of abstract arguments interact via an attack binary relation D on
A. If (a,b) ∈ D (argument a attacks argument b) we have a conflict. A conflict-free set of
arguments is a set T ⊆ A such that there are no a,b ∈ T with (a,b) ∈ D.

In this model, one of the main aim of argumentation is in deciding the status of
some argument in presenting a justification for this. More precisely, the acceptability
of an argument a is defined based on its membership in a set of arguments satisfying
certain properties. A family S ⊂ 2A of sets of arguments is defined (the predicate S ∈ S

is called semantics in this context) and a is considered acceptable if there is S ∈ S such
that a ∈ S – credulous acceptance – or if a ∈ S for all S ∈ S – skeptical acceptance.
This kind of rationality (based on the possibility of extending the analyzed argument to
a set of “collectively acceptable” arguments) is called extension based semantics. The
grounded, preferred and stable semantics defined by Dung (see Section 2) formalizes
different intuitions about which arguments to accept on the basis of a given framework.
Discussions on how to select the appropriate semantics for a given application context
or how to compare the different semantics for argumentation frameworks, have been the
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subject of several papers (see [2], [3], [4], [5], [6], etc.). The motivation of considering
different semantics (semi-stable [7], prudent [8], ideal [9], SCC-recursive [10], evidence-
based [11], etc.) is given by the need to formalize “everyday reasoning” in order to design
mechanisms expressing a “legitimate” argumentation in support of an argument.

The above sets of collectively acceptable arguments have at least the properties of
being conflict-free (that is, they are internally logically coherent) and defend themselves
from any external attack (that is, they survive the attacks together). This type of argument
acceptance is biased toward attacks: while the defending extension of an argument a is
internally coherent, no such requirement is imposed on its attacking set. On the other
hand, if we restrict ourselves only to conflict-free sets of attacking arguments, then we
could have different attacking sets for a specified argument a (any two conflicting at-
tackers of a must belong to different a’s attacking sets). In many cases in the real world,
when argument a is attacked by a coherent set of arguments T , a is defended by giving a
coherent set S including a, which defends against T .

In this paper we follow this intuition and introduce a notion of acceptability at the
level of justification states of arguments rather than of extensions. We call it deliberative
acceptability due to the uniform treatment of both attacking and defending sets in the
definition of the acceptability of an argument. More precisely, an argument a is delibera-
tively acceptable in a given argumentation framework if, for each conflict-free set of ar-
guments attacking a, there is a conflict-free set of arguments containing a and defending
itself against the former set. We analyze this type of acceptability and investigate it from
a complexity point of view. In Proposition 8, we prove that if an argument is credulously
grounded, preferred or stable accepted then it is deliberatively accepted, but the converse
is not true. This is illustrated in Figure 1.

Credulously preferred accepted

Deliberatively accepted

Credulously grounded accepted

Credulously stable accepted

Figure 1. Acceptability implications (edges implied by transitivity are omitted).

We give a sufficient graph theoretical condition in which a deliberatively accepted
argument belongs to an admissible set (see Proposition 9). Also, we show that in bipar-
tite1 or symmetric argumentation framework the deliberative acceptability is equivalent
to credulous preferred acceptability (Proposition 10). In Proposition 12, we prove that the
problem of deciding if an argument is deliberatively accepted in a given argumentation
framework is ΠP2-complete but its restrictions on bipartite or co-chordal argumentation
frameworks are polynomial time solvable (Propositions 13 and 14).

The remainder of the paper is organized as follows. After reviewing the necessary
basic concepts in Section 2, the notion of deliberative acceptance is introduced and its
basic properties are studied in Section 3. We close this section with three examples con-

1A graph is called bipartite iff it has no cycle of odd length.
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cerning the relation of the deliberative acceptance with the extension semantics which are
not admissibility based. In Section 4, we proved that the corresponding decision problem
is ΠP2-complete and two restrictions under which it is in P are identified. Finally, Section
5 concludes the paper and discusses future work.

2. Dung’s Theory of Argumentation and Extensions

In this section we present the basic concepts used for defining usual semantics in ab-
stract argumentation frameworks introduced by Dung in 1995, [1]. In such argumentation
frameworks the focus is only on the defeat relation between arguments from an already
established finite set A of arguments.

Definition 1 An Argumentation Framework is a digraph AF = (A,D), where vertices
from A are called arguments, and if (a,b) ∈ D then argument a defeats (attacks) ar-
gument b.

We suppose that the digraph AF has no loops, that is, there are no self-attacking
arguments in A. We also consider only finite digraphs, that is, the set A is finite and
non-empty.

Let AF = (A,D) be an argumentation framework. For each a ∈ A let a+ = {b ∈
A| (a,b) ∈ D} be the set of all arguments attacked by a, and a− = {b ∈ A| (b,a) ∈ D} be
the set of all arguments attacking a. These notations can be extended to sets of arguments.
The set of all arguments attacked by (the arguments in) S ⊆ A is S+ =

⋃
a∈S a+, and the

set of all arguments attacking (the arguments in) S is S− =
⋃

a∈S a−.

Definition 2 Let S ⊆ A be a set of arguments.

• S is called conflict-free if S∩S+ = /0 (i.e. there are no attacking arguments in S).
• S defends an argument a ∈ A if a− ⊆ S+ (i.e. any a’s attacker is attacked by an

argument in S). The set of all arguments defended by a set S of arguments is
denoted by F(S).

• S is admissible if it is conflict-free and S ⊆ F(S) (i.e. defends its elements).
• S is a complete extension if it is conflict-free and S = F(S) (i.e. the set of all

elements defended by S is exactly S).
• S is a preferred extension if it is a maximal (w.r.t. ⊆) complete extension.
• S is a grounded extension if it is a minimal (w.r.t. ⊆) complete extension.
• S is a stable extension if it is conflict-free and S+ = A− S.

It is not difficult to see that any admissible set is contained in a preferred extension,
which exists in any argumentation framework; the preferred extension is unique if the
argumentation framework has no directed cycle of even length ([4], [10]).

The grounded extension exists and it is unique in any argumentation framework. It
can be constructed by considering all non-attacked arguments, deleting these arguments
and those attacked by them from the digraph, and repeating these two steps for the di-
graph obtained until no node remains. Clearly, the grounded extension is a natural ex-
tension for an argumentation framework, but it could be empty (if in the argumentation
framework each argument has at least one attacker).
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Definition 3 Let AF = (A,D) be an argumentation framework. An extension-based ac-
ceptability semantics is any predicate σ : 2A → {true, f alse}. The set of all extensions
under σ , or the set of all σ -extensions, is Eσ = {S ⊆ A |σ(S) = true}.

Definition 4 Let AF = (A,D) be an argumentation framework, a ∈ A and σ a semantics.
a is credulously accepted under σ if there is S ∈ Eσ such that a ∈ S. a is sceptically
accepted under σ if a ∈ S for all S ∈ Eσ .

Example 5 Let us consider the argumentation framework in the Figure 2 below.

a b

d

e

c

Figure 2. Argumentation Framework in Example 1

Since each argument has at least one attacker, the grounded extension is empty. The
conflict-free sets containing the argument a are {a}, {a,c}, and {a,d}. Since a cannot
defend against the attacker e, {a} is not admissible. The set {a,c} cannot defend against
the attacker e, and the set {a,d} cannot defend against the attacker c. It follows that a
does not belong to a preferred extension. The unique preferred extension is {b,d} (its
attackers are defeated by b). Therefore we could accept b and not a, because b can be
extended to a maximal conflict-free set of arguments {b,d} defending itself from all
attacks.

Despite of the fact that a is not credulously preferred accepted, its “acceptability”
could be argued as follows. The conflict-free sets attacking a are: {b}, {b,d} and {b,e}.
Clearly, a defends itself against {b}. Against {b,d}, we can defend a by considering the
conflict-free set {a,c}, that is choosing a coherent sets of arguments on the same idea
induced by the attacking set {b,d}. The set {a,c} is not appropriate for the attacking set
{b,e} but, in this case, {a,d} does the job. Hence we can defend a against all conflict-free
sets of arguments attacking it, therefore we can “accept” a.

We will define and analyze this type of acceptability in the next section.

3. Deliberative Acceptability of Arguments

Definition 6 Let AF = (A,D) an argumentation framework. An argument a ∈ A is de-
liberative acceptable if for any conflict-free set T attacking a (i.e. T ∩a− �= /0), there is
a conflict-free set S ⊂ A such that a ∈ S and S defends itself against T (i.e. T ∩S− ⊆ S+).

This type of acceptability is closer to the intuition about real life debate-type argu-
mentation. If the argument a is attacked by a conflict-free set T of arguments, there is a
conflict-free set of arguments S containing a, depending on T such that S defends a. S
also defends its arguments that are attacked by T . Figure 3 illustrates two conflict-free
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sets Ti attacking a and the corresponding two answers to these attacks, two conflict-free
sets Si containing a. Each attack of a from Ti is counterattacked by an argument from Si.
If Ti attacks also this defender, then Si has also a counterattack to this. And so on.

a
S1

T1

S2T2

Figure 3. Deliberative Acceptability Example. Two conflict-free sets T1 and T2 attacking a and the correspond-
ing defending conflict-free sets S1 and S2.

Note that we assumed that there are not self-attacking arguments in the argumenta-
tion framework. If a would be a self-attacking argument, then a is not contained in any
conflict-free set. Hence, if a is attacked by some other argument then a cannot be delib-
eratively accepted. Moreover, since a does not belong to any conflict-free set, the delib-
erative acceptance of other arguments is not influenced. Thus, without loss of generality,
we restrict our attention to argumentation frameworks without self-attacking arguments.

It is possible to introduce a weaker form of the deliberative acceptance by consid-
ering in the above definition only the conflict-free sets T contained in a−. This could be
too tolerant as the following example shows.

Example 7 Let us consider the argumentation framework in the Figure 4 below.

b

a

c

d e

Figure 4. Argument a is not deliberative acceptable, despite it can be defended against conflict-free sets con-
tained in a−.

The grounded extension is {e,b}. It follows that the argument a is not credulously
accepted in any classical extension semantics. The conflict-free sets contained in a−

are {b} and {c} which can be defeated by the conflict-free sets containing a: {d,a},
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respectively, {e,a}. If we consider a (weak) deliberative acceptable this will correspond
to a superficial analysis. Indeed, there are also two conflict-free sets attacking a, namely
{c,d} and {b,e}. The set {e,a} defeats {c,d}, but {e,b} is a conflict-free set attacking a,
which could not be defended. It follows that the argument a is not deliberatively accepted.

The following proposition shows that deliberative acceptance is strictly more liberal
than credulous acceptance with respect to the classical extension-based semantics.

Proposition 8 Let AF = (A,D) be an argumentation framework and a ∈ A. If a is σ -
credulously accepted for σ ∈ { grounded, preferred, stable}, then a is deliberatively ac-
cepted. For each the above semantics σ , there are argumentation frameworks in which a
deliberatively accepted argument is not σ -credulously accepted.

Proof. If a ∈ A is σ -credulously accepted for σ ∈ {grounded, preferred, stable},
then there is an admissible set S0 containing a. It follows that for any b ∈ S−0 there is
s ∈ S0 such that (s,b) ∈ D. Let T be a conflict-free set of arguments attacking a. Each
argument b∈ T ∩S−0 is attacked by S0. Hence T ∩S−0 ⊆ S+0 , and therefore a is deliberative
accepted.
In the argumentation framework in Figure 2 the grounded extension is /0. Hence a is
not grounded-credulous accepted. However, as we argued in the end of Section 2, a is
deliberative accepted. Also, a is not preferred accepted because the unique preferred
extension {b,d} does not contain a. Since any stable extension is a preferred extension,
it follows that a is also not stable-credulously accepted. �

Depending on the combinatorial structure of the argumentation framework, the de-
liberative acceptance could agree to that based on extensions. The following proposition
gives an easy sufficient condition for this.

Proposition 9 Let AF = (A,D) be an argumentation framework and a ∈ A. If AF does
not contain the induced subdigraphs F1 and F2 in Figure 5 (dotted directed edges are
optional), then, if a is deliberatively accepted, it follows that a is credulously preferred
accepted.

a

F1

a

F2

Figure 5. Forbidden induced subdigraphs F1 and F2.

Proof. Since F1 is forbidden, it follows that a− is conflict-free (if there are b,c such
that (b,a),(b,c),(c,a) ∈ D, then {a,b,c} induces F1). Taking T0 = a−, since a is delib-
eratively acceptable, there is a conflict-free set S such that a ∈ S and T0∩ S− ⊆ S+. Let
ST0 be a minimal set S with these properties. We prove that ST0 is admissible. Indeed, let
b be an argument attacking ST0 . If (b,a) ∈ D, then b ∈ T0, therefore there is a′ ∈ ST0 such
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that (a′,b) ∈ D. Hence ST0 defends itself against b. If b �∈ T0, then either (a,b) ∈ D or
{a,b} is conflict-free. If (a,b) ∈ D, then, since a ∈ ST0 , it follows that ST0 defends itself
against b. If {a,b} is conflict-free, then since b attacks ST0 , there is c ∈ ST0 , c �= a such
that (b,c) ∈ D. By the minimality of ST0 , there is d ∈ T0 such that (c,d) ∈ D. But then
the subdigraph induced in AF by {a,b,c,d} is F2 in Figure 5, which yields a contradic-
tion. It follows that ST0 is admissible and hence can be extended to a maximal complete
extension containing a, that is a is credulously preferred accepted. �

Using similar arguments as in the above proof, it is not difficult to show that if AF is
a directed acyclic graph (DAG) or if the underlying undirected graph of AF is bipartite,
then an argument a is deliberatively accepted if and only if a is credulously preferred
accepted. However, for bipartite graphs we can do better as follows.

Let G = (A,E) be the underlying undirected graph of AF ({a,b} ∈ E if and only
if (a,b) ∈ D or (b,a) ∈ D). Since G is bipartite, then A can be partitioned A = U ∪V ,
U,V �= /0,U ∩V = /0, and if {a,b} ∈ E then |{a,b}∩V |= 1 and |{a,b}∩U |= 1.

In [12], Dunne proved that the following algorithm applied to a bipartite argumen-
tation framework AF = (A =U ∪V,D) (below, [X ]AF denotes the subdigraph induced by
X ⊆ A in AF: [X ]AF = (X ,D∩X ×X) )

input AF = (U ∪V,D)
while ∃v ∈V −U+ s.t. v+∩U �= /0 do

AF := [(U − v+)∪V ]AF

return U

returns a final set U , denoted U0, which satisfies: U0 is conflict-free (is a subset of U),
andU−

0 ⊆U+
0 (in the given argumentation framework AF). Similarly, the algorithm:

input AF = (U ∪V,D)
while ∃u ∈U −V+ s.t. u+∩V �= /0 do

AF := [U ∪ (V −u+)]AF

return V

returns a final set V , denoted V0, which satisfies: V0 is conflict-free (is a subset of V ),
and V−

0 ⊆ V+
0 . Moreover, a ∈ A is credulous preferred accepted if and only if a ∈ U0 or

a ∈V0 (Dunne, [12]). It is not difficult to prove that the following proposition holds.

Proposition 10 Let AF = (A,D) be an argumentation framework and a ∈ A. If the un-
derlying undirected graph of AF is bipartite with bipartition A =U ∪V, and U0 and V0
are the sets of arguments constructed by the Dunne’s algorithm above, then a is deliber-
atively accepted if and only if a ∈U0∪V0.

Proof. The “only if” part follows from Proposition 8 and Dunne’s characterization
of credulous preferred arguments in bipartite argumentation frameworks [12].

To prove the “if” part, suppose that there is a ∈U −U0 deliberative acceptable (sim-
ilarly, if a ∈V −V0). It follows that there are (distinct) vertices v1, . . . ,vk ∈V such that vi

is used in the ith “while” iteration of the algorithm above, to delete vertices fromU and
vk is the first such vertex attacking a (a ∈ v+k ). Since a is deliberative acceptable, for the
conflict-free set T = {v1, . . . ,vk} attacking a, there is a conflict-free set S such that a ∈ S
and S−∩T ⊆ S+. Since v1 is not attacked in the initial framework, it follows that v1 �∈ S−.
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Since v2 is not attacked in the second framework, it follows that v2 �∈ S−. Inductively,
we obtain that vk �∈ S−, contradicting the hypothesis a ∈ v+k . The contradiction obtained
ends the proof of the “if” part. �

We note that if the argumentation framework is symmetric (that is, AF is obtained
from an undirected graph by replacing each undirected edge {a,b} by the pair (a,b) and
(b,a) of directed edges), then each argument is deliberative acceptable. This is obvious
since, in this case, a set of arguments is admissible if and only if is conflict-free, [8].

We close this section with three examples concerning the relation of the deliberative
acceptance with the extension semantics which are not admissibility based: stage seman-
tics [13], and cf2 semantics [14]. One of the advantages of these two semantics is that
odd and even directed cycles are treated equally.

A stage extension in AF =(A,D) is a conflict-free set S⊆ Awhere S∪S+ is maximal
(w.r.t. set inclusion) among all conflict-free sets in AF . A recursive definition for the cf2
extensions is: a set S ⊆ A is a cf2-extension in AF = (A,D) if

• AF is strongly connected and S is a maximal (w.r.t. set inclusion) conflict-free set
in AF , or

• AF is not strongly connected and for any strongly connected component C of
AF , S∩C is a cf2 extension in the argumentation framework AF [C− (S−C)+]
induced byC− (S−C)+ in AF .

Example 11 In the argumentation framework AF1 in the Figure 6 below, the stage exten-
sions and the cf2 extensions are {a,c,e} and {b,d, f}. Hence each argument is accepted
under stage and cf2 semantics. The same conclusion is obtained with the deliberative
acceptance. Indeed, these two extensions are also admissibility extensions and therefore
each argument is deliberatively accepted by Proposition 8.

a b

c

de

f g

AF2

a b

c

de

f

AF1

a b

c

de
AF3

Figure 6. Three argumentation frameworks with different deliberative acceptance conclusions versus stage
and cf2 semantics.

In the argumentation framework AF2, the stage extensions and the cf2 extensions are
also {a,c,e} and {b,d, f} (which are also stable extensions). Hence the argument g is
not accepted under stage and cf2 semantics. The conflict-free set T = {a,e} attacks g. A
conflict free set S containing g and defending itself against T must contain d (the only
attacker of e) which is not possible (d attacks g). It follows that g is not deliberatively
accepted. In the argumentation framework AF3, the stage extensions and the cf2 exten-
sions are {a,c}, {a,d}, {b,d}, {b,e}. Hence each argument is accepted under stage and
cf2 semantics. Let T = {e,c} be a conflict-free set attacking a. As above, a conflict-free
S containing a and defending itself against T must contain b, a contradiction. Hence a
is not deliberatively accepted.
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4. Complexity

Let us consider the following decision problem:
Deliberative Acceptability
Instance: AF = (A,D) argumentation framework, a ∈ A.
Question: Is a deliberatively acceptable?

The complexity class ΠP2 comprises those problems decidable by co-NP computa-
tions given (unit cost) access to an NP complete oracle. Alternatively,ΠP2 can be viewed
as the class of languages L whose membership is certified by a polynomial-time testable
ternary relation RL ⊆ W ×X ×Y : there is a polynomial p such that, for all w, w ∈ L if
and only if (∀x ∈ X : |x| ≤ p(|w|))(∃y ∈Y : |y| ≤ p(|w|)) (w,x,y) ∈ RL.

Proposition 12 Deliberative acceptability is ΠP2-complete.

Proof. It is easy to see that Deliberative acceptability is in ΠP2, since it corresponds
to the language L = {w|∀x∃yR(w,x,y)}, where w encodes an instance (AF,a) of the
problem and (w,x,y) ∈ R if and only if x encodes a conflict-free set T attacking a, and y
encodes a conflict-free set S containing a such that S defends itself against T .

We proveΠP2-hardness for Deliberative acceptability by a reduction from the deci-
sion problem ∀∃SAT.
An instance of ∀∃SAT is a formula F ′ = ∀x1 . . .∀xn∃y1 . . .∃ynF(x1, . . . ,xn,y1, . . . ,yn),
where F(x1, . . . ,xn,y1, . . . ,yn) is a CNF formula over the disjoint sets of variables
X = {x1, . . . ,xn} and Y = {y1, . . . ,yn}. The instance F ′ = ∀X∃YF(X ,Y ) is accepted if
and only if for any truth assignment αX of the variables in X , there is a truth assignment
αY of the variables in Y such that (αX ,αY ) satisfies the formula F(X ,Y ). It is well known
that ∀∃SAT is Πp

2-complete [15,16].
We will construct in polynomial time an argumentation framework AFF ′ for each

instance F ′ of ∀∃SAT. Let F ′ = ∀X∃YF(X ,Y ) and F(X ,Y ) =C1∧ . . .∧Cm, where each
clauseCi is a disjunction of literals. A literal is a variable xi ∈ X = {x1, . . . ,xn}, yi ∈Y =
{y1, . . . ,yn}, or their negations xi ∈ X = {x1, . . . ,xn} and yi ∈Y = {y1, . . . ,yn}.
The argumentation framework associated to F ′ is AFF ′ = (A,D), where:
- A = {F}∪{C1, . . . ,Cm}∪X ∪X ∪Y ∪Y , and
- D = ∪m

i=1{(Ci,F)}
⋃

∪m
i=1∪

n
j=1{(x j,Ci)|x j occurs inCi}

⋃
∪m

i=1∪
n
j=1 {(x j,Ci)|x j occurs inCi}

⋃

∪m
i=1∪

n
j=1{(y j,Ci)|y j occurs inCi}

⋃
∪m

i=1∪
n
j=1 {(y j,Ci)|y j occurs inCi}

⋃

∪n
j=1 {(x j,x j),(x j,x j),(y j ,y j),(y j,y j)}

⋃

∪n
i=1∪

n
j=1{(xi,y j),(xi,y j)}

⋃
∪n

i=1∪
n
j=1 {(yi,x j),(yi,x j)}

⋃

∪n
i=1∪

m
j=1{(Cj,yi),(Cj,yi)}

⋃

∪n
i=1 {(F,xi),(F,xi)}.

Clearly, AFF′ can be constructed in polynomial time from F ′. Its structure is visualized in
Figure 7 below. Note that the only conflict-free sets of arguments containing F are sub-
sets of the form {F}∪S, where S ⊂ Y ∪Y . Also, the only conflict-free sets of arguments
meetingC are of the formC′ ∪T , where /0 �=C′ ⊆C and T ⊂ X ∪X .

We prove that F ′ = ∀X∃YF(X ,Y ) is an accepted instance of ∀∃SAT if and only if
F is deliberatively accepted in AFF ′ .

Suppose that F is deliberatively accepted in AFF ′ . Let αX be any truth assignment
for the variable in X . If all clauses fromC are satisfied by αX then (αX ,αY ) is a satisfying
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C

F

X Y
X : x1 x1 x2 x2 · · · xn xn

Y : y1 y1 y2 y2 · · · yn yn

C : C1 C2 · · · Cm

A B : edges {(a,b)|a ∈ A,b ∈ B}

X C :C
{(xi,Cj)|xi∈Cj}∪

{(xi,Cj)|xi∈Cj}

Y C :C
{(yi,Cj)|yi∈Cj}∪

{(yi,Cj)|yi∈Cj}

Figure 7. The argumentation framework AFF ′ associated to instance F ′ = ∀X∃YF(X ,Y ).

assignment for F(X ,Y ), for any αY . Suppose that there is a nonempty subsetC ′ ⊆C such
that no clauseCi ofC ′ is satisfied by αX . This means that for every literal l ∈ (X∪X)∩Ci,
we have α(l) = f alse. It follows that T = {l ∈ X ∪X |α(l) = true}∪C ′ is a conflict-free
set in AFF ′ attacking the argument F (by all arguments in C ′). Since F is deliberatively
accepted, there is a conflict-free set of argument S such that F ∈ S and T ∩ S− ⊆ S+. It
follows that T −{F} ⊆Y ∪Y and for eachCi ∈C ′ there is l ∈Y ∪Y such that (l,Ci) ∈ D,
that is l ∈ Ci. If we consider αY , the assignment with αY (l) = true for all these literals
l, we obtain that (αX ,αY ) is a satisfying assignment for F(X ,Y ). Hence F ′ is a positive
instance of ∀∃SAT.

Conversely, let F ′ = ∀X∃YF(X ,Y ) be a positive instance of ∀∃SAT. Let T be a
conflict-free set of arguments attacking F (that is,C ′ = T ∩C �= /0). Let αX a truth assign-
ment for variables in X such that for each l ∈ (X ∪X)∩T we have αX (l) = f alse (such
assignment exists since T is conflict-free). Since F ′ is a positive instance of ∀∃SAT,
there is a truth assignment αY for the variables in Y such that for each Ci ∈C ′ there is a
literal li ∈ (Y ∪Y )∩Ci such that αY (li) = true. Taking S the set of arguments containing
F and all such literals li, we obtain a conflict-free set of arguments with the property that
T ∩S− ⊆ S+. It follows that F is deliberatively accepted in AFF ′ . �

It is interesting to identify graph-theoretic constraints for an argumentation framework
under which the problem Deliberative acceptability becomes polynomial-time solv-
able. A first such constraint follows from Proposition 10 and the polynomial runtime of
Dunne’s algorithm.

Proposition 13 If the underlying undirected graph associated to the argumentation
framework AF = (A,D) is bipartite, then Deliberative acceptability is in P.

A more interesting restriction of the Deliberative acceptability problem can be ob-
tained by imposing that the underlying undirected graph associated to the argumentation
framework to be co-chordal. A chordal (triangulated) graph is an undirected graph which
does not contain as an induced subgraph the cycle graphCk, for any k ≥ 4 (equivalently,
in such a graph every cycle of length at least 4 has a chord). The complement of a chordal
graph is a co-chordal graph. Chordal graphs can be recognized in O(n+m) time, where
n is its number of vertices and m is its number of edges [17,18]. Also, the number of
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cliques (maximal complete subgraphs) of a chordal graph is O(n) and all these cliques
can be found in O(n+m), using Maximum Cardinality Search, [18]. It follows that in a
co-chordal graph the number of maximal independent sets of vertices (maximal stable
sets) is O(n) and all these maximal stable sets can be found in linear time. Hence, for the
argumentation frameworks with an underlying co-chordal graph, the number of maximal
conflict-free sets is linear.

Proposition 14 If the underlying undirected graph associated to the argumentation
framework AF = (A,D) is a co-chordal graph, then Deliberative acceptability is in P.

Proof. Firstly, let us remark that if the condition in the definition of deliberative
acceptance of an argument a in an argumentation frameworkAF =(A,D) is fulfilled only
using maximal conflict-free sets of arguments, then it is fulfilled for arbitrary conflict-
free sets. Indeed, if T is a conflict-free set attacking a, let T0 be a maximal conflict-free
set containing T . Clearly, T ∩a− ⊆ T0∩a−, hence T0 attacks a. Since T0 is maximal, there
is the conflict-free S such that a ∈ S and T0∩S− ⊆ S+. Let S0 a maximal conflict-free set
containing S. Clearly, a ∈ S0 and T0∩S−0 ⊆ S+0 . Hence T ∩S− ⊆ S+0 .

Since the underlying undirected graph G of AF is co-chordal, there are only O(|A|)
maximal conflict-free sets Tattacking a. The subgraph of G induced by A− a− is co-
chordal, hence there are O(|A|) maximal conflict-free sets containing a. Each such set S
can be tested in polynomial time if T ∩ S− ⊆ S+. It follows that in polynomial time we
can decide if a is deliberatively accepted. �

5. Discussion

In this paper we introduced the deliberative acceptability of arguments which brings us
closer to the intuitive dynamics of real world debates. We analyzed this type of accept-
ability and showed that depending on the combinatorial structure of the argumentation
framework, the deliberative acceptance could agree to that based on extensions. We then
investigated deliberative acceptability from a complexity view point and proposed graph
theoretic restrictions under which this ΠP2-complete problem belongs to P.

Using a formal treatment of its properties, we explained how the intuition behind the
deliberative acceptability relates to the admissible extensions acceptability. In essence,
both are based on the conflict-freeness and defense.We cannot use the general criteria for
semantics evaluation as introduced in [3], since the different postulates defined there are
for extension-based argumentation semantics and our semantics is not extension-based.

There are interesting future work lines opened by this approach. First of all, from
Proposition 8 it follows that the deliberative acceptability is more concerned with cred-
ulous acceptance. However, we intend to introduce the skepticism in an usual way: an
argument a is strongly deliberative acceptable if it is deliberative acceptable and no argu-
ment b ∈ a− is deliberative acceptable. Relating this kind of acceptability with skeptical
extension based acceptability could be interesting in some applications.

Second, it would be interesting to identify generalizations of argumentation frame-
works (GAF’s) for which the new notion of acceptability have better modeling or compu-
tational qualities. More precisely, a GAF is a pair formed from an argumentation frame-
work AF and a mechanism to specify efficiently a nonempty finite set of spanning subdi-
graphs of AF . This set of spanning subdigraphs may have only one element (as in Value-
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based Argumentation Frameworks (VAF’s) [19]), or more elements (as in Weighted Ar-
gumentation Frameworks (WAF’s) [20]). The goal will be to limit the number of conflict-
free sets attacking an arbitrary argument.

Finally, we plan to investigate the argumentation frameworks having the underlying
undirected graph the complement of an interval graph (the complement of an interval
graph is a co-chordal graph – property used in Proposition 14). An interval graph could
then be used to assign temporal intervals (see [21]) to the arguments, which can attack
others arguments only if the associated intervals does not overlap. This could be an in-
teresting introduction of temporal argumentation frameworks (TAF’s) centered around
deliberative acceptability.
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