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In order to allow a comparison of (otherwise incomparable) sets, many evolutionary multi-
objective optimizers use indicator functions to guide the search and to evaluate the perfor-
mance of search algorithms. The most widely used indicator is the hypervolume indicator.
It measures the volume of the dominated portion of the objective space bounded from
below by a reference point.
Though the hypervolume indicator is very popular, it has not been shown that maxi-
mizing the hypervolume indicator of sets of bounded size is indeed equivalent to the
overall objective of finding a good approximation of the Pareto front. To address this ques-
tion, we compare the optimal approximation ratio with the approximation ratio achieved
by two-dimensional sets maximizing the hypervolume indicator. We bound the optimal
multiplicative approximation ratio of n points by 1 + Θ(1/n) for arbitrary Pareto fronts.
Furthermore, we prove that the same asymptotic approximation ratio is achieved by sets
of n points that maximize the hypervolume indicator. However, there is a provable gap
between the two approximation ratios which is even exponential in the ratio between the
largest and the smallest value of the front.
We also examine the additive approximation ratio of the hypervolume indicator in two di-
mensions and prove that it achieves the optimal additive approximation ratio apart from a
small ratio � n/(n − 2), where n is the size of the population. Hence the hypervolume in-
dicator can be used to achieve a good additive but not a good multiplicative approximation
of a Pareto front. This motivates the introduction of a “logarithmic hypervolume indicator”
which provably achieves a good multiplicative approximation ratio.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Multi-objective problems are prevalent in many different fields like economics, engineering, management, and health-
care [15,17,25]. Such optimization problems with multiple objectives (like time vs. cost) often cannot be easily described
by a single objective function. This implies that there is in general no unique optimum, but a possibly very large set of in-
comparable solutions which form the Pareto front. In the area of evolutionary computation, many different multi-objective
evolutionary algorithms (MOEAs) have been developed to find a Pareto set of (small) size n which gives a good approximation
of the Pareto front. A popular way to measure the quality of a Pareto set is the hypervolume indicator (HYP) which measures
the volume of the dominated space bounded from below by a reference point [32]. For small numbers of objectives, MOEAs
which directly use the hypervolume indicator to guide the search are the methods of choice. These include for example the
generational MO-CMA-ES [19,29], SMS-EMOA [5,16], HypE [3], and variants of IBEA [31,34].
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Fig. 1. An illustration of the hypervolume indicator (cf. Section 3.2) compared to multiplicative approximation (cf. Section 2.1) for a linear front f : [1,2] →
[1,2] with f (x) = 3 − x. The solution set P = {x1, x2, x3} = {(1,2), (1.6,1.4), (2,1)} achieves a hypervolume of HYP(P , R) = 1.865 with respect to the
reference point R = (0.5,0.25). The multiplicative approximation ratio of P is α∗( f , P ) = 1.25.

Despite its popularity, until recently there was not much rigorously known about the distribution of solution sets which
maximize the hypervolume. Such solution sets have been described as empirically “well distributed” in [16,20,21]. In con-
trast to this, it was observed that “convex regions may be preferred to concave regions” [24,32] as well as that HYP is
“biased towards the boundary solutions” [13]. It is known that some of these statements are invalid for the number of
points n → ∞ [2]. Auger et al. [2] proved that in this case the density of points depends only on the gradient.

We are interested in the approximation quality achieved by sets maximizing the hypervolume indicator. For this we have
to formally define how to measure the approximation quality of solutions for multi-objective optimization problems. In the
case of only one objective, the quality is typically measured by the (multiplicative) approximation ratio. For maximization
problems this is the ratio between the optimal value and the best found value. This notion generalizes gracefully to our
multi-objective setting. We say a Pareto set is an α-approximation if it approximately dominates the Pareto curve, that
is, if for every point on the Pareto curve, the Pareto set contains a point that is at least as good approximately (within a
factor α) in all objectives. For a sample of papers using this approach for classic (non-evolutionary) algorithms, see [11,12,
14,26,27,30] and references therein. Fig. 1 gives an illustration of the hypervolume indicator and multiplicative approxima-
tion.

The advantage of the approximation ratio is that it gives a meaningful scalar value which allows us to compare the
quality of solutions between different functions, different population sizes, and even different dimensions. In contrast to
this, the hypervolume indicator always depends on the chosen reference point (cf. Section 3.1). A specific dominated volume
does not give a priori any information on how well a front is approximated. This (often unwanted) freedom of choice not
only changes the distribution of the points, but also makes the hypervolumes of different solutions measured relative to
a reference point very hard to compare. This is even more true for algorithms (e.g. SMS-EMOA [5,16]) which dynamically
change the reference point.

The choice by a decision maker between different Pareto fronts always remains subjective and there is no generally
accepted optimization goal. However, if we are, for example, interested in a good multiplicative approximation, an “ideal”
indicator would directly measure the approximation quality of a solution set P by returning the smallest α ∈ R

+ such that
P is an α-approximation [23,33]. This corresponds to the unary multiplicative ε-indicator [35] where the reference set is
the (possibly infinite) Pareto front. Unfortunately, such an indicator cannot be used in practice because the Pareto front is
usually unknown.

This leads to the question of how close the approximations achieved by realistic indicators such as the hypervolume
indicator come to those that could be obtained by such an “ideal” indicator. For this we consider the approximation ratio of
a solution set maximizing the hypervolume.

At first glance, it is not obvious why maximizing the hypervolume indicator should yield a good approximation of the
Pareto front. However, Friedrich, Horoba and Neumann [18] were the first to examine the approximation ratio of fronts
maximizing the hypervolume. For linear and reciprocal functions, they were able to prove that maximizing HYP achieves
an optimal approximation, while on other functions they showed empirically that the two might differ. In contrast, in this
paper we provide a rigorous analysis of the approximation quality of hypervolume maximizing sets. So far this issue had
been wide open even though it is crucial for understanding the implicit optimization goal when using the hypervolume
indicator as a quality measure for populations.
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Fig. 2. Function fε(x) as defined in Eq. (1.1) to show that depending on the scaling A, the approximation ratio of small solution sets with maximum
hypervolume can be arbitrarily bad.

1.1. An illustrative example

We first give a simple example of why sets maximizing the hypervolume can be very bad approximations of the front.
To define this properly, let us look at a maximization problem with a front that can be described by a monotonically
decreasing function f : [a, A] → [b, B] with 0 < a < A, 0 < b < B . Then the approximation ratio (cf. Section 2.1) of a set
of points P := {(x1, y1), . . . , (xn, yn)} (called the solution set) is the least α � 1 such that for each x ∈ [a, A] there is an
(xi, yi) ∈ P with

x � αxi and f (x)� αyi .

The approximation ratio does not depend on the scaling of [a, A] and [b, B]. This can be seen by observing that for
fixed constants μ,ν > 0, the function f ′ : [μa,μA] → [νb, νB] with f ′(x) = ν f (x/μ) achieves the same approximation
ratio α with the solution set P ′ := {(μx1, ν y1), . . . , (μxn, ν yn)}. However, the approximation ratio significantly depends on
the proportions A/a and B/b. To see this, let us look at a function fε : [1, A] → [1, A] with 0 < ε < A − 1 and

fε(x) :=
{

A for x � 1 + ε,
A/x for x > 1 + ε.

(1.1)

A visualization of the function can be found in Fig. 2. Note that A/a = B/b = A in this example. We want to see how well
a single point from the set {(x, fε(x)) | x ∈ [1, A]} can maximize the hypervolume and/or minimize the approximation ratio.
By definition, the hypervolume1 of a point (x, fε(x)) is

HYP
({(

x, fε(x)
)}) =

{
xA for x � 1 + ε,
A for x > 1 + ε

while its multiplicative approximation ratio2 is

α∗( fε,
{(

x, fε(x)
)}) = max

{
A/x, A/ fε(x)

} =
{

A/x for x �
√

A,
x for x �

√
A.

The hypervolume is therefore maximized at exactly one point on the front, namely (1+ε,1). It achieves an approximation of
A/(1+ε). The best approximation of

√
A is achieved by (

√
A,

√
A). Hence for ε → 0, the approximation ratio of the solution

set maximizing the hypervolume is off by a factor of
√

A from the optimal ratio. This shows that the approximation ratio
of sets maximizing the hypervolume can be very large for small numbers of points. However, this paper proves that this is
not the case for sufficiently large solution sets.

This paper summarizes and extends our previous work presented in a sequence of three conference papers [7,8,10].
The first one was [8] which examined the multiplicative approximation factor of the hypervolume indicator. Afterwards, [7]
studied the additive approximation factor and, finally, [10] proposed the logarithmic hypervolume indicator. The conference
versions only discuss one particular aspect each and do not contain the full proofs. The majority of the material presented
in Sections 4 to 6 is unpublished so far.

1 We are assuming here that the size of the dominated space is measured relative to a common reference point R = (0,0). For the formal definition of
HYP, see Eq. (3.2).

2 For the formal definition of multiplicative approximation see Definition 2.1.
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1.2. Our results

We are not interested in bounds for the approximation ratio on specific functions. Instead, we take a worst-case per-
spective for two objective optimization problems and look at all3 functions f : [a, A] → [b, B] with 0 < a < A, 0 < b < B and
f (a) = B , f (A) = b.

We show that for all possible Pareto fronts the multiplicative approximation ratio achieved by a solution set of size n
maximizing the hypervolume indicator is 1 + Θ(1/n) (cf. Theorem 3.1).4 This is shown to be asymptotically equivalent to
the optimal multiplicative approximation ratio (cf. Corollary 2.4), which implies that the hypervolume indicator is guiding
the search in the correct direction for sufficiently large n. However, the constant factor hidden by the Θ might be larger
for the set maximizing hypervolume compared to the set with best possible approximation ratio. In fact, the multiplicative
approximation ratio depends on the ratio A/a between the largest and smallest coordinate.5 Using this notation, our precise
result is the computation of the optimal multiplicative approximation ratio as 1 + log(A/a)/n (cf. Corollary 2.4). We further
show that the multiplicative approximation ratio for a set maximizing the hypervolume is strictly larger, namely on the
order of at least 1 + √

A/a/n (cf. Theorem 3.2). This implies that the multiplicative approximation ratio achieved by a set
maximizing the hypervolume can be exponentially worse in the order of the ratio A/a. Hence for numerically very wide-
spread fronts there are Pareto sets which give a much better multiplicative approximation than Pareto sets which maximize
the hypervolume.

These results about the multiplicative approximation ratio can be seen as bad news for the hypervolume indicator. On
the other hand, we examine the additive approximation ratio and observe that while the multiplicative approximation ratio
is determined by the ratio A/a, the additive approximation ratio is determined by the width of the domain A −a. We prove
that the optimal additive approximation ratio is (A − a)/n (cf. Theorem 2.8) and upper bound the additive approximation
ratio achieved by a set maximizing the hypervolume by (A − a)/(n − 2) (cf. Theorem 3.3). This is a very strong statement,
as apart from a small factor of n/(n − 2), the additive approximation ratio achieved when maximizing the hypervolume is
optimal. This shows that the hypervolume indicator yields a much better additive than multiplicative approximation.

It remains to find a natural indicator which provably achieves a good multiplicative approximation ratio. As this paper
shows that the hypervolume gives a good additive approximation, we can use this to define an indicator which achieves a
good multiplicative approximation: Logarithmize all axes before computing the classical hypervolume. We call this indicator
the logarithmic hypervolume indicator. Note that in the setting of weighted hypervolume indicators [34] this corresponds to a
reciprocal weight function (cf. Section 3.3). We prove that the logarithmic hypervolume indicator achieves a multiplicative
approximation ratio of less than 1 + log(A/a)/(n − 2) (cf. Corollary 3.6), which is again optimal apart from the factor
n/(n − 2). This indicates that as long as a multiplicative approximation is desired, the logarithmic hypervolume indicator
should be preferred over the classic hypervolume indicator.

1.3. Outline

The outline of the paper is as follows. In Section 2 we define the notation used and the concepts of multiplicative
and additive approximation ratios. Section 3 introduces the weighted, standard and logarithmic hypervolume indicator and
presents our results on their approximation ratios. Afterwards, Section 4 justifies why we chose the definitions as they are.
Most of the proofs of the paper are in the largest Section 5. We finally discuss how to translate our results to minimization
problems in Section 6.

2. Preliminaries

We consider only the case of maximization problems on two objectives where there is a mapping from an arbitrary
search space to an objective space which is a subset of R

2. For minimization problems, see Section 6. Throughout this
paper, we will work only on the objective space. For points from the objective space we define the following dominance
relation:

(x1, y1) � (x2, y2) iff x1 � x2 and y1 � y2,

(x1, y1) ≺ (x2, y2) iff (x1, y1)� (x2, y2) and (x1, y1) 	= (x2, y2).

We restrict ourselves to Pareto fronts that can be written as {(x, f (x)) | x ∈ [a, A]} where f : [a, A] → [b, B] is a mono-
tonically decreasing, upper semi-continuous6 function with f (a) = B , f (A) = b for some reals a < A, b < B . We write

3 We restrict our attention to functions where there exists a set maximizing the hypervolume indicator. For technical details, see the definition of F at
the beginning of Section 2.

4 The precise statements of this and the following results are slightly more technical. For details see the respective theorems.
5 The approximation ratio depends on the ratios in both dimensions. To simplify the presentation in the introduction, we assume that the ratio A/a in

the first dimension is equal to the ratio B/b in the second dimension.
6 Semi-continuity is a weaker property than normal continuity. A function f is said to be upper semi-continuous if for all points x of its domain,

lim supy→x f (y) � f (x). Intuitively speaking this means that for all points x the function values for arguments near x are either close to f (x) or less than
f (x). For more details see e.g. Rudin [28].
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Fig. 3. Front f used for the lower bound construction in the proof of Theorem 2.3 in Section 5.1. Note that f is not only the black points, but the whole
piecewise defined curve.

F =F[a,A]→[b,B] for the set of all such functions f . We will use the term front for both the set of points {(x, f (x)) | x ∈ [a, A]}
and the function f .

Note that in contrast to the standard definition of a Pareto front, we consider a larger class of functions and do not
require the functions f to be strictly monotonically decreasing. This has the advantage that we can handle step functions,
as for example depicted in Fig. 3. Observe that such a function can be thought of as modeling a discrete front (namely the
set of solid black points in Fig. 3). Moreover, sets maximizing the hypervolume indicator never contain points in the inner
part of a constant interval of a function. Therefore, the sets maximizing the hypervolume on the discrete front are the same
as the sets maximizing the hypervolume on the modeling step function. Since dominated points do not contribute to the
hypervolume, our results carry over to discrete fronts.

The condition of f being upper semi-continuous cannot be relaxed further as without it the front lacks a certain
symmetry in the two objectives: This condition is necessary and sufficient for the existence of the inverse function
f −1 : [b, B] → [a, A] defined by setting

f −1(y) := max
{

x ∈ [a, A] ∣∣ f (x)� y
}
.

Without upper semi-continuity, this maximum does not necessarily exist. Furthermore, this condition implies that there is
a set maximizing the hypervolume indicator (see Section 4 for details).

Note that the set F of fronts we consider is a very general one. Most papers that theoretically examine the hypervolume
indicator assume that the front is continuous and differentiable (e.g. [1,2,18]), and are thus not able to give results about
step functions, which we can.

Let n ∈ N. For fixed [a, A], [b, B] ⊂ R we call a set P = {p1, . . . , pn} ⊂ [a, A] × [b, B] a solution set (of size7 n) and
write P := Pn for the set of all such solution sets. A solution set P is said to be feasible for a front f ∈ F , if y � f (x) for
all p = (x, y) ∈ P . We write P f :=P f

n ⊆P for the set of all solution sets (of size n) that are feasible for f .
To increase readability we occasionally write P + r for P ∪ {r}, where P ⊂ R

2 and r ∈R
2, and similarly P − r for P \ {r}.

A common approach to measure the quality of a solution set is to use unary indicator functions [35]. They assign to each
solution set a real number that somehow reflects its quality, i.e., we have a function Ind : ⋃∞

n=1 Pn → R. As throughout the
paper n ∈ N is fixed, it is sufficient to define an indicator Ind : Pn → R. Note that as we are only working in the objective
space, we slightly deviate from the usual definition of an indicator function, where the domain is the search space, not the
objective space.

In the following section we introduce notions of multiplicative and additive approximation quality.

2.1. Multiplicative approximation

When attempting to maximize an indicator function, we actually try to find a solution set P ∈P f
n that constitutes a good

approximation of the front f . According to the custom for approximation algorithms, we measure the quality of a solution
by its multiplicative approximation ratio. This can be transferred to the world of multi-objective optimization. For this we
use the following definition of Papadimitriou and Yannakakis [26] which was also used in [7,8,10,18,22,23]. Note that it is
crucial to require a,b > 0 here, as it is unclear what multiplicatively approximating a negative number should mean. We
will always assume this when talking about multiplicative approximation throughout the paper.

7 Note that the points p1, . . . , pn are not required to be pairwise different, so a solution set of size n has between 1 and n elements. This implies
Pn ⊂ Pm for n < m.
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Definition 2.1. Let f ∈ F and P ∈ P f
n . The solution set P is a multiplicative α-approximation of f if for each x̂ ∈ [a, A] there

is a p = (x, y) ∈ P with

x̂ � αx and f (x̂) � αy (2.1)

where α ∈R, α � 1. The multiplicative approximation ratio of P with respect to f is defined as

α∗( f , P ) := inf{α ∈R | P is a multiplicative α-approximation of f }.

The quality of an algorithm which calculates a solution set of size n for each Pareto front in F has to be compared with
the respective optimal approximation ratio defined as follows.

Definition 2.2. For fixed [a, A], [b, B], and n, let

α∗
OPT := sup

f ∈F
inf

P∈P f
n

α∗( f , P ).

The value α∗
OPT is chosen such that every front in F can be approximated by n points to a ratio of α∗

OPT , and there is a
front which cannot be approximated better. In Section 5.1 we show the following two results.

Theorem 2.3. α∗
OPT = min{A/a, B/b}1/n.

Corollary 2.4. For all n � log(min{A/a, B/b})/ε and ε ∈ (0,1),

α∗
OPT � 1 + log(min{A/a, B/b})

n
,

α∗
OPT � 1 + (1 + ε)

log(min{A/a, B/b})
n

.

We further want to measure the approximation of the solution set of size n maximizing an indicator Ind. As there might
be several solution sets maximizing Ind, we consider the worst case and use the following definition.

Definition 2.5. For a unary indicator Ind and fixed [a, A], [b, B],n, and f ∈F let

P f
Ind := P f

Ind,n :=
{

P ∈ P f
n

∣∣∣ P ∈ argmax
Q ∈P f

n

Ind(Q )
}

and

α∗
Ind := α∗

Ind,n := sup
f ∈F

sup
P∈P f

Ind,n

α∗( f , P ).

The set P f
Ind is the set of all feasible solution sets (of size n) that maximize Ind on f . The value α∗

Ind is chosen such that
for every front f in F every solution set maximizing Ind approximates f by a ratio of at most α∗

Ind . Observe that we take
a worst case viewpoint there, as we take the supremum over all solution sets maximizing the hypervolume indicator. This
may seem unfair to the hypervolume indicator; however, Lemma 4.2 proves that it makes no difference whether we take
the worst or best case perspective at this point, i.e., whether we take the supremum or infimum over P ∈P f

Ind .
Note that we assume here that there exists a solution set that maximizes the indicator, i.e., we assume that the set

P f
Ind is non-empty. Since we restrict the fronts to be upper semi-continuous, this will be the case for all the indicators we

consider, as shown in Lemma 4.1.

2.2. Additive approximation

Depending on the problem at hand, one can also consider an additive approximation ratio. We use the following defini-
tion, analogous to Definition 2.1.

Definition 2.6. Let f ∈F and P ∈P f
n . The solution set P is an additive α-approximation of f if for each x̂ ∈ [a, A] there is a

p = (x, y) ∈ P with

x̂ � x + α and f (x̂) � y + α (2.2)
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Table 1
Theoretical results for the optimal approximation ratio and upper bounds for the approximation ratios of HYP and logHYP.
See the cited theorems for the precise statements.

Multiplicative approximation Additive approximation

OPT 1 + log(min{A/a,B/b})
n (Corollary 2.4) min{A−a,B−b}

n (Theorem 2.8)

HYP 1 +
√

A/a+√
B/b

n−4 (Theorem 3.1)
√

(A−a) (B−b)
n−2 (Theorem 3.3)

logHYP 1 +
√

log(A/a) log(B/b)

n−2 (Corollary 3.6) open

where α ∈R, α � 0. The additive approximation ratio8 of P with respect to f is defined as

α+( f , P ) := inf{α ∈R | P is an additive α-approximation of f }.

One thing that may come to mind when reading this definition is the following. It may be that the objectives are
unbalanced, meaning that we would like to give them some kind of weight in the approximation. A possible definition for
additive approximation incorporating this kind of weight uses weights wx, w y > 0 for the objectives and defines the point
(x̂, f (x̂)) to be approximated by (x, y) ∈ P by the ratio α iff x̂ � x + wxα and f (x̂) � y + w yα. This makes perfect sense
and may be preferred over the standard unweighted definition in certain cases. However, it is already accounted for by the
unweighted definition: After rescaling the x-axis by a factor of 1/wx and the y-axis by a factor of 1/w y we have x̂′ � x′ +α
iff x̂ � x+ wxα and f ′(x̂′)� y′ +α iff f (x̂) � y + w yα (where a primed variable denotes the variable after rescaling). Hence,
all the results in this paper do apply to the weighted definition of additive approximation, one just has to rescale the axes
correctly. Note that this kind of weight corresponds to a weighting of the form x̂ � αwx x and f (x̂) � αw y y for multiplicative
approximation.

Going on with the definitions, we are again interested in the optimal approximation ratio for Pareto fronts in F . We use
the following definition, analogous to Definition 2.2.

Definition 2.7. For fixed [a, A], [b, B], and n, let

α+
OPT := sup

f ∈F
inf

P∈P f
n

α+( f , P ).

In Section 5.5 the following result will be proven using a relation between additive and multiplicative approximations
and Theorem 2.3.

Theorem 2.8. α+
OPT = min{A − a, B − b}

n
.

Moreover, the analog for α∗
Ind is defined similarly to Definition 2.5.

Definition 2.9. For a unary indicator Ind and fixed [a, A], [b, B],n, and f ∈F let

α+
Ind := α+

Ind,n := sup
f ∈F

sup
P∈P f

Ind,n

α+( f , P ).

Again, Lemma 4.2 shows that it makes no difference whether we take a supremum or infimum over P ∈P f
Ind .

3. Indicators and their approximation quality

This section presents the majority of the results of this paper. It is structured along the different indicators. First, we
recap the general framework of the weighted hypervolume indicator. Afterwards, the standard, logarithmic, and hybrid
hypervolume indicators are introduced and our respective results are presented. We also discuss briefly the well-known
ε-indicator. The results are summarized in Table 1. Most proofs are deferred to Section 5.

3.1. Weighted hypervolume indicator

The classical definition of the hypervolume indicator is the volume of the dominated portion of the objective space
relative to a fixed footpoint called the reference point R = (Rx, R y) � (a,b). As a general framework for our two indicators

8 To match the notation for multiplicative approximation, we call this value a “ratio”, although “difference” might be a more precise term.
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we use the more general weighted hypervolume indicator of Zitzler et al. [34]. It weights points with a weight distribution
w : R2 → R>0 (or at least w : [Rx, A] × [R y, B] → R>0), of which we require that the integral

areaw(x1, y1, x2, y2) :=
x2∫

x1

y2∫
y1

w(x, y)dy dx (3.1)

exists. The hypervolume HYPw(P , R) (or HYPw(P ) for short) of a solution set P ∈P is then defined as

HYPw(P ) := HYPw(P , R)

:=
∫ ∫
R2

A P ,R(x, y)w(x, y)dy dx (3.2)

where the attainment function A P ,R : R2 → R is an indicator function on the objective space which describes the space
above the reference point that is weakly dominated by P . Formally, A P ,R(x, y) = 1 if (Rx, R y) � (x, y) and there is a p =
(px, p y) ∈ P such that (x, y)� (px, p y), and A P ,R(x, y) = 0 otherwise.

The original purpose of the weighted hypervolume indicator was to allow the decision maker to stress certain regions
of the objective space. In this paper we unleash one of its hidden powers by showing that one gets a better multiplicative
approximation by choosing the right weight distribution.

3.2. Standard hypervolume indicator

If w is the all-ones functions 1 with 1(x, y) = 1 for all x, y ∈ R, the above definition matches the standard definition of
the hypervolume indicator. In this case we write HYP = HYP1 for short. Bounds for this indicator are of particular interest.
We prove in Section 5.2 an upper bound for α∗

HYP . As this is a key part of this paper, we give the precise result there in
Theorem 5.4. Here we give only the following slightly weaker, but more readable bound, which immediately follows from
Theorem 5.4.

Theorem 3.1. Let f ∈F , n > 4, and let R = (Rx, R y) be the reference point. If we have

(n − 2)(a − Rx) �
√

Aa and

(n − 2)(b − R y) �
√

Bb

then

α∗
HYP � 1 +

√
A/a + √

B/b

n − 4
.

This shows that for sufficiently large n or a sufficiently far away reference point the hypervolume yields a multiplicative
approximation with optimal asymptotic behavior in n. However, the constant factor is

√
A/a + √

B/b instead of the optimal
log(min{A/a, B/b}) (see Corollary 2.4), so even for A/a = B/b it is exponentially worse than the optimal constant. The
following result shows that the above bound is more or less tight. Its proof is given in Section 5.3.

Theorem 3.2. Let n � 4, A
a = B

b � 13, and R = (Rx, R y) � (0,0) be the reference point. Then

α∗
HYP � 1 + 2

√
A/a − 1

3(n − 1)
.

This shows that the constant factor is indeed exponentially worse.
On the other hand, the following theorem (proven in Section 5.4) shows that HYP has a close-to-optimal additive ap-

proximation ratio.

Theorem 3.3. If n > 2 and

(n − 2)min{a − Rx,b − R y}�
√

(A − a) (B − b)

we have

α+
HYP �

√
(A − a)(B − b)

n − 2
.
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First note that the assumption is fulfilled if n is large enough or if the reference point is sufficiently far away from (a,b).
Hence this is no real restriction. Moreover, compare this result to the bound for the optimal additive approximation ratio of
Theorem 2.8. This shows that for A − a ≈ B − b, α+

HYP is very close to α+
OPT . Further, for A − a � B − b (or A − a � B − b)

the constant in Theorem 3.3 is the geometric mean of A − a and B − b while in Theorem 2.8 it is instead the minimum
of both. As there is a provable gap of log vs. square root of A/a for the multiplicative approximation ratio, this proves that
HYP yields a much better additive approximation than a multiplicative one.

3.3. Logarithmic hypervolume indicator

Now we know an indicator yielding a good additive approximation, namely the (standard) hypervolume indicator HYP.
For finding a good multiplicative approximation HYP turned out to be inapplicable, at least for large spreads A/a and B/b
in the worst case. We propose the logarithmic hypervolume indicator to address this problem. For a solution set P ∈ P and
reference point R = (Rx, R y) with (Rx, R y)� (a,b), Rx, R y > 0 we define

logHYP(P , R) := HYP1(log P , log R),

where log P := {(log x, log y) | (x, y) ∈ P } and log R := (log Rx, log R y). Here, as in the standard case, the reference point is a
parameter to be chosen by the user. Note that we do not really change the axes of the problem to logarithmic scale: We
only change the calculation of the hypervolume, not the problem itself.

The above definition is nice in that it allows logHYP to be computed using existing implementations of algorithms for
HYP, only wiring the input differently, i.e., logarithmizing everything beforehand.

It is very illustrative, though, to observe that the logarithmic hypervolume indicator fits very well in the weighted
hypervolume framework: An equivalent definition of logHYP is

logHYP(P , R) := HYPŵ(P , R),

where ŵ(x, y) = 1/(xy) is the appropriate weight distribution.

Lemma 3.4. HYP1(log P , log R) = HYPŵ(P , R).

Proof. Let {(x1, y1), . . . , (xk, yk)} ⊆ P be the points in P not dominated by any other point in P with x1 < · · · < xk ,
y1 > · · · > yk . With x0 := Rx we can then compute HYP as

HYP1(log P , log R) =
k∑

i=1

log xi∫
log xi−1

log yi∫
log R y

1 dy dx

=
k∑

i=1

xi∫
xi−1

yi∫
R y

1

xy
dy dx

= HYPŵ(P , R). �
The next result, to be shown in Section 5.5, shows that the logarithmic hypervolume indicator yields a good multiplicative

approximation, just as the standard hypervolume indicator yields a good additive approximation.

Theorem 3.5. If n > 2 and

(n − 2) log min{a/Rx,b/R y}�
√

log(A/a) log(B/b)

we have

α∗
logHYP � exp

(√
log(A/a) log(B/b)

n − 2

)
.

Note that the assumption is fulfilled if n is large enough or we choose the reference point near enough to (0,0). This
is a very good upper bound compared to α∗

OPT = exp(min{log(A/a), log(B/b)}/n). Also compare the next corollary to Corol-
lary 2.4. Its proof is analogous to the one of Corollary 2.4.

Corollary 3.6. For ε ∈ (0,1) and all

n � 2 + √
log(A/a) log(B/b)/min

{
ε, log(a/Rx), log(b/R y)

}
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we have

α∗
logHYP � 1 + (1 + ε)

√
log(A/a) log(B/b)

n − 2
.

Hence we get a much better constant factor than in the bound of α∗
HYP .

3.4. Hybrid hypervolume indicator

The results of the preceding sections imply that guiding the search with the hypervolume indicator is an appropriate
choice if we want an additive approximation. On the other hand, guiding the search with the logarithmic hypervolume
indicator is preferable if we want a multiplicative approximation.

Of course, it may happen that one wants an additive approximation of some objectives and a multiplicative approx-
imation of others. We propose a simple rule of thumb for this case: Logarithmize all objectives of the second type, i.e.,
those that should get multiplicatively approximated (leaving the objectives of the first type as they are) and then compute
the hypervolume indicator. This hybrid indicator should work as intended, i.e., maximizing it should give a good additive
approximation of the objectives of the first type and a good multiplicative approximation of the objectives of the second
type.

As an illustration, assume we have two objectives, x and y, and want to approximate x additively and y multiplicatively.
Then we use the hybrid indicator Ind(P , R) := HYP(P ′, (Rx, log R y)), where P ′ = {(xi, log yi) | (xi, yi) ∈ P } and R is again a
reference point. This indicator logarithmizes the y-axis and applies HYP afterwards. Along the lines of the proofs in this
paper one can show that maximizing Ind on a front f yields a solution set P with the following property: For any x̂ ∈ [a, A]
there is a p = (x, y) ∈ P with

x̂ � x + α+ and f (x̂)� yα∗,

where α∗ = expα+ and α+ �
√

(A−a)(log(B)−log(b))

n−2 . This means, that we get an additive approximation of x and a multiplica-
tive approximation of y, as desired.

3.5. ε-Indicator

Another important class of indicators which we want to discuss only briefly are the binary ε-indicators [23,33]. For two
solution sets P and Q its additive version is defined as

Iε+(P , Q ) := max
(x1,y1)∈P

min
(x2,y2)∈Q

max{x1 − x2, y1 − y2}

which is the smallest value ε by which we have to shift Q along both axes such that it dominates P . This binary indicator
favors P over Q if Iε+ (P , Q ) > Iε+ (Q , P ). The multiplicative ε-indicator is defined analogously as

Iε∗(P , Q ) := max
(x1,y1)∈P

min
(x2,y2)∈Q

max

{
x1

x2
,

y1

y2

}
.

This definition appears to be much closer to the definition of additive or multiplicative approximation (cf. Definitions 2.1
and 2.6) than the definition of the hypervolume indicator. The ε-indicator can even be seen as a relaxation of the “ideal”
indicator noted in the introduction. In light of the above results regarding the hypervolume indicator it is natural to ask
whether the ε+-indicator also yields a good additive approximation and the ε∗-indicator also yields a good multiplicative
approximation.

Unfortunately, this is not a well posed question as �Iε is not a total order. The reason for this is that it lacks transitivity
as it contains deteriorative cycles [4], i.e., an algorithm trying to maximize based on �Iε may return to a set of search points
that it has obtained before. This implies that there is, in general, no solution set P that is maximal for the relation �Iε .
Hence statements on the approximation ratio of sets maximizing the ε-indicator are not meaningful. It is an open question
how to describe the approximation quality achieved by the ε-indicator.

4. Two technicalities

Before we prove the claims from the previous section, we consider two details of the definitions which might look
counterintuitive the first time encountered. These are (i) that we require the fronts to be upper semi-continuous and (ii) that
the definition of α∗

Ind is the “worst case” approximation ratio over all sets maximizing the indicator and not, e.g., the “best
case”.
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4.1. Why we need upper semi-continuity

We show that without upper semi-continuity there does not necessarily exist a solution set maximizing HYP. To see this,
consider the front f : [1,2] → [1,2] with

f (x) :=
{

1 for x = 2,
2 for 1 � x < 2

(4.1)

and reference point R = (0,0). The one-element solution set P = {(2 − ε,2)} achieves HYP(P ) = 4 − 2ε for each ε > 0.
However, no solution set P ′ can have HYP(P ′) = 4, as f (2) = 1 < 2. Thus, there exists no solution set maximizing HYP, as
there is an infinite series of solution sets with larger and larger hypervolume indicator, but the limit supP∈P f HYP(P ) = 4 is
not taken by any solution set.

Next we prove that conditioning on fronts being upper semi-continuous implies that there are sets maximizing the
weighted hypervolume indicator. In more detail, there is a solution set P of size n which maximizes HYP among all solution
sets of size n.

Lemma 4.1. Let f ∈ F , n ∈ N, and w : R2 → R>0 be a weight function. Then there exists a (not necessarily unique) solution set

P ∈P f
n that maximizes the weighted hypervolume indicator HYPw on P f

n .

Proof. Consider the sets S := {(x, y) ∈ [a, A] × [b, B] | y � f (x)} of feasible points for the front f , and Sn , the n-
tuples of feasible points. Let us denote by π the direct mapping from Sn into P f given by ((x1, y1), . . . , (xn, yn)) �→
{(x1, y1), . . . , (xn, yn)}. Consider the map

φ : Sn π−−→ P f HYPw (·,R)−−−−−−→R.

Using the notion areaw from Section 3.1, we can explicitly express the map φ for a feasible tuple ((x1, y1), . . . , (xn, yn))

using an inclusion–exclusion formula,

φ
(
(x1, y1), . . . , (xn, yn)

) =
∑

∅	=M⊆{1,...,n}
(−1)|M|+1 areaw

(
Rx, R y,min

i∈M
xi,min

i∈M
yi

)
.

Since areaw(·), as defined in Eq. (3.1), is continuous, this shows that the map φ is continuous too.
We now show that S is compact. To see this, take any sequence of points (xi, yi)i∈N in S . In [a, A] × [b, B] (which is a

superset of S) this sequence has a convergent subsequence which we again call (xi, yi)i∈N . For this convergent subsequence
we have limi→∞ yi � limi→∞ f (xi) � f (limi→∞ xi), where we used (xi, yi) ∈ S and the upper semi-continuity of f . This
shows that the limit again lies in S , and thus the compactness of S . Compactness of Sn follows trivially.

This proves that φ takes its maximum as it is a continuous function on a compact set. Moreover, since π is surjective,
HYP( · , R) takes its maximum on P f , which is what was to be shown. �

Note that assuming upper semi-continuity is sufficient for the existence of solution sets which maximize HYP, but it
is not necessary. There are fronts which are not upper semi-continuous in general, but still have a unique HYP-maximal
solution set, since they are only not upper semi-continuous in parts where there are no HYP-maximizing points on the
front (for fixed n). We need upper semi-continuity, however, for the existence of the inverse function f −1 as defined in
Section 2, which implies symmetry of the two objectives.

4.2. Why we consider the worst-case approximation ratio

We show that in the definition of the approximation ratio of the hypervolume indicator we can replace “worst case” by
“best case” and not change the value of α∗

Ind or α+
Ind .

Before doing that, we confirm that the solution set maximizing the hypervolume indicator is indeed not unique in
general. To show this, let us look again at the introductory example function fε from Eq. (1.1). By choosing ε = 0 we get
a front f0 : [1, A] → [1, A] with f0(x) = A/x. With reference point R = (0,0), we get HYP({(x, f (x))}) = x(A/x) = A for
all x ∈ [1, A]. Therefore the set of solution sets of size n = 1 which maximize HYP is far from unique as P f

HYP = {{(x, f (x))} |
x ∈ [1, A]}. Moreover, this example shows that the approximation ratios of two solution sets maximizing HYP can differ
significantly as the solution set {(1, A)} achieves an approximation ratio of A, while the solution set {(√A,

√
A)} achieves

an approximation ratio of
√

A. However, by taking the supremum over all functions in F this difference is nullified as
shown by the following lemma.

Here, we consider the definition of α+
HYP (cf. Definition 2.9) as the worst or best case approximation ratio of the sets

maximizing the hypervolume indicator and show that both values coincide.
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Lemma 4.2. In the definition of α+
HYP it does not matter whether we take the best or worst case over the solution sets maximizing the

hypervolume, that is,

sup
f ∈F

sup
P∈P f

HYP

α+( f , P ) = sup
f ∈F

inf
P∈P f

HYP

α+( f , P ).

Proof. We show that for every front f ∈ F and solution set P ∈ P f
HYP with α+( f , P ) > 1 and for each ε > 0, there is a

front f ′ ∈ F that has only one solution set P ′ maximizing the hypervolume indicator on f ′ , and we have |α+( f , P ) −
α+( f ′, P ′)| < ε. This means that when taking the supremum we can restrict our attention to fronts that have only one
solution set maximizing the hypervolume, but for such fronts both definitions from above agree, which proves the claim.

Consider such f and P and a point r = (x, f (x)) that is not approximated by a ratio � α+( f , P ) − ε′ , ε′ > 0. We know
that such a point exists by definition of α+( f , P ). For sufficiently small ε′ , r is not dominated by any point in P , as
α+( f , P ) − ε′ > 1.

Now, P = {p1, . . . , pn} has n pairwise different points pi (otherwise P + r would have greater hypervolume than P )
and there are no points pi, p j ∈ P with pi ≺ p j (otherwise P − pi + r would have greater hypervolume), hence we can
assume that pi = (xi, yi) with a � x1 < · · · < xn � A and B � y1 > · · · > yn � b. Moreover, we have yi = f (xi) (otherwise
P − pi + (xi, f (xi)) would have greater hypervolume).

Let us consider the step function defined by the points pi := (xi, yi), i = 0, . . . ,n + 2 where we set (x0, y0) = (a, B),
(xn+1, yn+1) = (A,b) and (xn+2, yn+2) = r. Formally, this step function is

f̂ (x) = max
{

yi
∣∣ i ∈ {0, . . . ,n + 2}, xi � x

}
.

We have f̂ (x) � f (x) for all x ∈ [a, A]; therefore no solution set that is infeasible for f is feasible for f̂ . Moreover, the
solution set P is still feasible for f̂ . Hence, P still maximizes the hypervolume indicator on f̂ .

It is easy to see that the solution sets maximizing the hypervolume indicator on f̂ are among the sets P I := {pi | i ∈ I},
I ⊂ {0, . . . ,n + 2}, |I| = n, as any other solution set is dominated by some P I . We need to make sure that the solution
set P = P {1,...,n} has strictly greater hypervolume than any other P I . For this we modify the front f̂ again, but do a case
distinction.

Case 1: We have y1 < B or xn < A. By symmetry we have to look at only one of these cases, so let y1 < B . We change
the points pi (1 � i � n) slightly by setting y′

i := yi + (n + 1 − i)ε′ , calling the resulting points p′
i := (x′

i, y′
i) := (xi, y′

i) (with
p′

i := pi for i = 0,n + 1,n + 2) and the induced step function of p′
0, . . . , p′

n+2 by the name f ′ . Again, the solution sets
maximizing the hypervolume indicator on f ′ are among the sets P ′

I := {p′
i | i ∈ I}, I ⊂ {0, . . . ,n + 2}, |I| = n. Now, consider

the space dominated by a solution set P I . When going from P I to P ′
I this space increases in the y-direction. Observe that

at a particular point x with xi−1 < x � xi , the y-coordinate increases by at most

ε′(n + 1 − min
{

j � i
∣∣ j ∈ I ∪ {n + 1}}),

since the only increase can come from the point p j ∈ P I with the next larger x-coordinate. Here we add n + 1 to I so
that the total term gets 0 if there is no point pi (1 � i � n) with the next larger x-coordinate. Note that the increase at a
particular x can be smaller than this term, if the next larger point is pn+2 = r, which was not increased at all. Also note
that for P = P {1,...,n} this upper bound is met with equality for all x ∈ [a, A]. Thus, we have for all I

HYP
(

P ′
I

) − HYP(P I ) �
n∑

i=1

ε′(xi − xi−1)
(
n + 1 − min

{
j � i

∣∣ j ∈ I ∪ {n + 1}}),
with equality for I = {1, . . . ,n}. Now, it is easy to see that this difference has a unique maximum for I = {1, . . . ,n}, which is
why P ′ := P ′{1,...,n} is the single solution set maximizing the hypervolume indicator on f ′ . Also note that for ε′ sufficiently
small we changed the coordinates of the pi (1 � i � n) by less than ε/2, which implies that the additive approximation
ratio α+( f ′, P ′) differs from α+( f , P ) by at most ε (recall that r is approximated by the pi (1 � i � n) by a ratio of
� α+( f , P ) − ε′).

Case 2: We have y1 = B and xn = A. Then either p0 = p1 or p0 ≺ p1 and there is no solution set maximizing the
hypervolume indicator that includes p0. A similar statement holds for pn+1, so we can discard p0 and pn+1, meaning that
the solution sets maximizing the hypervolume indicator on f̂ are among the P I with I ⊂ {1, . . . ,n,n + 2}, |I| = n. We make
r = pn+2 slightly worse by setting y′

n+2 := yn+2 − ε′ . For ε′ sufficiently small r is still not dominated by any other point

pi . We call the resulting point again r = pn+2 and the induced step function f ′ . Going from f̂ to f ′ the hypervolume
decreases for solution sets containing r. Hence, P {1,...,n} is the single solution set maximizing the hypervolume indicator
on f ′ . Moreover, for ε′ sufficiently small we changed the coordinates of r by at most ε/2, which implies that the additive
approximation ratio α+( f ′, P ′) differs from α+( f , P ) by at most ε. �

Note that the same proof works in the multiplicative instead of the additive setting. Hence the same result holds for
α∗

HYP . Also note that the relation between multiplicative and additive approximation from Section 5.5 carries the above
result over to α∗ .
logHYP
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5. Proofs for the approximation ratio

5.1. Tight bound for α∗
OPT

In this section we examine the optimal approximation ratio α∗
OPT . Recall that no set of n points can achieve a better

approximation ratio than α∗
OPT . This is the reason why bounds for α∗

OPT are important for comparison before examining
α∗

HYP in Section 5.2.

Proof of Theorem 2.3. We want to show α∗
OPT = min{(A/a)1/n, (B/b)1/n}. For this, we first show α∗

OPT � (A/a)1/n . Let α :=
(A/a)1/n and xi := a αi−1 for i ∈ {1, . . . ,n}. The solution set {(xi, f (xi)) | i ∈ {1, . . . ,n}} is an α-approximation of f as we
have x � αxi, f (x) � f (xi) for any xi � x � αxi . Hence, α∗

OPT � α = (A/a)1/n .
To show that analogously α∗

OPT � (B/b)1/n , let α := (B/b)1/n and xi := f −1(Bα−i) for i ∈ {1, . . . ,n}. Then f (xi) � Bα−i

and no point (x, f (x)) has f (xi) > f (x) > Bα−i . Hence, we have x � xi, f (x) � α f (xi) for any x with Bα−i � f (x) � Bα−i+1.
Thus, we get α∗

OPT � α = (B/b)1/n .
It remains to prove the lower bound α∗

OPT � min{A/a, B/b}1/n . For this, we set f (x) := B(B/b)−i/n for a(A/a)(i−1)/n < x �
a(A/a)i/n and i ∈ {0, . . . ,n}. Then f is a front which consists of (n + 1) levels. It is illustrated in Fig. 3. Let us now consider
a solution set (x1, . . . , xn) consisting of n points. As f has n + 1 levels, the pigeonhole principle gives that there is at least
one level having none of the n points. This implies that the rightmost point in this level is only approximated by a ratio of
min{(A/a)1/n, (B/b)1/n}. �
Proof of Corollary 2.4. Both inequalities follow directly from Theorem 2.3. For the first inequality note that ex � 1 + x for
all x ∈R. For the second we upper bound ex with 0 � x � ε by

ex =
∞∑

k=0

xk

k! � 1 +
∞∑

k=1

xk

2k−1
� 1 + x

∞∑
k=0

εk

2k

= 1 + x
1

1 − ε/2
� 1 + (1 + ε)x,

as (1 + ε) (1 − ε/2) � 1. �
5.2. Upper bound for α∗

HYP

In this section we give bounds on the multiplicative approximation ratio achieved by the sets maximizing the hypervol-
ume indicator.

Let P be a solution set maximizing HYP on a front f ∈ F , i.e., P ∈ P f
HYP , and let n > 4 be fixed. Assume that there

are points p,q ∈ P with p ≺ q. Such a “redundant” set can maximize HYP only on degenerate fronts: If there is a point
r = (x, f (x)) on the front which is not dominated by any point in P , then P ′ := P + r − p would have HYP(P ′) > HYP(P ),
as it dominates all the space P dominates united with the space r dominates. Thus, there is no such point r and P already
dominates the whole front. In this case the approximation ratio α∗( f , P ) = 1 and the inequality we want to show holds
trivially. This can only happen for f being a step function with less than n steps. In the same way we can exclude P =
{p1, . . . , pn} having less than n pairwise different points.

Hence, for the rest of the proof we can assume that there are no points p,q ∈ P with p ≺ q. Then we can write
P = {p1, . . . , pn}, pi = (xi, yi) with a � x1 < · · · < xn � A and B � y1 > · · · > yn � b. Furthermore, we can assume that
yi = f (xi) as otherwise P − pi + p′

i with p′
i = (xi, f (xi)) would have a larger hypervolume than P .

Now recall that the contribution of a point p ∈ P to the hypervolume of a solution set P ∈ P is the volume dominated
by p and no other element of P (see, e.g., [6]). More formally, the contribution of a point p is

ConP (p) := HYP(P , R) − HYP(P − p, R).

In the following we mainly deal with the minimal contribution defined as

MinCon(P ) := min
2�i�n−1

ConP (pi)

= min
2�i�n−1

(xi − xi−1)
(

f (xi) − f (xi+1)
)
.

Fig. 4 gives an illustration of MinCon. Note that the above definition of MinCon(P ) is independent of the reference point R ,
as it only considers the minimal contribution of any of the points p2, . . . , pn−1. Restricted to these (n − 2) inner points, it
corresponds to the definition of MinCon(P ) in [9].

We first show the following upper bound for MinCon(P ).
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Fig. 4. The minimal contribution MinCon(X) of a solution set X = {p1, p2, . . . , p6} is defined to be the least hypervolume contribution HYP(P )−HYP(P − p)

for p ∈ {p2, p3, p4, p5}.

Lemma 5.1. We have

MinCon(P ) � (xn − x1) ( f (x1) − f (xn))

(n − 2)2
.

Proof. Let ai := xi − xi−1 for 2 � i � n and bi := f (xi) − f (xi+1) for 1 � i � n − 1. This gives MinCon(P ) = min2�i�n−1 aibi

and

ai � MinCon(P )/bi for all 2 � i � n − 1.

This implies

n−1∑
i=2

MinCon(P )/bi �
n−1∑
i=2

ai �
n∑

i=2

ai

=
n∑

i=2

xi −
n−1∑
i=1

xi = xn − x1,

and therefore

MinCon(P ) � xn − x1∑n−1
i=2 1/bi

.

We can now use the fact that the harmonic mean is less than the arithmetic mean, that is,

n − 2∑n−1
i=2 1/bi

�
∑n−1

i=2 bi

n − 2

to obtain

MinCon(P ) �
(xn − x1)

∑n−1
i=2 bi

(n − 2)2

� (xn − x1) ( f (x1) − f (xn))

(n − 2)2
. �

To upper bound α∗
HYP we first calculate the approximation ratio of the “inner points”, i.e., points x ∈ [x1, xn]. In a second

step we determine how well the “outer points” x with x < x1 or x > xn are approximated.

Lemma 5.2. The solution set P achieves a

1 +
√

A/a + √
B/b

n − 4

multiplicative approximation of all points (x, f (x)) with x ∈ [x1, xn].
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Proof. Assume there is a point r = (x, f (x)) which is not approximated by a ratio of

α := 1 +
√

A/a + √
B/b

n − 4
. (5.1)

Let i be such that xi < x < xi+1 and therefore

x > αxi,

f (x) > α f (xi+1), (5.2)

because r is approximated by neither pi nor pi+1.
Let p j be a point contributing MinCon(P ) to P . As P maximizes the hypervolume indicator, we have

HYP(P ) � HYP(P − p j + r)

= HYP(P ) − ConP (p j) + ConP−p j+r(r)

� HYP(P ) − ConP (p j) + ConP+r(r),

so we have

(x − xi)
(

f (x) − f (xi+1)
) = ConP+r(r) � MinCon(P ). (5.3)

As Eq. (5.2) is equivalent with x − xi > (α − 1)xi and f (x) − f (xi+1) > (α − 1) f (xi+1), Eq. (5.3) gives

MinCon(P ) > (α − 1)2xi f (xi+1). (5.4)

For 3 � i � n − 1 we can upper bound the minimal contribution using Lemma 5.1 on the points p1, . . . , pi by

MinCon(P ) � MinCon

({p1, . . . , pi}
)

� (xi − x1)
(

f (x1) − f (xi)
)
/(i − 2)2

� xi B/(i − 2)2. (5.5)

Analogously, for 1 � i � n − 3 we can upper bound the minimal contribution using Lemma 5.1 on the points pi+1, . . . , pn
by

MinCon(P ) � A f (xi+1)/(n − i − 2)2. (5.6)

Combining Eq. (5.4) with Eqs. (5.5) and (5.6), it follows for 3 � i � n − 3 that

(α − 1)2xi f (xi+1) < min

{
xi B

(i − 2)2
,

A f (xi+1)

(n − i − 2)2

}
(5.7)

or, equivalently,

α < 1 + min

{√
B/ f (xi+1)

i − 2
,

√
A/xi

n − i − 2

}
which yields with xi � a and f (xi+1) � b that

α < 1 + min

{√
B/b

i − 2
,

√
A/a

n − i − 2

}
(5.8)

for 3 � i � n − 3.
Now, the right hand side of Eq. (5.8) becomes maximal if the two terms are equal since one of them is monotonically

increasing in i and the other one is monotonically decreasing in i. As this happens exactly for i = 2 + (n−4)
√

B/b√
A/a+√

B/b
, we get

the upper bound

α < 1 +
√

A/a + √
B/b

n − 4
for 3 � i � n − 3. This contradicts Eq. (5.1) and proves that every point (x, f (x)) with x ∈ [x3, xn−2] is multiplicatively
approximated by a ratio of α.

It remains to show a contradiction to Eq. (5.1) for i = 1,2 and i = n−2,n−1. For i = 1,2 we get from Eqs. (5.4) and (5.6)

α < 1 +
√

A/a

n − i − 2
� 1 +

√
A/a

n − 4
which contradicts Eq. (5.1).
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Finally, for i = n − 2,n − 1 we get from Eqs. (5.4) and (5.5)

α < 1 +
√

B/b

i − 2
� 1 +

√
B/b

n − 4

which also contradicts Eq. (5.1) and finishes the proof. �
It remains to examine the approximation ratio of the “outer points” x with x < x1 or x > xn .

Lemma 5.3. The solution set P achieves a

1 + A

(a − Rx)(n − 2)2

multiplicative approximation of all points (x, f (x)) with x < x1 , and a

1 + B

(b − R y)(n − 2)2

multiplicative approximation of all points (x, f (x)) with x > xn.

Proof. We show only the statement for x � x1. The case x � xn follows by symmetry in the two objectives.
The approximation ratio of any x � x1 is exactly min{x/x1, f (x)/ f (x1)} = f (x)/ f (x1). This is maximized for x = a, so that

the approximation ratio of any x � x1 is at most B/ f (x1). We show that B/ f (x1) is less than 1 + A
(a−Rx)(n−2)2 .

Using Lemma 5.1 on the points p1, . . . , pn we get

MinCon(P ) � (xn − x1)
(

f (x1) − f (xn)
)
/(n − 2)2

� A f (x1)/(n − 2)2. (5.9)

Let p j be a point contributing MinCon(P ) to P and consider P ′ := P − p j + q with q = (a, B). We have

HYP
(

P ′) = HYP(P ) − ConP (p j) + ConP−p j+q(q)

� HYP(P ) − ConP (p j) + ConP+q(q)

= HYP(P ) − MinCon(P ) + (a − Rx)
(

B − f (x1)
)
.

Together with HYP(P )� HYP(P ′) this yields

MinCon(P ) � (a − Rx)
(

B − f (x1)
)
. (5.10)

Combining Eqs. (5.9) and (5.10), we finally get the desired

B

f (x1)
� 1 + A

(a − Rx)(n − 2)2
. �

Together Lemmas 5.2 and 5.3 directly imply the following theorem.

Theorem 5.4. Let f ∈F , n > 4, and let R = (Rx, R y) be the reference point. Then

α∗
HYP � 1 + max

{√
A/a + √

B/b

n − 4
,

A

(a − Rx)(n − 2)2
,

B

(b − R y)(n − 2)2

}
.

For sufficiently large n or sufficiently small coordinates of the reference point, the two last terms in Theorem 5.4 are less
than the first one. This proves the slightly simplified Theorem 3.1.

5.3. Lower bound for α∗
HYP

In this section we show that the upper bound of Theorem 3.1 is nearly tight. We restrict ourselves to the case of A
a = B

b .

We show that in this situation we have α∗
HYP � 1 +

√
A/a
cn for some small constant c. Thus, the bounds are tight if A

a ≈ B
b ,

except for the factor 2c.

Proof of Theorem 3.2. As rescaling does not change any multiplicative approximation, we can assume w.l.o.g. that a = b = 1
and A = B � 13.
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We set k := �n/2� and define x0, . . . , xn as follows,

xi := 1 + i

2(k − 1)
for i = 0, . . . ,k − 1,

xi := i − k

n − k − 1
· A

2
+ n − i − 1

n − k − 1

(
3

2
+

√
A − 1

n − 2

)
for i = k, . . . ,n − 1,

xi := A for i = n.

To simplify the notation we further set x−1 := 0. With this we can calculate that

xi − xi−1 = 1 for i = 0,

xi − xi−1 = 1

2(k − 1)
for i = 1, . . . ,k − 1,

xi − xi−1 =
√

A − 1

n − 2
for i = k,

xi − xi−1 = 1

n − k − 1

(
A

2
− 3

2
−

√
A − 1

n − 2

)
for i = k + 1, . . . ,n − 1,

xi − xi−1 = A

2
for i = n.

This implies x0 � · · · � xn . To confirm this for i = k + 1, . . . ,n − 1, observe that

3

2
+ 1

n − 2

√
A − 1 � 3

2
+ 1

2

√
A − 1 � A

4
, (5.11)

as n � 4 and A � 13.
Moreover, we define, for xi−1 < x � xi ,

f (x) :=
∑i−1

j=0 1/(x j − x j−1) + A
∑n−1

j=i 1/(x j − x j−1)∑n−1
j=0 1/(x j − x j−1)

.

This way, f (x0) = A = B , f (xn) = 1 = b and all other function values are in between. We define solution sets Pi :=
(p0, . . . , pi−1, pi+1, . . . , pn), i = 0, . . . ,n, with n points in each solution set, pi = (xi, f (xi)). We further define a solution set
P := (p0, . . . , pn) which has n + 1 points and is therefore not among the possible solution sets maximizing HYP on f that
we consider.

Let Q = (q1, . . . ,qn) be a solution set of n points which maximizes HYP. As P contains all non-dominated points, it also
dominates Q . Moreover, by the pigeonhole principle there must be an 0 � i � n such that no q j is contained in the set
(xi−1, xi] × ( f (xi+1), f (xi)] (where we set f (xn+1) to a). But then Pi dominates Q , which implies Pi = Q , as otherwise
HYP(Pi) would be greater than HYP(Q ). Hence, the solution sets maximizing HYP are among the Pi .

We will determine the solution sets maximizing HYP by comparing Con(pi) := ConP (pi). The solution sets Pi minimizing
Con(pi) are the sets maximizing HYP. We show that min0� j�n Con(p j) = Con(pi) for 1 � i < n. To see this, we first examine
Con(pi) for 1 � i < n:

Con(pi) = (xi − xi−1)
(

f (xi) − f (xi+1)
)

= A − 1∑n−1
j=0 1/(x j − x j−1)

<
A − 1∑k−1

j=0 1/(x j − x j−1)

= A − 1

1 + 2(k − 1)2
< A/2. (5.12)

Note that Eq. (5.12) is independent of i. We can further bound Con(p0) by

Con(p0) = (x0 − Rx)
(

f (x0) − f (x1)
)

� (x0 − 0)
(

f (x0) − f (x1)
)

= (x0 − x−1)
(

f (x0) − f (x1)
)

= A − 1∑n−1 1/(x j − x j−1)
.

j=0
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Hence Con(p0) � Con(pi) for 1 � i < n. For Con(pn) we get

Con(pn) = (xn − xn−1)
(

f (xn) − R y
)

=
(

A − A

2

)
(b − R y) � A/2.

Therefore also Con(pi) < Con(pn) for 1 � i < n.
This shows that the sets Pi , 1 � i < n, and maybe P0 maximize HYP on the front f . We now slightly adjust f such that

the solution set maximizing HYP is Pk . For this we define f̂ to be

f̂ (x) :=
{

f (x) − ε for xk−1 < x � xk,

f (x) otherwise

for a small ε > 0. If we go from f to f̂ , then only Con(pk) decreases and thus Pk is the solution set maximizing HYP for f̂ .
Now we consider the approximation ratio α( f̂ , Xk). It yields a lower bound for α∗

HYP . We have

α( f̂ , Xk) � min

{
xk

xk−1
,

f̂ (xk)

f̂ (xk+1)

}
.

The latter term goes to f (xk)
f (xk+1)

for ε → 0. Hence, we have

α∗
HYP � min

{
xk

xk−1
,

f (xk)

f (xk+1)

}
. (5.13)

By definition of xi , the first term is

xk

xk−1
= 1 + 2

√
A − 1

3(n − 2)
. (5.14)

The second term of Eq. (5.13) is

f (xk)

f (xk+1)
=

∑k−1
j=0 1/(x j − x j−1) + A

∑n−1
j=k 1/(x j − x j−1)∑k

j=0 1/(x j − x j−1) + A
∑n−1

j=k+1 1/(x j − x j−1)

= 1 + (A − 1)/(xk − xk−1)∑k
j=0 1/(x j − x j−1) + A

∑n−1
j=k+1 1/(x j − x j−1)

. (5.15)

The nominator of the last fraction is
√

A − 1 (n − 2). The denominator can be bounded by

1 + 2(k − 1)2 + n − 2√
A − 1

+ A

(
(n − k − 1)2

A/2 − 3
2 −

√
A−1

n−2

)

� 1 + 2(k − 1)2 + (n − 2)/
√

A − 1 + 4(n − k − 1)2 (5.16)

where the last inequality is based on Eq. (5.11).
Note that k = �n/2� is either n/2, or (n + 1)/2. In both cases,

2(k − 1)2 + 4(n − k − 1)2 � 3

2
(n − 2)2,

as n � 4.
With this we can upper bound Eq. (5.16) by

(5.16) � 1 + (n − 2)/
√

A − 1 + 3

2
(n − 2)2

� 3

2
(n − 1)(n − 2)

where the last inequality uses n � 4 and A � 13. Plugging these bounds into Eq. (5.15), we get

f (xk)

f (xk+1)
� 1 +

√
A − 1(n − 2)

3
2 (n − 1)(n − 2)

= 1 + 2
√

A − 1

3(n − 1)
.

Plugging this and Eq. (5.14) in Eq. (5.13) gives

α∗
HYP � 1 + 2

√
A − 1

3(n − 1)
,

which proves the claim. �
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5.4. Upper bound for α+
HYP

Having shown in the previous section that sets maximizing the hypervolume indicator have a suboptimal multiplicative
approximation ratio in the worst case, we now analyze their additive approximation properties by proving an upper bound
for α+

HYP .

Proof of Theorem 3.3. We want to prove that α+
HYP �

√
(A−a)(B−b)

n−2 for n > 2 and (n − 2)min{a − Rx,b − R y} �√
(A − a)(B − b).

Let P ∈ P f
HYP . As in the beginning of Section 5.2, we can assume that there are no points p,q ∈ P with p ≺ q and that

we can write P = {p1, . . . , pn}, pi = (xi, f (xi)) with a � x1 < · · · < xn � A and B � f (x1) > · · · > f (xn) � b, as otherwise we
have α+( f , P ) = 1.

Let r = (x, f (x)), x ∈ [a, A] be an arbitrary point and let α > 0 be such that r is not additively approximated by α.
We make a case distinction depending on the position of r. Let us first assume that r is an “inner point”, i.e., there is an
i ∈ {1, . . . ,n − 1} with xi � x < xi+1. As r is not additively approximated by α, we have

x > xi + α and f (x) > f (xi+1) + α. (5.17)

As P maximizes the hypervolume indicator on f , replacing the point p ∈ P contributing MinCon(P ) to P with the
point r must not increase the hypervolume. Therefore,

HYP(P ) � HYP(P + r − p)

= HYP(P ) − ConP (p) + ConP+r−p(r)

� HYP(P ) − ConP (p) + ConP+r(r).

This in turn implies

MinCon(P ) = ConP (p) � ConP+r(r)

= (x − xi)
(

f (x) − f (xi+1)
) (5.17)

> α2.

Using Lemma 5.1 and taking square roots on both sides gives the desired

α <

√
(A − a) (B − b)

n − 2
.

It remains to study the case where r = (x, f (x)) is an “outer point” with x � x1 or x � xn . It suffices to examine x � x1, as
then the case x � xn follows by symmetry in the two objectives.

As r is not approximated by a ratio of α we have f (x) > f (x1) + α. Additionally, replacing the point p ∈ P contributing
MinCon(P ) to P by r must not increase the hypervolume, so we have

MinCon(P ) � ConP+r−p(r)� ConP+r(r)

� (a − Rx)
(

f (x) − f (x1)
)

� (a − Rx)α.

We use Lemma 5.1 again and get

α � (A − a)(B − b)

(a − Rx)(n − 2)2
�

√
(A − a)(B − b)/(n − 2),

where the second inequality follows from the assumption of the theorem. �
Closely examining the above proof of Theorem 3.3, we see that it also gives an upper bound on the additive approx-

imation ratio for solution sets P that are a local maximum for HYP, that is, where for all points p ∈ P and q = (x, y) ∈
[a, A] × [b, B] with y � f (x), we have HYP(P + q − p) � HYP(P ).

5.5. Tight bound for α+
OPT

In this section we describe a relation that allows us to transfer results on multiplicative approximation into results on
additive approximation and the other way around. This proves Theorems 2.8 and 3.5 and gives the intuition behind the
logarithmic hypervolume indicator, as it is the standard hypervolume indicator transferred into the world of multiplicative
approximation.
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Consider a front9 f ∗ ∈ F[a∗,A∗]→[b∗,B∗] and a solution set P∗ ∈ P f ∗
that is a multiplicative α∗-approximation of f ∗ . This

means that we have for any x̂∗ ∈ [a∗, A∗] a point (x∗, y∗) ∈ P∗ with

x̂∗ � α∗x∗ and f ∗(x̂∗)� α∗ y∗.
Logarithmizing both inequalities gives

log x̂∗ � log x∗ + logα∗ and log f ∗(x̂∗)� log y∗ + logα∗.
This corresponds to an additive approximation. We set x+ := log x∗ , y+ := log y∗ , x̂+ := log x̂∗ , α+ := logα∗ and f + :=
log◦ f ∗ ◦ exp and get

x̂+ � x+ + α+ and f +(
x̂+)

� y+ + α+.

This means that P+ := {(log x, log y) | (x, y) ∈ P∗} is an additive α+-approximation of the front f + ∈ F[a+,A+]→[b+,B+]
with a+ = log a∗ , A+ = log A∗ , b+ = log b∗ , B+ = log B∗ . Observe that this corresponds to logarithmizing both axes.

All operations we used above are invertible, so that we can do the same thing the other way round: Having a solution
set P+ on a front f + achieving an additive α+-approximation, we get a solution set P∗ = {(exp x,exp y) | (x, y) ∈ P+} on
a front f ∗ = exp◦ f + ◦ log achieving a multiplicative α∗-approximation, with α∗ = expα+ . Thereby the interval bounds like
a+ are also exponentiated and we get a∗ = exp a+ .

Hence, we have a bijection10 F∗ → F+ , f ∗ �→ f + and for any f ∗ ∈ F∗ a bijection P f ∗ → P f +
, P∗ �→ P+ that satisfies

α+( f +, P+) = logα∗( f ∗, P∗).
This allows us to prove Theorem 2.8 by transferring Theorem 2.3 to the world of additive approximation:

Proof of Theorem 2.8. We want to prove α+
OPT = min{A+ − a+, B+ − b+}/n. By definition and the above bijection (∗) we

know that

α+
OPT = sup

f +∈F+
inf

P+∈P f +
α+(

f +, P+)
(∗)= sup

f +∈F+
inf

P+∈P f +
logα∗( f ∗, P∗)

(∗)= sup
f ∗∈F∗

inf
P∗∈P f ∗

logα∗( f ∗, P∗)
= log sup

f ∗∈F∗
inf

P∗∈P f ∗
α∗( f ∗, P∗).

The last expression matches the definition of α∗
OPT . We replace α∗

OPT using Theorem 2.3 and a∗ by exp a+ etc. and get

α+
OPT = logα∗

OPT

= log
(
min

{
A∗/a∗, B∗/b∗}1/n)

= min
{

log A∗ − log a∗, log B∗ − log b∗}/n

= min
{

A+ − a+, B+ − b+}
/n. �

5.6. Upper bound for α∗
logHYPα

∗
logHYP

With similar reasoning we can now also prove Theorem 3.5.

Proof of Theorem 3.5. We want to show that

α∗
logHYP � exp

(√
log(A∗/a∗) log(B∗/b∗)

n − 2

)
.

For a solution set P∗ ∈P∗ and a reference point R∗ = (R∗
x , R∗

y), R∗
x , R∗

y > 0 we defined logHYP by setting logHYP(P∗, R∗) =
HYP1(log P∗, log R∗) with log P∗ = {(log x, log y) | (x, y) ∈ P∗} and log R∗ = (log R∗

x , log R∗
y). This log P∗ is exactly P+ as

defined above. Writing R+ := log R∗ we thus have logHYP(P∗, R∗) = HYP(P+, R+). Now, consider a solution set P∗ maxi-
mizing logHYP(P∗, R∗), thus also maximizing HYP(P+, R+). We know that P+ is an α+

HYP-approximation of the front f + ,
so using Theorem 3.3 and above bijections we get

9 In this section we will mark every variable with a + or ∗ depending on whether it belongs to the additive or multiplicative approximation.
10 We write for short F∗ = F[a∗,A∗]→[b∗,B∗] and F+ = F[a+,A+]→[b+,B+] .
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α∗( f ∗, P∗) = expα+(
f +, P+)

� exp
(√(

A+ − a+) (
B+ − b+)

/(n − 2)
)

= exp
(√

log
(

A∗/a∗) log
(

B∗/b∗)/(n − 2)
)
.

The observation that the assumption of Theorem 3.3 transforms directly into the assumption of Theorem 3.5 concludes the
proof. �

Note that we could also have proceeded the other way round: proving a bound for α∗
logHYP and transforming it into a

result for α+
HYP . The above proof also makes clear why we defined logHYP as we did, as maximizing HYP(P+, R+) gives a

good additive approximation which transforms into a good multiplicative approximation going back to P∗ .

6. Minimization problems

All previous results a priori hold only for maximization problems. In this section we sketch how to adjust the definitions
of Section 2 to minimization problems and what bounds hold in this case. Note that minimization and maximization are
not isomorphic regarding multiplicative approximation.

6.1. Changes in the definitions and results

The main change in the definitions is reversing the direction of several inequalities. First, in Section 2 we have to require
the fronts we consider to be lower semi-continuous instead of upper semi-continuous. We then set f −1(y) = min{x ∈ [a, A] |
f (x) � y}. Moreover, a solution set P is called feasible for the front f if y � f (x) for any (x, y) ∈ P .

For the definition of multiplicative and additive approximation in Sections 2.1 and 2.2 we have to change the inequali-
ties (2.1) and (2.2) to

x̂ � x/α and f (x̂) � y/α, and

x̂ � x − α and f (x̂) � y − α,

respectively. The remainder of Sections 2.1 and 2.2 also holds for minimization problems as it is written there. This is even
the case for the results on α∗

OPT (Theorem 2.3 and Corollary 2.4) and α+
OPT (Theorem 2.8). The following Section 6.2 describes

how to derive these results.
Let us now go through the results presented in Section 3 for maximization problems and translate them to minimization.

In Section 3.1 in the definition of the weighted hypervolume indicator, we now require the reference point to lie above all
feasible points, i.e., R � (A, B) instead of R � (a,b). If we then define the attainment function A P ,R by A P ,R(x, y) = 1,
if (Rx, R y) � (x, y) and there is a p = (px, p y) ∈ P such that (x, y) � (px, p y), and A P ,R(x, y) = 0 otherwise, we get a
meaningful definition of the weighted hypervolume indicator.

The results for the standard hypervolume indicator from Section 3.2 change slightly. In the upper bound for α∗
HYP the

assumption changes and we get the following analog of Theorem 3.1. It is proven in Section 6.3.

Theorem 6.1. Let f ∈F , n > 4, and let R = (Rx, R y) be the reference point. If we have

(n − 2)(R y − B)� B

√
A

a
and

(n − 2)(Rx − A)� A

√
B

b

then

α∗
HYP � 1 +

√
A/a + √

B/b

n − 4
.

For the lower bound of α∗
HYP (Theorem 3.2) the proof has to be redone. We give a different construction than in the

proof of Theorem 3.2, which gives a slightly better result (in terms of the constant factor). It has the additional assumption
that n is even, which is not essential but simplifies the construction. The following theorem is proven in Section 6.4.

Theorem 6.2. Let n � 4 be even, A/a = B/b > 4 and R = (Rx, R y) be the reference point satisfying Rx � A + 2A
n−2 and R y � B + 2B

n−2 .
Then we have

α∗
HYP � min

{
A

4a
,1 +

√
A/a√

2(n − 2)

}
.
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In the bound for α+
HYP (Theorem 3.3) the assumption changes also. For minimization problems we get the following

analog result. Its proof can be found in the following Section 6.2.

Theorem 6.3. If n > 2 and

(n − 2)min{Rx − A, R y − B}� √
(A − a)(B − b)

we have

α+
HYP �

√
(A − a)(B − b)

n − 2
.

It remains to translate the logarithmic hypervolume indicator as introduced in Section 3.3. In order to adjust the defini-
tion of the logarithmic hypervolume indicator to minimization, we require R � (A, B), but do not have to change anything
besides that. Lemma 3.4 still holds; however, the proof has to be changed slightly, as we now have to integrate over the
space above the solution set and not below. The upper bounds for α∗

logHYP (Theorem 3.5 and Corollary 3.6) still hold; we
only have to change a/Rx to Rx/A and b/R y to R y/B in the assumptions.

We remark that the results of Section 4 on (i) why upper (lower) semi-continuity is important and (ii) why it does
not matter if we take worst or best case in the definition of α∗

HYP , also translate to the minimization setting. However, for
reasons of brevity, we omit these details.

6.2. Bounds for α+
OPT , α∗

OPT , α+
HYP, α∗

logHYP (minimization)

This section sketches how the analogous results stated above can be proven based on the corresponding maximization
results.

Let us start with the results on additive approximation ratios. Consider the bijection F[a,A]→[b,B] →F[−A,−a]→[−B,−b] we
get by negating both axes, i.e., f �→ f − with f −(x) := − f (−x). Moreover, let P �→ P− with P− = {(−x,−y) | (x, y) ∈ P }
for P ∈ P . Then P− is a feasible solution set for f − in the minimization setting iff P is feasible for f in the maximization
setting. Additionally, P maximizes the hypervolume indicator on f iff P− maximizes the (minimization) hypervolume indi-
cator on f − , and the additive approximation ratio of P equals the (minimization) additive approximation factor of P− . This
map gives the desired relation between maximization and minimization problems, as long as we are dealing with additive
approximation only (since the requirement a,b > 0 does not hold for f or f −). Using it we can easily show the analogous
results on α+

OPT (Theorem 2.8) and α+
HYP (Theorem 3.3), similar to the way we used the relation between multiplicative and

additive approximation in Section 5.5.
For the results on α∗

OPT and α∗
logHYP (Theorems 2.3 and 3.5) we use the relation between multiplicative and additive

approximation again: The bijection works word by word the same way in the minimization setting and the proof of it works
as in Section 5.5 with some minor changes like swapping inequality signs. Having this, we can proceed as in Section 5.5 to
show the bounds for α∗

OPT and α∗
logHYP from the bounds for α+

OPT and α+
HYP .

These correspondences do not help to prove Theorems 6.1 and 6.2 (which are the minimization analogs of Theorems 3.1
and 3.2). The following two sections redo their proofs for minimization problems.

6.3. Upper bound for α∗
HYP (minimization)

Let f ∈ F and P be a solution set maximizing the hypervolume indicator on f . As in the proof of Theorem 3.1 we can
assume that P = {p1, . . . , pn} with pi = (xi, f (xi)), a � x1 < · · · < xn � A, B � f (x1) > · · · > f (xn)� b.

We define Con and MinCon the same way as before. Lemma 5.1 still holds, i.e.,

MinCon(P ) � (xn − x1)( f (x1) − f (xn))

(n − 2)2
.

This can be proven by redoing the proof of Lemma 5.1 or by reducing the statement to Lemma 5.1 using the maximization–
minimization bijection of the preceding Section 6.2 (mapping f to f −(x) := − f (−x)).

We first calculate the approximation ratio of the “inner points” x ∈ [x1, xn] analogously to Lemma 5.2.

Lemma 6.4. The solution set P achieves a

1 +
√

A/a + √
B/b

n − 4

multiplicative approximation of all points (x, f (x)) with x ∈ [x1, xn].
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Proof. We have to change only a few lines of the proof of Lemma 5.2. Eq. (5.2) now gives

x < xi/α,

f (x) < f (xi+1)/α,

Eq. (5.3) gives

(xi+1 − x)
(

f (xi) − f (x)
) = ConP+r(r) � MinCon(P ),

Eq. (5.4) gives

MinCon(P ) > (α − 1)2xf (x),

and Eq. (5.7) gives

(α − 1)2xf (x) < min

{
xi B

(i − 2)2
,

A f (xi+1)

(n − i − 2)2

}
.

As xi � x and f (xi+1) � f (x) this implies Eq. (5.7) and the rest of the proof works as before. �
For the outer points with x < x1 or x > xn we proceed as in Lemma 5.3.

Lemma 6.5. The solution set P achieves a

1 + AB

(R y − B)a(n − 2)2

multiplicative approximation of all points (x, f (x)) with x < x1 , and a

1 + AB

(Rx − A)b(n − 2)2

multiplicative approximation of all points (x, f (x)) with x > xn.

Proof. We show only the statement for x � x1. The case x � xn follows by symmetry in the two objectives.
The approximation ratio of any x � x1 is exactly min{x1/x, f (x1)/ f (x)} = x1/x. This is maximized for x = a, so that the

approximation ratio of any x � x1 is at most x1/a. We show that x1/a is less than 1 + AB
(R y−B)a(n−2)2 .

Using Lemma 5.1 on the points p1, . . . , pn we get

MinCon(P ) � (xn − x1)
(

f (x1) − f (xn)
)
/(n − 2)2

� AB/(n − 2)2. (6.1)

Let p j be a point contributing MinCon(P ) to P and consider P ′ := P − p j + q with q = (a, B). We have

HYP
(

P ′) = HYP(P ) − ConP (p j) + ConP−p j+q(q)

� HYP(P ) − ConP (p j) + ConP+q(q)

= HYP(P ) − MinCon(P ) + (x1 − a)(R y − B).

Together with HYP(P ) � HYP(P ′) this yields

MinCon(P ) � (x1 − a)(R y − B). (6.2)

Combining Eqs. (6.1) and (6.2), we finally get the desired

x1/a � 1 + AB

(R y − B)a(n − 2)2
. �

After Lemmas 6.4 and 6.5, it is now an easy calculation that the approximation ratio for the outer points is smaller than

1 +
√

A/a+√
B/b

n−4 if we have

(n − 2)(R y − B)� B

√
A

a
and

(n − 2)(Rx − A)� A

√
B

b
.

This proves Theorem 6.1.
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6.4. Lower bound for α∗
HYP (minimization)

Proof of Theorem 6.2. Let n � 4 even and set m = n/2. After rescaling we can assume that A = B and a = b. We set
pi := (xi, yi) with

xi := a + (i − 1)ε,

yi := A − i − 1

m − 1
(A − 2αa), for i = 1, . . . ,m,

xi := yi := 2a, for i = m + 1,

xi := yn+2−i,

yi := xn+2−i, for i = m + 2, . . . ,n + 1.

There, α is the approximation factor we will have in the end and we set ε := 4a2(α−1)2(m−1)
A−2αa . Of these points we want

a � x1 < · · · < xn+1 � A and A � y1 > · · · > yn+1 � a. For this to hold, the following inequalities have to be fulfilled:

ε > 0,

2a > a + (m − 1)ε,

2α a < A,

α > 1.

For later use we require, additionally, 4αa < A. Plugging in the definition of ε and m these inequalities simplify to

n > 2,

1 < α <
A

4a
,

A − 2αa > 4a(α − 1)2(m − 1)2.

Using the second inequality, the third is fulfilled if we have

A/2 > 4a(α − 1)2(m − 1)2,

which simplifies to

α < 1 +
√

A/a√
2(n − 2)

.

Now we take the step function f defined by the points (xi, yi) as a front, i.e., we set

f (x) := min
{

yi
∣∣ i ∈ {1, . . . ,n + 1}, xi � x

}
.

On this front the solution sets maximizing the hypervolume indicator are among the sets Pi := {p j | 1 � j � n + 1, j 	= i}.
We set P := {p j | 1 � j � n + 1} and compare the values ConP (pi) to determine the set Pi maximizing the hypervolume
indicator. We have ConP (pi) = ε · A−2αa

m−1 for 1 < i < n + 1, i 	= m + 1 and ConP (pm+1) = (2αa − 2a)2 = 4a2(α − 1)2. By the
definition of ε both values are equal. Moreover, by the choice of the reference point we have ConP (p1) = ε · (R y − A) �
ConP (pi) for any 1 < i < n + 1 and ConP (pn+1) = ε · (Rx − A)� ConP (pi) for any 1 < i < n + 1.

Hence, Pm+1 maximizes the hypervolume indicator of f , as ConP (pm+1) is minimal. The approximation ratio of this
solution set is min{ ym

ym+1
,

xm+2
xm+1

}, which is exactly α.

By the above inequalities we can make α as large as min{ A
4a ,1+

√
A/a√

2(n−2)
}−ε′ for any ε′ > 0, so by taking the supremum

it follows that α∗
HYP is greater than equal to this value for ε′ = 0, which proves the claim. �

7. Conclusion

We examined to what extent the goal of getting a “good approximation” of the Pareto front is reached when optimizing
the hypervolume indicator. This has been done by theoretical considerations of the additive and multiplicative approximation
ratio of sets of fixed size that maximize the hypervolume indicator in two dimensions on worst-case fronts. We proved
that maximizing the hypervolume indicator gives a close-to-optimal additive, but no good multiplicative approximation
ratio. Additionally, we introduced the logarithmic hypervolume indicator, which yields a close-to-optimal multiplicative
approximation ratio.
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Our results indicate for two dimensions that guiding the search with the hypervolume indicator is the right choice if
one wants an additive approximation, while guiding the search with the logarithmic hypervolume indicator is the right
choice if one wants a multiplicative approximation of the Pareto front. We expect similar results for higher dimensions, but
a rigorous proof of this remains an open problem. The difficult part of the proof for higher dimensions will be controlling
the outer points. However, the provable bounds on the approximation ratio will depend on the choice of the reference point
R even more than in the two-dimensional case. Simple assumptions on R as in Theorems 3.1, 3.3 and 3.5 will not give
general bounds on the approximation factor of sets maximizing the hypervolume independent of R . For an illustration on
what sort of results we expect in higher dimensions, compare the assumptions and bounds of Theorems 3.1 and 5.4. We
believe results like Theorem 5.4 are possible while more readable simplifications like Theorem 3.1 seem unlikely.

It is also an interesting open problem whether the approximation quality achieved by the ε-indicator can be measured in
a similar manner (cf. Section 3.5). The same question can be asked for other indicator functions. This might allow a rigorous
comparison between different indicators. For the weighted hypervolume indicator [34] it is obvious that regions with higher
weights will be better approximated. A formal study how the weight function corresponds to the achieved approximation
is another direction for future research.
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