
Parameterized Complexity Analysis and More
Effective Construction Methods for ACO Algorithms

and the Euclidean Traveling Salesperson Problem

Samadhi Nallaperuma
Evolutionary Computation Group

School of Computer Science
The University of Adelaide

Adelaide, SA 5005, Australia

Andrew M. Sutton
Department of Computer Science

Colorado State University
Fort Collins, CO, USA

Frank Neumann
Evolutionary Computation Group

School of Computer Science
The University of Adelaide

Adelaide, SA 5005, Australia

Abstract—We propose a new construction procedure for ant
colony optimization (ACO) algorithms working on the Euclidean
traveling salesperson problem (TSP) that preserves the ordering
on the convex hull of the points in the instance. The procedure
is inspired by theoretical analyses for simple evolutionary al-
gorithms that are provably more efficient on instances where
the number of inner points of the instance is not too large. We
integrate the construction procedure into the well-known Max-
Min Ant System (MMAS) and empirically show that it leads to
more efficient optimization on instances where the number of
inner points is not too high.

I. INTRODUCTION

Meta heuristic approaches such as evolutionary algorithms
and ant colony optimization perform well for many combina-
torial optimization problems. However, it is hard to understand
their working behavior from a mathematical perspective due
to the complex random processes that underlie the run of
such algorithms. During the last 20 years the computational
complexity analysis of evolutionary algorithms has brought
in new insights into the working principles of these meta
heuristics. Results have been obtained for artificial pseudo-
Boolean functions and a wide range of classical combinato-
rial optimization problems such as shortest paths, minimum
spanning trees, maximum matching, covering, cutting and
scheduling problems. For a comprehensive presentation we
refer the reader to [2, 12].

In the case of ant colony optimization (ACO) a similar
path has been followed since 2006. Different studies have
been carried out to understand the runtime behavior of ACO
algorithms from a mathematical perspective. Initial investiga-
tions considered the behavior on simple pseudo-Boolean func-
tions [6, 9, 10]. Later on, classical combinatorial optimization
problems such as the minimum spanning tree problem [11],
shortest paths problems [18, 19], and the traveling salesperson
problem [7] have been investigated.

Although these computational complexity studies are very
beneficial for understanding which types of problems can be
provably solved in polynomial time by meta heuristic ap-
proaches, most of these studies did not have direct implications
on the design of new meta heuristic approaches.

The goal of this paper is to show how insights from the
computational complexity analysis can be turned into more

effective meta heuristics. Recently, the first parameterized
computational complexity results have been obtained for evo-
lutionary algorithms and some classical NP-hard combinato-
rial optimization problems such as vertex cover [8], make
span scheduling [21], and the Euclidean traveling salesperson
problem [20]. Such studies provide insights into the runtime
behavior of meta heuristics in relation to structural parame-
ters of the investigated problem. In [20], it has been shown
that simple evolutionary algorithms solve the Euclidean TSP
efficiently if the number of inner points of the given instance
is not too large. We exploit the structural properties of the
Euclidean traveling salesperson problem and their relation to
the runtime behavior of ACO algorithms. Our extension of the
parameterized complexity analysis of [20] to ACO derives new
insights which can be used for the design of more effective
ACO algorithms. Based on these insights, we propose new
construction procedures for ACO and the Euclidean TSP. We
show that this approach leads to an XP-algorithm for the
Euclidean TSP. Furthermore, we integrate this construction
procedure into the well-known Max-Min Ant System (MMAS)
[17] and show in our experimental studies that it leads to more
efficient optimization on instances where the number of inner
points is not too high.

The structure of the paper is as follows. Section II intro-
duces the problem formally and discusses solutions based on
parameterizations of ant algorithms. Section III explains our
approach to formulate the XP version of the ACO algorithm
to solve TSP. Section IV describes complete ACO algorithms
including the introduced tour construction and new local search
operator. Section V presents some experimental results of the
proposed algorithms compared with classical MMAS. Finally,
we finish with concluding remarks.

II. PRELIMINARIES

The traveling salesperson problem (TSP) is one of the most
famous NP-hard combinatorial optimization problems. Given a
set of n cities {1, . . . , n} and a distance matrix d = (di,j), 1 ≤
i, j ≤ n, the goal is to compute a minimal length Hamiltonian
cycle (a tour that visits each city exactly once and returns to
the origin). In the case of complete graphs, Hamiltonian cycles
can be represented as permutations of the n cities. For a given

2013 IEEE Congress on Evolutionary Computation
June 20-23, Cancún, México

978-1-4799-0454-9/13/$31.00 ©2013 IEEE 2045

permutation π = (x1, . . . , xn) we denote by

c(π) = dxn,x1 +
n−1∑
i=1

dxi,xi+1

the cost of the tour π.

In our study we consider a well-known ACO algorithm
called Max-Min Ant System (MMAS) [17]. The general struc-
ture of ACO procedures is outlined in Algorithm 1. Individual
solution tours are constructed at each iteration by a set of
artificial ants. These tours are built by visiting each node in
a tour sequentially according to a probabilistic formula that
takes into account instance-specific heuristic information and
pheromone trails. This probabilistic formula, called the random
proportional rule, specifies a transition probability pij that an
ant currently visiting node i selects node j next in its tour.
This probability is defined as

pij =
[τij]

α
[ηij]

β(∑
h∈Nk

[τih]
α

[ηih]
β
) (1)

Here Nk represents the set of nodes that have not yet been vis-
ited by ant k, [τih] and [ηih] represent pheromone trail intensity
and heuristic information respectively. The parameters α and
β adjust the influence of the pheromone and the heuristic on
the selection decision.

In the MMAS, the pheromone update is performed after the
tour construction of ants according to τij = (1−ρ)τij + ∆τ bij ,
where ρ denotes the evaporation rate and

∆τ bij =

{
1/Cb if (i, j) belongs to the best-so-far tour;
0 otherwise.

Here Cb is the cost of the best-so-far tour (the iteration-best
tour is also sometimes used). Additionally, local search can be
applied on these constructed solutions to improve them further.
Pheromone trails in MMAS are bounded between maximum
and minimum limits τmax and τmin. At the beginning of a run,
the best solution corresponds to the one found by the nearest
neighbor heuristic. A detailed description and analysis of this
algorithm on TSP can be found in the textbook of Dorigo and
Stützle (Chapter 3) [4].

Algorithm 1: Outline of Ant Colony Optimization
(ACO)

1 Set parameters; Initialize pheromone trails;
2 while termination condition not met do
3 Construct tour ;
4 Apply local search (Optional);
5 Update Pheromones ;

We propose new construction procedures for ACO and the
TSP which are based on insights from parameterized com-
plexity analysis. Parameterized complexity theory proposed
by Downey and Fellows [5] is an extension to traditional
complexity theory that incorporates additional parameters into
running time analysis. The analysis on hard algorithmic prob-
lems is decomposed into these parameters of the problem
input. This approach illuminates the relationship between the

hardness and the problem structure by isolating the exponential
complexity into few parameters. When randomized algorithms
such as ACO algorithms are considered, the runtime is often
expressed as a random variable T that measures the number
of steps the algorithm takes to decide a parameterized prob-
lem. A randomized algorithm with expected optimization time
E(T) ≤ g(k) ∗ nO(1) (respectively , E(T) ≤ ng(k)) is a
randomized fixed parameter tractable algorithm (respectively,
XP-algorithm) for the corresponding parameterization k [20].

A natural parameterization for the Euclidean TSP is based
on the points that lie on the interior of the convex hull of an
instance [3, 20]. Deı̆neko et. al [3] describe the parameterized
problem as follows. Let V ⊆ R2 be a finite point set in the
Euclidean plane. The convex hull of V is the smallest convex
set containing V . A point p ∈ V is called an inner point if p lies
in the interior of the convex hull. The set of inner points of V
is denoted by Inn(V). A point p ∈ V is called an outer point
if it is not an inner point. Outer points are denoted by Out(V).
Hence V = Inn(V) ∪ Out(V) and Inn(V) ∩ Out(V) = ∅.
Throughout this paper, we denote by n := |V | the size of an
instance of TSP and k := |Inn(V)| the number of inner points
in an instance.

Let vout1 ∈ Out(V) be an arbitrary outer point. We
denote by (vout1 , vout2 , . . . , voutn−k) the sequence of outer points
clockwise along the convex hull when starting with vout1 (for
an illustration see Figure 2). We call such a sequence a cycling
ordering of the points in Out(V).

III. NEW CONSTRUCTION PROCEDURES

In this section, we introduce new construction procedures
based on parameterized complexity results. Furthermore, we
analyze the new construction methods with respect to their
theoretical properties. Our goal is to study the structure of the
underlying search space given by the different construction
methods. For all investigations carried out in this section, we
set α = β = 0 which implies that ACO algorithms construct
solutions without taking pheromone or heuristic information
into account.

When a point set V of size n is supplied to an algorithm
as input, the convex hull of V can be computed in O(n log n)
time. Then, as outlined in Algorithm 2, the original loop
of ACO runs until the termination condition is met. This
termination condition could be anything similar to classical
ACO. The only difference from classical ACO shown in
Algorithm 1, is that the selection of the next city during
construction preserves convex hull order in the constructed
tour. In this section, we carry out a rigorous analysis of the
tour construction procedure.

Algorithm 2: Parameterized ACO for Euclidean TSP

1 Set parameters; Initialize pheromone trails;
2 while termination condition not met do
3 Construct tour preserving convex hull order;
4 Apply local search (Optional);
5 Update Pheromones ;

We say a tour x is hull-respecting if the subsequence of
points in x belonging to Out(V) appear in the same order

2046

a b

paths of Ω(n) vertices

Fig. 1. Example instance with two interior points

as some cyclic ordering of Out(V). The following theorem
follows immediately from the proof of Theorem 2 in [13].

Theorem 1: If x? is optimal, then x? is hull-respecting.

Furthermore, if x is a 2-opt local optimum, it must also be
hull-respecting since the resulting tour must not contain any
intersecting edges [20].

Therefore, it might be useful in practice to constrain the
construction of tours in such a way that only hull-respecting
tours are generated. We now consider a few ways of achieving
this.

Function Construct1(V, τ, η, α, β)
1 x1 ← vout1 ;
2 h← 1;
3 for i = 1 to n− 1 do
4 V ′ ← {v ∈ V : v is unvisited};
5 E′ ← {(xi, v) : v ∈ V ′ \Out(V)};
6 if h ≤ |Out(V)| then E′ ← E′ ∪ {(xi, vouth)};
7 R←

∑
e∈E′ τ(e)αη(e)β ;

8 Choose one edge e = (xi, v) from E′ with
probability

(
τ(e)αη(e)β

)
/R;

9 if v ∈ Out(V) then h← h+ 1;
10 xi+1 ← v;
11 return π = (x1, . . . , xn) ;

Function Construct1 constructs tours using the heuristic
and the pheromone values, but has the added mechanism of
ensuring points that lie on the convex hull are always placed
in the correct order. However, the procedure is poorly biased,
since it does not generate such tours in a uniform manner.
Because of this effect, the runtime can be arbitrarily bad, even
with a few interior points.

We consider the TSP instance class Tw defined as follows.
Let V be a set of n points in the Euclidean plane with 2
interior points, labeled a and b, such that, in every optimal
Hamiltonian tour, a and b are connected by two paths of Ω(n)
vertices. An example is shown in Figure 1.

Theorem 2: Let α = β = 0. The expected time until
ACO using the tour construction function Construct1 finds
an optimal tour for any instance of Tw is bounded below by
Ω(en).

Proof: Without loss of generality, suppose that the con-
struction procedure places vertex a before b (if it selects b

first, the same argument can be made transposing a and b).
Furthermore, suppose that it has already constructed a partial
optimal solution from x1 to a. In order to construct a complete
optimal solution, the procedure must correctly place Ω(n)
vertices correctly before selecting b. The probability that the
construction procedure places any unplaced point at a given
position is at most 1/(k + 1). So in this case, the probability
that the construction procedure places vertex b correctly is at
most (

1− 1

k + 1

)Ω(n)
1

k + 1
≤ e−cn

for a positive constant c. Thus the waiting time until the
construction at least places vertex b correctly is at least Ω(en).

A similar argument holds if b is placed before a. It thus
follows that the expected time to wait until the construction
procedure builds any optimal tour for such an instance is at
least exponential.

We now make a small modification to Function Construct1
that ensures all tours with the points on the convex hull
in the correct order are generated uniformly. This improves
the runtime with respect to k, and yields a randomized XP-
algorithm for Deı̆neko’s parameterization of Euclidean TSP.

Function Construct2(V, τ, η, α, β)
1 x1 ← v1 ∈ V uniformly at random;
2 h← 0;
3 if x1 ∈ Out(V) then
4 h← 1;
5 for i = 1 to n− 1 do
6 V ′ ← {v ∈ V : v is unvisited};
7 E′ ← {(xi, v) : v ∈ V ′ \Out(V)};
8 R←

∑
e∈E′ τ(e)αη(e)β ;

9 Choose a real number r uniformly at random from
(0, 1);

10 if r < (n− k − h)/(n− i) then
11 xi+1 ← vouth+1;
12 h← h+ 1;
13 else
14 Choose one edge e = (xi, v) from E′ with

probability
(
τ(e)αη(e)β

)
/R;

15 xi+1 ← v;

16 return π = (x1, . . . , xn) ;

Theorem 3: Let α = β = 0. ACO using the tour construc-
tion function Construct2 is a randomized XP-algorithm for the
interior-point parameterization of Euclidean TSP. In particular,
for any instance with n total points and k interior points, the
construction procedure generates an optimal solution after at
most O(nk) steps in expectation.

Proof: Let x? be an optimal tour starting with the node
x1 chosen by Construct2. During the construction procedure
of the tour, the probability that xi, 2 ≤ i ≤ n, is assigned
the vertex corresponding to x?i conditioned on the event that
xj = x?j for all j < i is

pi =

{
(n− k − h)/(n− i) if x?i ∈ Out(V);
1/(n− i) otherwise.

2047

where h is the number of vertices in Out(V) that have already
been chosen.

Therefore, the probability that any run through the con-
struction procedure produces exactly x? is at least

n∏
i=1

pi ≥
(n− k − 1) · (n− k − 2) · · · 3 · 2 · 1

(n− 1) · (n− 2) · · · 3 · 2 · 1

=
(n− k − 1)!

(n− 1)!
.

Thus, the expected number of calls to Function Construct2
until x? is generated is at most

(n− 1)!

(n− k − 1)!
= O(nk)

which completes the proof.

The previous theorem implies that all instances in Tw that
were solved in expected exponential time by Construct1 can
be solved by Construct2 in expected time O(n2).

These theoretical results suggest that a principled construc-
tion procedure can constrain the search to a subset of the
search space that contain the optimal tours. If an instance has
fewer inner points, this subset may be manageable. We now
consider modified ACO algorithms that employ this principled
construction procedure, and we compare their performance to
the original MMAS.

In the following, we present a small experimental study of
the different construction procedures. To isolate the effects of
construction, we set α = β = 0. This eliminates the effect
of pheromone values and heuristic information, and allows
us to measure how each procedure is sampling the search
space. We measure the solution quality obtained within 1000
generations and compare it to the value of an optimal solution
(OPT) computed by the exact TSP solver Concorde [1]. Table I
shows the results of the four algorithms on TSP instances
with 25 cities. These instances have an increasing number of
inner points (1-5.tsp inner points 5% of total points, 6-10.tsp
10% and 11-15.tsp 20%) within a reasonable range to support
our claim for “few” inner points. For all instances, employing
the construction procedure used by classical MMAS (c.f., the
column labeled “original”) results in tours with lengths that
are far from optimal. In contrast to this, the ACO algorithm
employing our new construction procedures (Construct 1 and
2) find an optimal tour in most cases. For the set of instances
with 20% of inner points (11-15.tsp), the theoretical worst-case
runtime bound given in Theorem 3 for Construct2 is already
much larger than 1000, and the theoretical worst-case bound
for Construct1 is even higher. Nevertheless, Construct2 man-
ages to achieve near-optimal tour lengths for those instances
after 1000 iterations.

IV. NEW ACO ALGORITHMS

In this section, we propose new ACO approaches based
on the theoretical investigations carried out in the previous
section. We design two improved Max-Min versions by inte-
grating nearest neighbor lists as in original MMAS to the two
tour construction procedures described above.

The first algorithm is outlined in Function XPMMAS1 and
addresses the poor bias of the tour construction procedure

instance original Construct1 Construct2 OPT
1.tsp 141698 49621 49621 49621
2.tsp 134904 50866 50866 50866
3.tsp 152281 57851 57851 57851
4.tsp 125082 51200 51200 51200
5.tsp 139939 58057 58057 58057
6.tsp 137554 60250 60250 60250
7.tsp 132794 53876 53784 53784
8.tsp 131903 60771 60771 60771
9.tsp 134368 63079 55049 55049
10.tsp 137953 63921 59678 58886
11.tsp 132502 68073 68411 66592
12.tsp 136393 68407 64737 60613
13.tsp 129795 65360 61665 54074
14.tsp 132828 70113 63642 58705
15.tsp 147072 70564 68383 67314

TABLE I. RESULTS FOR DIFFERENT CONSTRUCTION PROCEDURES
WITH α = β = 0.

in Construct1 by enforcing a higher probability of choosing
outer points over inner points in each step. In contrast to the
equal probability of choosing points in Construct1 explained
in the previous section, here an outer point is selected with
(n − k − h) times higher probability than the probability of
choosing an inner point. The selection of the next point is
based on the nearest-neighbor list, as in original MMAS, but
with the additional constraint of convex hull order preservation.
In other words, each next point is selected from unvisited nodes
in the nearest neighbor list, subject to preserving ordering
on the convex hull within the tour under construction. The
remainder of the algorithm, such as pheromone update and
initialization, are the same as in the original MMAS.

The second algorithm outlined in Function XPMMAS2
operates by choosing an outer point with the appropriate prob-
ability and then, if the outer point was not chosen, choosing an
inner point from the nearest neighbor list according to the ran-
dom proportional rule, i.e., Equation (1). This implementation
employs the unbiased tour construction outlined in Construct2
with the addition of the nearest neighbor list functionality.

We can observe the difference of the two proposed variants
in the phase where the decision of the next point is made.
In the first version, any available point is selected based on
the transition probabilities determined by pheromone values,
heuristic information and whether or not the node lies on
the convex hull. In the second version, the probability that
the next outer point is chosen only depends on k and the
number of outer points h chosen so far. If an outer point is
not chosen, an inner point will be chosen according to the
transition probabilities determined by pheromone values and
heuristic information. Both implementations are integrated into
the standard MMAS implementation [16] with the described
modifications in the tour construction.

A. Local Search

Classical ACO algorithms are usually combined with local
search to improve the runtime and the quality of the solution.
For TSP this is often achieved using 2-opt or 3-opt local
search operators. Hence, for our XP version of MMAS, we
have introduced a local search operator which preserves the

2048

Function XPMMAS1(V, τ, η, α, β)
1 x1 ← v1 ∈ V uniformly at random;
2 h← 0;
3 if x1 ∈ Out(V) then
4 h← 1;

5 for i = 1 to n− 1 do
6 E′ ← {(xi, v) : v ∈ V \Out(V), v is unvisited};
7 if h ≤ |Out(V)| then E′ ← E′ ∪ {(xi, vouth)};
8 NN ← nearest neighbor list of xi
9 NN ′ ← {(xi, v) : v ∈ NN \Out(V), v is unvisited};

10 if h ≤ |Out(V)| then NN ′ ← NN ′ ∪ {(xi, vouth)};
11 R←

∑
e∈E′ τ(e)

αη(e)β ;
12 RN ←

∑
e∈NN′ τ(e)

αη(e)β ;
13 Choose one edge e = (xi, v) if NN ′! = empty then
14 from NN ′ with probability
15 if v ∈ Out(V) then
16 (n− k − h)/(n− i) ∗

(
τ(e)αη(e)β

)
/RN ;

17 else
18 1/(n− i) ∗

(
τ(e)αη(e)β

)
/RN ;

19 else
20 from E′ with probability if v ∈ Out(V) then
21 (n− k − h)/(n− i) ∗

(
τ(e)αη(e)β

)
/R;

22 else
23 1/(n− i) ∗

(
τ(e)αη(e)β

)
/R;

24 xi+1 ← v;
25 if v ∈ Out(V) then h← h+ 1;

26 return π = (x1, . . . , xn) ;

Function XPMMAS2(V, τ, η, α, β)
1 x1 ← v1 ∈ V uniformly at random;
2 h← 0;
3 if x1 ∈ Out(V) then
4 h← 1;

5 for i = 1 to n− 1 do
6 E′ ← {(xi, v) : v ∈ V \Out(V), v is unvisited};
7 NN ← nearest neighbor list of xi
8 NN ′ ← {(xi, v) : v ∈ NN \Out(V), v is unvisited};
9 R←

∑
e∈E′ τ(e)

αη(e)β ;
10 RN ←

∑
e∈NN′ τ(e)

αη(e)β ;
11 Choose a real number r uniformly at random from (0, 1);
12 if r < (n− k − h)/(n− i) then
13 xi+1 ← vouth+1;
14 h← h+ 1;

15 else
16 if NN ′! = empty then
17 Choose one edge e = (xi, v) from NN ′ with

probability
(
τ(e)αη(e)β

)
/RN ;

18 xi+1 ← v;

19 else
20 Choose one edge e = (xi, v) from E′ with

probability
(
τ(e)αη(e)β

)
/R;

21 xi+1 ← v;

22 return π = (x1, . . . , xn) ;

convex hull order while improving the overall solution using
local search. We cannot use 2- or 3-opt because such operators
will destroy convex hull order once the cities in between the
selected points are inverted. Therefore, we propose a new kind
of operator that only reorders inner points, and thus preserves
order along the convex hull. Our approach is inspired by the
jump operator introduced in the genetic algorithm domain [15].
In this operator, an inner point can be shifted to any other
position of the permutation, shifting the remaining elements
such that their order is preserved. The jump operator is applied
iteratively, accepting improving tours until a local optimum is
found. The procedure is outlined in Algorithm 3.

Algorithm 3: XP-jump

1 Vinn ← {v ∈ V \Out(V)};
2 Vinn := Permute (Vinn);
3 while improvement do
4 for each a ∈ Vinn do
5 a1 := Tour[Position[a+ 1]];
6 a2 := Tour[Position[a− 1]];
7 for each b2 ∈ V do
8 b1 := Tour[Position[b2 − 1]];
9 gain := −d[a2, a]− d[a1, a] + d[a2, a1] +

d[b1, a] + d[b2, a]− d[b1, b2];
10 if gain < 0 then
11 shift cities between a and b2 to front or

back based on the jump direction;
12 a jump to position of b2 in the tour;
13 restart search;

V. EXPERIMENTAL INVESTIGATIONS

We conducted experiments to compare the new algorithms
with the classical MMAS. We consider three different ACO
versions with α and β and other ACO parameters set to
their default values (α = 1, β = 2, ρ = 0.02, q 0 = 0.0
etc.) as in the original ACO package [16]. We compare the
XPMMAS1 and XPMMAS2 variants using XP-jump local
search to MMAS using 2-opt as the local search operator.
Thus, except for the construction procedure and the local
search operator, the implementation of the new algorithms and
their running conditions are the same as in classical MMAS.
We consider several Euclidean 2D TSP instances with various
sizes and percentages of inner points. The instance generation
process is described in detail in the next section.

We calculated the minimum tour length found within a
fixed number of iterations for each algorithm on each instance.
We repeated each experiment 10 times on each instance of
the set. We then performed a one-tailed Wilcoxon signed rank
test [22] to determine whether the proposed construction proce-
dures perform better than MMAS with statistical significance.
This test is appropriate for paired random variables and does
not make any assumptions on the underlying distribution. We
report the resulting rank sum (W) and confidence (p) values.
We performed the experiments on an SGI Altix XE 1300
cluster with 70 nodes where each node has 2.66 GHz Intel
Clovertown quad core processors, 8GB RAM and a 250GB

2049

voutn−k

voutn−k−1
voutn−k−2

vout2

vout1

vinn1

vinn2

vinn3

vinnk−1

vinnk

Fig. 2. Instance generation procedure.

SATA drive. We also used the R statistical package [14] to
carry out statistical tests.

A. Parameterized Instances

We generated a set of one hundred instances per each
category representing instance size (25, 50, 100 and 200) and
inner point percentage (5%, 10%, 20%, 30% and 40%). Our
goal is to test the impact of the number of inner points. We
generate the outer points on a convex hull first and then add
the required number of inner points. We generate such sets
in order to tightly control the percentage of inner points to
ultimately assess its impact on algorithm performance. Such
control is not available in current benchmark instances.

To construct each instance, we first create a circle with
a given radius and then randomly generate outer points on
the circumference by producing a random angle and deriving
x and y coordinates from the angle from the y axis. This
process continues until we get the required number of outer
points to compliment our required number of inner points. We
then compute the convex hull formed by the generated points
and subsequently insert random points inside the hull. Here,
we accept a randomly generated inner point only if it falls
inside the convex hull. The instance generation is illustrated
in Figure 2.

B. Solution Quality Results

We compare the solution quality obtained after 10000
iterations for the three different algorithms. For each instance
size and each inner node percentage, we created a data set
consisting of 100 instances using the procedure outlined in
the previous section. The average minimum tour length values
obtained for each data set are displayed in Table III. To
evaluate for statistical significance, the Wilcoxon signed rank
test is used on each of these data sets. The test results are
presented in Table II. The data set is indicated in the first
column, represented with the inner point percentage preceded
by the instance size.

For small instance sizes, all three algorithms have similar
results while our improved version XPMMAS1 has achieved
the best results and the classical MMAS and XPMMAS2
perform slightly worse. For example, for the instance set
representing the smallest size and for the least number of
inner points (25 5%), the three algorithms have obtained
similar values for the 100 TSP instances. This is indicated
in comparatively smaller rank sum values for the three test
categories resultant from Wilcoxon signed rank test (see Table
II). For larger instance sizes, XPMMAS1 has obtained strictly
better results than the other two. For example, as shown in
Figure 3 XPMMAS1 has achieved smaller tour length values
than MMAS for all 100 instances.

The results of the statistical tests provide more insights into
the difference of algorithm performance. The first test (test1)
compares the solution quality of XPMMAS1 with classical
MMAS. Based on the observations of the raw results of the
experiment, we have built our hypotheses for the rank tests.
Hence, for test1, we have set the alternative hypothesis that
XPMMAS1 performs better (has smaller tour length values)
than classical MMAS in terms of solution quality. Hence, the
null hypothesis would be that XPMMAS1 does not perform
better than MMAS. Throughout this section the symbol “<”
stands for having smaller tour length values (hence better
performance) and “>” for larger values. Similarly, we have
set the hypotheses that classical MMAS performs better than
XPMMAS2 (test2) and XPMMAS1 performs better than XP-
MMAS2 (test3).

For all data sets and test1, XPMMAS1 has obtained
better tour length values than classical MMAS significantly
(p < 0.001). In such cases, with at least 99.9% confidence we
reject the null hypothesis (that XPMMAS1 does not perform
better than MMAS) in favor of the alternative hypothesis. The
W -values indicate positive rank sums of the difference of
two pairs (MMAS and XPMMAS1). Greater values mean a
higher difference in algorithm performance. The term positive
indicates that we consider the ranks only where MMAS >
XPMMAS1 holds to sum up the W -value.

We also observe evidence for a favorable effect in the
construction procedure on many cases. Furthermore, the rank
sum values increase with the instance size due to the widening
gap of the results of the two algorithms. This shows the
scalability of our approaches compared to the classical MMAS.

The results for test2 and test3 are similar. Both tests report
larger tour length values for XPMMAS2 than MMAS and
XPMMAS1. Thus, we have evidence that XPMMAS1 usually
tends to outperform XPMMAS2 with statistical significance.
Nevertheless, in some cases of test2 we have observed zero
rank sums and p-values of 1 suggesting XPMMAS2 performs
as well as classical MMAS. This is more apparent in the
tests for the instances with fewer inner points. For test3,
and instance sizes of at least 50 there are large rank sums
and confidence values, showing that XPMMAS1 outperforms
XPMMAS2 in almost all cases.

In the previous tests, we did not observe a significant
performance variation as we varied the percentage of inner
points except for a few cases of test2. We assume this may be
because the local search operator is performing so well that it
obscures the effect of the construction procedure. Therefore,

2050

instance test1 test2 test3
W p-value W p-value W p-value

25 5% 820 9.095e-13 0 1 0 1
25 10% 2016 2.2e-16 17 1 105 6.104e-05
25 20% 2145 2.2e-16 0 1 276 1.192e-07
25 30% 2145 2.2e-16 253.5 1 780 1.819e-12
25 40% 1326 4.441e-16 254 0.9997 465 9.313e-10
50 5% 4753 2.2e-16 0 1 1275 8.882e-16
50 10% 4753 2.2e-16 331 1 2346 2.2e-16
50 20% 4851 2.2e-16 1203 0.989 4851 2.2e-16
50 30% 4465 2.2e-16 2171.5 1.116e-08 4560 2.2e-16
50 40% 4005 2.2e-16 2695 2.2e-16 4465 2.2e-16
100 5% 5050 2.2e-16 217 1 4005 2.2e-16
100 10% 5050 2.2e-16 1021 0.002459 5050 2.2e-16
100 20% 5050 2.2e-16 1826 2.2e-16 5050 2.2e-16
100 30% 5050 2.2e-16 3570 2.2e-16 5050 2.2e-16
100 40% 4950 2.2e-16 4095 2.2e-16 4950 2.2e-16
200 5% 5050 2.2e-16 1224 7.274e-08 5050 2.2e-16
200 10% 5050 2.2e-16 1418 1.554e-15 5050 2.2e-16
200 20% 5050 2.2e-16 2415 2.2e-16 5050 2.2e-16
200 30% 5050 2.2e-16 2690 2.2e-16 4950 2.2e-16
200 40% 4950 2.2e-16 4656 2.2e-16 4950 2.2e-16

TABLE II. RESULTS OF WILCOXON SIGNED RANK TESTS FOR SOLUTION QUALITY (MINIMUM TOUR LENGTH) WITHIN 10000 ITERATIONS FOR
XPMMAS1 < MMAS (test1), MMAS < XPMMAS2 (test2) AND XPMMAS1 < XPMMAS2 (test3), POSITIVE RANK SUMS (W) AND CONFIDENCE (p)

VALUES ARE DISPLAYED ACCORDINGLY

instance MMAS XPMMAS1 XPMMAS2
25 5% 53281 52949 52949
25 10% 57345 56504 56700
25 20% 60715 59836 60051
25 30% 64157 63443 63825
25 40% 64977 64570 64835
50 5% 61650 59151 60262
50 10% 66314 63713 65163
50 20% 74131 71752 74084
50 30% 79522 77778 80667
50 40% 82648 81485 84101
100 5% 69786 65097 68649
100 10% 79358 75257 79909
100 20% 90687 87819 91715
100 30% 98896 97026 100418
100 40% 105491 104222 107225
200 5% 81584 76196 82387
200 10% 93843 89843 94659
200 20% 110731 108221 111281
200 30% 123343 122072 123958
200 40% 133442 132408 134521

TABLE III. AVERAGE MINIMUM TOUR LENGTH VALUES (ROUNDED TO
THE NEAREST WHOLE NUMBER) OBTAINED BY MMAS, XPMMAS1 AND

XPMMAS2 WITHIN 10000 ITERATIONS FOR EACH SET OF 100 INSTANCES
HAVING SIZES 25, 50, 100 AND 200 AND INNER POINT PERCENTAGES 5%,

10%, 20%, 30% AND 40%

we have run another test to determine this effect by removing
local search (see Table IV). The respective average values
of the data sets are presented in Table V. These results
show that when the inner point percentage increases to 40%,
our algorithms (without local search) start to perform more
poorly. This is expected, since the construction procedures are
leveraging the constraints on the convex hull, and we expect
the performance to degrade as the number of inner points
becomes large.

0 20 40 60 80 100
80

90

100

110

120

TSP instance

So
lu

tio
n

in
10

00
0

ite
rs

MMAS
XPMMAS1

Fig. 3. Comparison of solution quality of classical MMAS and the new
version (XPMMAS1) obtained within 10000 iterations for parameters α = 1
and β = 2 for 100 instances of size 100 and inner point percentage 30

VI. CONCLUSION AND FUTURE WORK

Parameterized complexity analysis of heuristics enables
one to bring in structural insights into the design of these
methods. We presented an enhanced ant colony optimization
approach for Euclidean TSP based on parameterized results
taking into account the number of inner points. For our new
construction procedure we derived an upper bound of O(nk)
on the expected runtime if the algorithm samples the search
space randomly. Using the new construction procedures in the
classical MMAS approach, we obtained more effective ACO

2051

instance test1 test2 test3
W p-value W p-value W p-value

25 5% 0 1 0 1 0 1
25 10% 0 1 3741 2.2e-16 3741 2.2e-16
25 20% 0 1 4753 2.2e-16 4753 2.2e-16
25 30% 1 1 5050 2.2e-16 5050 2.2e-16
25 40% 15 0.0625 4950 2.2e-16 4950 2.2e-16

TABLE IV. RESULTS OF WILCOXON SIGNED RANK TESTS FOR
SOLUTION QUALITY WITHIN 10000 ITERATIONS WITHOUT LOCAL SEARCH

FOR XPMMAS1 > MMAS (test1), XPMMAS2 > MMAS (test2) AND
XPMMAS2 > XPMMAS1 (test3), POSITIVE RANK SUMS (W) AND

CONFIDENCE (P) VALUES ARE DISPLAYED ACCORDINGLY

instance MMAS XPMMAS1 XPMMAS2
25 5% 53281 53281 53281
25 10% 57345 57345 64038
25 20% 60716 60715 68667
25 30% 64157 64157 72857
25 40% 64977 64986 74666

TABLE V. AVERAGE MINIMUM TOUR LENGTH VALUES (ROUNDED TO
THE NEAREST WHOLE NUMBER) OBTAINED BY MMAS, XPMMAS1 AND

XPMMAS2 WITHIN 10000 ITERATIONS FOR EACH SET OF 100 INSTANCES
HAVING SIZES 25, 50, 100 AND 200 AND INNER POINT PERCENTAGES 5%,

10%, 20%, 30% AND 40%

algorithms. Experimental results suggest that our new methods
outperform the classical MMAS approach on instances up to
a reasonable (roughly 40% of the number of total points)
number of inner points. Future work will be concentrated on
expanding the experiments to massive scale to test the validity
of current results on extremely large instances and improving
the current performance of new methods further by integrating
new parameterizations that have a complementary effect on the
current one, such that the new methods will still outperform
general MMAS even when the number of inner points is high.

REFERENCES

[1] D. Applegate, W. J. Cook, S. Dash, and A. Rohe. Solu-
tion of a min-max vehicle routing problem. INFORMS
Journal on Computing, 14(2):132–143, 2002.

[2] A. Auger and B. Doerr, editors. Theory of Randomized
Search Heuristics: Foundations and Recent Develop-
ments. World Scientific, 2011.

[3] V. G. Deı̆neko, M. Hoffman, Y. Okamoto, and G. J.
Woeginger. The traveling salesman problem with few
inner points. Operations Research Letters, 34:106–110,
2006.

[4] M. Dorigo and T. Stützle. Ant Colony Optimization.
Bradford Company, Scituate, MA, USA, 2004.

[5] R. G. Downey and M. R. Fellows. Parameterized
Complexity. Springer-Verlag, 1999. 530 pp.

[6] W. J. Gutjahr. Mathematical runtime analysis of ACO

algorithms: Survey on an emerging issue. Swarm Intel-
ligence, 1:59–79, 2007.

[7] T. Kötzing, F. Neumann, H. Röglin, and C. Witt. The-
oretical analysis of two aco approaches for the traveling
salesman problem. Swarm Intelligence, 6(1):1–21, 2012.

[8] S. Kratsch and F. Neumann. Fixed-parameter evolution-
ary algorithms and the vertex cover problem. Algorith-
mica, 65(4):754–771, 2013.

[9] F. Neumann, D. Sudholt, and C. Witt. Analysis of
different MMAS ACO algorithms on unimodal functions
and plateaus. Swarm Intelligence, 3(1):35–68, 2009.

[10] F. Neumann and C. Witt. Runtime analysis of a simple ant
colony optimization algorithm. Algorithmica, 54(2):243–
255, 2009.

[11] F. Neumann and C. Witt. Ant colony optimization and the
minimum spanning tree problem. Theoretical Computer
Science, 411(25):2406–2413, 2010.

[12] F. Neumann and C. Witt. Bioinspired Computation in
Combinatorial Optimization:Algorithms and Their Com-
putational Complexity. Springer-Verlag New York, Inc.,
New York, NY, USA, 1st edition, 2010.

[13] L. V. Quintas and F. Supnick. On some properties of
shortest Hamiltonian circuits. The American Mathemati-
cal Monthly, 72(9):977–980, 1965.

[14] R Development Core Team. R: A Language and En-
vironment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2011. ISBN 3-
900051-07-0.

[15] J. Scharnow, K. Tinnefeld, and I. Wegener. The analysis
of evolutionary algorithms on sorting and shortest paths
problems. J. Math. Model. Algorithms, 3(4):349–366,
2004.

[16] T. Stützle. ACO-TSP software package, 2012.
[17] T. Stützle and H. H. Hoos. MAX-MIN Ant system.

Future Generation Computer Systems, 16(9):889–914,
June 2000.

[18] D. Sudholt and C. Thyssen. Running time analysis of
ant colony optimization for shortest path problems. J.
Discrete Algorithms, 10:165–180, 2012.

[19] D. Sudholt and C. Thyssen. A simple ant colony
optimizer for stochastic shortest path problems. Algo-
rithmica, 64(4):643–672, 2012.

[20] A. M. Sutton and F. Neumann. A parameterized runtime
analysis of evolutionary algorithms for the euclidean
traveling salesperson problem. In J. Hoffmann and
B. Selman, editors, AAAI. AAAI Press, 2012.

[21] A. M. Sutton and F. Neumann. A parameterized runtime
analysis of simple evolutionary algorithms for makespan
scheduling. In Proceedings of the Twelfth Conference
on Parallel Problem Solving from Nature (PPSN 2012),
pages 52–61. Springer, 2012.

[22] F. Wilcoxon. Individual comparisons by ranking methods.
Biometrics Bulletin, 1(6):80–83, 1945.

2052

