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Abstract. Traditionally, the quality of orthogonal planar drawings is
quantified by the total number of bends, or the maximum number of
bends per edge. However, this neglects that in typical applications, edges
have varying importance. We consider the problem OptimalFlexDraw
that is defined as follows. Given a planar graph G on n vertices with
maximum degree 4 (4-planar graph) and for each edge e a cost function
coste : N0 −→ R defining costs depending on the number of bends e has,
compute an orthogonal drawing of G of minimum cost.

In this generality OptimalFlexDraw is NP-hard. We show that it
can be solved efficiently if 1) the cost function of each edge is convex and
2) the first bend on each edge does not cause any cost. Our algorithm
takes time O(n · Tflow(n)) and O(n2 · Tflow(n)) for biconnected and con-
nected graphs, respectively, where Tflow(n) denotes the time to compute
a minimum-cost flow in a planar network with multiple sources and sinks.
Our result is the first polynomial-time bend-optimization algorithm for
general 4-planar graphs optimizing over all embeddings. Previous work
considers restricted graph classes and unit costs.

1 Introduction

Orthogonal graph drawing is one of the most important techniques for the
human-readable visualization of complex data. Since edges are required to be
straight orthogonal lines—which automatically yields good angular resolution
and short links—the human eye may easily adapt to the flow of an edge. The
readability of orthogonal drawings can be further enhanced in the absence of
crossings, i.e., if the underlying data exhibits planar structure. In order to be
able to visualize all 4-planar graphs, we allow edges to have bends. Since bends
decrease readability, we seek to minimize the number of bends.

We consider the problem OptimalFlexDraw whose input consists of a
planar graph G with maximum degree 4 and for each edge e a cost function
coste : N0 −→ R defining costs depending on the number of bends on e. We seek
an orthogonal drawing of G with minimum cost. Garg and Tamassia [7] show that
it is NP-hard to decide whether a 4-planar graph admits an orthogonal draw-
ing with zero bends, directly implying that OptimalFlexDraw is NP-hard in
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general. For special cases, namely planar graphs with maximum degree 3 and
series-parallel graphs, Di Battista et al. [4] give an algorithm minimizing the
total number of bends, optimizing over all planar embeddings. They introduce
the concept of spirality that is similar to the concept of rotation we use. Blä-
sius et al. [2] consider the decision problem FlexDraw, where each edge has a
flexibility specifying its allowed number of bends. They give a polynomial-time
decision algorithm for the case that all flexibilities are positive. OptimalFlex-
Draw can be seen as the optimization version of FlexDraw since it allows to
find a drawing that minimizes the number of bends exceeding the flexibilities.

As minimizing the total number of bends is NP-hard, many results initially
fix the planar embedding. Tamassia [9] describes a flow network for minimizing
the number of bends for a fixed planar embedding. The technique can be easily
adapted to solve OptimalFlexDraw if the planar embedding is fixed. Biedl
and Kant [1] show that every planar graph admits a drawing with at most two
bends per edge except for the octahedron. Even though fixing an embedding
allows to efficiently minimize the total number of bends, it neglects that this
choice may have a huge impact on the number of bends in the resulting drawing.
Contribution and Outline. Our main result is the first polynomial-time bend-
optimization algorithm for general 4-planar graphs optimizing over all embed-
dings. Previous work considers restricted graph classes and unit costs. We solve
OptimalFlexDraw if 1) all cost functions are convex and 2) the first bend is
for free. Note that convexity is quite natural, and without condition 2) Opti-
malFlexDraw is NP-hard. An interesting special case is the minimization of
the total number of bends over all planar embeddings, where one bend is for
free. Moreover, as every 4-planar graph has a drawing with at most two bends
per edge [1], we can minimize the number of 2-bend edges in such a drawing.

To solve OptimalFlexDraw for biconnected graphs, we extend the notion
“number of bends” to split components and use dynamic programming to com-
pute their cost functions bottom-up in the SPQR-tree. In each step we use a
flow network similar to the one described by Tamassia [9]. The major problem is
that the cost functions for split components may be non-convex [3]. To overcome
this problem, we show the existence of an optimal solution with at most three
bends per edge except for a single edge per block with up to four bends. Due to
an extension to split components, it suffices to consider their cost functions on
the interval [0, 3], and we show that, on this interval, they are convex.

We show in Section 3 that for biconnected graphs, the number of bends per
edge can always be reduced to three and generalize this result to split components
in Section 4. In Section 5 we show that the cost functions for split components
are convex on the interval [0, 3]. This yields an algorithm for computing optimal
drawings of biconnected graphs, which extends to connected graphs. Omitted
proofs are in the appendix and in the full version of this paper [3].

2 Preliminaries

An instance of OptimalFlexDraw is a 4-planar graph G together with a cost
function coste : N0 −→ R∪ {∞} for each edge e assigning a cost to e depending
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on the number of its bends. OptimalFlexDraw asks for an optimal orthogonal
drawing, i.e., a drawing with minimum cost summed over all edges.

For a cost function coste(·) let Δ coste(ρ) = coste(ρ+1)−coste(ρ) be its differ-
ence function. A cost function is monotone if its difference function is greater or
equal to 0. It is convex, if its difference function is monotone. The base cost of the
edge e with monotone cost function is be = coste(0). According to the decision
problem FlexDraw, G is said to have positive flexibility if coste(0) = coste(1)
holds for every edge e. An instance G of OptimalFlexDraw is positive-convex
if it has positive flexibility and each cost function is convex.

2.1 Connectivity and the SPQR-Tree

A graph is connected if there exists a path between any pair of vertices. A
separating k-set is a set of k vertices whose removal disconnects the graph.
Separating 1-sets and 2-sets are cutvertices and separation pairs, respectively.
A connected graph is biconnected (triconnected) if it does not have a cutvertex
(separation pair). The cut components with respect to a separating k-set S are
the maximal subgraphs that are not disconnected by removing S.

The SPQR-tree T introduced by Di Battista and Tamassia [5,6] is a succinct
representation of all planar embeddings of a biconnected planar graph G. It
describes a decomposition of G along its split pairs, which are separation pairs
or single edges, into triconnected components. It can be computed in linear
time [8] and has linear size. Every node μ of T is associated with a multigraph
skel(μ), called skeleton, on a subset of the vertices of G. Each inner node in T is
an S-, P- or R-node, having a cycle, a bunch of parallel edges and a triconnected
graph as skeleton, respectively. The edges in these skeletons are called virtual
edges. The leaves of T are Q-nodes, their skeletons consist of an edge of G plus
a parallel virtual edge. When two nodes μ1 and μ2 are adjacent in T this edge
identifies a virtual edge in skel(μ1) with a virtual edge in skel(μ2), and each
virtual edge in each node is associated with exactly one such neighbor.

Rooting the SPQR-tree in some node τ determines for each node μ �= τ a unique
parent edge in skel(μ) that is associatedwithμ’s parent.Thepertinent graphpert(μ)
of a node μ is recursively defined as follows. For a Q-node pert(μ) is the edge in G
it corresponds to. For an inner node pert(μ) is the graph obtained from skel(μ) by
deleting the parent edge and replacing each virtual edge by the pertinent graph of
the corresponding child. The expansion graph of a virtual edge ε is the pertinent
graph of the child of μ corresponding to ε when T is rooted at μ. The SPQR-tree
represents all embeddings ofG on a sphere, i.e., embeddingswithout a specific outer
face, by allowing independent choices for the embeddings of all skeletons. For R-
nodes the embedding is fixed up to a flip, for P-nodes one can choose an arbitrary
order for the parallel edges, and for S- and Q-nodes there is no embedding choice.

Usually the SPQR-tree is assumed to be unrooted, as described above, or
rooted at a Q-node, representing embeddings with the corresponding edge on
the outer face. We consider the SPQR-tree to be rooted at an arbitrary node τ .
This also restricts the choice of the outer face and the embedding choices are
of the following kind. For every node μ �= τ one can choose an embedding for
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skel(μ) with the parent edge on the outer face. For τ itself, the choice for the
embedding of skel(τ) includes the choice of an outer face.

2.2 Orthogonal Representation

Two orthogonal drawings of a 4-planar graph G are equivalent, if they have the
same planar embedding, and the same shape, i.e., the sequence of right and left
turns is the same when traversing the faces of G. To make this precise, we define
orthogonal representations, originally introduced by Tamassia [9], as equivalence
classes of this relation. To ease the notation we only consider biconnected graphs.

Let Γ be an orthogonal drawing of a biconnected 4-planar graph G and let E
be the planar embedding induced by it. We define the rotation of an edge e in
an incident face f to be the number of bends to the right minus the number of
bends to the left when traversing f in clockwise order (counter-clockwise if f is
the outer face) and denote the resulting value by rot(ef ). Similarly, we define the
rotation of a vertex v in an incident face f , denoted by rot(vf ), to be 1, −1 and 0
if there is a turn to the right, a turn to the left and no turn, respectively. The
orthogonal representation R belonging to Γ consists of the planar embedding E
of G and all rotation values of edges and vertices, respectively. It is easy to see
that every orthogonal representation has the following properties.

(I) For every edge e with incident faces f1, f2 we have rot(ef1) = − rot(ef2).
(II) The sum over all rotations in a face is 4 (−4 for the outer face).

(III) The sum of rotations around a vertex v is 2 · (deg(v) − 2).
Tamassia showed that the converse is also true [9], i.e., if R satisfies the above
properties, then it is the orthogonal representation of a class of drawings. In
what follows we always neglect the exact geometry and work with orthogonal
representations instead of drawings. In some cases we write rotR(·) instead of
rot(·) to make clear which orthogonal representation we refer to. Moreover, the
face in the subscript is omitted if it is clear from the context.

Let G be a 4-planar graph with orthogonal representation R and two vertices s
and t incident to a common face f . We define πf (s, t) to be the path from s to t on
the boundary of f , when traversing f in clockwise direction (counter-clockwise
if f is the outer face). Let s = v1, . . . , vk = t be the vertices on the path πf (s, t).
The rotation of π(s, t) is defined as

rot(π(s, t)) =

k−1∑

i=1

rot({vi, vi+1}) +
k−1∑

i=2

rot(vi) .

Let G be a biconnected positive-convex instance of OptimalFlexDraw with
optimal orthogonal representationR and let H be a split component with respect
to {s, t} such that the orthogonal representation S induced by H has s and t on
its outer face. Then S is tight with respect to s and t if the rotations of s and t in
internal faces are 1, i.e., they have 90◦-angles in internal faces. The orthogonal
representation of G is tight if every split component having its corresponding
split pair on its outer face is tight. We can assume without loss of generality
that all orthogonal representations are tight [2, Lemma 2].
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2.3 Flow Network

A flow network is a tuple N = (V,A,COST, dem) where (V,A) is a directed
(multi-)graph, COST is a set containing a convex cost function costa : N0 −→
R∪ {∞} for each arc a ∈ A and dem: V −→ Z is the demand of the vertices. A
flow is a function φ : A −→ N0 assigning a certain amount of flow to each arc. It
is feasible, if the difference of incoming and outgoing flow at each vertex equals
its demand. The cost of φ is cost(φ) =

∑
a∈A costa(φ(a)). An arc a has capacity

c if costa(ρ) = 0 for ρ ∈ [0, c] and costa(ρ) = ∞ otherwise.
The parameterized flow network with respect to two nodes u, v ∈ V is defined

the same as N but with a parameterized demand of dem(u)−ρ for u and dem(v)+
ρ for v where ρ is a parameter. The cost function costN (ρ) of N is defined to be
cost(φ) of an optimal flow φ in N with respect to the demands determined by ρ.
Increasing ρ by 1 can be seen as pushing one unit of flow from u to v.

Theorem 1. The cost function of a parameterized flow network is convex on
the interval [ρ0,∞], where ρ0 = argminρ∈Z

{costN (ρ)}.

3 Valid Drawings with Fixed Planar Embedding

In this section we consider the problem FlexDraw for biconnected planar
graphs with fixed embedding. Given an arbitrary valid orthogonal representa-
tion, i.e., an orthogonal representation that respects the flexibilities, we show
the existence of a valid orthogonal representation with the same angles around
vertices, the same planar embedding, and at most three bends per edge except
for possibly a single edge on the outer face with up to five bends.

Let G be a 4-planar graph with positive flexibility and valid orthogonal repre-
sentation R. If the number of bends of an edge e equals its flexibility, we orient
e such that its bends are right bends (we always assume that edges are bent in
only one direction). Otherwise, e remains undirected. A path π = (v1, . . . , vk) in
G is directed, if the edge {vi, vi+1} (for i ∈ {1, . . . , k − 1}) is either undirected
or directed from vi to vi+1. It is strictly directed, if it is directed and does not
contain undirected edges. These definitions extend to (strictly) directed cycles.
The terms left(C) and right(C) denote the set of edges and vertices lying to the
left and right of a (strictly) directed cycle C. A cut (U, V \ U) is directed from
U to V \ U , if every edge crossing the cut is undirected or directed from U to
V \U . It is strictly directed if it additionally does not contain undirected edges.

Lemma 1. Let G be a graph with positive flexibility and vertices s and t such
that G + st is biconnected and 4-planar. Let further R be a valid orthogonal
representation with s and t incident to a face f such that πf (t, s) is strictly
directed from t to s. The following holds.
(1) rotR(πf (s, t)) ≤ −3 if f is the outer face and G is not a single path
(2) rotR(πf (s, t)) ≤ −1 if f is the outer face
(3) rotR(πf (s, t)) ≤ 5
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Fig. 1. (a–c) Illustration of Lemma 1. (d) Two edges on the outer face with four bends.
(e) Example with O(n) edges requiring four bends. (f) The flex graph of an orthogonal
drawing. (g) Bending along a cycle in the flex graph. The resulting flex graph contains
the same cycle directed in the opposite direction, so this operation can be reversed.

Proof (Sketch). We show case (3), where f is an internal face; see Fig. 1(a).
The other cases work similarly. Since πf (t, s) is strictly directed, every edge on
this path has at least one right bend (when traversing from t to s), yielding a
rotation of at least 1. Moreover, every internal vertex in πf (t, s) may have a left
bend, yielding a rotation of at most −1. As the number of internal vertices is
one less than the number of edges in a path, rot(πf (t, s)) ≥ 1 holds. We first
assume that neither s nor t have degree 1; see Fig. 1(b). As the rotation around
f is 4, we have rot(πf (s, t)) = 4− rot(sf )− rot(tf )− rot(πf (t, s)). Moreover, we
have rot(sf ), rot(tf ) ≥ −1 (since deg(s), deg(t) > 1) and rot(πf (t, s)) ≥ 1 (as
seen above), yielding rot(πf (s, t)) ≤ 5. If t (or s) has degree 1, rot(πf (t, s)) ≥ 2
holds since an internal vertex t′ (or s′) of πf (t, s) has degree 3 and thus cannot
have rotation −1, canceling out the rotation of −2 at t (or s); see Fig. 1(c). 	

The flex graph G×

R of G with respect to a valid orthogonal representation R is
the dual graph of G such that the dual edge e� is directed from the face right of
e to the face left of e (or undirected if e is undirected); see Fig. 1(f). Assume C
is a simple directed cycle in the flex graph. Then bending along this cycle yields
a new valid orthogonal representation R′ defined as follows; see Fig. 1(g). For
an edge e� = (f1, f2) in C dual to e we decrease rot(ef1) and increase rot(ef2)
by 1. It is easy to see that R′ is an orthogonal representation. Moreover, no edge
has more bends than allowed by its flexibility, as C is directed. The following
lemma states that a high rotation along a path πf (s, t) for two vertices s and t
sharing the face f can be reduced by 1 using a directed cycle in the flex graph.

Lemma 2. Let G be a biconnected 4-planar graph with positive flexibility, valid
orthogonal representation R, and s and t on a common face f . The flex graph
G×

R contains a directed cycle C such that s ∈ left(C) and t ∈ right(C) if one of
the following conditions holds.
(1) rotR(πf (s, t)) ≥ −2, f is the outer face and πf (s, t) is not strictly directed

from t to s
(2) rotR(πf (s, t)) ≥ 0 and f is the outer face
(3) rotR(πf (s, t)) ≥ 6
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Proof (Sketch). Assume such a cycle C does not exist. By the duality of cycles
and cuts, this implies that there is no directed cut (S, T ) in G with s ∈ S and
t ∈ T . Thus for every partition V = S∪̇T with s ∈ S and t ∈ T there is a directed
edge with its source in T and its target in S. Iteratively applying this argument
yields a path π in G strictly directed from t to s. For each of the conditions
(1)–(3), we obtain a contradiction by applying Lemma 1 to the subgraph of G
consisting of the strictly directed path π and the path πf (s, t). 	


As edges with many bends imply the existence of paths with high rotation, we
can use Lemma 2 to successively reduce the number of bends on edges with many
bends. Since we only bend along cycles in the flex graph, neither the embedding
nor the angles around vertices are changed.

Theorem 2. Let G be a biconnected 4-planar graph with positive flexibility and
valid orthogonal representation. Then G has a valid orthogonal representation
with the same planar embedding, the same angles around vertices and at most
three bends per edge, except for one edge on the outer face with up to five bends.

Proof (Sketch). We iteratively bend along cycles in the flex graph to reduce
the number of bends on edges with more than three bends. To ensure that the
number of bends of an edge does not increase above three once it is below, we
set its flexibility down to its current number of bends (but at least 1).

Let e = {s, t} be an edge with more than three bends having its negative
rotation in an internal face f , i.e., rot(ef ) ≤ −4, and assume that πf (t, s) consists
of e. As the rotation around the face f is 4, we have πf (s, t) = 4 − rot(sf ) −
rot(tf )− rot(ef ), yielding πf (s, t) ≥ 6. By Lemma 2 a cycle C separating s from
t and thus containing e� exists. Bending along this cycle reduces the number of
bends on e. With a similar argument, the bends of edges having their negative
rotation on the outer face can be reduced to 5. Moreover, if e is an edge with
rot(ef ) ≤ −4, where f is the outer face, and the boundary of the outer face
contains a path with non-negative rotation, the bends of e can be reduced by
case (1) of Lemma 2. This is the case if there is another edge e′ with rot(e′f ) ≤ −4;
see Fig. 1(d) where one of the paths π1 or π2 must have non-negative rotation.
Repeatedly applying this operation yields the theorem. 	


If we allow the embedding to be changed slightly, we obtain an even stronger
result. Assume the edge e lying on the outer face has five bends. Rerouting e in
the opposite direction around the rest of the graph yields a drawing where e has
only three bends. Thus, there might be a single edge with up to four bends in the
worst case. Note that this result is restricted to biconnected graphs. For general
graphs it implies that each block contains at most a single edge with up to
four bends. Figure 1(e) illustrates an instance of FlexDraw with linearly many
blocks and linearly many edges requiring four bends. We note that increasing
the lower bound for the flexibilities from 1 to 2 in the above arguments yields a
result similar to the existence of 2-bend drawings by Biedl and Kant [1].

Theorem 2 implies that it is sufficient to consider the flexibility of every edge
to be at most 5, or in terms of costs, it is sufficient to store the cost function of
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Fig. 2. Adding the safety edges (bold) to G and the effects on the dual graph

an edge only in the interval [0, 5]. However, there are two reasons why we need
a stronger result. First, we want to compute cost functions of split components
and thus we have to limit the number of “bends” they can have (we deal with
this in the next section). Second, the cost function of a split component may
already be non-convex on the interval [0, 5] [3]. Fortunately, there may be at
most a single edge with up to five bends, all remaining edges have at most three
bends and thus we only need to consider the interval [0, 3].

4 Flexibility of Split Components and Nice Drawings

Let G be a biconnected 4-planar graph with SPQR-tree T rooted at some node
τ . Recall that we do not require τ to be a Q-node. A node μ �= τ of T has
a unique parent and skel(μ) contains a unique virtual edge ε = {s, t} that is
associated with this parent. We call the split-pair {s, t} a principal split pair
and the pertinent graph pert(μ) with respect to the root τ a principal split
component. The vertices s and t are the poles of this split component. Note that
an edge (whose Q-node is not τ) is also a principal split component.

Let R be a valid orthogonal representation of G such that the planar embed-
ding of R is represented by T rooted at τ . Consider a principal split component
H with respect to the split pair {s, t} and let S be the restriction of R to H . Note
that the poles s and t are on the outer face f of S. We define max{| rotS(πf (s, t))|,
| rotS(πf (t, s))|} to be the number of bends of the split component H . With this
terminology we can assign a flexibility flex(H) to H and we define R to be valid
if and only if H has at most flex(H) bends. We say that the graph G has positive
flexibility if the flexibility of every principal split component is at least 1. Note that
this terminology extends the notion of bends and flexibility for edges.

To obtain a result similar to Lemma 2 we need to extend the flex graph such
that it respects flexibilities of principal split components. As we cannot deal
with principal split components with respect to different roots at the same time,
we initially choose an arbitrary Q-node τ to be the root of the SPQR-tree T .
We then augment G for each principal split component H with two so-called
safety edges between the poles; see Fig. 2. As a cycle in the flex graph of the
augmented graph crosses H if and only if it crosses these safety edges, suitably
orienting them ensures that bending along a cycle in the flex graph does not
increase the number of bends of H above flex(H). As we consider only principal
split components, the safety edges can be added for all of them at the same
time without losing planarity. Denote the resulting augmented graph by G+

and call the resulting flex graph the extended flex graph. As a directed safety
edge represents a path with rotation at least 1 along the outer face of its split
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component, a strictly directed path in G+ yields a path in G with positive
rotation. All remaining arguments from the proof of Lemma 2 can be applied
literally, yielding the following lemma.

Lemma 3. Let G be a biconnected 4-planar graph with positive flexibility, valid
orthogonal representation R, and s and t sharing a face f . The extended flex
graph contains a directed cycle C such that s ∈ left(C) and t ∈ right(C), if one
of the following conditions holds.
(1) rotR(πf (s, t)) ≥ −2, f is the outer face and πf (s, t) is not strictly directed

from t to s
(2) rotR(πf (s, t)) ≥ 0 and f is the outer face
(3) rotR(πf (s, t)) ≥ 6

We define a valid orthogonal representation of G to be nice if 1) it is tight,
2) every principal split component has at most three bends, and 3) the edge
corresponding to the root τ of the SPQR-tree, in case τ is a Q-node, has at most
five bends. The following statement extends Theorem 2. Moreover, it obviously
extends from FlexDraw to OptimalFlexDraw, i.e., every positive-convex
4-planar graph has an optimal drawing that is nice.

Theorem 3. Every biconnected 4-planar graph with positive flexibility having
a valid orthogonal representation has a valid orthogonal representation with the
same planar embedding and the same angles around vertices that is nice with
respect to at least one node chosen as root of its SPQR-tree.

Proof (Sketch). Similar to the proof in Theorem 2 we can use Lemma 3 to reduce
the number of bends of split components having their negative rotation in an
internal face down to three, while preserving this property once it is achieved by
reducing the flexibilities. Similarly, the number of bends of split components with
negative rotation in the outer face can be reduced to five. Assume we have an
orthogonal representation where each principal split component with more than
three bends has its negative rotation on the outer face. If there are two disjoint
components of this type, a similar argument as for single edges can be used to
reduce the number of bends of one of them. For the remaining nested principal
split components of this type we can show that there is no need to reduce the
number of bends further, as the drawing is already nice if we reroot the SPQR-
tree at the node corresponding to the innermost of these split components. 	


5 Optimal Drawings with Variable Planar Embedding

All results presented so far fix the planar embedding of the input graph. In the
following we optimize over all embeddings of a biconnected 4-planar graph G. As
we only consider positive-convex instances of OptimalFlexDraw, it suffices to
consider nice drawings (Theorem 3). Whether a drawing is nice depends on the
node chosen as the root for the SPQR-tree T . For a node τ we call an orthogonal
representation τ-optimal if it is optimal among all representations that are nice
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with respect to the root τ . We say that it is (τ, E)-optimal if it is optimal among
all orthogonal representations that are nice with respect to τ and induce the
planar embedding E on skel(τ). Computing a (τ, E)-optimal solution for every
planar embedding E of skel(τ) obviously yields a τ -optimal orthogonal repre-
sentation. Moreover, the minimum of all τ -optimal solutions over all nodes of
the SPQR-tree yields an overall optimal orthogonal representation. Since G has
maximum degree 4, skel(τ) has O(| skel(τ)|) embeddings (including the choice
of an outer face), and hence the sum over all embeddings of all nodes of the
SPQR-tree is in O(n). Thus, an algorithm computing a (τ, E)-optimal solution
can be used to compute an overall optimal solution by applying it O(n) times.

In the following we show how to compute a (τ, E)-optimal solution efficiently,
using a dynamic program computing cost functions of principal split components
bottom-up in the SPQR-tree. We start by defining the cost function costH(·) of a
principal split component H with poles s and t. Recall that the number of bends
of H with respect to an orthogonal representation S with s and t on the outer face
f is defined to be max{| rotS(πf (s, t))|, | rotS(πf (t, s))|}. This implies that there
is a lower bound of 	H = �(deg(s) + deg(t)− 2)/2� bends. For a number of bends
ρ ≥ 	H , we define costH(ρ) to be the cost of an orthogonal representation ofH that
is optimal among all nice representations with ρ bends. For ρ ∈ [0, 	H)we formally
set cost(ρ) = cost(	H). As we are only interested in nice drawings, it remains to
compute costH(ρ) for ρ ∈ [	H , 3]. One of the main results of this section is the
following theorem.

Theorem 4. If the poles of a principal split component do not both have de-
gree 3, then its cost function is convex on the interval [0, 3].

We prove Theorem 4 later and first assume that it holds. The base cost bH of
a principal split component is the minimum of costH(·). Due to Theorem 4 we
have bH = costH(0) except for the single case that deg(s) = deg(t) = 3, where
costH(·) may be non-convex. In this case bH = costH(3).

In the following we assume that the cost function of every principal split
component with respect to the root τ is already computed and show how this
can be used to compute a (τ, E)-optimal solution. To this end, we define a flow
network on skel(τ), similar to Tamassia’s flow network [9]. The cost functions
computed for the children of τ will be used as cost functions on arcs in the flow
network. Since only flow networks with convex costs can be solved efficiently,
we have to deal with potentially non-convex cost functions in the case where
both poles have degree 3. Our strategy is to simply ignore these subgraphs by
contracting them into single vertices. The following lemma justifies this strategy.

Lemma 4. Let G be a biconnected positive-convex instance of OptimalFlex-
Draw with τ-optimal orthogonal representation R and let H be a principal split
component with non-convex cost function and base cost bH . Let further G′ be
the graph obtained from G by contracting H into a single vertex and let R′ be a
τ-optimal orthogonal representation of G′. Then cost(R) = cost(R′)+ bH holds.
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Now we are ready to define the flow network NE on skel(τ) with respect to its
fixed embedding E . For each vertex v, each virtual edge ε and each face f in
skel(τ) the flow network NE contains the nodes v, ε and f , called vertex node,
edge node and face node, respectively. The network NE contains the arcs (v, f)
and (f, v) with capacity 1, called vertex-face arcs, if the vertex v and the face f
are incident. For every virtual edge ε we add edge-face arcs (ε, f) and (f, ε) if f
is incident to ε. We use costH(·)− bH as cost function of the arc (f, ε), where H
is the expansion graph of ε. The edge-face arcs (ε, f) in the opposite direction
have infinite capacity with 0 cost. Every inner face has a demand of 4, the outer
face has a demand of −4. An edge node ε stemming from the edge ε = {s, t} with
expansion graph H has demand degH(s) + degH(t)− 2, where degH(v) denotes
the degree of v in H . The demand of a vertex node v is 4−degG(v)−degskel(τ)(v).

In the flow network NE , the flow entering a face node f via a vertex-face
arc or an edge-face arc is interpreted as the rotation at this vertex or along the
path between the poles of its expansion graph, respectively, where incoming flow
is positive rotation. Thus, a feasible flow describes the shapes of all expansion
graphs and the composition of their representations at vertices. Note that this
composition is possible as we can assume them to be tight. Let bH1 , . . . , bHk

be
the base costs of the children of τ . We define the total base costs of τ to be
bτ =

∑
i bHi . It can be shown that an optimal flow φ in NE corresponds to a

(τ, E)-optimal orthogonal representation R of G, with costs differing by the total
base costs, i.e., cost(R) = cost(φ) + bτ . We obtain the following lemma, where
Tflow(·) is time necessary to compute an optimal flow.

Lemma 5. Let G be a biconnected positive-convex instance of OptimalFlex-
Draw, let T be its SPQR-tree with root τ and let E be an embedding of skel(τ).
If the cost function of every principal split component is known, a (τ, E)-optimal
solution can be computed in O(Tflow(| skel(τ)|)) time.

It remains to show that Theorem 4 holds. We make a structural induction over
the SPQR-tree. For the leaves it obviously holds as edges are required to have
convex costs. For inner nodes we show the following lemma.

Lemma 6. If Theorem 4 holds for each principal split component corresponding
to a child of the node μ in the SPQR-tree, then it also holds for pert(μ).

Proof (Sketch). In an orthogonal representation S of H = pert(μ), the number of
bends ρ is determined by the rotation along one of the two paths π(s, t) or π(t, s).
We define the partial cost function costEH(·) with respect to the embedding E of
skel(μ) to be the smallest possible cost of an orthogonal representation inducing
the planar embedding E on skel(μ) with ρ bends such that πf (s, t) determines
the number of bends. We show how to compute costEH(·) using a flow network
similar to NE . It can be shown that these partial cost functions are convex, and
that their minimum costH(·) defined by costH(ρ) = minE costEH(ρ) is convex.

We define NE as before with two changes. First, the parent edge plays a special
role as it should not occur in the resulting orthogonal representation. Removing
some arcs and adjusting the demands accordingly yields a flow network such that
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an optimal flow corresponds to an optimal orthogonal representation. Second,
the flow network is parameterized as follows. The incoming flows at the two
face-nodes corresponding to the faces incident to the parent edge are equal to
the rotations along the paths π(s, t) and π(t, s) in a corresponding orthogonal
representation. We parameterize NE with respect to these two faces. It can then
be shown that the cost function of the flow and the partial cost function of H
coincide on the interval [	H , 3] up to the total base cost. Thus, convexity for
the partial cost function follows from the convexity of the cost function of a
parametrized flow network if costNE (ρ) is minimal for ρ = 	H ; see Theorem 1.
We note that this is not obvious and not even true if deg(s) = deg(t) = 3.
However, it is true for all other cases. Moreover, we can show that the minimum
over all partial cost functions is convex on the interval [	H , 3]. This is again not
obvious and not even true for a larger interval [3]. 	


The proof of Lemma 6 yields an algorithm computing a (τ, E)-optimal solution
bottom-up in the SPQR-tree. In each node μ a constant number of optimal flows
in a network of size | skel(μ)| has to be computed, consuming overall O(Tflow(n))
time. Applying this algorithm O(n) times yields an optimal drawing.

Theorem 5. OptimalFlexDraw can be solved in O(n · Tflow(n)) time for
positive-convex biconnected instances.

We can extend our algorithm to the case where G contains cutvertices (an ex-
tensive description is in the appendix), yielding the following theorem.

Theorem 6. OptimalFlexDraw can be solved in O(n2 · Tflow(n)) time for
positive-convex instances.

References

1. Biedl, T., Kant, G.: A Better Heuristic for Orthogonal Graph Drawings. Comput.
Geom. 9(3), 159–180 (1998)

2. Bläsius, T., Krug, M., Rutter, I., Wagner, D.: Orthogonal graph drawing with flex-
ibility constraints. Algorithmica (2012), doi:10.1007/s00453-012-9705-8

3. Bläsius, T., Rutter, I., Wagner, D.: Optimal orthogonal graph drawing with convex
bend costs. CoRR abs/1204.4997 (2012), http://arxiv.org/abs/1204.4997

4. Di Battista, G., Liotta, G., Vargiu, F.: Spirality and Optimal Orthogonal Drawings.
SIAM J. Comput. 27(6), 1764–1811 (1998)

5. Di Battista, G., Tamassia, R.: On-Line Maintenance of Triconnected Components
with SPQR-Trees. Algorithmica 15(4), 302–318 (1996)

6. Di Battista, G., Tamassia, R.: On-Line Planarity Testing. SIAM J. Comput. 25(5),
956–997 (1996)

7. Garg, A., Tamassia, R.: On the Computational Complexity of Upward and Recti-
linear Planarity Testing. SIAM J. Comput. 31(2), 601–625 (2001)

8. Gutwenger, C., Mutzel, P.: A Linear Time Implementation of SPQR-Trees. In:
Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)

9. Tamassia, R.: On Embedding a Graph in the Grid with the Minimum Number of
Bends. SIAM J. Comput. 16(3), 421–444 (1987)

http://arxiv.org/abs/1204.4997

	Optimal Orthogonal Graph Drawing with Convex Bend Costs
	1 Introduction
	2 Preliminaries
	2.1 Connectivity and the SPQR-Tree
	2.2 Orthogonal Representation
	2.3 Flow Network

	3 Valid Drawings with Fixed Planar Embedding
	4 Flexibility of Split Components and Nice Drawings
	5 Optimal Drawings with Variable Planar Embedding
	References




