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Abstract. This paper discusses a problem arising in the field of privacy-
protection in statistical databases: Given a n×m {0, 1}-matrix M , is
there a set of mergings which transforms M into a zero matrix and only
affects a bounded number of rows/columns. “Merging” here refers to
combining adjacent lines with a component-wise logical AND. This kind
transformation models a generalization on OLAP-cubes also called global
recoding. Counting the number of affected lines presents a new measure
of information-loss for this method. Parameterized by the number of
affected lines k we introduce reduction rules and an O∗(2.618k)-algorithm
for the new abstract combinatorial problem LMAL.

1 Introduction

With the steadily increasing amount of personal data collected for statistical
research, privacy has become a matter of great federal and public interest. Sta-
tistical databases allow investigating personal records for empirical studies. This
access however has to be restricted carefully to avoid disclosure of individual
information. In the following, we approach this task considering parameterized
complexity which was recently used for similar problems to obtain security in
data-tables by entry-suppression [4,6].

In the following we discuss a method to secure access to confidential data via
OLAP-cubes : A collection of individual records R⊂I×Q×S characterized by x
unique identifiers I, p numerical (or otherwise logically ordered) non-confidential
attributes Q (quasi-identifiers) and numerical confidential attributes S is repre-
sented by a p-dimensional table T . Each dimension corresponds to one attribute
and ranges over all of its possible values in their logical order. A cell of T with the
label (w1, . . . , wp) contains the number of records in R with these characteristics,
i.e.: |{r∈R: rx+i=wi ∀ i = 1, . . . , p}|. An example for this kind of representation
is given below. Access to the confidential attribute(s) S is granted via queries
on the non-confidential attributes, identifiers I are suppressed completely.

With the restriction to SUM- and COUNT- range-queries, the set of even
range-queries (queries addressing an even number of cells) is the largest safe query-
set [2]. The corresponding security-level is l-compromise [3], which is defined
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similarly to k-anonymity [10] for data-tables but does not directly suffer from
the diversity-problem [9]. Unfortunately, this method is only safe for databases
in which each cell of the OLAP-cube contains at least one record. To avoid
this problem without major information-loss, the database can be altered by
combining attribute-ranges as proposed in [1].

Table 1. Collection of records and its OLAP-cube representation

name age education salary

Adam 48 Master 2500

Dave 44 College 1500

Keith 32 Bachelor 2000

Norah 34 College 1000

Tracy 48 Master 3000

→
education\age 32 34 39 44 48

College 0 1 0 1 0

Bachelor 1 0 0 0 0

Master 0 0 0 0 2

Throughout this paper, we only consider the two-dimensional version of the
resulting abstract problem of transforming a Boolean matrix into a zero ma-
trix by merging adjacent rows/columns. In this abstraction, a two-dimensional
OLAP-cube is represented by a matrix M ∈ {0, 1}n×m where empty cells in the
cube correspond to one- and non-empty cells to zero-entries. The n rows and m
columns of M will always be denoted by r1, . . . , rn and c1, . . . , cm, respectively.
Further, since there are many statements that apply symmetrically to a row or
a column, the term line is used to refer to both. For M [i, j] = 1, a one-entry in
M [i−1, j],M [i+1, j],M [i, j−1] or M [i, j+1] is called a neighbour. A one-entry
is called isolated, if it has no neighbours.

The term merging will be used to express the transformation of replacing
two adjacent lines l1, l2 of M by one line l, computed by l[i] = l1[i] · l2[i]. This
operation, in the following also described by the term (l1, l2), can be seen as
performing a component-wise logical AND on two adjacent lines which mod-
els combining ranges in the OLAP-cube where the resulting combined cell is
empty if and only if both participating original cells are empty. This operation
is commutative which allows writing the shortened term (l1, . . . , lr) instead of
the merging-set {(l1, l2), (l2, l3), . . . , (lr−1, lr)}.

As long as M contains at least one zero-entry, the set of all possible mergings
always translates M into a zero matrix. With the original objective of mini-
mizing information-loss, this transformation is not very reasonable. Minimizing
the number of merging-operations was already discussed in [1] and [7]. A dif-
ferent way to measure information-loss is considering each altered original line
as “lost”. The idea behind this new measurement is illustrated in the example
below. This objective yields the following abstract problem:

LINE-MERGING MINIMIZING AFFECTED LINES (LMAL)
Input: M ∈ {0, 1}n×m, k ∈ IN.
Question: Is there a set S of operations to transform M into a zero matrix with
|{li: ((li−1, li) ∈ S) ∨ ((li, li+1) ∈ S)}| ≤ k?
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A solution for LMAL can also be described by the set of affected lines. A set
of lines L will be called feasible, if (li−1 ∈ L) ∨ (li+1 ∈ L) ∀ li ∈ L. A feasible
set of lines L is a solution for a LMAL instance (M,k), if the merging-set S =
{(li, li+1): li, li+1 ∈ L} transforms M into a zero matrix.

Example 1. Consider the following OLAP-cube with the non-confidential at-
tributes age and education:

education\age 30 31 32 33 34 35 36 37 38 39

None 8 7 9 4 2 0 1 0 0 0

High-School 5 6 4 2 2 1 0 1 1 1

College 4 5 7 10 3 0 2 1 0 0

Bachelor 2 2 7 6 2 1 0 0 1 1

Master 3 3 5 4 6 0 1 0 2 1

PhD 1 2 6 8 7 2 0 1 0 0

A solution with the smallest number of mergings is {(r1, r2), (r3, r4), (r5, r6)}
which alters 6 original ranges. This solution creates a table with only three
ranges for the attribute age:

education\age 30 31 32 33 34 35 36 37 38 39

None or High-School 12 13 13 6 4 1 1 1 1 1

College or Bachelor 6 7 14 16 5 1 2 1 1 1

Master or PhD 4 5 11 12 14 2 1 1 2 1

Minimizing affected lines, an optimal solution would be merging (c6, . . . , c10)
which requires 4 operations but affects only 5 lines. This solution combines the
dense last columns and creates the more balanced table:

education\age 30 31 32 33 34 35-59

None 8 7 9 4 2 1

High-School 5 6 4 2 2 4

College 4 5 7 10 3 3

Bachelor 2 2 7 6 2 3

Master 3 3 5 4 6 4

PhD 1 2 6 8 7 3

The new measure for information-loss prefers neighbouring operations which
seems more suitable for distributions in which empty cells tend to accumulate.

In the following we study the new problem LMAL. Section 2 discusses its com-
plexity and rules for kernelization. Section 3 derives the parameterized algorithm
with time-complexity in O∗(2.618k).



28 K. Casel

2 Complexity and Reduction Rules

The previous problem-variation with the objective to minimize the number
of mergings was already identified as NP-complete [7]. The new measure for
information-loss does not seem to simplify this problem:

Theorem 1. The decision-problem variation of LMAL is NP-complete.

Proof. Membership in NP is easily seen by nondeterministically guessing k oper-
ations and checking the resulting matrix for one-entries. Reduction from vertex
cover, as one of Karp’s famous 21 NP-complete problems [8], proves hardness. Let
(G, k) be a vertex cover instance and let v1, . . . , vn be the nodes and e1, . . . , em
the edges of G. If k ≥ n ((G, k) is a trivial “yes”-instance) return a zero matrix as
a trivial “yes”-instance for LMAL. If k < n, the following construction yields a
matrix M ∈{0, 1}(6n+2m)×(3n+5m) for which (M, 2n+2m+k) is a “yes”-instance
for LMAL if and only if (G, k) is a “yes”-instance:

Each node vi of G is represented by three rows ri, r̂i, r̃i. Neighbouring in this
order for all nodes, these build the first 3n rows of M . The rows r̂i, r̃i will always
be altered by a minimal solution, merging ri corresponds to vi being in the vertex
cover. Each edge ej is represented by three columns c1j , cj , c

2
j . Neighbouring in

this order for all edges, these build the first 3m columns of M . The columns
c1j , c

2
j model the connection to the incident nodes. Since just one of these nodes

has to be in a cover, cj will be forced to merge with one of its neighbours c1j , c
2
j

leaving just one of them to invoke row-mergings. The remaining 3n+2m rows will
be denoted by hr

1, . . . , h
r
3n+2m and used to force the columns cj to be altered in

every minimal optimal solution. The remaining 3n+2m columns hc
1, . . . , h

c
3n+2m

similarly trigger the choice of the rows r̂i, r̃i.
Each edge ej = (vi, vl) (undirected but incident nodes considered given in an

arbitrary, fixed order) induces a one-entry in the corresponding column c1j in

row ri representing vi, and another in column c2j and row rl. These entries will
be called edge-induced. To force the merging of cj with one of its neighbours,
this column has one-entries in all of the 3n + 2m additional rows. If cj is not
merged, all of these entries have to be eliminated by row-merging which requires
3n+ 2m > 2n+ 2m+ k operations, hence exceeding the optimal solution. The
rows r̂i have one-entries in hc

2j−1, r̃i in hc
2j for i = 1, . . . , n, j = 1, . . . , �3n/2	+m.

A solution that does not affect all of the rows r̂i and r̃i has to merge all of the
additional columns instead which again exceeds 2n+ 2m+ k.

A vertex cover C for G can be translated to L={r̂1, . . . , r̂n} ∪ {r̃1, . . . , r̃n} ∪
{c1, . . . , cm}∪{ri: vi∈C}∪{c1j : (ej=(vi1 , vi2))∧(vi1 ∈C)}∪{c2j : (ej=(vi1 , vi2))∧
(vi1 �∈C)}. A feasible LMAL solution L for M on the other hand can be altered
to a solution of the same size that deletes at least one of the edge-induced one-
entries for every edge by row-merging implying that the set {vi: ri∈L} is a vertex
cover for C (observe that additionally merging c1j with (cj , c

2
j ) only deletes a sin-

gle one-entry and can hence be replaced by covering it by the corresponding row
which, by construction, always has the merging-partner (r̂, r̃)). Since covering
all the additional lines of M induces a cost of 2n+2m, a solution of size at least
2n+ 2m+ k contains at most k of the rows ri. �
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In the following we use the terms of parameterized complexity presented in
[5]. A decision-problem can be considered parameterized, if its instances can be
described as elements of Σ∗×IN. A parameterized problem P is called fixed pa-
rameter tractable, if it can be solved in time f(k)p(n) for every instance (I, k)
of P , with n = size(I) where p is an arbitrary polynomial and f an arbitrary
function. An equivalent way to describe fixed parameter tractability is reduc-
tion to a problem-kernel, a procedure that reduces an instance (I, k) in time
p(size(I)) to an equivalent instance (I ′, k′) with k′, size(I ′) ≤ f(k). LMAL can
be interpreted as parameterized by the number of affected lines k assuming that
the information-loss should be reasonably bounded.

A simple false assumption is the idea of reducing the given instance by delet-
ing all lines without one-entries; even for two neighbouring “empty” lines, this
reduction may alter the solution-size. Consider, for example, deleting the second
row and column from the following matrix:

⎛
⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎠ →

⎛
⎝

1 0 0
0 0 0
0 0 1

⎞
⎠

The original matrix requires four lines to eliminate all one-entries, the reduced
version can be solved with three. Counting affected lines, merging-operations
with a line of zeros are not independent. Considering three neighbouring lines
of zeros, the one in the middle however is never included in a minimal solution,
which yields:

Reduction-Rule 1. Let (M,k) be a parameterized LMAL instance and ri−1, ri,
ri+1 three neighbouring rows of zeros in M . Create the reduced matrix M ′ from
M by deleting the row ri. (M,k) is a “yes”-instance, if and only if (M ′, k) is.

Proof. For any set of affected lines L for a LMAL solution for M , consider the
set L′ = {rj : rj ∈L, j < i} ∪ {rj−1: rj ∈L, j > i}. If L′ contains the rows ri−1 or
ri without merging partners, delete them from L′. This creates a feasible set for
M ′, since ri is the only line possibly omitted from L. The operations among L′

perform the same transformation on M ′ as L for M except for possible mergings
with ri. Since merging (ri−1, ri) or (ri, ri+1) in M does not delete any entries,
the operations among L′ build a solution for M ′ with |L′| ≤ |L|.

Similarly, the set L′ = {rj : rj ∈ L, j < i} ∪ {rj+1 : rj ∈ L, j > i} (omitting
ri−1 or ri+1 if they have no neighbours in L′) translates affected lines of a solution
for M ′ into affected lines of a solution for M , not increasing the size. �
Rows that contain more than k entries have to be affected by the solution, since
deleting its entries would otherwise affect more than k columns. This observation
is similar to Buss’ rule for vertex cover; “deleting” these rows to reduce a given
instance however is not as simple as deleting nodes of large degree from a graph
since the feasibility-condition for the solution requires at least one neighbouring
row. The following reduction-rule introduces one possible way to reduce the
number of entries by marking a reduced row with an entry in an additional
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column. Exchanging “row” for “column” gives the equivalent rule for columns
with more than k entries, as the whole argumentation is obviously symmetrical.

Reduction-Rule 2. Let ri be a row in M with more than k entries in a LMAL
instance (M,k). Construct the reduced matrix M ′ from M by:

1. Delete all entries M [i, j] = 1 with M [i− 1, j] = M [i+ 1, j] = 0.
2. Add two columns of zeros and the i-th unit-vector to the right border of M

(M → [M |0|0|ei]).
With these transformations, (M,k) is a “yes”-instance, if and only if (M ′, k) is.

Proof. Let S be a solution for M that affects at most k lines. Since ri has more
than k entries, S has to at least merge either (ri−1, ri) or (ri, ri+1). Each of these
operations delete the new one-entry in the last column of M ′. With all other
one-entries copied from M , S is a solution for M ′.

A solution S for M ′ that merges the new columns, on the other hand, can be
altered to a solution S′ that affects the same number of lines and merges either
(ri−1, ri) or (ri, ri+1) instead (observe that they both delete the only one-entry
possibly deleted by column-merging the last column of M ′). Each of these row-
operations also deletes all of the entries of M which were omitted in the second
step of creating M ′ which implies that S′ is a solution for M . �
These rules however can only yield a quadratic kernel, since even if no line
contains more than k entries, the matrix-size can still be non-linear in k. Con-
sider, for example, for a fixed k = 4h ∈ IN a matrix A ∈ {0, 1}(k−2)×6kh with
A[4i+1, 3ki+3j−2]=A[4i+ 2, 3k(i+h)+3j−2]=1 ∀ i=0, . . . , h−1 j=1, . . . , k.

For k = 4 (zero-entries denoted by ·):
(
1 · · 1 · · 1 · · 1 · · · · · · · · · · · · · ·
· · · · · · · · · · · · 1 · · 1 · · 1 · · 1 · ·

)

ConsiderM :=

(
A O
O AT

)
with appropriately sized zero matricesO. An optimal

solution merges (r4i+1, r4i+2), (c6kh+4i+1, c6kh+4i+2) ∀ i = 0, . . . , h − 1, which
alters k lines. No line contains more than k entries and M does not contain
three neighbouring empty lines which means that none of the above reductions
is applicable. With n = m = 3

2k
2 + k − 2 the matrix-size is quadratic in k.

3 Parameterized Algorithm

Parameterized by the number of merged lines, branching on a single one-entry
by choosing either its row or its column already provides an approach in O∗(2k).
Branching on both possibilities to pick a partner-line yields feasibility and pre-
serves this running-time. Branches that consider adding one of the non-existing
lines r0, rn+1, c0, cm+1 are to be omitted throughout this section.

Theorem 2. Parameterized LMAL restricted to instances without neighbouring
one-entries can be solved in O∗(2k).
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Proof. Starting with L = ∅, compute the set of affected lines by:

while((|L| < k) ∧ (∃ M [i, j] = 1: (ri /∈ L) ∧ (cj /∈ L))) branch into:

1. if((ri+1 ∈ L) ∨ (ri−1 ∈ L)) L = L ∪ ri
else branch:
(a) L = L ∪ {ri−1, ri}
(b) L = L ∪ {ri, ri+1}

2. if((cj+1 ∈ L) ∨ (cj−1 ∈ L)) L = L ∪ cj
else branch:
(a) L = L ∪ {cj−1, cj}
(b) L = L ∪ {cj , cj+1}

These choices of lines arise from the obvious conditions for any feasible solution:

1. For each one-entry, either its row or column has to be included in the solution.
2. Lines in L always have a merging-partner (ri ∈ L ⇒ (ri+1 ∈ L)∨ (ri−1 ∈ L)).
Branching into all sets of lines that cover a one-entry satisfying these conditions
yields all possibilities to compute a solution for M .

Since an isolated one-entry is eliminated by any adjacent operation, a feasible
set of lines covering all one-entries transforms M into a zero matrix. With this
property, any set that satisfies the conditions above gives a solution for a ma-
trix without neighbouring one-entries. All branching-options produce a recursion
solved by T (k) = 2k. �
The construction above benefits from the fact that the selected lines always
merge to a vector of zeros. Unfortunately, neighbouring one-entries create ex-
ceptions which do not allow for this argumentation. The following example il-
lustrates the problems created by general instances:

Example 2. Consider the following matrix (zero-entries omitted):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1 · · · cs · · · cj · · · cl · · · ct · · · cm

r1 1
.
.
.

rp 1
.
.
.

ri−2 1 1 1
1 1 1

ri 1 1 1
ri+2 1 1 1
.
.
.

rq 1
.
.
.

rn 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

With p, s > 2, |p− i|, |q− i| > 3 and |n− q|, |m− t|, |t− l|, |l− j|, |j − s| > 2, the
optimal solution is the set {ri−2, ri−1, ri, ri+1, ri+2, cj , cj+1, cl, cl+1}. Consider
running the algorithm from the proof to theorem 2 for k=9. Choosing the one-
entryM [i−2, s] in the first step, the only branch that arrives at the correct “yes”-
response is the one that adds the set {ri−2, ri−1} (all other branches contain lines
that are not included in the optimal solution).
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Branching on the one-entries M [i + 2, 1], M [p, j] and M [1, l] in the following
three steps always leaves just one possible successful branch as well and yields the
partial solution {ri−2, ri−1, ri+1, ri+2, cj , cj+1, cl, cl+1}. This set of lines contains
at least the row or the column of each one-entry and the algorithm terminates.
For the remaining one-entries, both row and column are already contained in the
partial solution but only the choice of the row ri gives the optimal solution. Adding
a row of zeros between ri and ri+1 and deleting the columns cj+2, . . . , cl−2 creates
a matrix in which the algorithm arrives at a similar partial solution and the only
optimal solution is created by adding cj+2.

Larger matrices built from these structures can create instances with an arbitrar-
ily difficult optimal set to complete an unfortunate partial solution. Efficiently
computing an optimal additional set turns out to be a non-trivial task. For a
parameterized approach for general instances we introduce a different branching-
rule and further use the following sub-problem:

ROW-MERGING MINIMIZING AFFECTED LINES (RMAL)
Input: M ∈ {0, 1}n×m, k ∈ IN.
Question: Is there a set of row-mergings that transforms M into a zero matrix
and affects at most k rows?

Theorem 3. RMAL can be solved in linear time.

Proof. The following construction yields a solution represented by the set of
affected lines:

1. Start with L = {ri: ∃ 1≤p≤m:M [i, p] = 1}.
2. Collect the rows with one-entries that are not eliminated by the operations

S :={(ri, ri+1): ri, ri+1∈L} in a new set R. Rows ri∈R are characterized by:

(ri ∈L) ∧ (ri+1 /∈ L) ∧ (∃p: ∀min{j: rt ∈ L ∀ j≤ t≤ i} ≤h≤ i M [h, p]= 1).

These rows require another merging partner outside the current set L.
3. While R �= ∅, set i = min{1≤j≤n: rj ∈ R}, R = R \ ri and:

(a) If i = n, add rn−1 to L.
(b) If i < n, add ri+1 to L and delete other rows possibly covered by ri+1:

If ri+2∈L and rh∈R with h = max{1≤ j≤n: ∀ i+2≤ t≤ j rt∈L}, set
R = R \ rh.

Correctness of the (possibly not feasible) starting-set follows from the simple fact
that every non-empty row has to be altered. Each row collected in R is either
non-empty and without merging-partner in L (min{j: rt ∈ L ∀ j ≤ t≤ i} = i)
or the row of largest index in a group that does not merge to an empty row.
Transforming L into a feasible solution requires at least one row outside L as
merging-partner for each row in R. Since the rows outside L are empty, any
partner outside L suffices to delete all one-entries and produces an additional
cost of one. With this observation, each set that contains L and at least one
partner outside L for each row in R yields a feasible set that deletes all one-
entries in M . Step 3 creates a set with this property.
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Minimality of the constructed solution is seen as follows: Each row of zeros
picked for the solution can be used to cover at most two rows in R. Always fixing
the row of lowest index exploits the fact that choosing its upper neighbour can
not cover another row in R. �
The following final algorithm first computes a partial solution which contains the
row of each not-deleted one-entry. This property allows a more efficient way of
expanding it to a solution: Branching for one-entries not deleted by the partial
solution, the options for row-merging can be postponed. Using the easy sub-
problem RMAL as a final polynomial-time step, the “book-keeping” introduced
in [7] allows pre-counting the cost of the postponed row-mergings to improve
this algorithm.

Theorem 4. Parameterized LMAL can be solved in O∗(2.618k).

Proof. The following three steps compute a solution L (set of affected lines):

Step 1: Starting with L = ∅, compute a feasible partial solution:

while(∃M [t, j] = 1: (rt /∈ L) ∧ (cj /∈ L) ∧ (|L| < k))

Select a row ri /∈ L with i = argmax{C(i, j): 1 ≤ i ≤ n, ri /∈ L} where
C(i, j) counts the neighbouring one-entries around cj :

C(i, j)=max{u:M [i, h]=1 ∀ j≤h≤u} −min{o:M [i, h]=1 ∀ o≤h≤j}+ 1

Let co, . . . , cu be the C(i, j) columns that contain the one-entries in ri around
M [i, j]. Branch into:

1. if((ri+1 ∈ L) ∨ (ri−1 ∈ L)) L = L ∪ ri
else, branch:
(a) L = L ∪ {ri−1, ri}
(b) L = L ∪ {ri, ri+1}

2. if((cu+1 ∈ L) ∨ (co−1 ∈ L)) L = L ∪ {co, . . . , cu}
else, branch:
(a) L = L ∪ {co−1, . . . , cu}
(b) L = L ∪ {co, . . . , cu+1}

If the corresponding operations already transform M into a zero matrix, L is a
feasible solution. Else expand the partial solution with steps 2 and 3.

Step 2: Choose additional columns for L and save row-merging for step 3:

With Bl(j) :=min{s: cs, . . . , cj ∈ L}, Br(j) :=max{t: cj, . . . , ct ∈ L} for cj ∈L
and Bl(j) :=Br(j) := j for cj /∈L, the set I of one-entries which are not deleted
by the operations corresponding to L can be characterized by:

I = {(o, u, j) ∈ {1, . . . , n}×{1, . . . , n}×{1, . . . ,m}: ro, . . . , ru ∈L, ro−1, ru+1 /∈L
and M [h, s] = 1 ∀ o≤h≤u, Bl(j)≤s≤Br(j)=j}
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Branch into either row- or column-merging for these one-entries and save row-
merging for a final polynomial-step by collecting rows in a set R (initially R=∅):

while((I �= ∅) ∧ (|L|+ 1
2 |R| < k))

Choose the column cj with j = min{t: ∃o, u: (o, u, t) ∈ I} and branch into:
1. Column-merging:

if(cj ∈ L)
if(j < n) L = L ∪ cj+1

if(1 < Bl(j) < j = n) L = L ∪ cBl(j)−1

if(cj /∈ L)
if(cj−1, cj+1 /∈ L)
if(j < n) L = L ∪ {cj, cj+1}
if(1 < j = n) L = L ∪ {cj−1, cj}

2. Row-merging: R = R ∪ {(o, u): (o, u, j) ∈ I}
Recalculate I for the new set L omitting one-entries (o, u, j) with (o, u) ∈ R.

Step 3: Compute additional rows with RMAL: Choose merging-partner for the
set {ru: ∃ o, j: (o, u, j) ∈ R} with step 3 of the procedure used for theorem 3.

Since the branching-step considers all minimal, feasible possibilities to delete the
one-entries M [i, o], . . . ,M [i, u], any solution for M contains at least one of the
sets constructed by the first step. All branches of the first step give a recursion
with a running-time in O∗(2k). The particular choice of the branching-row i =
argmax{C(i, j): 1 ≤ i ≤ n, ri /∈L} in step 1 produces a partial solution S that
contains the row of every one-entry that is not eliminated: Suppose a one-entry
M [t, j] is not deleted by S with rt /∈S. Since S contains at least row or column
for each one-entry, cj is contained in S. Let ri be the branching-row that added
cj to S among, w.l.o.g, co−1, . . . , cu. Since S applies the operation (co−1, . . . , cu)
and does not delete the one-entry M [t, j], the row rt contains the one-entries
M [t, o−1] = . . . = M [t, u] = 1 which would give C(t, j) ≥ u−o+2 = C(i, j)+1,
a contradiction to the choice of i.

One-entries not deleted by S are relics of neighbouring one-entries in rows
that are contained in L which justifies the characterization of I used in step
2. This property further implies that rows outside L are transformed into rows
of zeros by the column-mergings in L. This property is the crucial difference
to the partial solution from the procedure for theorem 2. Since any additional
row that merges with ro, . . . , ru deletes all remaining one-entries in these rows
omitting one-entries (o, u, j) with (o, u) already chosen to be merged by the final
polynomial step is justified and pre-counting the cost for each row in R is valid.
Since each row added in the final step can cover at least two groups of rows, step
3 induces a cost of at least 1

2 |R|. Since the second branch increases |R| by at
least one, this book-keeping yields the recursion T (k) ≤ T (k − 1/2) + T (k − 1)
for each branching-step which gives the stated running-time.

Always choosing the one-entry of lowest column-index allows to reduce the
options in the branch that treats this one-entry by column-operations to merging
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it with the right neighbouring column (unless cj is the last column of M). Like
in the procedure for RMAL, choosing the left neighbour does not delete other
one-entries and can be replaced by choosing the right neighbour instead. With
the properties of L from step 1, the set I always contains all one-entries that
are not deleted by adding at least one row for each row in R to the current
partial solution. This implies that the columns ch with h < j and especially the
possible left merging-partner are already empty. The cases in branch 1 consider
all possibilities to add the right neighbour preserving feasibility. �

4 Conclusion

This paper studied an abstract problem from the field of privacy-protection in
statistical databases with global recoding. We studied the new problem LMAL
considering parameterized complexity and presented reduction rules and a bran-
ching-algorithm based on the easy sub-problem RMAL.

Considering the motivating background, a generalization for matrices of higher
dimension would be very interesting. While the ideas for solving the easy sub-
problem remain applicable, a translation for the general parameterized algorithm
seems to be more difficult. The model introduced here so far only suffices 1-
compromise. Another interesting generalization would be a generalization for
k-compromise for larger values of k.
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