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Abstract. We investigate how different learning restrictions reduce
learning power and how the different restrictions relate to one another.
We give a complete map for nine different restrictions both for the cases
of complete information learning and set-driven learning. This completes
the picture for these well-studied delayable learning restrictions. A fur-
ther insight is gained by different characterizations of conservative learn-
ing in terms of variants of cautious learning.

Our analyses greatly benefit from general theorems we give, for ex-
ample showing that learners with exclusively delayable restrictions can
always be assumed total.

1 Introduction

This paper is set in the framework of inductive inference, a branch of (algo-
rithmic) learning theory. This branch analyzes the problem of algorithmically
learning a description for a formal language (a computably enumerable subset
of the set of natural numbers) when presented successively all and only the ele-
ments of that language. For example, a learner h might be presented more and
more even numbers. After each new number, h outputs a description for a lan-
guage as its conjecture. The learner h might decide to output a program for the
set of all multiples of 4, as long as all numbers presented are divisible by 4. Later,
when h sees an even number not divisible by 4, it might change this guess to a
program for the set of all multiples of 2.

Many criteria for deciding whether a learner h is successful on a language L
have been proposed in the literature. Gold, in his seminal paper [Gol67], gave a
first, simple learning criterion, TxtGEx-learning1, where a learner is successful
iff, on every text for L (listing of all and only the elements of L) it eventually
stops changing its conjectures, and its final conjecture is a correct description
for the input sequence. Trivially, each single, describable language L has a suit-
able constant function as a TxtGEx-learner (this learner constantly outputs a
description for L). Thus, we are interested in analyzing for which classes of lan-
guages L there is a single learner h learning each member of L. This framework
� We would like to thank the reviewers for their very helpful comments.
1 Txt stands for learning from a text of positive examples; G stands for Gold, who

introduced this model, and is used to to indicate full-information learning; Ex stands
for explanatory.
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is also sometimes known as language learning in the limit and has been studied
extensively, using a wide range of learning criteria similar to TxtGEx-learning
(see, for example, the textbook [JORS99]).

A wealth of learning criteria can be derived from TxtGEx-learning by adding
restrictions on the intermediate conjectures and how they should relate to each
other and the data. For example, one could require that a conjecture which
is consistent with the data must not be changed; this is known as conservative
learning and known to restrict what classes of languages can be learned ([Ang80],
we use Conv to denote the restriction of conservative learning). Additionally to
conservative learning, the following learning restrictions are considered in this
paper (see Section 2.1 for a formal definition of learning criteria including these
learning restrictions).

In cautious learning (Caut, [OSW82]) the learner is not allowed to ever give
a conjecture for a strict subset of a previously conjectured set. In non-U-shaped
learning (NU, [BCM+08]) a learner may never semantically abandon a correct
conjecture; in strongly non-U-shaped learning (SNU, [CM11]) not even syntactic
changes are allowed after giving a correct conjecture.

In decisive learning (Dec, [OSW82]), a learner may never (semantically)
return to a semantically abandoned conjecture; in strongly decisive learning
(SDec, [Köt14]) the learner may not even (semantically) return to syntacti-
cally abandoned conjectures. Finally, a number of monotonicity requirements
are studied ([Jan91, Wie91, LZ93]): in strongly monotone learning (SMon) the
conjectured sets may only grow; in monotone learning (Mon) only incorrect data
may be removed; and in weakly monotone learning (WMon) the conjectured
set may only grow while it is consistent.

The main question is now whether and how these different restrictions reduce
learning power. For example, non-U-shaped learning is known not to restrict
the learning power [BCM+08], and the same for strongly non-U-shaped learn-
ing [CM11]; on the other hand, decisive learning is restrictive [BCM+08]. The
relations of the different monotone learning restriction were given in [LZ93]. Con-
servativeness is long known to restrict learning power [Ang80], but also known
to be equivalent to weakly monotone learning [KS95, JS98].

Cautious learning was shown to be a restriction but not when added to con-
servativeness in [OSW82, OSW86], similarly the relationship between decisive
and conservative learning was given. In Exercise 4.5.4B of [OSW86] it is claimed
(without proof) that cautious learners cannot be made conservative; we claim
the opposite in Theorem 13.

This list of previously known results leaves a number of relations between
the learning criteria open, even when adding trivial inclusion results (we call
an inclusion trivial iff it follows straight from the definition of the restriction
without considering the learning model, for example strongly decisive learning
is included in decisive learning; formally, trivial inclusion is inclusion on the
level of learning restrictions as predicates, see Section 2.1). With this paper we
now give the complete picture of these learning restrictions. The result is shown
as a map in Figure 1. A solid black line indicates a trivial inclusion (the lower
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Fig. 1. Relation of criteria

criterion is included in the higher); a dashed black line indicates inclusion (which
is not trivial). A gray box around criteria indicates equality of (learning of) these
criteria.

A different way of depicting the same results is given in Figure 2 (where solid
lines indicate any kind of inclusion). Results involving monotone learning can be
found in Section 6, all others in Section 4.

For the important restriction of conservative learning we give the characteri-
zation of being equivalent to cautious learning. Furthermore, we show that even
two weak versions of cautiousness are equivalent to conservative learning. Recall
that cautiousness forbids to return to a strict subset of a previously conjectured
set. If we now weaken this restriction to forbid to return to finite subsets of a
previously conjectured set we get a restriction still equivalent to conservative
learning. If we forbid to go down to a correct conjecture, effectively forbidding
to ever conjecture a superset of the target language, we also obtain a restriction
equivalent to conservative learning. On the other hand, if we weaken it so as to
only forbid going to infinite subsets of previously conjectured sets, we obtain a
restriction equivalent to no restriction. These results can be found in Section 4.

In set-driven learning [WC80] the learner does not get the full information
about what data has been presented in what order and multiplicity; instead, the
learner only gets the set of data presented so far. For this learning model it is
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Fig. 2. Partial order of delayable learning restrictions in Gold-style learning

known that, surprisingly, conservative learning is no restriction [KS95]! We com-
plete the picture for set driven learning by showing that set-driven learners can
always be assumed conservative, strongly decisive and cautious, and by showing
that the hierarchy of monotone and strongly monotone learning also holds for
set-driven learning. The situation is depicted in Figure 3. These results can be
found in Section 5.

1.1 Techniques

A major emphasis of this paper is on the techniques used to get our results.
These techniques include specific techniques for specific problems, as well as
general theorems which are applicable in many different settings. The general
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Fig. 3. Hierarchy of delayable learning restrictions in set-driven learning
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techniques are given in Section 3, one main general result is as follows. It is
well-known that any TxtGEx-learner h learning a language L has a locking
sequence, a sequence σ of data from L such that, for any further data from L,
the conjecture does not change and is correct. However, there might be texts such
that no initial sequence of the text is a locking sequence. We call a learner such
that any text for a target language contains a locking sequence strongly locking,
a property which is very handy to have in many proofs. Fulk [Ful90] showed that,
without loss of generality, a TxtGEx-learner can be assumed strongly locking,
as well as having many other useful properties (we call this the Fulk normal
form, see Definition 8). For many learning criteria considered in this paper it
might be too much to hope for that all of them allow for learning by a learner in
Fulk normal form. However, we show in Corollary 7 that we can always assume
our learners to be strongly locking, total, and what we call syntactically decisive,
never syntactically returning to syntactically abandoned hypotheses.

The main technique we use to show that something is decisively learnable, for
example in Theorem 22, is what we call poisoning of conjectures. In the proof
of Theorem 22 we show that a class of languages is decisively learnable by sim-
ulating a given monotone learner h, but changing conjectures as follows. Given
a conjecture e made by h, if there is no mind change in the future with data
from conjecture e, the new conjecture is equivalent to e; otherwise it is suit-
ably changed, poisoned, to make sure that the resulting learner is decisive. This
technique was also used in [CK10] to show strongly non-U-shaped learnability.

Finally, for showing classes of languages to be not (strongly) decisively learn-
able, we adapt a technique known in computability theory as a “priority argu-
ment” (note, though, that we do not deal with oracle computations). We use
this technique to reprove that decisiveness is a restriction to TxtGEx-learning
(as shown in [BCM+08]), and then use a variation of the proof to show that
strongly decisive learning is a restriction to decisive learning.

Due to space constraints, we cannot give all proofs in this version of the
paper. The full version of the paper can be found at http://arxiv.org/abs/
1404.7527.

2 Mathematical Preliminaries

Unintroduced notation follows [Rog67], a textbook on computability theory.
N denotes the set of natural numbers, {0, 1, 2, . . .}. The symbols ⊆, ⊂, ⊇,

⊃ respectively denote the subset, proper subset, superset and proper superset
relation between sets; \ denotes set difference. ∅ and λ denote the empty set and
the empty sequence, respectively. The quantifier ∀∞x means “for all but finitely
many x”. With dom and range we denote, respectively, domain and range of a
given function.

Whenever we consider tuples of natural numbers as input to a function, it is
understood that the general coding function 〈·, ·〉 is used to code the tuples into
a single natural number. We similarly fix a coding for finite sets and sequences,
so that we can use those as input as well. For finite sequences, we suppose that

http://arxiv.org/abs/1404.7527
http://arxiv.org/abs/1404.7527


A Map of Update Constraints in Inductive Inference 45

for any σ ⊆ τ we have that the code number of σ is at most the code number of
τ . We let Seq denote the set of all (finite) sequences, and Seq≤t the (finite) set
of all sequences of length at most t using only elements ≤ t.

If a function f is not defined for some argument x, then we denote this fact
by f(x)↑, and we say that f on x diverges; the opposite is denoted by f(x)↓,
and we say that f on x converges. If f on x converges to p, then we denote this
fact by f(x)↓ = p. We let P denote the set of all partial functions N → N and
R the set of all total such functions.

P and R denote, respectively, the set of all partial computable and the set of
all total computable functions (mapping N → N).

We let ϕ be any fixed acceptable programming system for P (an acceptable
programming system could, for example, be based on a natural programming
language such as C or Java, or on Turing machines). Further, we let ϕp denote
the partial computable function computed by the ϕ-program with code number
p. A set L ⊆ N is computably enumerable (ce) iff it is the domain of a computable
function. Let E denote the set of all ce sets. We let W be the mapping such that
∀e : W (e) = dom(ϕe). For each e, we write We instead of W (e). W is, then, a
mapping from N onto E . We say that e is an index, or program, (in W ) for We.

We let Φ be a Blum complexity measure associated with ϕ (for example, for
each e and x, Φe(x) could denote the number of steps that program e takes on
input x before terminating). For all e and t we let W t

e = {x ≤ t | Φe(x) ≤ t} (note
that a complete description for the finite set W t

e is computable from e and t). The
symbol # is pronounced pause and is used to symbolize “no new input data” in a
text. For each (possibly infinite) sequence q with its range contained in N∪{#},
let content(q) = (range(q) \ {#}). By using an appropriate coding, we assume
that ? and # can be handled by computable functions. For any function T and
all i, we use T [i] to denote the sequence T (0), . . . , T (i− 1) (the empty sequence
if i = 0 and undefined, if any of these values is undefined).

2.1 Learning Criteria

In this section we formally introduce our setting of learning in the limit and
associated learning criteria. We follow [Köt09] in its “building-blocks” approach
for defining learning criteria.

A learner is a partial computable function h ∈ P . A language is a ce set
L ⊆ N. Any total function T : N → N ∪ {#} is called a text. For any given
language L, a text for L is a text T such that content(T ) = L. Initial parts of
this kind of text is what learners usually get as information.

An interaction operator is an operator β taking as arguments a function h
(the learner) and a text T , and that outputs a function p. We call p the learning
sequence (or sequence of hypotheses) of h given T . Intuitively, β defines how a
learner can interact with a given text to produce a sequence of conjectures.

We define the interaction operators G, Psd (partially set-driven learning,
[SR84]) and Sd (set-driven learning, [WC80]) as follows. For all learners h, texts
T and all i,
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G(h, T )(i) = h(T [i]);

Psd(h, T )(i) = h(content(T [i]), i);

Sd(h, T )(i) = h(content(T [i])).

Thus, in set-driven learning, the learner has access to the set of all previous data,
but not to the sequence as in G-learning. In partially set-driven learning, the
learner has the set of data and the current iteration number.

Successful learning requires the learner to observe certain restrictions, for
example convergence to a correct index. These restrictions are formalized in our
next definition.

A learning restriction is a predicate δ on a learning sequence and a text. We
give the important example of explanatory learning (Ex, [Gol67]) defined such
that, for all sequences of hypotheses p and all texts T ,

Ex(p, T ) ⇔ p total ∧ [∃n0∀n ≥ n0 : p(n) = p(n0) ∧Wp(n0) = content(T )].

Furthermore, we formally define the restrictions discussed in Section 1 in Figure 4
(where we implicitly require the learning sequence p to be total, as in Ex-learning;
note that this is a technicality without major importance).

Conv(p, T ) ⇔ [∀i : content(T [i+ 1]) ⊆ Wp(i) ⇒ p(i) = p(i+ 1)];

Caut(p, T ) ⇔ [∀i, j : Wp(i) ⊂ Wp(j) ⇒ i < j];

NU(p, T ) ⇔ [∀i, j, k : i ≤ j ≤ k ∧ Wp(i) = Wp(k) = content(T ) ⇒ Wp(j) = Wp(i)];

Dec(p, T ) ⇔ [∀i, j, k : i ≤ j ≤ k ∧ Wp(i) = Wp(k) ⇒ Wp(j) = Wp(i)];

SNU(p, T ) ⇔ [∀i, j, k : i ≤ j ≤ k ∧ Wp(i) = Wp(k) = content(T ) ⇒ p(j) = p(i)];

SDec(p, T ) ⇔ [∀i, j, k : i ≤ j ≤ k ∧ Wp(i) = Wp(k) ⇒ p(j) = p(i)];

SMon(p, T ) ⇔ [∀i, j : i < j ⇒ Wp(i) ⊆ Wp(j)];

Mon(p, T ) ⇔ [∀i, j : i < j ⇒ Wp(i) ∩ content(T ) ⊆ Wp(j) ∩ content(T )];

WMon(p, T ) ⇔ [∀i, j : i < j ∧ content(T [j]) ⊆ Wp(i) ⇒ Wp(i) ⊆ Wp(j)].

Fig. 4. Definitions of learning restrictions

A variant on decisiveness is syntactic decisiveness, SynDec, a technically
useful property defined as follows.

SynDec(p, T ) ⇔ [∀i, j, k : i ≤ j ≤ k ∧ p(i) = p(k) ⇒ p(j) = p(i)].

We combine any two sequence acceptance criteria δ and δ′ by intersecting them;
we denote this by juxtaposition (for example, all the restrictions given in Figure 4
are meant to be always used together with Ex). With T we denote the always
true sequence acceptance criterion (no restriction on learning).

A learning criterion is a tuple (C, β, δ), where C is a set of learners (the
admissible learners), β is an interaction operator and δ is a learning restriction;
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we usually write CTxtβδ to denote the learning criterion, omitting C in case of
C = P . We say that a learner h ∈ C CTxtβδ-learns a language L iff, for all texts
T for L, δ(β(h, T ), T ). The set of languages CTxtβδ-learned by h ∈ C is denoted
by CTxtβδ(h). We write [CTxtβδ] to denote the set of all CTxtβδ-learnable
classes (learnable by some learner in C).

3 Delayable Learning Restrictions

In this section we present technically useful results which show that learners can
always be assumed to be in some normal form. We will later always assume our
learners to be in the normal form established by Corollary 7, the main result
of this section. We start with the definition of delayable. Intuitively, a learning
criterion δ is delayable iff the output of a hypothesis can be arbitrarily (but not
indefinitely) delayed.

Definition 1. Let 	R be the set of all non-decreasing r : N → N with infinite
limit inferior, i.e. for all m we have ∀∞n : r(n) ≥ m.

A learning restriction δ is delayable iff, for all texts T and T ′ with content(T ) =

content(T ′), all p and all r ∈ 	R, if (p, T ) ∈ δ and ∀n : content(T [r(n)]) ⊆
content(T ′[n]), then (p ◦ r, T ′) ∈ δ. Intuitively, as long as the learner has at
least as much data as was used for a given conjecture, then the conjecture is
permissible. Note that this condition holds for T = T ′ if ∀n : r(n) ≤ n.

Note that the intersection of two delayable learning criteria is again delayable
and that all learning restrictions considered in this paper are delayable.

As the name suggests, we can apply delaying tricks (tricks which delay updates
of the conjecture) in order to achieve fast computation times in each iteration
(but of course in the limit we still spend an infinite amount of time). This gives
us equally powerful but total learners, as shown in the next theorem. While
it is well-known that, for many learning criteria, the learner can be assumed
total, this theorem explicitly formalizes conditions under which totality can be
assumed (note that there are also natural learning criteria where totality cannot
be assumed, such as consistent learning [JORS99]).

Theorem 2. For any delayable learning restriction δ, we have [TxtGδ] =
[RTxtGδ].

Next we define another useful property, which can always be assumed for
delayable learning restrictions.

Definition 3. A locking sequence for a learner h on a language L is any finite
sequence σ of elements from L such that h(σ) is a correct hypothesis for L and,
for sequences τ with elements from L, h(σ�τ) = h(σ)[BB75]. It is well known that
every learner h learning a language L has a locking sequence on L. We say that
a learning criterion I allows for strongly locking learning iff, for each I-learnable
class of languages L there is a learner h such that h I-learnsL and, for each L ∈ L
and any text T for L, there is an n such that T [n] is a locking sequence of h on L
(we call such a learner h strongly locking).
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With this definition we can give the following theorem.

Theorem 4. Let δ be a delayable learning criterion. Then RTxtGδEx allows
for strongly locking learning.

Next we define semantic and pseudo-semantic restrictions introduced
in [Köt14]. Intuitively, semantic restrictions allow for replacing hypotheses by
equivalent ones; pseudo-sematic restrictions allow the same, as long as no new
mind changes are introduced.

Definition 5. For all total functions p ∈ P, we let

Sem(p) = {p′ ∈ P | ∀i : Wp(i) = Wp′(i)};
Mc(p) = {p′ ∈ P | ∀i : p′(i) �= p′(i+ 1) ⇒ p(i) �= p(i+ 1)}.

A sequence acceptance criterion δ is said to be a semantic restriction iff, for
all (p, q) ∈ δ and p′ ∈ Sem(p), (p′, q) ∈ δ.

A sequence acceptance criterion δ is said to be a pseudo-semantic restriction
iff, for all (p, q) ∈ δ and p′ ∈ Sem(p) ∩Mc(p), (p′, q) ∈ δ.

We note that the intersection of two (pseudo-) semantic learning restrictions
is again (pseudo-) semantic. All learning restrictions considered in this paper are
pseudo-semantic, and all except Conv, SNU, SDec and Ex are semantic.

The next lemma shows that, for every pseudo-semantic learning restriction,
learning can be done syntactically decisively.

Lemma 6. Let δ be a pseudo-semantic learning criterion. Then we have

[RTxtGδ] = [RTxtGSynDecδ].

As SynDec is a delayable learning criterion, we get the following corollary
by taking Theorems 2 and 4 and Lemma 6 together. We will always assume our
learners to be in this normal form in this paper.

Corollary 7. Let δ be pseudo-semantic and delayable. Then TxtGδEx allows
for strongly locking learning by a syntactically decisive total learner.

Fulk showed that any TxtGEx-learner can be (effectively) turned into an
equivalent learner with many useful properties, including strongly locking learn-
ing [Ful90]. One of the properties is called order-independence, meaning that on
any two texts for a target language the learner converges to the same hypothe-
sis. Another property is called rearrangement-independence, where a learner h is
rearrangement-independent if there is a function f such that, for all sequences
σ, h(σ) = f(content(σ), |σ|) (intuitively, rearrangement independence is equiva-
lent to the existence of a partially set-driven learner for the same language). We
define the collection of all the properties which Fulk showed a learner can have
to be the Fulk normal form as follows.
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Definition 8. We say a TxtGEx-learner h is in Fulk normal form if (1)− (5)
hold.

(1) h is order-independent.
(2) h is rearrangement-independent.
(3) If h TxtGEx-learns a language L from some text, then h TxtGEx-learns L.
(4) If there is a locking sequence of h for some L, then h TxtGEx-learns L.
(5) For all L ∈ TxtGEx(h), h is strongly locking on L.

The following theorem is somewhat weaker than what Fulk states himself.

Theorem 9 ([Ful90, Theorem 13]). Every TxtGEx-learnable set of lan-
guages has a TxtGEx-learner in Fulk normal form.

4 Full-Information Learning

In this section we consider various versions of cautious learning and show that all
of our variants are either no restriction to learning, or equivalent to conservative
learning as is shown in Figure 5.

Additionally, we will show that every cautious TxtGEx-learnable lan-
guage is conservative TxtGEx-learnable which implies that [TxtGConvEx],
[TxtGWMonEx] and [TxtGCautEx] are equivalent. Last, we will separate
these three learning criteria from strongly decisive TxtGEx-learning and show
that [TxtGSDecEx] is a proper superset.

Theorem 10. We have that any conservative learner can be assumed cautious
and strongly decisive, i.e.

[TxtGConvEx] = [TxtGConvSDecCautEx].

Proof. Let h ∈ R and L be such that h TxtGConvEx-learns L. We define, for
all σ, a set M(σ) as follows

M(σ) = {τ | τ ⊆ σ ∧ ∀x ∈ content(τ) : Φh(τ)(x) ≤ |σ|}.
We let

∀σ : h′(σ) = h(max(M(σ))).

Let T be a text for a language L ∈ L. We first show that h′ TxtGEx-learns
L from the text T . As h TxtGConvEx-learns L, there are n and e such that
∀n′ ≥ n : h(T [n]) = h(T [n′]) = e and We = L. Thus, there is m ≥ n such
that ∀x ∈ content(T [n]) : Φh(T [n])(x) ≤ m and therefore ∀m′ ≥ m : h′(T [m]) =
h′(T [m′]) = e.

Next we show that h′ is strongly decisive and conservative; for that we show
that, with every mind change, there is a new element of the target included
in the conjecture which is currently not included but is included in all future
conjectures; it is easy to see that this property implies both caution and strong
decisiveness. Let i and i′ be such that max(M(T [i′])) = T [i]. This implies that

content(T [i]) ⊆ Wh′(T [i′]).
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Let j′ > i′ such that h′(T [i′]) �= h′(T [j′]). Then there is j > i such that
max(M(T [j′])) = T [j] and therefore

content(T [j]) ⊆ Wh′(T [j′]).

Note that in the following diagram j could also be between i and i′.

h′(T [i′]) = h(T [i]) h′(T [j′]) = h(T [j])
content(T [i]) ⊆ Wh(T [i]) content(T [j]) ⊆ Wh(T [j])

i

mind change h

i′

mind change h′
j

mind change h

j′

mind change h′

no mind change h′

As h is conservative and content(T [i]) ⊆ Wh(T [i]), there exists 
 such that i <

 < j and T (
) /∈ Wh(T [i]). Then we have ∀n ≥ j′ : T (
) ∈ Wh′(T [n]) as T (
) ∈
Wh′(T [j′]).

Obviously h′ is conservative as it only outputs (delayed) hypotheses of h (and
maybe skip some) and h is conservative.

In the following we consider three new learning restrictions. The learning
restriction CautFin means that the learner never returns a hypothesis for a
finite set that is a proper subset of a previous hypothesis. Caut∞ is the same
restriction for infinite hypotheses. With CautTar the learner is not allowed to
ever output a hypothesis that is a proper superset of the target language that is
learned.

Definition 11.

CautFin(p, T ) ⇔ [∀i < j : Wp(j) ⊂ Wp(i) ⇒ Wp(j) is infinite]
Caut∞(p, T ) ⇔ [∀i < j : Wp(j) ⊂ Wp(i) ⇒ Wp(j) is finite]

CautTar(p, T ) ⇔ [∀i : ¬(content(T ) ⊂ Wp(i))]

The proof of the following theorem is essentially the same as given in [OSW86]
to show that cautious learning is a proper restriction of TxtGEx-learning,
we now extend it to strongly decisive learning. Note that a different extension
was given in [BCM+08] (with an elegant proof exploiting the undecidability of
the halting problem), pertaining to behaviorally correct learning. The proof in
[BCM+08] as well as our proof would also carry over to the combination of these
two extensions.

Theorem 12. There is a class of languages that is TxtGSDecMonEx-
learnable, but not TxtGCautEx-learnable.

The following theorem contradicts a theorem given as an exercise in [OSW86]
(Exercise 4.5.4B).
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T

Caut

Caut∞

CautTar CautFin

Fig. 5. Relation of different variants of cautious learning. A black line indicates in-
clusion (bottom to top); all and only the black lines meeting the gray line are proper
inclusions.

Theorem 13. For δ ∈ {Caut,CautTar,CautFin} we have

[TxtGδEx] = [TxtGConvEx].

From the definitions of the learning criteria we have [TxtGConvEx] ⊆
[TxtGWMonEx]. Using Theorem 13 and the equivalence of weakly monotone
and conservative learning (using G) [KS95, JS98], we get the following.

Corollary 14. We have

[TxtGConvEx] = [TxtGWMonEx] = [TxtGCautEx].

Using Corollary 14 and Theorem 10 we get that weakly monotone TxtGEx-
learning is included in strongly decisive TxtGEx-learning. Theorem 12 shows
that this inclusion is proper.

Corollary 15. We have

[TxtGWMonEx] ⊂ [TxtGSDecEx].

The next theorem is the last theorem of this section and shows that forbid-
ding to go down to strict infinite subsets of previously conjectures sets is no
restriction.

Theorem 16. We have

[TxtGCaut∞Ex] = [TxtGEx].

Proof. Obviously we have [TxtGCaut∞Ex] ⊆ [TxtGEx]. Thus, we have to
show that [TxtGEx] ⊆ [TxtGCaut∞Ex]. Let L be a set of languages and h
be a learner such that h TxtGEx-learns L and h is strongly locking on L (see
Corollary 7). We define, for all σ and t, the set M t

σ such that

M t
σ = {τ | τ ∈ Seq(W t

h(σ) ∪ content(σ)) ∧ |τ � σ| ≤ t}.
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Using the S-m-n Theorem we get a function p ∈ R such that

∀σ : Wp(σ) = content(σ)
⋃

t∈N

{
W t

h(σ), if ∀ρ ∈ M t
σ : h(σ � ρ) = h(σ);

∅, otherwise.

We define a learner h′ as

∀σ : h′(σ) =

{
p(σ), if h(σ) �= h(σ−);
h′(σ−), otherwise.

We will show now that the learner h′ TxtGCaut∞Ex-learns L. Let an L ∈ L
and a text T for L be given. As h is strongly locking there is n0 such that for
all τ ∈ Seq(L), h(T [n0] � τ) = h(T [n0]) and Wh(T [n0]) = L. Thus we have, for
all n ≥ n0, h′(T [n]) = h′(T [n0]) and Wh′(T [n0]) = Wp(T [n0]) = Wh(T [n0]) = L. To
show that the learning restriction Caut∞ holds, we assume that there are i < j
such that Wh′(T [j]) ⊂ Wh′(T [i]) and Wh′(T [j]) is infinite. W.l.o.g. j is the first
time that h′ returns the hypothesis Wh′(T [j]). Let τ be such that T [i] � τ = T [j].
From the definition of the function p we get that content(T [j]) ⊆ Wh′(T [j]) ⊆
Wh′(T [i]). Thus, content(τ) ⊆ Wh′(T [i]) = Wp(T [i]) and therefore Wp(T [i]) is finite,
a contradiction to the assumption that Wh′(T [j]) is infinite.

The following theorem can be shown with a priority argument. The detailed
proof is about eight pages long, following some ideas given in [BCM+08] for
proving the second inequality, but adapted to the priority argument.

Theorem 17. We have

[TxtGSDecEx] ⊂ [TxtGDecEx] ⊂ [TxtGEx].

5 Set-Driven Learning

In this section we give theorems regarding set-driven learning. For this we build
on the result that set-driven learning can always be done conservatively [KS95].

First we show that any conservative set-driven learner can be assumed to be
cautious and syntactically decisive, an important technical lemma.

Lemma 18. We have

[TxtSdEx] = [TxtSdConvSynDecEx].

In other words, every set-driven learner can be assumed syntactically decisive.

The following Theorem is the main result of this section, showing that set-driven
learning can be done not just conservatively, but also strongly decisively and
cautiously at the same time.

Theorem 19. We have

[TxtSdEx] = [TxtSdConvSDecCautEx].
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6 Monotone Learning

In this section we show the hierarchies regarding monotone and strongly mono-
tone learning, simultaneously for the settings of G and Sd in Theorems 20
and 21. With Theorems 22 and 23 we establish that monotone learnabilty im-
plies strongly decisive learnability.

Theorem 20. There is a language L that is TxtSdMonWMonEx-learnable
but not TxtGSMonEx-learnable, i.e.

[TxtSdMonWMonEx]\[TxtGSMonEx] �= ∅.
Theorem 21. There is L such that L is TxtSdWMonEx-learnable but not
TxtGMonEx-learnable.

The following theorem is an extension of a theorem from [BCM+08], where
the theorem has been shown for decisive learning instead of strongly decisive
learning.

Theorem 22. Let N ∈ L and L be TxtGEx-learnable. Then, we have L is
TxtGSDecEx-learnable.

Theorem 23. We have that any monotone TxtGEx-learnable class of lan-
guages is strongly decisive learnable, while the converse does not hold, i.e.

[TxtGMonEx] ⊂ [TxtGSDecEx].

Proof. Let h ∈ R be a learner and L = TxtGMonEx(h). We distinguish the
following two cases. We call L dense iff it contains a superset of every finite set.

Case 1: L is dense. We will show now that h TxtGSMonEx-learns the
class L. Let L ∈ L and T be a text for L. Suppose there are i and j with
i < j such that Wh(T [i]) � Wh(T [j]). Thus, we have Wh(T [i])\Wh(T [j]) �= ∅. Let
x ∈ Wh(T [i])\Wh(T [j]). As L is dense there is a language L′ ∈ L such that
content(T [j])∪{x} ∈ L′. Let T ′ be a text for L′ and T ′′ be such that T ′′ = T [j]�
T ′. Obviously, T ′′ is a text for L′. We have that x ∈ Wh(T ′′[i]) but x /∈ Wh(T ′′[j])
which is a contradiction as h is monotone. Thus, h TxtGSMonEx-learns L,
which implies that h TxtGWMonEx-learns L. Using Corollary 15 we get that
L is TxtGSDecEx-learnable.

Case 2: L is not dense. Thus, L′ = L ∪ N is TxtGEx-learnable. Using The-
orem 22 L′ is TxtGSDecEx-learnable and therefore so is L.

Note that [TxtGSDecEx] ⊆ [TxtGMonEx] does not hold as in Case 1
with Corollary 15 a proper subset relation is used.
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