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Abstract. The clustered planarity problem (c-planarity) asks whether a hierar-
chically clustered graph admits a planar drawing such that the clusters can be
nicely represented by regions. We introduce the cd-tree data structure and give a
new characterization of c-planarity. It leads to efficient algorithms for c-planarity
testing in the following cases. (i) Every cluster and every co-cluster has at most
two connected components. (ii) Every cluster has at most five outgoing edges.

Moreover, the cd-tree reveals interesting connections between c-planarity and
planarity with constraints on the order of edges around vertices. On one hand,
this gives rise to a bunch of new open problems related to c-planarity, on the
other hand it provides a new perspective on previous results.

1 Introduction

When visualizing graphs whose nodes are structured in a hierarchy, one usually has two
objectives. First, the graph should be drawn nicely. Second, the hierarchical structure
should be expressed by the drawing. Regarding the first objective, we require drawings
without edge crossings, i.e., planar drawings. A natural way to represent a cluster is a
simple region containing exactly the vertices in the cluster. To express the hierarchical
structure, the boundaries of two regions must not cross and edges of the graph can cross
region boundaries at most once (if only one of its endpoints lies inside the cluster).
Such a drawing is called c-planar; see Sec. 2 for a formal definition. Testing a clustered
graph for c-planarity is a fundamental open problem in the field of Graph Drawing.

C-planarity was first considered by Lengauer [21] (in a different context). He gave
an efficient algorithm for the case that every cluster is connected. Feng et al. [13], who
coined the name c-planarity, rediscovered the problem and gave a similar algorithm.
Cornelsen and Wagner [7] showed that c-planarity is equivalent to planarity when addi-
tionally every co-cluster is connected.

Relaxing the condition that every cluster must be connected, makes testing c-planarity
surprisingly difficult. Efficient algorithms are known only for very restricted cases and
many of these algorithms are very involved. One example is the efficient algorithm by
Jelinek et al. [17, 18] for the case that every cluster consists of at most two connected
components while the planar embedding of the graph is fixed. Another algorithm by
Jelinek et al. [19] solves the case that every cluster has at most four outgoing edges.
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A popular restriction is to require a flat hierarchy, i.e., every pair of clusters has
empty intersection. For example, Di Battista and Frati [12] solve the case where the
clustering is flat, the graph has a fixed embedding and the faces have size at most 5.
Sec. 4.1 and Sec. 4.2 contain additional related work viewed from the new perspective.

Contribution and Outline. We first present the cd-tree data structure (Sec. 3) and use it
to characterize c-planarity in terms of combinatorial embeddings of planar graphs. This
provides a useful new perspective and significantly simplifies some previous results.

In Sec. 4 we define different constrained-planarity problems. We show in Sec. 4.1
that they are equivalent to different variants of the c-planarity problem of flat-clustered
graphs. We also discuss which cases of the constrained embedding problems are solved
by previous results on c-planarity. Based on these insights we derive a generic algorithm
for testing c-planarity in Sec. 4.2 and discuss previous work in this context.

In Sec. 5, we show how the cd-tree characterization together with results on the prob-
lem SIMULTANEOUS PQ-ORDERING [4] lead to efficient algorithms for the cases that
(i) every cluster and every co-cluster consists of at most two connected components; or
(ii) every cluster has at most five outgoing edges. The latter extends the result by Jelinek
et al. [19], where every cluster has at most four outgoing edges.

2 Preliminaries

We denote graphs by G with vertex set V and edge set E. We implicitly assume graphs to
be simple (no multiple edges or loops). We use the prefix multi- to indicate that a graph
may have multiple edges (but no loops), e.g., a multi-cycle is obtained from a cycle by
multiplying edges. A (multi-)graph G is planar if it admits a planar drawing (no edge
crossings). The edge-ordering of a vertex v is the clockwise cyclic order of its incident
edges in a planar drawing of G. An embedding of G consists of an edge-ordering for
every vertex such that G has a planar drawing with these edge-orderings.

A PQ-tree [5] is an unrooted tree T with leaves L such that every inner node is either
a P-node or a Q-node. When embedding 7', one can choose the edge-orderings of P-
nodes arbitrarily, whereas the edge-orderings of Q-nodes are fixed up to reversal. Every
such embedding of T defines a cyclic order on the leaves L. The PQ-tree T represents
the orders one can obtain in this way. A set of orders is PQ-representable if it can be
represented by a PQ-tree. The valid edge-orderings of non-cutvertices in planar graphs
are PQ-representable (e.g., [4]). Conversely, replace each Q-node of a PQ-tree T by
a wheel (to fix its edge-ordering) and connect all leaves to a new vertex v. Then T
represents the edge-orderings of v in embeddings of the resulting graph (e.g., [21]).

C-Planarity. A clustered graph (G,T) is a graph G together with a rooted tree T
whose leaves are the vertices of G. Let {1 be a node of T'. The tree 7, is the subtree of
T consisting of the root i and all its successors. The graph induced by the leaves of 7,
is a cluster in G. We identify this cluster with the node u. A cluster is proper if it is
neither the whole graph (root cluster) nor a single vertex (leaf cluster).

A c-planar drawing of (G,T) is a planar drawing of G together with a simple
(= simply-connected) region R,, for every cluster i satisfying the following properties.
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(i) Every region R, contains exactly the vertices of the cluster . (ii) Two regions have
non-empty intersection only if one contains the other. (iii) Edges cross the boundary of
aregion at most once. A clustered graph is c-planar if it admits a c-planar drawing.

This definition relies on embeddings in the plane using terms like “outside” and
“inside”. Instead, one can consider drawings on the sphere by unrooting 7', using cuts
instead of clusters and simple closed curves instead of simple regions. Removing an
edge € of T splits T in two components. As the leaves of T are the vertices of G, this
induces a corresponding cut (V,,V}) with V[ =V \ V, on G. For a c-planar drawing of
G on the sphere, we require a planar drawing of G together with a simple closed curve
C, for every cut (V,,V;) with the following properties. (i) The curve C, separates V,
from V. (i) No two curves intersect. (iii) Edges of G cross C, at most once.

Using clusters instead of cuts corresponds to orienting the cuts, using one side as
cluster and the other side as the cluster’s complement (co-cluster). C-planarity on the
sphere and in the plane are equivalent; one simply has to choose an appropriate point on
the sphere to lie in the outer face. We use the rooted and unrooted view interchangeably.

3 The CD-Tree

The cd-tree (cut- or cluster-decomposition-tree) of a clustered graph (G, T) is the tree T
together with a multi-graph associated with each node of T that represents the decompo-
sition of G along its cuts corresponding to edges in T'; see Fig. 1a and b for an example.
Lengauer [21] uses a similar structure. Our notation is inspired by SPQR-trees.

Let u be a node of T with neighbors y,..., 1, and incident edges & = {u, 1;}.
Removing u separates the leaves of T into k subsets and thus partitions the vertices
of G into Vy,...,V, C V. The skeleton skel(it) of u is the multi-graph obtained from
G by contracting each subset V; into a virtual vertex v; (we keep multiple edges but
remove loops). Note that skeletons of inner nodes of 7' contain only virtual vertices,
while skeletons of leaves consist of one virtual and one non-virtual vertex. The node ;
is the neighbor of u corresponding to v; and the virtual vertex in skel(L;) corresponding
to u is the twin of v;, denoted by twin(v;). Note that twin(twin(v;)) = v;.

The edges incident to v; are exactly the edges of G crossing the cut corresponding to
the tree edge ¢;. Thus, the same edges of G are incident to v; and twin(v;). This gives a
bound on the total size c of the cd-tree’s skeletons (which we shortly call the size of the
cd-tree). The total number of edges in skeletons of T is twice the total size of all cuts
represented by 7. Since T represents O(n) cuts, each of size O(n), it is ¢ € O(n?).

Assume the cd-tree is rooted. Recall that in this case every node u represents a
cluster of G. The pertinent graph pert(it) of the node u is the cluster represented by U.
Note that one could also define the pertinent graph recursively, by removing the virtual
vertex corresponding to the parent of i (the parent vertex) from skel(ut) and replacing
each remaining virtual vertex by the pertinent graph of the corresponding child of u.
Clearly, the pertinent graph of a leaf of T is a single vertex and the pertinent graph of
the root is the whole graph G. A similar concept, also defined for unrooted cd-trees,
is the expansion graph. The expansion graph exp(V;) of a virtual vertex v; in skel() is
the pertinent graph of its corresponding neighbor u; of 11, when rooting 7" at 1. One can
think of the expansion graph exp(V;) as the subgraph of G represented by v; in skel(u).
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Fig. 1. (a) A c-planar drawing of a clustered graph. (b) The corresponding (rooted) cd-tree (with-
out leaves). The skeletons are drawn inside their corresponding (gray) nodes. Every pair of twins
has the same edge-ordering. (c) Construction of a c-planar drawing from the cd-tree.

The leaves of a cd-tree represent singleton clusters that exist only due to technical
reasons. It is often more convenient to consider cd-trees with all leaves removed as
follows. Let u be a node with virtual vertex v in skel(u) that corresponds to a leaf.
The leaf contains twin(v) and a non-virtual vertex v € V in its skeleton (with an edge
between twin(v) and v for each edge incident to v in G). We replace v in skel(u)
with the non-virtual vertex v and remove the leaf containing v. Clearly, this preserves
all clusters except for the singleton cluster. Moreover, the graph G represented by the
cd-tree remains unchanged as we replaced the virtual vertex v by its expansion graph
exp(v) = v. In the following we always assume the leaves of cd-trees to be removed.

The CD-Tree Characterization. We show that c-planarity testing can be expressed in
terms of edge-orderings in embeddings of the skeletons of 7.

Theorem 1. A clustered graph is c-planar if and only if the skeletons of all nodes in
its cd-tree can be embedded such that every virtual vertex and its twin have the same
edge-ordering.

Proof. Assume G admits a c-planar drawing I" on the sphere. Let u be a node of T
with incident edges &, .. ., & connecting U to its neighbors Uy, ..., L, respectively. Let
further v; be the virtual vertex in skel(u) corresponding to y; and let V; be the nodes
in the expansion graph exp(V;). For every cut (V;,V/) (with V/ =V \ V)), I" contains a
simple closed curve C; representing it. Since the V; are disjoint, we can choose a point
on the sphere to be the outside such that V; lies inside C; fori = 1,... k. Since I" is a c-
planar drawing, the C; do not intersect and only the edges of G crossing the cut (V;,V/)
cross C; exactly once. Thus, one can contract the inside of C; to a single point while
preserving the embedding of G. Doing this for each of the curves C; yields skel(u)
together with a planar embedding. Moreover, the edge-ordering of v; is the same as
the order in which the edges cross the curve C;. Applying the same construction for
the neighbor y; corresponding to v; yields a planar embedding of skel(y;) in which the
edge-ordering of twin(V;) is the same as the order in which these edges cross the curve
C;, when traversing C; in counter-clockwise direction. Thus, in the resulting embeddings
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of the skeletons, the edge-ordering of a virtual vertex and its twin is the same up to
reversal. To make them the same one can choose a 2-coloring of 7" and mirror the
embeddings of all skeletons of nodes in one color class.

Conversely, assume that all skeletons are embedded such that every virtual vertex and
its twin have the same edge-ordering. Let u be a node of 7. Consider a virtual vertex v;
of skel(ut) with edge-ordering ey, ..., e,. We replace v, by a cycle C; = (v},...,v/) and
attach the edge e; to the vertex v/; see Fig. lc. Recall that twin(v;) has in skel(y;) the
same incident edges ey, ..., e, appearing in this order around twin(v;). We also replace
twin(v;) by a cycle of length ¢. This cycle is the rwin of C; and denote it by twin(C;) =
(twin(v}'),...,twin(v{)) where twin(v/) denotes the new vertex incident to the edge
e;. As the interiors of C; and twin(C;) are empty, we can glue the skeletons skel(u) and
skel(twin(u)) together by identifying the vertices of C; with the corresponding vertices
in twin(C;) (one of the embeddings has to be flipped). Applying this replacement for
every virtual vertex and gluing it with its twin leads to an embedded planar graph G*
with the following properties. First, G contains a subdivision of G. Second, for every
cut corresponding to an edge € = {u,;} in T, G contains the cycle C; with exactly
one subdivision vertex of an edge e of G if the cut corresponding to € separates the
endpoints of e. Third, no two of these cycles share a vertex. The planar drawing of G*
gives a planar drawing of G. Moreover, the drawings of the cycles can be used as curves
representing the cuts, yielding a c-planar drawing of G. g

Cutvertices in Skeletons. We show that cutvertices in skeletons correspond to different
connected components in a cluster or in a co-cluster.

Lemma 1. Let v be a virtual vertex that is a cutvertex in its skeleton. The expansion
graphs of virtual vertices in different blocks incident to v belong to different connected
components in exp(twin(v)).

Proof. Let u be the node whose skeleton contains v. Recall that one can obtain the
graph exp(twin(v)) by removing v from skel() and replacing all other virtual vertices
of skel(u) with their expansion graphs. Clearly, this yields (at least) one connected
component for each of the blocks incident to v. a

Lemma 2. Every cluster in a clustered graph is connected if and only if in every node
U of the rooted cd-tree the parent vertex is not a cutvertex in skel(t).

Proof. By Lemma 1, the existence of a cutvertex implies a disconnected cluster. Con-
versely, let pert(u) be disconnected and assume without loss of generality that pert(L;)
is connected for every child ,..., 4 of i in the cd-tree. One obtains skel(u) without
the parent vertex v by contracting in pert(tt) the child clusters pert(y;) to virtual ver-
tices v;. As the contracted graphs pert(y;) are connected while the initial graph pert(u)
is not, the resulting graph must be disconnected. Thus, v is a cutvertex in skel(¢). O

4 Clustered and Constrained Planarity

We first describe several constraints on planar embeddings, each restricting the edge-
orderings of vertices. We then show the relation to c-planarity.
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Consider a finite set S (e.g., edges incident to a vertex). Denote the set of all cyclic
orders of S by Og. An order-constraint on S is simply a subset of Og (only the orders in
the subset are allowed). A family of order-constraints for the set S is a set of different
order constraints, i.e., a subset of the power set of Og. We say that a family of order-
constraints has a compact representation, if one can specify every order-constraint in
this family with polynomial space (in |S|). In the following we describe families of
order-constraints with compact representations.

A partition-constraint is given by partitioning § into subsets S;U... U S, = S. It
requires that no two partitions alternate, i.e., elements a;,b; € S; and a;,b; € S; must
not appear in the order a;,a;,b;,b;. A PQ-constraint requires that the order of elements
in § is represented by a given PQ-tree with leaves S. A full-constraint contains only one
order, i.e., the order of S is completely fixed.

A partitioned full-constraint restricts the orders of elements in S according to a parti-
tion constraint (partitions must not alternate) and additionally completely fixes the order
within each partition. Similarly, partitioned PQ-constraints require the elements in each
partition to be ordered according to a PQ-constraint. Clearly, this notion of partitioned
order-constraints generalizes to arbitrary order-constraints.

Consider a planar graph G. By constraining a vertex v of G, we mean that there is an
order-constraint on the edges incident to v. We then only allow planar embeddings of G
where the edge-ordering of v is allowed by the order-constraint. By constraining G, we
mean that several (or all) vertices of G are constrained.

4.1 Flat-Clustered Graph

Consider a flat-clustered graph, i.e., a clustered graph where the cd-tree is a star. We
choose the center u of the star to be the root. Let vy,...,V; be the virtual vertices in
skel(t) corresponding to the children y,..., 1 of u. Note that skel(y;) contains ex-
actly one virtual vertex, namely twin(V;). The possible ways to embed skel(y;) restrict
the possible edge-orderings of twin(v;) and thus, by the characterization in Theorem 1,
the edge-orderings of v; in skel(ut). Hence, the graph skel(y;) essentially yields an order
constraint for v; in skel( ). We consider c-planarity with differently restricted instances
leading to different families of order-constraints. To show that testing c-planarity is
equivalent to testing whether skel(tt) is planar with respect to order-constraints of a
specific family, we have to show two directions. First, the embeddings of skel(u;) only
yield order-constraints of the given family. Second, we can get every possible order-
constraint of the given family by choosing an appropriate graph for skel(L; ).

Theorem 2. Testing c-planarity of flat-clustered graphs (i) where each proper cluster
consists of isolated vertices; (ii) where each cluster is connected; (iii) with fixed pla-
nar embedding; (iv) without restriction is linear-time equivalent to testing planarity of
a multi-graph with (i) partition-constraints; (ii) PQ-constraints; (iii) partitioned full-
constraints; (iv) partitioned PQ-constraints, respectively.

Proof. We start with case (i); see Fig. 2. Consider a flat-clustered graph G and let u; be
one of the leaves of the cd-tree. As pert(L;) is a proper cluster, it consists of isolated
vertices. Thus, skel(y;) is a set of vertices v;,...,v,, each connected (with multiple
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Fig.2. A graph G with a single cluster consisting of isolated vertices together with an illustration
of its cd-tree. An edge-ordering of twin(V;) corresponds to a planar embedding of skel(y;) if and
only if no two partitions of {{a,b},{c,d, f},{e}} alternate.

edges) to the virtual vertex twin(V;). The vertices v|,...,v, partition the edges incident
to twin(Vv;) into ¢ subsets. Clearly, in every planar embedding of skel(1;) no two par-
titions alternate. Moreover, every edge-ordering of twin(v;) in which no two partitions
alternate gives a planar embedding of skel(y;). Thus, the edges incident to v; in skel(u)
are constrained by a partition-constraint, where the partitions are determined by the in-
cidence of the edges to the vertices vq,...,v,. One can easily construct the resulting
instance of planarity with partition-constraints problem in linear time in the size of the
cd-tree, which is linear in the size of G for flat-clustered graphs.

Conversely, given a planar graph H with partition-constraints, we set skel(u) = H.
For every vertex of H we have a virtual vertex v; in skel(ut) with corresponding child ;.
We can simulate every partitioning of the edges incident to v; by connecting edges
incident to twin(V;) (in skel(y;)) with vertices such that two edges are connected with
the same vertex if and only if they belong to the same partition.

Consider case (ii). By Lemma 2 the condition of connected clusters is equivalent to
requiring that the virtual vertex twin(v;) in the skeleton of any leaf y; of the cd-tree is
not a cutvertex. The statement follows from the fact that the possible edge-orderings of
non-cutvertices is PQ-representable and that any PQ-tree can be achieved by choosing
an appropriate planar graph in which twin(Vv;) is not a cutvertex (see Sec. 2).

Consider case (iii). As in case (i), the blocks incident to twin(V;) in skel(y;) partition
the edges incident to v; in skel(it) such that two partitions must not alternate. The
fixed embedding of G fixes the edge-ordering of non-virtual vertices and thus fixes the
embeddings of the blocks in skel(y;). Hence, we get partitioned full-constraints for v;.
Conversely, we can construct an arbitrary partitioned full-constraint as in case (i).

For case (iv) the arguments from case (iii) show that we again get partitioned order-
constraints, while the arguments from case (ii) show that these order-constraints (for
the blocks) are PQ-constraints. a

Related Work. Biedl [1] proposes different drawing-models for graphs whose vertices
are partitioned into two subsets. The model matching the requirements of c-planar draw-
ings is called HH-drawings. Biedl et al. [2] show that one can test for the existence of
HH-drawings in linear time. Hong and Nagamochi [16] rediscovered this result in the
context of 2-page book embeddings. These results solve c-planarity for flat-clustered
graphs if the skeleton of the root node contains two virtual vertices. This is equiva-
lent to testing planarity with partitioned PQ-constraints for multi-graphs with only two
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vertices (Theorem 2). Thus, to solve c-planarity for flat-clustered graphs, one needs to
solve an embedding problem on general planar multi-graphs that is so far only solved
on a set of parallel edges (with absolutely non-trivial algorithms). This indicates that we
are still far away from solving the c-planarity problem even for flat-clustered graphs.

Cortese et al. [9] give a linear-time algorithm for testing c-planarity of a flat-clustered
cycle (i.e., G is a simple cycle) if the skeleton of the cd-tree’s root is a multi-cycle.
Requiring that G is a cycle implies that the skeleton of each non-root node in 7" has the
property that the blocks incident to the parent vertex are simple cycles. Thus, in terms
of constrained planarity, they show how to test planarity of multi-cycles with partition-
constraints where each partition has size two. The result can be extended to a special
case of c-planarity where the clustering is not flat. However, the cd-tree fails to have
easy-to-state properties in this case, which shows that the cd-tree perspective of course
has some limitations. Later, Cortese et al. [10] extended this result to the case where G
is still a cycle, while the skeleton of the root can be an arbitrary planar multi-graph that
has a fixed embedding up to the ordering of parallel edges. This is equivalent to testing
planarity of such a graph with partition-constraints where each partition has size two.

Jelinkova et al. [20] consider the case where each cluster contains at most three
vertices (with additional restrictions). Consider a cluster containing only two vertices
u and v. If u and v are connected, then the region representing the cluster can be always
added and we can omit the cluster. Otherwise, the region representing the cluster in
a c-planar drawing implies that one can add the edge uv to G, yielding an equivalent
instance. Thus, one can assume that every cluster has size exactly 3, which yields flat-
clustered graphs. In this setting they give efficient algorithms for the cases that G is a
cycle and G is 3-connected. Moreover, they give an FPT-algorithm for the case that G
is an Eulerian graph with k nodes, i.e., a graph obtained from a 3-connected graph of
size k by multiplying and then subdividing edges.

In case G is 3-connected, its planar embedding is fixed and thus the edge-ordering
of non-virtual vertices is fixed. Thus, one obtains partitioned full-constraints with the
restriction that there are only three partitions. Clearly, the requirement that G is 3-
connected also restricts the possible skeletons of the root of the cd-tree. It is an in-
teresting open question whether planarity with partitioned full-constraints with at most
three partitions can be tested efficiently for arbitrary planar graphs. In case G is a cy-
cle, one obtains partition constraints with only three partitions and each partition has
size two. Note that this in particular restricts the skeleton of the root to have maximum
degree 6. Although these kind of constraints seem pretty simple to handle, the algo-
rithm by Jelinkova et al. is pretty involved. It seems like one barrier where constrained
embedding becomes difficult is when there are partition constraints with three or more
partitions (see also Theorem 4). The result about Eulerian graphs in a sense combines
the cases where G is 3-connected and a cycle. A vertex has either degree two and thus
yields a partition of size two or it is one of the constantly many vertices with higher
degree for which the edge-ordering is partly fixed.

4.2 General Clustered Graphs

Expressing c-planarity for general clustered graphs (not necessarily flat) in terms of
constrained planarity problems is harder for the following reason. Consider a leaf ( in
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the cd-tree. The skeleton of u is a planar graph yielding (as in the flat-clustered case)
partitioned PQ-constraints for its parent y’. This restricts the possible embeddings of
skel(u) and thus the order-constraints one obtains for the parent of i’ are not neces-
sarily again partitioned PQ-constraints.

One can express this issue in the following, more formal way. Let G be a planar
multi-graph with vertices vy,...,v, and designated vertex v = v,. The map ¢, maps
a tuple (Cy,...,C,) where C; is an order-constraint on the edges incident to v; to an
order-constraint C on the edges incident to v. The order-constraint C = ¢;(Cy,...,C,)
contains exactly those edge-orderings of v that one can get in a planar embedding of
G that respects Cy,...,C,. Note that C is empty if and only if there is no such embed-
ding. Note further that testing planarity with order-constraints is equivalent to deciding
whether @ evaluates to the empty set. We call such a map @f, a constrained-embedding
operation.

The issue mentioned above (constraints iteratively handed to parents) boils down to
the fact that partitioned PQ-constraints are not closed under constrained-embedding op-
erations. On the positive side, we obtain a general algorithm for solving c-planarity as
follows. Assume we have a family of order-constraints C with compact representations
that is closed under constrained-embedding operations. Assume further that we can
evaluate the constrained embedding operations in polynomial time on order-constraints
in C. Then one can simply solve c-planarity by traversing the cd-tree bottom-up, eval-
uating for a node u with parent vertex v the constrained-embedding operation (ps‘{(eu )
on the constraints one computed in the same way for the children of .

Clearly, when restricting the skeletons of the cd-tree or requiring properties for
the parent vertices in these skeletons, these restrictions carry over to the constrained-
embedding operations one has to consider. More precisely, let R be a set of pairs (G, v),
where v is a vertex in G. We say that a clustered graphis R-restricted if (skel(u),v) € R
holds for every node u in the cd-tree with parent vertex v. Moreover, the R-restricted
constrained-embedding operations are those operations ¢}, with (G,v) € R. The fol-
lowing theorem directly follows.

Theorem 3. One can solve c-planarity of R-restricted clustered graphs in polynomial
time if there is a family C of order-constraints such that

— C has a compact representation,

— C is closed under R-restricted constrained-embedding operations,

— every R-restricted constrained-embedding operation on order-constraints in C can
be evaluated in polynomial time.

When dropping the requirement that C has a compact representation the algorithm
becomes super-polynomial only in the maximum degree d of the virtual vertices (the
number of possible order-constraints for a set of size d depends only on d). Moreover,
if @ has only k order constraints (whose sizes are bounded by a function of d) as
input, then @, can be evaluated by iterating over all combinations of orders, applying a
planarity test in every step. This gives an FPT-algorithm with parameter d + k (running
time O(f(d+k)p(n)), where f is a computable function depending only on d + k and p
is a polynomial). In other words, we obtain an FPT-algorithm where the parameter is the
sum of the maximum degree of the tree 7 and the maximum number of edges leaving
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a cluster. Note that this generalizes the FPT-algorithm by Chimani and Klein [6] with
respect to the total number of edges connecting different clusters.

Moreover, Theorem 3 has the following simple implication. Consider a clustered
graph where each cluster is connected. This restricts the skeletons of the cd-tree such
that none of the parent vertices is a cutvertex (Lemma 1). Thus, we have R-restricted
clustered graphs where (G, v) € R implies that v is not a cutvertex in G. PQ-constraints
are closed under R-restricted constrained-embedding operations as the valid edge-
ordering of non-cutvertices is PQ-representable and planarity with PQ-constraints is
basically equivalent to planarity (one can model a PQ-tree with a simple gadget; see
Sec. 2). Thus, Theorem 3 directly implies that c-planarity can be solved in polynomial
time if each cluster is connected.

Related Work. The above algorithm resulting from Theorem 3 is more or less the one
described by Lengauer [21]. The algorithm was later rediscovered by Feng et al. [13]
who coined the term “c-planarity”. The algorithm runs in O(c) C O(n?) time (recall that
¢ is the size of the cd-tree). Dahlhaus [11] improves the running time to O(n). Cortese
et al. [8] give a characterization that also leads to a linear-time algorithm.

Goodrich et al. [14] consider the case where each cluster is either connected or ex-
trovert. Let U be a node in the cd-tree with parent u’. The cluster pert(f) is extrovert
if the parent cluster pert(u’) is connected and every connected component in pert(u) is
connected to a vertex not in the parent pert(i’). They show that one obtains an equiv-
alent instance by replacing the extrovert cluster pert(u) with one cluster for each of its
connected components while requiring additional PQ-constraints for the parent vertex
in the resulting skeleton. In this instance every cluster is connected and the additional
PQ-constraints clearly do no harm.

Another extension to the case where every cluster must be connected is given by
Gutwenger et al. [15]. They give an algorithm for the case where every cluster is con-
nected with the following exception. Either, the disconnected clusters form a path in
the tree or for every disconnected cluster the parent and all siblings are connected. This
has basically the effect that at most one order-constraint in the input of a constrained-
embedding operation is not a PQ-tree.

Jelinek et al. [17, 18] assume each cluster to have at most two connected compo-
nents and the underlying (connected) graph to have a fixed planar embedding. Thus,
they consider R-restricted clustered graphs where (G,v) € R implies that v is incident
to at most two different blocks. The fixed embedding of the graph yields additional
restrictions that are not so easy to state within this model.

5 Cutvertices with Two Non-trivial Blocks

The input of the SIMULTANEOUS PQ-ORDERING problem consists of several PQ-trees
together with child-parent relations between them (the PQ-trees are the nodes of a di-
rected acyclic graph) such that the leaves of every child form a subset of the leaves of
its parents. SIMULTANEOUS PQ-ORDERING asks whether one can choose orders for
all PQ-trees simultaneously in the sense that every child-parent relation implies that the
order of the leaves of the parent are an extension of the order of the leaves of the child.
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In this way one can represent orders that cannot be represented by a single PQ-tree. For
example, adding one or more children to a PQ-tree T restricts the set of orders repre-
sented by T by requiring the orders of different subsets of leaves to be represented by
some other PQ-tree. Moreover, one can synchronize the orders of different trees that
share a subset of leaves by introducing a common child containing these leaves.

SIMULTANEOUS PQ-ORDERING is NP-hard but efficiently solvable for so-called
2-fixed instances [4]. For every biconnected planar graph G, there exists an instance
of SIMULTANEOUS PQ-ORDERING, the PQ-embedding representation, that represents
all planar embeddings of G [4]. It has the following properties.

— For every vertex v in G there is a PQ-tree T(v), the embedding tree, that has the
edges incident to v as leaves.

— For every solution of the PQ-embedding representation, setting the edge-ordering
of every vertex v to the order given by 7' (v) yields a planar embedding. Moreover,
one can obtain every embedding of G in this way.

— The instance remains 2-fixed when adding up to one child to each embedding tree.

A PQ-embedding representation still exists if every cutvertex in G is incident to at most
two non-trivial blocks (blocks that are not just bridges) [3].

Theorem 4. C-planarity can be tested in O(c?) C O(n*) time if every virtual vertex in
the skeletons of the cd-tree is incident to at most two non-trivial blocks.

Proof. Let G be a clustered graph with cd-tree T. For the skeleton of each node in 7',
we get a PQ-embedding representation with the above-mentioned properties. Let 1 be
anode of T and let v be a virtual vertex in skel(tt). Let it be the node whose skeleton
contains twin(v). The embedding representations of skel(tt) and skel(u') contain the
embedding trees T(v) and T (twin(v)) representing the edge-orderings of vand twin(v),
respectively. To ensure that v and twin(v) have the same edge-ordering, one can simply
add a PQ-tree as common child of 7(v) and T (twin(v)). We do this for every virtual
node in the skeletons of 7'. Due to the last property of the PQ-embedding representations,
the resulting instance remains 2-fixed and can thus be solved efficiently.

Every solution of this SIMULTANEOUS PQ-ORDERING instance D yields planar
embeddings of the skeletons such that every virtual vertex and its twin have the same
edge-ordering and vice versa. By Theorem 1, testing c-planarity is equivalent to solving
D. The size of D is linear in the size ¢ of T. Moreover, solving SIMULTANEOUS PQ-
ORDERING for 2-fixed instances can be done in quadratic time [4], yielding the running
time O(c?). a

Theorem 4 includes the following interesting cases. The latter extends the result by
Jelinek et al. [19] from four to five outgoing edges per cluster.

Corollary 1. C-planarity can be tested in O(c?) C O(n*) time if every cluster and every
co-cluster has at most two connected components.

Corollary 2. C-planarity can be tested in O(nz) time if every cluster has at most five
outgoing edges.
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